IV.11. Der Hurewicz Homomorphismus. Wir identifizieren $\Delta^1 \cong I$, wobei $(t_0, t_1) \in \Delta^1$ dem Element $t_1 \in I$ zugeordnet wird, dh. die Ecken $e_0, e_1 \in \Delta^1$ entsprechen $e_0 \leftrightarrow 0$ und $e_1 \leftrightarrow 1$. Mit Hilfe dieser Identifizierung können wir Wege $\sigma: I \to X$ mit 1-Simplizes $\tilde{\sigma}: \Delta^1 \to X$ identifizieren, $\tilde{\sigma}(t_0, t_1) = \sigma(t_1)$.

IV.11.1. LEMMA. Es gilt:

- (i) Ist $x \in X$, dann existiert $\tau \in C_2(X)$ mit $\tilde{c}_x = \partial \tau$.³⁵
- (ii) Ist $\sigma: I \to X$ eine Schleife, dann gilt $\partial \tilde{\sigma} = 0$.
- (iii) Sind $\sigma_0 \simeq \sigma_1 : I \to X$ homotop relativ Endpunkten, dann existiert $\tau \in C_2(X)$ mit $\tilde{\sigma}_1 = \tilde{\sigma}_0 + \partial \tau$.
- (iv) Sind $\sigma_0, \sigma_1 : I \to X$ mit $\sigma_0(1) = \sigma_1(0)$, dann existiert $\tau \in C_2(X)$ mit $(\sigma_0\sigma_1)^{\sim} = \tilde{\sigma}_0 + \tilde{\sigma}_1 + \partial \tau$.
- (v) Ist $\sigma: I \to X$, dann existiert $\tau \in C_2(X)$ mit $\bar{\sigma}^{\sim} = -\tilde{\sigma} + \partial \tau^{.36}$
- (vi) Ist $f: X \to Y$ stetig und $\sigma: I \to X$, dann gilt $f \circ \tilde{\sigma} = (f \circ \sigma)^{\sim}$.

BEWEIS. Ad (i): Für den konstanten 2-Simplex $\tau: \Delta^2 \to X$, $\tau(t_0, t_1, t_2) := x$, erhalten wir $\partial \tau = \tilde{c}_x - \tilde{c}_x + \tilde{c}_x = \tilde{c}_x$. Ad (ii): Für eine Schleife $\sigma: I \to X$ gilt $\partial \tilde{\sigma} = \sigma(1) - \sigma(0) = 0 \in C_0(X)$. Ad (iii): Sei also $H: I \times I \to X$ eine Homotopie relativ Endpunkten von σ_0 nach σ_1 . Definiere $x_0 := \sigma_0(0) = \sigma_1(0)$, $x_1 := \sigma_0(1) = \sigma_1(1)$, $\rho: I \to X$, $\rho(t) := H_t(t)$, sowie $\tau_0, \tau_1: \Delta^2 \to X$, $\tau_0(t_0, t_1, t_2) := H_{t_2}(t_1 + t_2)$, $\tau_1(t_0, t_1, t_2) := H_{t_1+t_2}(t_2)$. Dann gilt $\partial \tau_0 = \tilde{c}_{x_1} - \tilde{\rho} + \tilde{\sigma}_0$ und $\partial \tau_1 = \tilde{\sigma}_1 - \tilde{\rho} + \tilde{c}_{x_0}$. Nach (i) existieren $\tau_2, \tau_3 \in C_2(X)$ mit $\partial \tau_2 = \tilde{c}_{x_0}$ und $\partial \tau_3 = \tilde{c}_{x_1}$. Wir erhalten daher

$$\tilde{\sigma}_1 - \tilde{\sigma}_0 = \partial(\tau_1 - \tau_0 - \tau_2 + \tau_3),$$

