der Abstand von v zum Teilraum W genannt. Dabei bezeichnet $p: V \to W$ die Orthogonalprojektion aus Satz VII.2.32 und b_1, \ldots, b_k ist eine beliebige Orthonormalbasis von W. Offensichtlich gilt d(v, W) = 0 genau dann, wenn $v \in W$.

VII.2.34. Beispiel. Wir wollen die Orthogonalprojektion auf den Teilraum

$$W = \langle \begin{pmatrix} 3\\3\\6 \end{pmatrix}, \begin{pmatrix} 3\\7\\-2 \end{pmatrix} \rangle$$

von \mathbb{R}^3 bestimmen, wobei \mathbb{R}^3 mit dem standard inneren Produkt versehen sei. Wir bestimmen zunächst eine Orthonormalbasis von W in dem wir das Gram–Schmidt Orthonormalisierungsverfahren auf die beiden Vektoren

$$v_1 = \begin{pmatrix} 3\\3\\6 \end{pmatrix} \quad \text{und} \quad v_2 = \begin{pmatrix} 3\\7\\-2 \end{pmatrix}$$

anwenden. Dies liefert

$$b_{1} = \frac{v_{1}}{\|v_{1}\|} = \frac{1}{\sqrt{54}} \begin{pmatrix} 3\\3\\6 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix},$$

$$\tilde{b}_{2} = v_{2} - \langle b_{1}, v_{2} \rangle b_{1} = \begin{pmatrix} 3\\7\\-2 \end{pmatrix} - \frac{6}{6} \begin{pmatrix} 1\\1\\2 \end{pmatrix} = \begin{pmatrix} 2\\6\\-4 \end{pmatrix} = 2 \begin{pmatrix} 1\\3\\-2 \end{pmatrix},$$

$$b_{2} = \frac{\tilde{b}_{2}}{\|\tilde{b}_{2}\|} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\3\\-2 \end{pmatrix}.$$

Somit ist b_1, b_2 eine Orthonormalbasis von W, die Orthogonalprojektion auf W ist daher

$$p(v) = \langle b_1, v \rangle b_1 + \langle b_2, v \rangle b_2 = BB^t v$$
, wobei $B = (b_1|b_2) = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{14} \\ 1/\sqrt{6} & 3/\sqrt{14} \\ 2/\sqrt{6} & -2\sqrt{14} \end{pmatrix}$.

Bezüglich der Standardbasis E von \mathbb{R}^3 gilt daher

$$[p]_{EE} = BB^t = \frac{1}{42} \begin{pmatrix} 10 & 16 & 8\\ 16 & 34 & -4\\ 8 & -4 & 40 \end{pmatrix}.$$

VII.3. Normale und selbstadjungierte Operatoren.

VII.3.1. Lemma. Sei V ein Euklidischer oder unitärer Vektorraum. Dann definiert

$$\flat \colon V \to V^*, \qquad \flat(v) := \langle v, - \rangle, \tag{VII.17}$$

eine injektive reell lineare Abbildung, die im unitären Fall darüber hinaus komplex anti-linear ist, d.h. $\flat(\lambda v) = \bar{\lambda}\flat(v)$. Ist V endlich dimensional, dann ist (VII.17) ein reell linearer Isomorphismus, insbesondere existiert zu jedem $\alpha \in V^*$ ein eindeutiger Vektor $a \in V$, sodass $\flat(a) = \alpha$, d.h. $\langle a, v \rangle = \alpha(v)$, für alle $v \in V$.

BEWEIS. Da das innere Produkt linear in der zweiten Eintragung ist, ist (VII.17) wohldefiniert. Die reelle Linearität von \flat folgt daraus, dass das innere Produkt reell linear in der ersten Eintragung ist. Es gilt $\ker(\flat) = \{0\}$, denn aus $\flat(v) = 0$ folgt $0 = \flat(v)(v) = \langle v, v \rangle = ||v||^2$ also v = 0. Dies zeigt, dass \flat eine injektive Abbildung ist. Im endlich dimensionalen Fall gilt $\dim_{\mathbb{R}}(V) = \dim_{\mathbb{R}}(V^*)$, nach Korollar IV.2.11 ist \flat in diesem Fall also auch surjektiv.

VII.3.2. PROPOSITION (Adjungierte Abbildung). Sei $\varphi \colon V \to W$ eine lineare Abbildung zwischen endlich dimensionalen Euklidischen oder unitären Vektorräumen. Dann existiert eine eindeutige lineare Abbildung $\varphi^* \colon W \to V$, sodass

$$\langle \varphi^*(w), v \rangle = \langle w, \varphi(v) \rangle,$$
 (VII.18)

für alle $v \in V$ und $w \in W$. Diese Abbildung φ^* wird als die zu φ adjungierte Abbildung bezeichnet, sie macht folgendes Diagramm kommutativ:

$$W \xrightarrow{\varphi^*} V$$

$$\downarrow_{W} \downarrow \cong \cong \downarrow_{\flat_{V}} \qquad d.h. \ es \ gilt \qquad \flat_{V} \circ \varphi^* = \varphi^t \circ \flat_{W},$$

$$W^* \xrightarrow{\varphi^t} V^*$$

wobei \flat_V und \flat_W die (komplex antilinearen) Isomorphismen aus Lemma VII.3.1 und $\varphi^t \colon W^* \to V^*$ die duale Abbildung aus Proposition III.4.3 bezeichnen. Für jede weitere lineare Abbildung $\psi \colon W \to U$ gilt

$$\varphi^{**} = \varphi, \qquad (\psi \circ \varphi)^* = \varphi^* \circ \psi^*, \qquad und \qquad \mathrm{id}_V^* = \mathrm{id}_V.$$

Für zwei lineare Abbildungen $\varphi_1, \varphi_2 \colon V \to W$ und jeden Skalar λ haben wir

$$(\varphi_1 + \varphi_2)^* = \varphi_1^* + \varphi_2^*, \quad und \quad (\lambda \varphi)^* = \bar{\lambda} \varphi^*.$$

Sind B und C Orthonormalbasen von V bzw. W, dann gilt

$$[\varphi^*]_{BC} = [\varphi]_{CB}^*. \tag{VII.19}$$

Schließlich ist

$$\ker(\varphi^*) = \operatorname{img}(\varphi)^{\perp} \quad und \quad \operatorname{img}(\varphi^*) = \ker(\varphi)^{\perp}.$$
 (VII.20)

Beweis. Für alle $v \in V$ und $w \in W$ gilt

$$\langle \varphi^*(w), v \rangle = \flat_V(\varphi^*(w))(v)$$

und

$$\langle w, \varphi(v) \rangle = \flat_W(w)(\varphi(v)) = (\varphi^t(\flat_W(w)))(v).$$

