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Abstract. It is shown how one can do symplectic reduction for locally conformal
symplectic manifolds, especially with an action of a Lie group. This generalizes

well known procedures for symplectic manifolds to the slightly larger class of locally
conformal symplectic manifolds. The whole setting is very conformally invariant.

0. Introduction

The geometry of locally conformal symplectic (l.c.s. for short) structures gener-
alizes the symplectic geometry. Such structures occur naturally in the theory of
Jacobi manifolds, as any even-dimensional leaf of the distinguished foliation of a
Jacobi manifold is l.c.s., cf.[2]. In particular, any transitive even-dimensional Ja-
cobi manifold is actually an l.c.s. manifold. The l.c.s. manifolds may be regarded
as natural phase spaces in the Hamiltonian mechanics ([8]). For instance, in [9]
the symmetry of the Lyapunov spectrum in locally conformal Hamiltonian systems
is studied. The authors of [9] present several examples and show that Gaussian
isokinetic dynamics, Nosé-Hoovers dynamics and other systems can be viewed as
locally conformal Hamiltonian systems.

The aim of this note is to show that, in regular cases, the symplectic reduction
is possible for l.c.s. manifolds. The most abstract reduction principle states that
every coisotropic submanifold of a symplectic manifold is foliated by isotropic leaves
and if the leaf space is a manifold it carries again a symplectic structure. In the
paper of Marsden and Weinstein [7] it has been formalized the fact that if an n-
dimensional symmetry group acts on a Hamiltonian system then the number of
degrees of freedom can be reduced by n, and the dimension of the phase space
is reduced by 2n (the position and the momentum coordinates). We show that
this is still true for l.c.s. manifolds. Moreover the reduction process preserves the
conformal equivalence class of an l.c.s. structure. An open problem is how to treat
singular reductions (cf.[1]) in the l.c.s. case.

1. Locally Conformal Symplectic Manifolds

For a closed 1-form ω ∈ Ω1(M) and a vector field X ∈ X(M) we define dω :
Ω∗(M)→ Ω∗+1(M) by dωα := dα+ ω ∧ α, and LωX : Ω∗(M)→ Ω∗(M) by LωXα :=
LXα + ω(X)α. The well known formulas dωdω = 0, LωXL

ω
Y − LωY L

ω
X = Lω[X,Y ],
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LωXd
ω − dωLωX = 0, LωX iY − iY LωX = i[X,Y ] and dωiX + iXd

ω = LωX remain true.
Moreover one has the derivation like formulas

dω1+ω2(α ∧ β) = dω1α ∧ β + (−1)|α|α ∧ dω2β and

Lω1+ω2
X (α ∧ β) = Lω1

X α ∧ β + α ∧ Lω2
X β.

A locally conformal symplectic manifold is a triple (M,Ω, ω), where Ω ∈ Ω2(M)
is non-degenerate, ω ∈ Ω1(M) is closed and dωΩ = 0. If dim(M) > 2 then ω
is uniquely determined by Ω. Two l.c.s. structures (Ω, ω) and (Ω′, ω′) are called
conformally equivalent (we will write (Ω, ω) ∼ (Ω′, ω′)) if there exists a positive
function a such that Ω′ = 1

aΩ and ω′ = ω + da
a = ω + d ln a. Notice that, if

dim(M) > 2, the second equation is a consequence of the first.
Suppose we have a manifold M , an open covering U of M and on every U ∈ U an

l.c.s. structure (ΩU , ωU ), such that (ΩU , ωU )|U∩V ∼ (ΩV , ωV )|U∩V for all U, V ∈ U .
Then there exists, up to conformal equivalence, a unique l.c.s. structure (Ω, ω) on
M with (Ω, ω)|U ∼ (ΩU , ωU ) for all U ∈ U . It can be constructed as follows. For
every pair U, V ∈ U there exists a function aUV : U∩V → R

+, such that ΩU |U∩V =
1

aUV
ΩV |U∩V and ωU |U∩V = ωV |U∩V + daUV

aUV
. Obviously we have aUV aVW = aUW

on U ∩ V ∩W . In other words {aUV } is a 1-cocycle in the Čech-cohomology of
the sheaf C∞(·,R+). Since this sheaf is fine, and hence acyclic, every cocycle is a
coboundary, that is there exist functions bU : U → R

+ with aUV = bV
bU

on U ∩ V .
Now one defines Ω|U := 1

bU
ΩU and ω|U := ωU + dbU

bU
([5]).