die Behauptung folgt daher mit $\tau := \tau_1 - \tau_0 - \tau_2 + \tau_3$. Ad (iv): Definieren wir $\tau : \Delta^2 \to X$, $\tau(t_0, t_1, t_2) := (\sigma_0 \sigma_1)(t_1/2 + t_2)$, dann folgt $\partial \tau = \tilde{\sigma}_1 - (\sigma_0 \sigma_1)^{\sim} + \tilde{\sigma}_0$. Ad (v): Setze $x_0 := \sigma(0)$. Nach (iv) existiert $\tau_1 \in C_2(X)$ mit $(\sigma \bar{\sigma})^{\sim} = \tilde{\sigma} + \bar{\sigma}^{\sim} - \partial \tau$. Da $\sigma \bar{\sigma} \simeq c_{x_0}$ erhalten wir aus (iii) ein $\tau_2 \in C_2(X)$ mit $(\sigma \bar{\sigma})^{\sim} = \tilde{c}_{x_0} + \partial \tau_2$. Nach (i) existiert $\tau_3 \in C_2(X)$ mit $\partial \tau_3 = \tilde{c}_{x_0}$. Zusammen erhalten wir

$$\tilde{\sigma} + \bar{\sigma}^{\sim} = \partial(\tau_1 + \tau_2 + \tau_3).$$

Behauptung (vi) ist trivial, $(f \circ \tilde{\sigma})(t_0, t_1) = f(\tilde{\sigma}(t_0, t_1)) = f(\sigma(t_1)) = (f \circ \sigma)(t_1) = (f \circ \sigma)^{\sim}(t_0, t_1)$, für $(t_0, t_1) \in \Delta^1$.

Nach Lemma IV.11.1(ii) und (iii) ist

$$h_1 = h_1^{(X,x_0)} : \pi_1(X,x_0) \to H_1(X), \qquad h_1([\sigma]) := [\tilde{\sigma}].$$
 (IV.43)

eine wohldefinierte Abbildung, sie wird der (erste) Hurewicz-Homomorphismus genannt. Dabei bezeichnet $[\sigma] \in \pi_1(X, x_0)$ die Homotopieklasse der Schleife $\sigma: I \to X$ bei x_0 , und $[\tilde{\sigma}] \in H_1(X)$ die von dem ensprechenden 1-Simplex $\tilde{\sigma}: \Delta^1 \to X$ repräsenterte Homologieklasse. In Proposition IV.11.2 unten werden wir zeigen, dass dies tatsächlich ein Gruppenhomomorphismus ist.

³⁵Dabei bezeichnet $c_x: I \to X$ den konstanten Weg, $c_x(t) := x$.

³⁶Dabei bezeichnet $\bar{\sigma}: I \to X$ den inversen Weg, $\bar{\sigma}(t) := \sigma(1-t)$.

166 IV. HOMOLOGIE

IV.11.2. PROPOSITION (Hurewicz-Homomorphismus). Ist (X, x_0) ein punktierter Raum, dann definiert (IV.43) einen Gruppenhomomorphismus. Dieser Homomorphismus ist natürlich, dh. das linke Diagramm

$$\pi_{1}(X, x_{0}) \xrightarrow{h_{1}^{(X, x_{0})}} H_{1}(X)$$

$$\downarrow f_{*} \qquad \downarrow f_{*}$$

$$\pi_{1}(Y, y_{0}) \xrightarrow{h_{1}^{(Y, y_{0})}} H_{1}(Y)$$

$$\pi_{1}(X, x_{0}) \xleftarrow{\beta_{h}} \pi_{1}(X, x_{1})$$

kommutiert für jede Abbildung punktierter Räume $f:(X,x_0) \to (Y,y_0)$. Für jeden Weg $h:I \to X$ von $h(0)=x_0$ nach $h(1)=x_1$ ist darüber hinaus das rechte Diagramm oben kommutative, siehe Proposition I.1.18.

BEWEIS. Sind $\sigma_1, \sigma_2: I \to X$ zwei Schleifen bei x_0 , dann folgt aus Lemma IV.11.1(iv)

$$h_1([\sigma_1][\sigma_2]) = h_1([\sigma_1\sigma_2] = [(\sigma_1\sigma_2)^{\sim}] = [\tilde{\sigma}_1] + [\tilde{\sigma}_2] = h_1([\sigma_1]) + h_1([\sigma_2]),$$

also ist (IV.43) ein Gruppenhomomorphismus. Ist $f:(X,x_0)\to (Y,y_0)$ eine Abbildung punktierter Räume und $\sigma:I\to X$ eine Schleife bei x_0 , dann folgt aus Lemma IV.11.1(vi)

$$h_1^{(Y,y_0)}(f_*([\sigma])) = h_1^{(Y,y_0)}([f \circ \sigma]) = [(f \circ \sigma)^{\sim}]$$
$$= [f \circ \tilde{\sigma}] = f_*([\tilde{\sigma}]) = f_*(h_1^{(X,x_0)}([\sigma])).$$