Die Bedingung (VII.18) ist daher zu

$$\flat_V \circ \varphi^* = \varphi^t \circ \flat_W$$

äquivalent. Somit wird durch $\varphi^* := \flat_V^{-1} \circ \varphi^t \circ \flat_W$ eine Abbildung $W \to V$ definiert, die (VII.18) genügt, und diese ist dadurch eindeutig bestimmt. Als Komposition reell linearer Abbildungen ist φ^* reell linear. Im unitären Fall gilt weiters

$$\begin{split} \varphi^*(\lambda v) &= \flat_V^{-1} \big(\varphi^t(\flat_W(\lambda v)) \big) = \flat_V^{-1} \big(\varphi^t(\bar{\lambda} \flat_W(v)) \big) \\ &= \flat_V^{-1} \big(\bar{\lambda} \varphi^t(\flat_W(v)) \big) = \lambda \flat_V^{-1} \big(\varphi^t(\flat_W(v)) \big) = \lambda \varphi^*(v), \end{split}$$

d.h. $\varphi^* \colon W \to V$ ist auch komplex linear. Aus (VII.18) erhalten wir $\overline{\langle \varphi^*(w), v \rangle} = \overline{\langle w, \varphi(v) \rangle}$, es gilt daher auch

$$\langle v, \varphi^*(w) \rangle = \langle \varphi(v), w \rangle, \qquad v \in V, w \in W.$$
 (VII.21)

Somit $\langle \varphi^{**}(v), w \rangle = \langle \varphi(v), w \rangle$, für alle $v \in V$ und $w \in W$, also $\varphi^{**} = \varphi$. Die Gleichung id $_V^* = \mathrm{id}_V$ ist trivial. Aus

$$\langle (\psi \circ \varphi)^*(w), v \rangle = \langle w, (\psi \circ \varphi)(v) \rangle = \langle w, \psi(\varphi(v)) \rangle$$
$$= \langle \psi^*(w), \varphi(v) \rangle = \langle \varphi^*(\psi^*(w)), v \rangle = \langle (\varphi^* \circ \psi^*)(w), v \rangle,$$

erhalten wir $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$. Analog folgt aus

$$\langle (\varphi_1 + \varphi_2)^*(w), v \rangle = \langle w, (\varphi_1 + \varphi_2)(v) \rangle = \langle w, \varphi_1(v) + \varphi_2(v) \rangle$$

$$= \langle w, \varphi_1(v) \rangle + \langle w, \varphi_2(v) \rangle = \langle \varphi_1^*(w), v \rangle + \langle \varphi_2^*(w), v \rangle$$

$$= \langle \varphi_1^*(w) + \varphi_2^*(w), v \rangle = \langle (\varphi_1^* + \varphi_2^*)(w), v \rangle$$

die Gleichung $(\varphi_1 + \varphi_2)^* = \varphi_1^* + \varphi_2^*$. Für jeden Skalar λ gilt

$$\langle (\lambda \varphi)^*(w), v \rangle = \langle w, (\lambda \varphi)(v) \rangle = \langle w, \lambda \varphi(v) \rangle$$
$$= \lambda \langle w, \varphi(v) \rangle = \lambda \langle \varphi^*(w), v \rangle = \langle \bar{\lambda} \varphi^*(w), v \rangle = \langle (\bar{\lambda} \varphi^*)(w), v \rangle$$

also $(\lambda \varphi)^* = \bar{\lambda} \varphi^*$. Sind $B = (b_1, \ldots, b_n)$ und $C = (c_1, \ldots, c_m)$ Orthonormalbasen von V bzw. W, dann gilt,

$$\varphi(b_i) = \sum_{j=1}^{m} \langle c_j, \varphi(b_i) \rangle c_j, \quad \text{also} \quad ([\varphi]_{CB})_{ji} = \langle c_j, \varphi(b_i) \rangle,$$

siehe Proposition VII.2.22. Analog haben wir

$$\varphi^*(c_j) = \sum_{i=1}^n \langle b_i, \varphi^*(c_j) \rangle b_i, \quad \text{also} \quad ([\varphi^*]_{BC})_{ij} = \langle b_i, \varphi^*(c_j) \rangle.$$

Es gilt daher

$$([\varphi^*]_{BC})_{ij} = \langle b_i, \varphi^*(c_j) \rangle = \overline{\langle \varphi^*(c_j), b_i \rangle} = \overline{\langle c_j, \varphi(b_i) \rangle} = \overline{([\varphi]_{CB})_{ji}} = ([\varphi]_{CB}^*)_{ij},$$
 also $[\varphi^*]_{BC} = [\varphi]_{CB}^*$. Für jedes $w \in W$ gilt:

$$w \in \ker(\varphi^*) \Leftrightarrow \varphi^*(w) = 0$$

$$\Leftrightarrow \forall v \in V : \langle \varphi^*(w), v \rangle = 0$$

$$\Leftrightarrow \forall v \in V : \langle w, \varphi(v) \rangle = 0$$

$$\Leftrightarrow \forall u \in \operatorname{img}(\varphi) : \langle w, u \rangle = 0$$

$$\Leftrightarrow w \in \operatorname{img}(\varphi)^{\perp},$$

und somit $\ker(\varphi^*) = \operatorname{img}(\varphi)^{\perp}$. Wenden wir dies auf φ^* an, erhalten wir

$$\ker(\varphi) = \ker(\varphi^{**}) = \operatorname{img}(\varphi^{*})^{\perp},$$

und daher auch $\ker(\varphi)^{\perp} = \operatorname{img}(\varphi^*)^{\perp \perp} = \operatorname{img}(\varphi^*)$, nach Korollar VII.2.33(b). \square

VII.3.3. DEFINITION (Selbstadjungierte Abbildungen). Eine lineare Abbildung $\varphi\colon V\to V$ auf einem endlich dimensionalen Euklidischen oder unitären Vektorraum V wird selbstadjungiert genannt, falls $\varphi^*=\varphi$ gilt, d.h. wenn

$$\langle \varphi(v), w \rangle = \langle v, \varphi(w) \rangle,$$
 für alle $v, w \in V.$

Im Euklidischen Fall werden selbstadjungierte Abbildungen auch als symmetrische Abbildungen bezeichnet.

Eine lineare Abbildung $\varphi \colon V \to V$ auf einem endlich dimensionalen unitären Vektorraum V ist genau dann selbstadjungiert, wenn ihre Matrixdarstellung, $[\varphi]_{BB}$, bezüglich einer (und dann jeder) Orthonormalbasis B von V selbstadjungiert ist, d.h. wenn $[\varphi]_{BB}^* = [\varphi]_{BB}$ gilt. Dies folgt sofort aus (VII.19). Inbesondere ist eine Matrix $A \in M_{n \times n}(\mathbb{C})$ genau dann selbstadjungiert, d.h. $A^* = A$, wenn die lineare Abbildung $\mathbb{C}^n \to \mathbb{C}^n$, $x \mapsto Ax$, bezüglich dem standard inneren Produkt auf \mathbb{C}^n selbstadjungiert ist, denn die Standardbasis ist eine Orthonormalbasis. Die Menge der selbstadjungierten Abbildungen $V \to V$ bildet einen reellen aber keinen komplexen Teilraum von L(V, V). Die Komposition (nicht kommutierender) selbstadjungierter Abbildungen wird i.A. nicht selbstadjungiert sein.