By Diff∞(M,Ω, ω) we denote the group of all diffeomorphisms M , which preserve
(Ω, ω) up to conformal equivalence. The corresponding Lie algebra of vector fields
is

X(M,Ω, ω) = {X ∈ X(M) : LωXΩ = cXΩ,For some locally constant cX},

cf.[4].
C∞(M,R) becomes a Lie algebra with the following bracket

{f1, f2} := Ω(]dωf1, ]d
ωf2) = Lω]dωf2

f1 = −Lω]dωf1
f2.

Here ] denotes the inverse of [, where [ : TM ∼= T ∗M given by X 7→ iXΩ is a
canonical vector bundle isomorphism since Ω is non-degenerate.

We have ]dω{f1, f2} = −[]dωf1, ]d
ωf2]. So

Ham(M,Ω, ω) := {]dωf : f ∈ C∞(M,R)}

is a subalgebra of X(M,Ω, ω), and

H0
dω (M) ↪→ C∞(M,R)

]dω−−→ Ham(M,Ω, ω)

is, up to a sign, a central extension of Lie algebras. Here H∗dω (M) denotes the
cohomology with respect to the differential dω, especially

H0
dω (M) = {f ∈ C∞(M,R) : dωf = 0}.

Note that if (Ω′, ω′) ∼ (Ω, ω), i.e. Ω′ = 1
aΩ and ω′ = ω + da

a , then {f, g}′ =
1
a{af, ag}. Moreover one has {fg, h} = f{g, h}+ {f, h}g − fgL]ωh.
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2. Reduction for l.c.s. structures

We begin with the following general definition of reduction essentially due to
Marsden and Ratiu [6].

Definition. Let (M,Ω, ω) be an l.c.s. manifold, and let {., .}M be the correspond-
ing bracket on C∞(M,R). A pair (L,E), where i : L ⊂M is a submanifold and E
is a vector subbundle of TM |L, is said to be a reductive structure if the following
is fulfilled:

(1) E ∩ TL is tangent to a foliation of L whose leaves are the fibers of a sub-
mersion π : L→ PL;

(2) i∗ω(X) = 0 for any X tangent to the fibers of π; and
(3) for any u, v ∈ C∞(M,R) such that du, dv vanish on E dω{u, v}M vanishes

on E as well.
Furthermore, (M,L,E) is called a reducible triple if there is an l.c.s. structure (Ω̄, ω̄)
on PL with the Poisson bracket {., .}PL such that for any local C∞ functions f, g
on PL, and any local extensions u, v of f ◦ π, g ◦ π respectively, such that both dωu
and dωv vanish on E one has the relation

{u, v}M ◦ i = {f, g}PL ◦ π.

(PL, Ω̄, ω̄) is then a reduced l.c.s. manifold.

A standard reductive structure arise in the following situation. Let (M,Ω, ω)
be an l.c.s. manifold such that for a submanifold i : L ⊂ M rank(i∗Ω) is constant.
Then it is apparent that for the Ω-orthogonal space TL⊥ of TL, TL⊥ ∩ TL is
integrable. Hence if the resulting foliation is given by a submersion π : L → PL
and i∗ω vanishes on TL⊥ ∩ TL then (L, TL⊥ ∩ TL) is a reductive structure. By
Proposition 1 below we see that (M,L, TL⊥∩TL) is a reducible triple as well since
]Ann(TL⊥) = (TL⊥)⊥ = TL.

As in the symplectic and Poisson case [6] we have

Proposition 1. Let (M,Ω, ω) be an l.c.s. manifold and suppose (L,E) is a reduc-
tive structure. Then (M,L,E) is a reducible triple if and only if

(∗) ](AnnE) ⊂ TL + E.

Moreover, if (M,Ω, ω) ∼ (M,Ω′, ω′) then (PL, Ω̄, ω̄) ∼ (PL, Ω̄′, ω̄′), i.e. the confor-
mal equivalence relation is preserved.