Dies zeigt die Natürlichkeit von h_1 . Ist nun $\sigma: I \to X$ eine Schleife bei x_1 , dann folgt

$$h_1^{(X,x_0)}(\beta_h([\sigma])) = h_1^{(X,x_0)}([h\sigma\bar{h}]) = [(h\sigma\bar{h})^{\sim}]$$

= $[\tilde{h} + \tilde{\sigma} + \bar{h}^{\sim}] = [\tilde{h} + \tilde{\sigma} - \tilde{h}] = [\tilde{\sigma}] = h_1^{(X,x_0)}([\sigma]).$

wobei wir Lemma IV.11.1(iv) und (v) verwendet haben.

IV.11.3. SATZ (Hurewicz-Isomorphismus). Es sei (X, x_0) ein wegzusammenhängender punktierter Raum. Dann ist der Hurewicz-Homomorphismus (IV.43) surjektiv und sein Kern stimmt mit der Kommutatoruntergruppe von $\pi_1(X, x_0)$ überein. Er induziert daher einen Isomorphismus $\pi_1(X, x_0)_{ab} \cong H_1(X)$.

Beweis. Da $H_1(X)$ abelsch ist, induziert (IV.43) einen Homomorphismus

$$h_1: \pi_1(X, x_0)_{ab} \to H_1(X).$$
 (IV.44)

es genügt zu zeigen, dass (IV.44) ein Isomorphismus ist. Da X wegzusammenhängend ist, können wir zu jedem Punkt $x \in X$ einen Weg $\rho_x : I \to X$ von $\rho_x(0) = x_0$ nach $\rho_x(1) = x$ wählen. Ist nun $\tilde{\sigma} : \Delta^1 \to X$ ein 1-Simplex und $\sigma : I \to X$ der entsprechende Weg, dann ist $(\rho_{\sigma(0)}\sigma)\bar{\rho}_{\sigma(1)}$ eine Schleife bei x_0 und definiert daher

ein Element in $[\rho_{\sigma(0)}\sigma\bar{\rho}_{\sigma(1)}] \in \pi_1(X,x_0)$. Da $\pi_1(X,x_0)_{ab}$ abelsch ist können wir einen Homomorphismus auf Erzeugern $\tilde{\sigma}: \Delta^1 \to X$ wie folgt definieren:

$$\phi: C_1(X) \to \pi_1(X, x_0)_{ab}, \qquad \phi(\tilde{\sigma}) := [\rho_{\sigma(0)} \sigma \bar{\rho}_{\sigma(1)}].$$

Wir zeigen zunächst

$$\phi \circ \partial = 1 : C_2(X) \to \pi_1(X, x_0)_{ab}, \tag{IV.45}$$

dh. ϕ definiert einen Homomorphismus

$$\phi: H_1(X) \to \pi_1(X, x_0)_{ab}, \qquad \phi([c]) := \phi(c).$$
 (IV.46)

Für $\tau: \Delta^2 \to X$ ist also $\phi(\partial \tau) = 1$ zu zeigen.³⁷ Setzen wir $\tilde{\sigma}_i := \tau \circ \delta_2^i : \Delta^1 \to X$, i = 0, 1, 2, dann gilt offensichtlich $\partial \tau = \tilde{\sigma}_0 - \tilde{\sigma}_1 + \tilde{\sigma}_2$. Da ϕ ein Homomorphismus ist, erhalten wir:

$$\phi(\partial \tau) = \phi(\tilde{\sigma}_{0})\phi(\tilde{\sigma}_{1})^{-1}\phi(\tilde{\sigma}_{2})
= [\rho_{\sigma_{0}(0)}\sigma_{0}\bar{\rho}_{\sigma_{0}(1)}][\rho_{\sigma_{1}(0)}\sigma_{1}\bar{\rho}_{\sigma_{1}(1)}]^{-1}[\rho_{\sigma_{2}(0)}\sigma_{2}\bar{\rho}_{\sigma_{2}(1)}]
= [\rho_{\sigma_{0}(0)}\sigma_{0}\bar{\rho}_{\sigma_{0}(1)}\rho_{\sigma_{1}(1)}\bar{\sigma}_{1}\bar{\rho}_{\sigma_{1}(0)}\rho_{\sigma_{2}(0)}\sigma_{2}\bar{\rho}_{\sigma_{2}(1)}]
= [\rho_{\sigma_{0}(0)}\sigma_{0}\bar{\sigma}_{1}\sigma_{2}\bar{\rho}_{\sigma_{2}(1)}]
= [\rho_{\sigma_{0}(0)}\bar{\rho}_{\sigma_{2}(1)}] = [c_{x_{0}}] = 1$$

Dabei haben wir verwendet, dass $\sigma_0\bar{\sigma}_1\sigma_2$, $\bar{\rho}_{\sigma_0(1)}\rho_{\sigma_1(1)}$, $\bar{\rho}_{\sigma_1(0)}\rho_{\sigma_2(0)}$ und $\rho_{\sigma_0(0)}\bar{\rho}_{\sigma_2(1)}$ nullhomotope Schleifen sind. Damit ist (IV.45) gezeigt. Es genügt nun zu zeigen, dass (IV.46) invers zu (IV.44) ist. Zunächst gilt

$$\phi \circ h_1 = \mathrm{id}_{\pi_1(X,x_0)_{\mathrm{ab}}},$$

denn für jede Schleife $\sigma: I \to X$ bei x_0 gilt

$$\phi(h_1([\sigma])) = \phi([\tilde{\sigma}]) = \phi(\tilde{\sigma}) = [\rho_{x_0} \sigma \bar{\rho}_{x_0}] = [\rho_{x_0}][\tilde{\sigma}][\rho_{x_0}]^{-1} = [\sigma].$$

Es bleibt daher nur noch

$$h_1 \circ \phi = \mathrm{id}_{H_1(X)} \tag{IV.47}$$

zu zeigen. Um dies einzusehen definieren wir einen Homomorphismus auf Erzeugern $x \in X$ durch

$$g: C_0(X) \to C_1(X), \qquad g(x) := \tilde{\rho}_x.$$

Für jeden 1-Simplex $\tilde{\sigma}: \Delta^1 \to X$ gilt dann

$$h_1(\phi(\tilde{\sigma})) = h_1([\rho_{\sigma(0)}\sigma\bar{\rho}_{\sigma(1)}]) = [(\rho_{\sigma(0)}\sigma\bar{\rho}_{\sigma(1)})^{\sim}]$$
$$= [\tilde{\rho}_{\sigma(0)} + \tilde{\sigma} - \tilde{\rho}_{\sigma(1)}] = [\tilde{\sigma} - q(\partial\tilde{\sigma})].$$

Dabei haben wir Lemma IV.11.1(iv) und (v) verwendet. Es folgt sofort $h_1(\phi(c)) = [c - g(\partial c)]$ für alle $c \in C_1(X)$, also $h_1(\phi(c)) = [c]$, für alle Zyklen $c \in Z_1(X)$. Damit ist (IV.47) gezeigt und der Beweis vollständig.

³⁷Wir schreiben die abelsche Gruppe $\pi_1(X, x_0)_{ab}$ multiplikativ.

168 IV. HOMOLOGIE

IV.11.4. Beispiel. Aus Satz IV.11.3 erhalten wir, unabhängig von den Berechnungen in Kapitel IV:

$$H_1(S^1) \cong \mathbb{Z}$$
 (I.2.1)
 $H_1(\mathbb{R}P^n) \cong \mathbb{Z}_2, n \geq 2$ (I.5.18)
 $H_1(\mathbb{C}P^n) = 0$ (I.5.16)
 $H_1(\mathbb{H}P^n) = 0$ (I.5.17)
 $H_1(K) \cong \mathbb{Z} \oplus \mathbb{Z}_2$ (I.7.3)
 $H_1(F_g) \cong \mathbb{Z}^{2g}$ (I.7.4)
 $H_1(N_g) \cong \mathbb{Z}^{g-1} \oplus \mathbb{Z}_2$ (I.7.4)
 $H_1(SU_n) = H_1(SL_n(\mathbb{C})) = 0$ (I.6.4)
 $H_1(U_n) = H_1(GL_n(\mathbb{C})) \cong \mathbb{Z}$ (I.6.6)
 $H_1(SO_n) = H_1(SL_n(\mathbb{R})) = H_1(GL_n^+(\mathbb{R})) \cong \mathbb{Z}_2, n \geq 3$ (I.6.10)
 $H_1(O_n) = H_1(GL_n(\mathbb{R})) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2, n \geq 3$ (I.6.12)
 $H_1(L(p; q_1, \dots, q_n)) \cong \mathbb{Z}_p, n \geq 2$ (II.5.7)

IV.11.5. BEISPIEL. Wir erinnern uns an Poincarés Homologie Sphäre $M=S^3/\tilde{G}$ aus Beispiel II.5.11. Dies ist eine geschlossene 3-Mannigfaltigkeit mit nichttrivialer Fundamentalgruppe, deren Abelisierung verschwindet. Aus Satz IV.11.3 folgt daher $H_1(M)=0=H_1(S^3)$. Jedoch ist M nicht homotopieäquivalent zu S^3 , denn $\pi_1(M)\neq 0=\pi_1(S^3)$. Die Mannigfaltigkeit M wird als Homologiesphäre bezeichnet, denn es gilt sogar $H_*(M)=H_*(S^3)$, wir werden dies später mit Hilfe der Poincaré Dualität beweisen. Henri Poincaré hatte 1900 behauptet, dass jede geschlossene 3-Mannigfaltigkeit deren Homologiegruppen mit denen der Sphäre S^3 übereinstimmen, schon zu S^3 homöomorph sein muss. Die Mannigfaltigkeit M von oben zeigt, dass dies nicht der Fall ist. Dieses Beispiel wurde von Poincaré 1904 publiziert. In der gleichen Arbeit stellte er die Frage ob jede einfach zusammenhängende geschlossene 3-Mannigfaltigkeit homöomorph zu S^3 ist. Diese sogenannte Poincaré Vermutung galt lange Zeit als zentrale Frage der Topologie, und konnte erst Anfang dieses Jahrhunderts von Grigori Perelman positiv beantwortet werden.

IV.11.6. Bemerkung. Es sei $X = U \cup V$ wobei U und V zwei offene Teilmengen bezeichnen, sodass U, V und $U \cap V$ alle nicht-leer und wegzusammenhängend sind. Wir fixieren einen Basispunkt in $U \cap V$ werden den in der Notation unten

aber unterdrücken. Aus der Natürlichkeit des Hurewicz-Homomorphismus erhalten wir ein kommutatives Diagramm:

$$\pi_{1}(U \cap V)_{ab} \xrightarrow{(j_{*}^{U}, -j_{*}^{V})} \pi_{1}(U)_{ab} \oplus \pi_{1}(V)_{ab} \xrightarrow{\iota_{*}^{U} + \iota_{*}^{V}} \pi_{1}(X)_{ab} \longrightarrow 0$$

$$\cong \left| h_{1}^{U \cap V} \right| \xrightarrow{(j_{*}^{U}, -j_{*}^{V})} H_{1}(U) \oplus H_{1}(V) \xrightarrow{\iota_{*}^{U} + \iota_{*}^{V}} H_{1}(X) \longrightarrow 0$$

Aus dem Satz von Seifert-van Kampen, siehe Satz I.5.5, folgt, dass die erste Zeile exakt ist. Die untere Zeile ist ein Stück der Mayer-Vietors Sequenz, da $\tilde{H}_0(U\cap V)=0$ ist sie auch bei $H_1(X)$ exakt. Nach Satz IV.11.3 sind alle vertikalen Pfeile Isomorphismen. Wir können die Exaktheit dieses Stücks der Mayer-Vietoris Sequenz daher als Abelisierte Version des van Kampen Satzes verstehen.