Eine lineare Abbildung $\varphi \colon V \to V$ auf einem endlich dimensionalen Euklidischen Vektorraum V ist genau dann symmetrisch, wenn ihre Matrixdarstellung, $[\varphi]_{BB}$, bezüglich einer (und dann jeder) Orthonormalbasis B von V symmetrisch ist, d.h. wenn $[\varphi]_{BB}^t = [\varphi]_{BB}$ gilt, siehe (VII.19). Inbesondere ist eine Matrix $A \in M_{n \times n}(\mathbb{R})$ genau dann symmetrisch, wenn die lineare Abbildung $\mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto Ax$, bezüglich dem standard inneren Produkt auf \mathbb{R}^n symmetrisch ist. Die Menge der symmetrischen Abbildungen $V \to V$ bildet einen Teilraum von L(V, V). Die Komposition (nicht kommutierender) symmetrischer Abbildungen wird i.A. nicht symmetrisch sein.

VII.3.4. BEISPIEL. Ist $\varphi \colon V \to V$ eine beliebige lineare Abbildung auf einem Euklidischen oder unitären Vektorraum V, so ist $\varphi \varphi^* \colon V \to V$ selbstadjungiert, denn aus den Rechenregeln in Proposition VII.3.2 folgt $(\varphi \varphi^*)^* = \varphi^{**} \varphi^* = \varphi \varphi^*$.

VII.3.5. BEISPIEL. Sei $\varphi \colon V \to V$ eine beliebige lineare Abbildung auf einem Euklidischen oder unitären Vektorraum V. Dann ist $\frac{1}{2}(\varphi + \varphi^*)\colon V \to V$ selbsadjungiert, denn mit den Rechenregeln aus Proposition VII.3.2 erhalten wir:

$$\left(\frac{1}{2}(\varphi + \varphi^*)\right)^* = \frac{1}{2}(\varphi + \varphi^*)^* = \frac{1}{2}(\varphi^* + \varphi^{**}) = \frac{1}{2}(\varphi^* + \varphi) = \frac{1}{2}(\varphi + \varphi^*).$$

Offensichtlich ist

$$\varphi = \frac{1}{2}(\varphi + \varphi^*) + \frac{1}{2}(\varphi - \varphi^*),$$

für die lineare Abbildung $\frac{1}{2}(\varphi-\varphi^*)\colon V\to V$ gilt

$$\left(\frac{1}{2}(\varphi - \varphi^*)\right)^* = \frac{1}{2}(\varphi - \varphi^*)^* = \frac{1}{2}(\varphi^* - \varphi^{**}) = \frac{1}{2}(\varphi^* - \varphi) = -\frac{1}{2}(\varphi - \varphi^*).$$

Lineare Abbildungen $\psi \colon V \to V$, für die $\psi^* = -\psi$ gilt, werden anti-selbstadjungiert oder schiefsymmetrisch genannt. Jede lineare Abbildung $\varphi \colon V \to V$ lässt sich daher (in eindeutiger Weise) als Summe einer selbstadjungierten und einer anti-selbstadjungierten linearen Abbildung schreiben. Die Abbildung $\varphi \mapsto \frac{1}{2}(\varphi + \varphi^*)$ ist eine reell lineare Projektion auf den Teilraum der selbstadjungierten linearen Abbildungen, und $\varphi \mapsto \frac{1}{2}(\varphi - \varphi^*)$ ist die komplementäre (reell lineare) Projektion auf den Teilraum der anti-selbstadjungierten linearen Abbildungen.

VII.3.6. BEISPIEL. Ist W ein Teilraum eines endlich dimensionalen Euklidischen oder unitären Vektorraums V, dann ist die Orthogonalprojektion, $p: V \to W \subseteq V$, siehe Satz VII.2.32, selbstadjungiert. Um dies einzusehen, sei b_1, \ldots, b_k eine Orthonormalbasis von $W = \operatorname{img}(p)$ und b_{k+1}, \ldots, b_n eine Orthonormalbasis von $\ker(p) = W^{\perp}$. Es ist dann $B = (b_1, \ldots, b_n)$ eine Orthonormalbasis von V, für die $[p]_{BB} = {I_k \choose 0}$ gilt. Somit ist $[p]_{BB} = [p]_{BB}^*$ und p also selbstadjungiert. Auch die Spiegelung an W längs W^{\perp} ,

$$\sigma \colon V \to V, \qquad \sigma = 2p - \mathrm{id}_V,$$

ist selbstadjungiert, denn $\sigma^* = (2p - \mathrm{id}_V)^* = 2p^* - \mathrm{id}_V^* = 2p - \mathrm{id}_V = \sigma$. Alternativ lässt sich dies auch an der Matrixdarstellung von σ ablesen, denn bezüglich der Orthonormalbasis B oben gilt $[\sigma]_{BB} = \begin{pmatrix} I_k & 0 \\ 0 & -I_{n-k} \end{pmatrix}$, also $[\sigma]_{BB}^* = [\sigma]_{BB}$.

VII.3.7. LEMMA. Sei $\varphi \colon V \to V$ eine selbstadjungierte lineare Abbildung auf einem endlich dimensionalen unitären Vektorraum, $\varphi^* = \varphi$. Dann sind alle Eigenwerte von φ reell.

BEWEIS. Sei also $0 \neq v \in V$ ein Eigenvektor zum Eigenwert $\lambda \in \mathbb{C}$, d.h. $\varphi(v) = \lambda v$. Dann gilt

$$\lambda \|v\|^2 = \lambda \langle v, v \rangle = \langle v, \lambda v \rangle = \langle v, \varphi(v) \rangle$$
$$= \langle \varphi^*(v), v \rangle = \langle \varphi(v), v \rangle = \langle \lambda v, v \rangle = \bar{\lambda} \langle v, v \rangle = \bar{\lambda} \|v\|^2,$$

also $\lambda = \bar{\lambda}$, da ja $||v||^2 \neq 0$. Dies ziegt, dass λ reell ist.

VII.3.8. DEFINITION (Normale Abbildungen). Sei V ein endlich dimensionaler Euklidischer oder unitärer Vektorraum. Eine lineare Abbildung $\varphi \colon V \to V$ wird normal genannt, wenn $\varphi^* \varphi = \varphi \varphi^*$.

Offensichtlich ist jede selbstadjungierte Abbildung normal. Auch jede antiselbstadjungierte lineare Abbildung ist normal. Die Summe oder das Produkt zweier (nicht kommutierender) normaler Abbildungen wird i.A. nicht normal sein.