Proof. Assume that (PL, Ω̄, ω̄) is a reduced l.c.s. of (M,Ω, ω). Let x ∈ L, α ∈
AnnEx, and β ∈ Ann(Ex + TxL) = (AnnEx) ∩ (AnnTxL). By (1) there is u ∈
C∞(M,R) such dxu = α and du|E = 0. Now due to (2) dωxu = α and dωu vanishes
on E. Likewise, we choose v ∈ C∞(M,R) vanishing on L with dxv = β and
dv|E = 0. Hence in view of (2) dωxv = β and dωv vanishes on E. Consequently, by
the definition of reducible triple, we have

β(]α) = (dωxv)(]dωxu) = (dxv)(]dωxu) = (L]dωxuv)(x)

= {v, u}M (x) = {0, f}(π(x))PL = 0,

where f ∈ C∞(PL,R) such that u extends f ◦ π. This gives the relation (∗).
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Conversely, suppose (∗) is fulfilled and let f, g ∈ C∞(PL,R). For fixed x ∈ L
choose extensions u, v ∈ C∞(M,R) of f◦π, g◦π resp. such that u(x) = v(x) = 0 and
du|E = dv|E = 0. This yields d{u, v}M |E = dω{u, v}M |E = 0 and, consequently,
{u, v}M |L is constant along fibers. We let {f, g}PL(π(x)) := {u, v}M (x) which
will ensure that (M,L,E} is a reducible triple. The only thing to check is the
independence of the choice of u and v. If ũ also extends f ◦ π with ũ(x) = 0 and
dωũ|E = 0, we get (u− ũ)|L = 0. Therefore du = dũ on E + TL which, in view of
(∗) implies

{u, v}M (x) = (dωxu)(]dωxv) = (dωx ũ)(]dωxv) = {ũ, v}M (x).

By the antisymmetry the definition is also independent of the choice of v.
The second assertion is obvious.

3. The Moment Mapping

Let G be a finite dimensional Lie group acting from the left on M . We will
write lg : M → M for the action of the element g ∈ G. For the fundamental
vector fields ζX we have ζ[X,Y ] = −[ζX , ζY ] and ζAdg−1 X = l∗gζX . In the sequel
we will always assume that G acts symplectically, i.e. lg ∈ Diff∞(M,Ω, ω) for all
g ∈ G. If G is connected this is equivalent to ζX ∈ X(M,Ω, ω) for all X ∈ g,
where g is the Lie algebra of G. Then for every g ∈ G there exists a positive
function ag on M , such that l∗gΩ = 1

ag
Ω and l∗gω = ω + dag

ag
. Obviously we have

ahg = ag(l∗gah). So we have a right G-action on C∞(M,R) given by g ·f := ag(l∗gf).
If one differentiates l∗gΩ = 1

ag
Ω with respect to X ∈ g, one obtains ∂

∂t |0aexp(tX) =
ω(ζX) − cX . So the corresponding g-action on C∞(M,R) is X · f = LωζXf − cXf .
Moreover ]dω : C∞(M,R)→ Ham(M,Ω, ω) is equivariant, i.e. ]dω(agl∗gf) = l∗g]d

ωf
and ]dω(LωζXf − cXf) = [ζX , ]dωf ].

Proposition 2. Let G be a connected Lie group, and suppose the g-action is Hamil-
tonian, i.e. ζX ∈ Ham(M,Ω, ω) for all X ∈ g. Let ψ̂ : g → C∞(M,R) be a linear
lift of ζ, that is ]dωψ̂(X) = ζX , for all X ∈ g. Moreover let ψ : M → g∗ be defined
by 〈ψ(x), X〉 = ψ̂(X)(x), where X ∈ g and x ∈M . Then the following conditions

(1) ψ̂ is a homomorphism of Lie algebras,
(2) ψ̂ is equivariant, i.e. ψ̂(Adg−1 X) = agl

∗
gψ̂(X), for all g ∈ G, X ∈ g,

(3) ψ̂ is infinitesimal invariant, i.e. ψ̂(− adY X) = LωζY ψ̂(X), for all X,Y ∈ g,
(4) Ad∗g−1 ψ = agl

∗
gψ, for all g ∈ G, and

(5) − ad∗Y ψ = Tψ · ζY + ω(ζY )ψ, for all Y ∈ g

are equivalent.

Proof. We have ψ̂(− adY X) = ψ̂([X,Y ]) and

LωζY ψ̂(X) = Lω
]dωψ̂(Y )

ψ̂(X) = {ψ̂(X), ψ̂(Y )}.