- VII.3.9. LEMMA. Für eine lineare Abbildung $\varphi \colon V \to V$ auf einem endlich dimensionalen Euklidischen oder unitären Vektorraum sind folgende Aussagen äquivalent:
- (a) φ ist normal, d.h. $\varphi^*\varphi = \varphi\varphi^*$.
- (b) $\langle \varphi(v), \varphi(w) \rangle = \langle \varphi^*(v), \varphi^*(w) \rangle$, für alle $v, w \in V$.
- (c) $\|\varphi(v)\| = \|\varphi^*(v)\|$, für alle $v \in V$.
- (d) Es gilt $[\varphi]_{BB}^* [\varphi]_{BB} = [\varphi]_{BB} [\varphi]_{BB}^*$, für eine (und dann jede) Orthonormalbasis B von V.

Beweis. Die Äquivalenz (a)⇔(b) folgt aus

$$\langle (\varphi^* \varphi)(v), w \rangle = \langle \varphi^*(\varphi(v)), w \rangle = \langle \varphi(v), \varphi(w) \rangle$$

und

$$\langle (\varphi \varphi^*)(v), w \rangle = \langle \varphi(\varphi^*(v)), w \rangle = \langle \varphi^*(v), \varphi^*(w) \rangle,$$

vgl. (VII.18) und (VII.21). Die Äquivalenz (b) \Leftrightarrow (c) folgt aus der Polarisierungsidentität, siehe Proposition VII.1.53 bzw. VII.1.22, denn $\langle \varphi(v), \varphi(w) \rangle$ ist eine Hermitesche (symmetrische) Form auf V mit assoziierter quadratischer Form $\|\varphi(v)\|^2$, und $\langle \varphi^*(v), \varphi^*(w) \rangle$ ist eine Hermitesche (symmetrische) Form auf V mit assoziierter quadratischer Form $\|\varphi^*(v)\|^2$. Die Äquivalenz (a) \Leftrightarrow (d) folgt aus

$$[\varphi^*\varphi]_{BB} = [\varphi^*]_{BB}[\varphi]_{BB} = [\varphi]_{BB}^*[\varphi]_{BB}$$

und

$$[\varphi\varphi^*]_{BB} = [\varphi]_{BB}[\varphi^*]_{BB} = [\varphi]_{BB}[\varphi]_{BB}^*,$$

vgl. Proposition VII.3.2.

- VII.3.10. Lemma. Sei V ein endlich dimensionaler Euklidischer oder unitärer Vektorraum und $\varphi \colon V \to V$ normal, d.h. $\varphi^* \varphi = \varphi \varphi^*$. Dann gilt:
- (a) $\ker(\varphi) = \ker(\varphi^*)$.
- (b) Ist $0 \neq v \in V$ Eigenvektor zum Eigenwert λ von φ , dann ist v auch Eigenvektor von φ^* mit Eigenwert $\bar{\lambda}$. Es gilt daher $E^{\varphi}_{\lambda} = E^{\varphi^*}_{\bar{\lambda}}$
- (c) Sind $\lambda \neq \mu$ zwei verschiedene Eigenwerte von φ , dann stehen die entsprechenden Eigenräume orthogonal aufeinander, $E_{\lambda} \perp E_{\mu}$, d.h. für alle $v \in E_{\lambda}$ und $w \in E_{\mu}$ gilt $\langle v, w \rangle = 0$.

BEWEIS. Aus Lemma VII.3.9(c) erhalten wir sofort (a). Um (b) einzusehen, beobachten wir zunächst, dass auch $\varphi - \lambda \operatorname{id}_V \colon V \to V$ eine normale Abbildung

ist, denn $\lambda \operatorname{id}_V$ ist normal und kommutiert mit φ , mit den Rechenregeln aus Proposition VII.3.2 folgt daher:

$$(\varphi - \lambda \operatorname{id}_{V})^{*}(\varphi - \lambda \operatorname{id}_{V}) = \varphi^{*}\varphi - (\lambda \operatorname{id}_{V})^{*}\varphi - \varphi^{*}(\lambda \operatorname{id}_{V}) + (\lambda \operatorname{id}_{V})^{*}(\lambda \operatorname{id}_{V})$$
$$= \varphi\varphi^{*} - \varphi(\lambda \operatorname{id}_{V})^{*} - (\lambda \operatorname{id}_{V})\varphi^{*} + (\lambda \operatorname{id}_{V})(\lambda \operatorname{id}_{V})^{*}$$
$$= (\varphi - \lambda \operatorname{id}_{V})(\varphi - \lambda \operatorname{id}_{V})^{*}.$$

Aus (a) erhalten wir nun

$$E_{\lambda}^{\varphi} = \ker(\varphi - \lambda \operatorname{id}_{V}) = \ker((\varphi - \lambda \operatorname{id}_{V})^{*}) = \ker(\varphi^{*} - \bar{\lambda} \operatorname{id}_{V}) = E_{\bar{\lambda}}^{\varphi^{*}},$$

und daher (b). Um (c) einzusehen, seien nun $\lambda \neq \mu$ zwei verschiedene Eigenwerte von φ . Weiters seien $v \in E_{\lambda}$ und $w \in E_{\mu}$, d.h. $\varphi(v) = \lambda v$ und $\varphi(w) = \mu w$. Nach (b) gilt daher auch $\varphi^*(v) = \bar{\lambda}v$. Wir erhalten somit

$$\mu\langle v,w\rangle = \langle v,\mu w\rangle = \langle v,\varphi(w)\rangle = \langle \varphi^*(v),w\rangle = \langle \bar{\lambda}v,w\rangle = \bar{\bar{\lambda}}\langle v,w\rangle = \lambda\langle v,w\rangle,$$
 folglich $(\mu-\lambda)\langle v,w\rangle = 0$ und daher $\langle v,w\rangle = 0$, da ja $\mu-\lambda \neq 0$.

VII.3.11. SATZ (Spektralsatz für normale Operatoren). Sei V ein endlich dimensionaler unitärer Vektorraum. Eine lineare Abbildung $\varphi\colon V\to V$ ist genau dann normal, wenn eine Orthonormalbasis B von V existiert, sodass $[\varphi]_{BB}$ Diagonalgestalt hat.

BEWEIS. Sei zunächst B eine Orthonormalbasis von V, sodass $[\varphi]_{BB}$ Diagonalgestalt hat. Dann gilt offensichtlich $[\varphi]_{BB}^*[\varphi]_{BB} = [\varphi]_{BB}[\varphi]_{BB}^*$, nach Lemma VII.3.9 ist φ daher normal.

Sei nun umgekehrt $\varphi\colon V\to V$ eine normale lineare Abbildung, d.h. $\varphi^*\varphi=\varphi\varphi^*$. Wir werden nun mittels Induktion nach $\dim(V)$ zeigen, dass eine Orthonormalbasis B von V existiert bezüglich der $[\varphi]_{BB}$ Diagonalgestalt hat. Der Induktionsanfang, $\dim(V)=0$ ist trivial. Für den Induktionsschritt sei nun $\dim(V)\geq 1$. Da $\mathbb C$ algebraisch abgeschlossen ist, existiert ein Eigenwert $\lambda\in\mathbb C$ von φ . Offensichtlich ist der Eigenraum E_λ invariant unter φ , d.h. $\varphi(E_\lambda)\subseteq E_\lambda$. Da φ mit φ^* kommutiert, ist E_λ aber auch unter φ^* invariant, denn für jedes $v\in E_\lambda$ gilt $\varphi(\varphi^*(v))=\varphi^*(\varphi(v))=\varphi^*(\lambda v)=\lambda\varphi^*(v)$, also $\varphi^*(v)\in E_\lambda$ und somit $\varphi^*(E_\lambda)\subseteq E_\lambda$. Daraus folgt nun, dass auch das orthogonale Komplement, E_λ^\perp , invariant unter φ und φ^* ist: für alle $w\in E_\lambda^\perp$ und $v\in E_\lambda$ gilt nämlich $\langle \varphi^*(w),v\rangle=\langle w,\varphi(v)\rangle=0$ da $\varphi(v)\in E_\lambda$, also $\varphi^*(w)\in E_\lambda^\perp$ und daher $\varphi^*(E_\lambda^\perp)\subseteq E_\lambda^\perp$; analog haben wir $\langle v,\varphi(w)\rangle=\langle \varphi^*(v),w\rangle=0$ da $\varphi^*(v)\in E_\lambda$, also $\varphi(w)\in E_\lambda^\perp$ und daher auch $\varphi(E_\lambda^\perp)\subseteq E_\lambda^\perp$. Somit ist

$$V = E_{\lambda} \oplus E_{\lambda}^{\perp}$$

eine unter φ und φ^* invariante orthogonale Zerlegung, vgl. Satz VII.2.32. Für die Adjungierte der Einschränkung, $\varphi|_{E_\lambda^\perp}\colon E_\lambda^\perp\to E_\lambda^\perp$, erhalten wir daraus $\varphi|_{E_\lambda^\perp}^*=\varphi^*|_{E_\lambda^\perp}$. Insbesondere ist auch $\varphi|_{E_\lambda^\perp}\colon E_\lambda^\perp\to E_\lambda^\perp$ eine normale Abbildung,

$$\varphi|_{E_{\lambda}^{\perp}}^{*}\varphi|_{E_{\lambda}^{\perp}}=\varphi^{*}|_{E_{\lambda}^{\perp}}\varphi|_{E_{\lambda}^{\perp}}=(\varphi^{*}\varphi)|_{E_{\lambda}^{\perp}}=(\varphi\varphi^{*})|_{E_{\lambda}^{\perp}}=\varphi|_{E_{\lambda}^{\perp}}\varphi^{*}|_{E_{\lambda}^{\perp}}=\varphi|_{E_{\lambda}^{\perp}}\varphi|_{E_{\lambda}^{\perp}}^{*}.$$

Nach Induktionsvoraussetzung existiert daher eine Orthonormalbasis B'' von E_{λ}^{\perp} , sodass $[\varphi|_{E_{\lambda}^{\perp}}]_{B''B''}$ Diagonalgestalt hat, denn $\dim(E_{\lambda}^{\perp}) = \dim(V) - \dim(E_{\lambda}) < \dim(V)$, siehe Korollar VII.2.33(a). Bezeichnet B' eine beliebige Orthonormalbasis von E_{λ} , so gilt $[\varphi|_{E_{\lambda}}]_{B'B'} = \lambda I_k$, wobei $k = \dim(E_{\lambda})$, denn $\varphi|_{E_{\lambda}} = \lambda \operatorname{id}_{E_{\lambda}}$. Folglich ist $B = B' \cup B''$ eine Orthonormalbasis von V, und

$$[\varphi]_{BB} = \begin{pmatrix} [\varphi|_{E_{\lambda}}]_{B'B'} & 0\\ 0 & [\varphi|_{E_{\lambda}^{\perp}}]_{B''B''} \end{pmatrix} = \begin{pmatrix} I_k & 0\\ 0 & [\varphi|_{E_{\lambda}^{\perp}}]_{B''B''} \end{pmatrix}$$

hat Diagonalgestalt.

VII.3.12. KOROLLAR (Spektralzerlegung). Sei $\varphi: V \to V$ eine normale Abbildung auf einem endlich dimensionalen unitären Vektorraum V. Dann ist φ diagonalisierbar und Eigenräume zu verschiedenen Eigenwerten stehen orthogonal aufeinander. Bezeichnen $\lambda_1, \ldots, \lambda_k$ die Eigenwerte von φ , dann zerfällt V in eine orthogonale direkte Summe der Eigenräume,

$$V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$$

und es gilt

$$\varphi = \lambda_1 \pi_1 + \dots + \lambda_k \pi_k,$$

wobei $\pi_i \colon V \to E_{\lambda_i} \subseteq V$ die Orthogonalprojektion auf den Eigenraum zum Eigenwert λ_i bezeichnet. Diese Projektionen genügen den Relationen:

$$id_V = \pi_1 + \dots + \pi_k, \quad \pi_i^* = \pi_i = \pi_i^2, \quad \pi_i \pi_j = 0 = \pi_j \pi_i, \quad i \neq j.$$

Insbesondere gilt dies alles für selbstadjungierte φ , in diesem Fall sind darüber hinaus alle Eigenwerte reell.

BEWEIS. Dies folgt sofort aus Satz VII.3.11, siehe auch Lemma VII.3.10(c), Satz VI.1.18, Proposition VI.1.16(e), Aufgabe 115 und Lemma VII.3.7. \square

Für Matrizen erhalten wir daraus:

VII.3.13. KOROLLAR. Sei $A \in M_{n \times n}(\mathbb{C})$ eine normale Matrix, d.h. $A^*A = AA^*$. Dann existiert eine unitäre Matrix $U \in U_n$, sodass $U^{-1}AU = U^*AU$ Diagonalgestalt hat. Insbesondere sind normale Matrizen diagonalisierbar und Eigenräume zu verschiedenen Eigenwerten stehen orthogonal aufeinander. Ist A selbstadjungiert, dann sind darüber hinaus alle Eigenwerte von A, und auch die Einträge der Diagonalmatrix $U^{-1}AU$, reell.

BEWEIS. Betrachte \mathbb{C}^n mit dem standard inneren Produkt, $\langle x,y\rangle=x^*y$. Nach Lemma VII.3.9 ist $\varphi\colon\mathbb{C}^n\to\mathbb{C}^n,\ \varphi(x):=Ax$, eine normale Abbildung. Nach Satz VII.3.11 existiert daher eine Orthonormalbasis $B=(b_1,\ldots,b_n)$ von \mathbb{C}^n , sodass $[\varphi]_{BB}$ eine Diagonalmatrix ist. Die unitäre Matrix $U:=(b_1|\cdots|b_n)$ hat daher die gewünschte Eigenschaft. Bezeichnet nämlich E die Standardbasis so gilt $[\varphi]_{EE}=A,\ U=T_{EB}$ und $U^{-1}AU=T_{EB}^{-1}[\varphi]_{EE}T_{EB}=[\varphi]_{BB}$.