So (1) is equivalent to (3), and since G is connected (3) is equivalent to (2). Notice
that since the action is Hamiltonian we have cX = 0 and so (3) is really the
infinitesimal version of (2). Moreover (4) is obviously equivalent to (5). Next we
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have ψ̂(− adY X)(x) = 〈− ad∗Y ψ(x), X〉, and

LωζY ψ̂(X)(x) = LζY ψ̂(X)(x) + ω(ζY (x))ψ̂(X)(x)

= LζY 〈ψ(x), X〉+ ω(ζY (x))〈ψ(x), X〉
= 〈Txψ · ζY (x), X〉+ 〈ω(ζY (x))ψ(x), X〉,

and thus (5) is equivalent to (3). �

A mapping ψ as in Proposition 2 is called a moment mapping, and it is called
equivariant if the five equivalent conditions are satisfied.

Proposition 3. Let ϕ : g→ Ham(M,Ω, ω) be an anti homomorphism of Lie alge-
bras. If H2(g;H0

dω (M)) = 0, where H0
dω (M) is considered as trivial g-module, then

there exists a lift ϕ̃ : g→ C∞(M,R), i.e. ϕ̃ is a homomorphism of Lie algebras and
]dω ◦ ϕ̃ = ϕ. Moreover, if there exists a lift, then the set of all lifts is parameterized
by H1(g;H0

dω (M)).

Proof. Let ϕ̄ : g→ C∞(M,R) be a linear lift of ϕ and set

c(X,Y ) := ϕ̄([X,Y ])− {ϕ̄(X), ϕ̄(Y )} ∈ H0
dω (M)

Then one easily shows δc = 0. Since H2(g;H0
dω (M)) = 0 there exists b with δb = c,

i.e. c(X,Y ) = (δb)(X,Y ) = −b([X,Y ]). Now we define ϕ̃ : g → C∞(M,R) by
ϕ̃(X) := ϕ̄(X) + b(X). Then one immediately sees that ϕ̃ is a homomorphism of
Lie algebras and a lift of ϕ.

To see the second assertion let ϕ̃ denote a homomorphism of Lie algebras lifting
ϕ. All other lifts are of the form ϕ̃+ b for some b : g→ C∞(M,R). Since we have

{ϕ̃(X) + b(X), ϕ̃(Y ) + b(Y )} = {ϕ̃(X), ϕ̃(Y )} = ϕ̃([X,Y ])

we see that ϕ̃+b is a homomorphism of Lie algebras iff b([X,Y ]) = 0 for all X,Y ∈ g,
or equivalently δb = 0, i.e. b ∈ H1(g;H0

dω (M)). �

If g is semi simple, then there always exists an equivariant moment mapping,
since H2(g;H0

dω (M)) = 0, by the second Whitehead lemma. Moreover it is unique
since H1(g;H0

dω (M)) = 0, by the first Whitehead lemma.
If (M,Ω, ω) is an l.c.s. manifold which is not conformally equivalent to a sym-

plectic manifold, i.e. ω is not exact, then there always exists a unique equivariant
moment mapping. This is because H0

dω (M) = 0 for non-exact ω.
Suppose the l.c.s. structure is exact, that is Ω = dωθ, and the action preserves θ,

that is LωζXθ = cXθ for locally constant functions cX . Notice that this immediately
implies LωζXΩ = cXΩ. Moreover cX = 0 iff the action is Hamiltonian, and in this
situation ψ̂(X) = −iζXθ is an equivariant moment mapping.

4. Lie Group Actions and Reduction

Let G be a finite dimensional Lie group acting symplectically on an l.c.s. manifold
(M,Ω, ω). Assume that we have an equivariant moment mapping ψ. The vector
fields Z ∈ X(M) which are Ω-orthogonal to the orbits of G span an involutive
distribution on M . Indeed, since we have Ω(ζX , Z) = iZd

ωψ̂(X) = LωZ ψ̂(X), this
follows from Lω[Z1,Z2] = LωZ1

LωZ2
− LωZ2

LωZ1
. Suppose L is a maximal connected
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submanifold of M which is tangent to this distribution, more precisely TxL =
ζg(x)⊥ for all x ∈ L. Since we have 0 = (LωZ ψ̂(X))(x) = 〈Txψ ·Zx+ω(Zx)ψ(x), X〉,
wee see that ψ(L) ⊆ R+ · ψ(x0), for any x0 ∈ L. However ψ need not be constant
along L.

Let gL := {Y ∈ g : ad∗Y ψ(x0) = 0}, which does not depend on x0 ∈ L. By the
equivariance of ψ, these are precisely those Y , for which ζY is tangential to L. Since
L is maximal, the connected subgroup of G corresponding to gL leaves L invariant.

Theorem 1. Let G be a finite dimensional Lie group acting symplectically on
an l.c.s. manifold (M,Ω, ω) and assume that the action admits an equivariant
moment mapping ψ. Suppose L is a maximal connected submanifold of M with
TxL = ζg(x)⊥. Let GL be a subgroup of G which preserves L and has gL as Lie
algebra, and assume that GL acts freely and properly on L. Then PL := L/GL
admits a unique (up to conformal equivalence) l.c.s. structure (Ω̄, ω̄), such that
(L, i∗Ω, i∗ω) ∼ (L, π∗Ω̄, π∗ω̄), where i : L ↪→M denotes the inclusion and π : L→
PL denotes the projection.

Proof. Since the action is free and proper π : L→ PL is a principle GL-bundle. Let
U be an open covering of PL and, for U ∈ U , let sU : U → L be local sections of π.
Define Ω̄U := s∗U i

∗Ω and ω̄U := s∗U i
∗ω. We claim that (U, Ω̄U , ω̄U ) is l.c.s. for every

U ∈ U . Obviously dω̄U = 0 and dω̄U Ω̄U = 0. To see that Ω̄U is non-degenerate, let
Yz ∈ TzPL and suppose 0 = Ω̄U (Yz, Zz) = i∗Ω(TzsU ·Yz, TzsU ·Zz) for all Zz ∈ TzPL.
Since iζX i

∗Ω = 0 for all X ∈ gL, we conclude that Ω(TzsU · Yz, Ts(z)L) = 0. In
other words TzsU ·Yz ∈ (TsU (z)L)⊥ = ζg(sU (z)) and thus TzsU ·Yz = 0, i.e. Yz = 0.

Next we will show that (i∗Ω, i∗ω)|π−1(U) ∼ π∗(Ω̄U , ω̄U ). So define f : π−1(U)→
G by lf(x)(x) := sU (π(x)), and a ∈ C∞(π−1(U),R+) by a(x) := af(x)(x). We
claim that π∗Ω̄U = 1

a i
∗Ω|π−1(U) and π∗ω̄U = i∗ω|π−1(U) + da

a . Indeed we have
Tx(sUπ) · Zx = Txlf(x) · Zx + V for a vertical V ∈ TsU (π(x))L. Since i∗Ω vanishes
on vertical vectors we get

(π∗Ω̄U )(Zx, Z ′x) = (sUπ)∗i∗Ω(Zx, Z ′x)

= i∗Ω(Tx(sUπ) · Zx, Tx(sUπ) · Z ′x)

= i∗Ω(Txlf(x) · Zx, Txlf(x) · Z ′x)

= i∗l∗f(x)Ω(Zx, Z ′x)

= 1
a(x) i

∗Ω(Zx, Z ′x),

that is π∗Ω̄U = 1
a i
∗Ω|π−1(U). Moreover we have f(gx) = f(x)g−1 for g ∈ GL, and

therefore a(gx) = 1
ag(x)a(x), where we used ahg(x) = ag(x)ah(gx). From this we

obtain
iζY (x)da = ∂

∂t |0
(

1
aexp(tY )(x)a(x)

)
= −i∗ω(ζY (x))a(x),

i.e.
(
π∗ω̄U − i∗ω − da

a

)
(ζY ) = 0 for all Y ∈ gL. Remains to check this equation on

‘horizontal’ vector fields. Since f(sU (z)) = e we have s∗Ua = 1 and thus

(lgsU )∗
(
i∗ω + da

a

)
= s∗U

(
i∗ω + dag

ag
+ dl∗ga

l∗ga

)
= s∗U

(
i∗ω + da

a

)
= ω̄U .