VII.3.14. SATZ (Spektralsatz für symmetrische Operatoren). Sei V ein endlich dimensionaler Euklidischer Vektorraum. Eine lineare Abildung $\varphi \colon V \to V$ ist genau dann selbstadjungiert (symmetrisch) wenn eine Orthonormalbasis B von V existiert, sodass $[\varphi]_{BB}$ Diagonalgestalt hat.

BEWEIS. Wir zeigen zunächst, dass jede symmetrische Abbildung $\varphi \colon V \to V$ einen (reellen) Eigenwert besitzt. Sei dazu B eine Orthonormalbasis von V. Dann ist $A = [\varphi]_{BB} \in M_{n \times n}(\mathbb{R})$ eine symmetrische Matrix, $A^t = A$. Fassen wir A als komplexe Matrix auf, $A \in M_{n \times n}(\mathbb{C})$, so gilt $A^* = A$. Nach Korollar VII.3.13 besitzt A daher einen reellen Eigenwert, also hat auch $\varphi \colon V \to V$ einen reellen Eigenwert. Damit lässt sich der Satz nun völlig analog zum Beweis von Satz VII.3.11 zeigen.

VII.3.15. KOROLLAR (Spektralzerlegung). Sei $\varphi \colon V \to V$ eine selbstadjungierte (symmetrische) Abbildung auf einem endlich dimensionalen Euklidischen Vektorraum V. Dann ist φ diagonalisierbar und Eigenräume zu verschiedenen Eigenwerten stehen orthogonal aufeinander. Bezeichnen $\lambda_1, \ldots, \lambda_k$ die (reellen) Eigenwerte von φ , dann zerfällt V in eine orthogonale direkte Summe der Eigenräume,

$$V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$$

und es gilt

$$\varphi = \lambda_1 \pi_1 + \cdots + \lambda_k \pi_k$$

wobei $\pi_i \colon V \to E_{\lambda_i} \subseteq V$ die Orthogonalprojektion auf den Eigenraum zum Eigenwert λ_i bezeichnet. Diese Projektionen genügen den Relationen:

$$id_V = \pi_1 + \dots + \pi_k, \quad \pi_i^* = \pi_i = \pi_i^2, \quad \pi_i \pi_j = 0 = \pi_j \pi_i, \quad i \neq j.$$

VII.3.16. KOROLLAR. Sei $A \in M_{n \times n}(\mathbb{R})$ symmetrisch, d.h. $A^t = A$. Dann existiert eine orthogonale Matrix $U \in \mathcal{O}_n$, sodass $U^{-1}AU = U^tAU$ Diagonalgestalt hat. Insbesondere sind reelle symmetrische Matrizen stets diagonalisierbar und Eigenräume zu verschiedenen Eigenwerten stehen orthogonal aufeinander.

VII.3.17. Beispiel. Die symmetrische reelle Matrix

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

hat charakteristisches Polynom $p = \det(A-zI_3) = -z^3+3z+2 = -(z+1)^2(z-2)$. Nach Korollar VII.3.16 existiert daher eine orthogonale Matrix $U \in \mathcal{O}_3$, sodass

$$U^{-1}AU = U^{t}AU = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 2 \end{pmatrix}.$$
 (VII.22)

Wir wollen nun eine solche Matrix U bestimmen. Für die Eigenräume erhalten wir zunächst

$$E_{-1} = \ker(A + I_3) = \ker\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \rangle$$

und

$$E_2 = \ker(A - 2I_3) = \ker\begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix} = \langle \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} \rangle.$$

Durch Anwenden des Gram-Schmidt Orthonormalisierungsverfahrens erhalten wir Orthonormalbasen der Eigenräume,

$$E_{-1} = \langle \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix} \rangle \quad \text{und} \quad E_2 = \langle \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix} \rangle.$$

Folglich ist

$$U = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$$

eine orthogonale Matrix, die (VII.22) erüllt.

VII.3.18. Beispiel. Normale reelle Matrizen sind i.A. nicht diagonalisierbar. Etwa ist die reelle Matrix

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$

normal aber nicht selbstadjungiert, $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$. Da ihre Eigenwerte, $\cos \theta \pm \mathbf{i} \sin \theta$, nicht reell sind kann sie über \mathbb{R} nicht diagonalisierbar sein.

- VII.4. Isometrien. Isometrien sind Längen und Winkel bewahrende lineare Abbildungen.
- VII.4.1. DEFINITION (Isometrien). Eine lineare Abbildung zwischen Euklidischen oder unitären Vektorräumen, $\varphi \colon V \to W$, wird *Isometrie* genannt, falls

$$\langle \varphi(v_1), \varphi(v_2) \rangle = \langle v_1, v_2 \rangle,$$

für alle $v_1, v_2 \in V$.

Offensichtlich ist die Komposition von Isometrien wieder eine Isometrie. Beachte auch, dass Isometrien stets injektiv sind, denn aus $\varphi(v) = 0$ folgt $0 = \langle \varphi(v), \varphi(v) \rangle = \langle v, v \rangle = ||v||^2$, also v = 0.

- VII.4.2. Lemma. Für eine lineare Abbildung $\varphi \colon V \to W$ zwischen endlich dimensionalen Euklidischen oder unitären Vektorräumen sind folgende Aussagen äquivalent:
- (a) φ ist eine Isometrie.

- (b) $\varphi^*\varphi = \mathrm{id}_V$.
- (c) $\|\varphi(v)\| = \|v\|$, für alle $v \in V$.
- (d) Für eine (und dann jede) Orthonormalbasis b_1, \ldots, b_n von V bilden die Vektoren $\varphi(b_1), \ldots, \varphi(b_n)$ ein Orthonormalsystem in W.

Ist $\dim(V) = \dim(W)$, so sind diese Bedingungen auch zu folgender äquivalent: (e) $\varphi \varphi^* = \mathrm{id}_W$.

BEWEIS. Aus $\langle \varphi(v_1), \varphi(v_2) \rangle = \langle (\varphi^*\varphi)(v_1), v_2 \rangle$ erhalten wir sofort die Aquivalenz (a) \Leftrightarrow (b). Aus der Polarisierungsidentität folgt die Äquivalenz (a) \Leftrightarrow (c), denn $\langle \varphi(v_1), \varphi(v_2) \rangle$ ist eine Hermitesche/symmetrische Form auf V mit assoziierter quadratischer Form $\|\varphi(v)\|^2$, und $\langle v_1, v_2 \rangle$ ist eine Hermitesche/symmetrische Form auf V mit assoziierter quadratischer Form $\|v\|^2$. Die Implikation (a) \Rightarrow (d) ist offensichtlich. Um auch (d) \Rightarrow (b) einzusehen, sei nun $B = (b_1, \ldots, b_n)$ eine Orthonormalbasis von V, sodass $\tilde{C} = (\varphi(b_1), \ldots, \varphi(b_n))$ ein Orthonormalsystem in W bildet. Ergänzen wir \tilde{C} zu einer Orthonormalbasis C von W, dann gilt also $[\varphi]_{CB} = \binom{I_n}{0}$. Wir erhalten

$$[\varphi^*\varphi]_{BB} = [\varphi^*]_{BC}[\varphi]_{CB} = [\varphi]_{CB}^*[\varphi]_{CB} = (I_n|0)\begin{pmatrix} I_n\\0 \end{pmatrix} = I_n = [\mathrm{id}_V]_{BB},$$

also $\varphi^*\varphi = \mathrm{id}_V$. Damit ist die Äquivalenz der ersten vier Aussagen gezeigt.

Sei nun $\dim(V) = \dim(W)$ und $\varphi \colon V \to W$ eine Isometrie. Da Isometrien stets injektiv sind, folgt aus Dimensionsgründen, dass φ ein Isomorphismus mit Inverser $\varphi^{-1} = \varphi^*$ ist. Es gilt daher auch $\varphi \varphi^* = \varphi \varphi^{-1} = \mathrm{id}_W$. Dies zeigt die Implikation (a) \Rightarrow (e). Analog folgt aus $\varphi \varphi^* = \mathrm{id}_W$ zunächst $\varphi^{-1} = \varphi^*$ und dann $\varphi^* \varphi = \varphi^{-1} \varphi = \mathrm{id}_V$. Damit ist auch (e) \Rightarrow (b) gezeigt.

Nach dem vorangehenden Lemma bildet die Menge der Isometrien eines endlich dimensionalen unitären Vektorraums V.

$$\mathrm{U}(V) := \{\varphi \colon V \to V \mid \varphi^* \varphi = \mathrm{id}_V\} = \{\varphi \colon V \to V \mid \varphi \varphi^* = \mathrm{id}_V\},$$

bezüglich Komposition von Abbildungen eine Gruppe, die die unitäre Gruppe des unitären Vektorraums V genannt wird. Wir werden Isometrien $\varphi \colon V \to V$ auch als unitäre Abbildungen bezeichnen. Eine lineare Abbildung $\varphi \colon V \to V$ ist genau dann unitär, wenn $[\varphi]_{BB}$ eine unitäre Matrix ist, bezüglich einer (und dann jeder) Orthonormalbasis B von V. Jede Orthonormalbasis B von V liefert einen Gruppenisomorphismus

$$U(V) \cong U_n, \qquad \varphi \leftrightarrow [\varphi]_{BB},$$

wobei $n = \dim(V)$ und

$$U_n = \{ A \in M_{n \times n}(\mathbb{C}) \mid A^*A = I_n \} = \{ A \in M_{n \times n}(\mathbb{C}) \mid AA^* = I_n \}.$$

Beachte, dasss unitäre Abbildungen stets normal sind.

Analog bildet die Menge der Isometrien eines endlich dimensionalen Euklidischen Vektorraums V,

$$O(V) := \{ \varphi \colon V \to V \mid \varphi^* \varphi = \mathrm{id}_V \} = \{ \varphi \colon V \to V \mid \varphi \varphi^* = \mathrm{id}_V \},$$

eine Gruppe, die als orthogonale Gruppe von V bezeichnet wird. Wir werden Isometrien $\varphi\colon V\to V$ auch als orthogonale Abbildungen bezeichnen. Eine lineare Abbildung $\varphi\colon V\to V$ ist genau dann orthogonal, wenn $[\varphi]_{BB}$ eine orthogonale Matrix ist, bezüglich einer (und dann jeder) Orthonormalbasis B von V. Jede Orthonormalbasis B von V liefert einen Gruppenisomorphismus

$$O(V) \cong O_n, \qquad \varphi \leftrightarrow [\varphi]_{BB},$$

wobei $n = \dim(V)$ und

$$O_n = \{ A \in M_{n \times n}(\mathbb{R}) \mid A^t A = I_n \} = \{ A \in M_{n \times n}(\mathbb{R}) \mid AA^t = I_n \}.$$

Beachte, dass orthogonale Abbildungen stets normal sind.

- VII.4.3. BEISPIEL (Spiegelungen). Sei V ein endlich dimensionaler Euklidischer oder unitärer Vektorraum und $W \subseteq V$ ein Teilraum. Es bezeichne $\sigma \colon V \to V$, die Spiegelung an W längs W^{\perp} , d.h. $\sigma = 2p \mathrm{id}_V$, wobei p die Orthogonal-projektion auf W bezeichnet. Wir haben weiter oben bereits gesehen, dass diese Spiegelung selbstadjungiert ist, $\sigma^* = \sigma$. Offensichtlich gilt aber auch $\sigma^2 = \mathrm{id}_V$, und daher $\sigma^*\sigma = \mathrm{id}_V$. Jede solche orthogonale Spiegelung ist daher eine Isometrie, also unitär bzw. orthogonal.
- VII.4.4. BEISPIEL (Drehungen). Sei V ein endlich dimensionaler Euklidischer Vektorraum, $E \subseteq V$ ein 2-dimensionaler orientierter Teilraum und $\theta \in \mathbb{R}$. Weiters sei b_1, b_2 eine positiv orientierte Orthonormalbasis von E. Wir ergänzen zu einer Orthonormalbasis $B = (b_1, b_2, b_3, \ldots, b_n)$ von V und definieren eine lineare Abbildung

$$\rho_E^{\theta} \colon V \to V, \quad \text{durch} \quad [\rho_E^{\theta}]_{BB} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ & I_{n-2} \end{pmatrix}.$$

Es lässt sich zeigen, dass dies nicht von der Wahl der Orthonormalbasis abhängt, vgl. Aufgabe 120. Offensichtlich ist ρ_E^{θ} eine orthogonale Abbildung, $(\rho_E^{\theta})^*\rho_E^{\theta} = \mathrm{id}_V$, denn die definierende Matrix ist orthogonal. Die Abbildung ρ_E^{θ} ist eine Drehung in E um den Winkel θ , die Punkte in E^{\perp} werden festgelassen.

VII.4.5. KOROLLAR. Sei V ein endlich dimensionaler unitärer Vektorraum und $\varphi \colon V \to V$ unitär. Dann existiert eine Orthonormalbasis B von V, sodass $[\varphi]_{BB}$ eine Diagonalmatrix ist, deren Diagonaleinträge alle Absolutbetrag Eins haben. Insbesondere ist φ diagonalisierbar, alle Eigenwerte haben Absolutbetrag Eins, und Eigenräume zu verschiedenen Eigenwerten stehen normal aufeinander.

BEWEIS. Sei $\lambda \in \mathbb{C}$ ein Eigenwert von φ und $0 \neq v \in V$ ein entsprechender Eigenvektor, d.h. $\varphi(v) = \lambda v$. Mit Lemma VII.4.2 folgt

$$|\lambda| ||v|| = ||\lambda v|| = ||\varphi(v)|| = ||v||,$$

also $|\lambda|=1$. Somit haben alle Eigenwerte einer unitären Abbildung Absolutbetrag Eins. Da unitäre Abbildungen auch normal sind, $\varphi^*\varphi=\mathrm{id}_V=\varphi\varphi^*$, folgt das Korollar daher aus Satz VII.3.11 bzw. Korollar VII.3.12.

Orthogonale Abbildungen sind i.A. nicht diagonalisierbar, etwa ist die durch die Matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

definierte Drehung, $\mathbb{R}^2 \to \mathbb{R}^2$, $x \mapsto Ax$, für $\theta \in \mathbb{R} \setminus \mathbb{Z}$ nicht diagonalisierbar, da ihre Eigenwerte, $\cos \theta \pm \mathbf{i} \sin \theta$, nicht reell sind.

Für jeden Einheitsvektor $a \in V$, ||a|| = 1, eines Euklidischen Vektorraums bezeichnen wir mit $\sigma_a \colon V \to V$ die Spiegelung an der Hyperebene a^{\perp} längs $\langle a \rangle$,

$$\sigma_a \colon V \to V, \qquad \sigma_a(v) = v - 2\langle a, v \rangle a, \qquad v \in V.$$

Dies ist eine orthogonale Abbildung, $\sigma_a \in O(V)$, denn $\sigma_a^2 = \mathrm{id}_V$ und $\sigma_a^* = \sigma_a$.

VII.4.6. SATZ. Sei $\varphi \colon V \to V$ eine orthogonale Abbildung auf einem n-dimensionalen Euklidischen Vektorraum, d.h. $\varphi^*\varphi = \mathrm{id}_V$. Dann existieren $0 \le k \le n$ und normierte Vektoren $a_1, \ldots, a_k \in V$, sodass

$$\varphi = \sigma_{a_1} \circ \cdots \circ \sigma_{a_k}$$

 $d.h. \varphi$ lässt sich als Komposition von höchstens n orthogonalen Spiegelungen an Hyperebenen schreiben.

BEWEIS. Wir führen den Beweis mittels Induktion nach n. Der Induktionsanfang, n=0, ist trivial. Für den Induktionsschritt dürfen wir o.B.d.A. $\varphi \neq \mathrm{id}_V$ annehmen. Es existiert daher $0 \neq w \in V$, sodass $\varphi(w) \neq w$. Die mit dem Einheitsvektor

$$a := \frac{\varphi(w) - w}{\|\varphi(w) - w\|}$$

assoziierte Spiegelung genügt $\sigma_a(w) = \varphi(w)$, denn aus

$$\langle w + \varphi(w), w - \varphi(w) \rangle = \underbrace{\|w\|^2 - \|\varphi(w)\|^2}_{=0} \underbrace{-\langle w, \varphi(w) \rangle + \langle \varphi(w), w \rangle}_{=0} = 0$$

erhalten wir

$$w = \frac{1}{2}(w + \varphi(w)) + \frac{1}{2}(w - \varphi(w)),$$

wobe
i $\frac{1}{2}(w+\varphi(w))\in a^{\perp}$ und $\frac{1}{2}(w-\varphi(w))\in \langle a\rangle,$ also

$$\sigma_a(w) = \sigma_a \left(\frac{1}{2} (w + \varphi(w)) + \frac{1}{2} (w - \varphi(w)) \right)$$

$$= \sigma_a \left(\frac{1}{2} (w + \varphi(w)) \right) + \sigma_a \left(\frac{1}{2} (w - \varphi(w)) \right)$$

$$= \frac{1}{2} (w + \varphi(w)) - \frac{1}{2} (w - \varphi(w))$$

$$= \varphi(w).$$

Somit ist $\psi := \sigma_a^{-1} \varphi \in O(V)$ und $\psi(w) = w$. Wegen der Orthogonalität von ψ ist auch die Hyperebene $W := w^{\perp}$ invariant unter ψ , und die Einschränkung, $\psi|_W \colon W \to W$, ist offensichtlich wieder orthogonal, d.h. $\psi|_W \in O(W)$. Nach Induktionsvoraussetzung existieren $0 \le k \le n$ und $a_2, \ldots, a_k \in W$, sodass $\psi|_W = \sigma_{a_2}^W \cdots \sigma_{a_k}^W$, wobei $\sigma_{a_i}^W \colon W \to W$ die Spiegelungen in W bezeichnen. Da $\sigma_{a_i}|_W = \sigma_{a_i}^W$, $\sigma_{a_i}(w) = w$ und $\psi(w) = w$ gilt daher auch $\psi = \sigma_{a_2} \cdots \sigma_{a_k}$ und wir erhalten die gewünschte Darstellung, $\varphi = \sigma_a \psi = \sigma_a \sigma_{a_2} \cdots \sigma_{a_k}$.

VII.4.7. Satz. Sei V ein endlich dimensionaler Euklidischer Vektorraum und $f \colon V \to V$ eine beliebige Abbildung, sodass d(f(v), f(w)) = d(v, w), für alle $v, w \in V$. Dann ist f eine affine Isometrie, d.h. es existiert $\varphi \in O(V)$ und $b \in V$, sodass $f(v) = \varphi(v) + b$, für alle $v \in V$.

BEWEIS. Sei b := f(0) und $\varphi \colon V \to V$, $\varphi(v) := f(v) - b$. Es genügt zu zeigen, dass φ eine *lineare* orthogonale Abbildung ist. Nach Voraussetzung an f gilt

$$\|\varphi(w) - \varphi(v)\| = \|w - v\|, \quad \text{für alle } v, w \in V,$$
 (VII.23)

denn $\|\varphi(w) - \varphi(v)\| = \|f(w) - f(v)\| = d(f(v), f(w)) = d(v, w) = \|w - v\|$. Da $\varphi(0) = 0$, gilt daher auch

$$\|\varphi(v)\| = \|v\|, \qquad \text{für alle } v \in V. \tag{VII.24}$$

Die Polarisierungsidentität in Proposition VII.2.3 lässt sich in der Form

$$-2\langle v, w \rangle = \|w - v\|^2 - \|v\|^2 - \|w\|^2,$$

schreiben, aus (VII.23) und (VII.24) erhalten wir daher

$$\langle \varphi(v), \varphi(w) \rangle = \langle v, w \rangle, \quad \text{für alle } v, w \in V,$$
 (VII.25)

denn $-2\langle \varphi(v), \varphi(w) \rangle = \|\varphi(w) - \varphi(v)\|^2 - \|\varphi(v)\|^2 - \|\varphi(w)\|^2 = \|w - v\|^2 - \|v\|^2 - \|w\|^2 = -2\langle v, w \rangle$. Sei nun b_1, \ldots, b_n eine Orthonormalbasis von V. Nach (VII.25) ist daher auch $\varphi(b_1), \ldots, \varphi(b_n)$ eine Orthonormalbasis von V. Es gilt daher

$$\varphi(v) = \sum_{i=1}^{n} \langle \varphi(b_i), \varphi(v) \rangle \varphi(b_i) = \sum_{i=1}^{n} \langle b_i, v \rangle \varphi(b_i),$$

folglich ist φ eine lineare Abbildung. Da φ die Orthonormalbasis b_1, \ldots, b_n auf die Orthonormalbasis $\varphi(b_1), \ldots, \varphi(b_n)$ abbildet, ist φ auch orthogonal.