Since (lgsU )∗(π∗ω̄U ) = ω̄U , we obtain π∗ω̄U = i∗ω|π−1(U) + da
a .
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If V ∈ U then we get

(Ω̄V , ω̄V )|U∩V = s∗V i
∗(Ω, ω)|U∩V ∼ s∗V π∗(Ω̄U , ω̄U )|U∩V = (Ω̄U , ω̄U )|U∩V

By the construction described in the first paragraph, we obtain a unique l.c.s.
structure (Ω̄, ω̄) on PL, such that (Ω̄, ω̄)|U ∼ (Ω̄U , ω̄U ) for all U ∈ U . Moreover we
have π∗(Ω̄, ω̄)|π−1(U) ∼ i∗(Ω, ω)|π−1(U) for all U ∈ U and hence π∗(Ω̄, ω̄) ∼ i∗(Ω, ω).
Uniqueness is also clear, for if (Ω′, ω′) is any l.c.s. structure on PL with π∗(Ω′, ω′) ∼
i∗(Ω, ω), then

(Ω′, ω′)|U = s∗Uπ
∗(Ω′, ω′) ∼ s∗U i∗(Ω, ω) = (Ω̄U , ω̄U ).

and so (Ω′, ω′) ∼ (Ω̄, ω̄). �

Suppose (M,Ω, ω) ∼ (M,Ω′, ω′) with Ω′ = 1
aΩ and ω′ = ω + da

a . Then
Diff∞(M,Ω, ω) = Diff∞(M,Ω′, ω′) and Ham(M,Ω, ω) = Ham(M,Ω′, ω′). More-
over, ψ is an equivariant moment mapping for (Ω, ω) iff 1

aψ is an equivariant mo-
ment mapping for (Ω′, ω′). Since the orthogonal relation is the same for both l.c.s.
structures a submanifold L satisfies the conditions of Theorem 1 for (Ω, ω) iff it
does for (Ω′, ω′). Moreover we have g′L = gL. So the reduced spaces (PL,Ω, ω) and
(P ′L,Ω

′, ω′) are the same, up to conformal equivalence.
Let a ∈ C∞(M,R) be such that ω = da

a , locally around x0 ∈ L. Then L locally
given as {x : 1

aψ(x) = 1
aψ(x0)}.

If (M,Ω, ω) is symplectic, i.e. ω = 0, then this construction yields of course
ordinary symplectic reduction ([7],[3]).

5. Examples

Let G be a discrete group acting freely and properly on an l.c.s. manifold
(M,Ω, ω), such that lg ∈ Diff∞(M,Ω, ω) for all g ∈ G. Then g = 0, ψ = 0 is
an equivariant moment mapping, and the only possible choice for L is L = M .
If we choose GL = G then PL = M/G carries an l.c.s. structure. Notice that
even if we start with a symplectic manifold, M/G need not be conformally equiv-
alent to a symplectic manifold. For example let (M,Ω, ω) be an l.c.s. manifold,
let π : M̃ → M be a normal covering such that ω̃ := π∗ω becomes exact, and set
Ω̃ := π∗Ω. Then (M̃, Ω̃, ω̃) is conformally equivalent to a symplectic manifold and
G, the group of deck transformations, satisfies lg ∈ Diff∞(M̃, Ω̃, ω̃) for all g ∈ G.
Obviously PL = M̃/G = M and (Ω̄, ω̄) ∼ (Ω, ω). The smallest M̃ one can take
is the covering corresponding to the kernel of the homomorphism π1(M) → R,
σ 7→

∫
σ
ω.

Another example is connected with physical applications. In [9] the following
l.c.s. reduction is applied in several dynamical systems. Let (M,Ω, ω) be an l.c.s.
manifold, and f ∈ C∞(M,R) be a Hamiltonian function. One considers F = ]df
and a smooth level set M c = {x ∈M : f(x) = c}, and one assumes that f does not
vanish on M c. Then one obtains a reduced l.c.s. structure on M̂ c = M c/F . This
structure enables to get a conformally symplectic transversal derivative cycle. Then
some symmetries of the Lyapunov spectrum of this cocycle appear. For details, see
[9].
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6. Hamiltonian System On The Reduced Space

First we consider the general reduction and assume the notation of Proposition 1.

Proposition 4. Let PL be the reduced l.c.s. manifold by means of (L,E) and let
u ∈ C∞(M,R) be a Hamiltonian such that dωu vanishes on E and its flow Fl]d

ωu
t

preserves L and the bundle E. Then there exists a unique ū ∈ C∞(PL,R) such
that u extends ū ◦ π and π∗]dωu = ]PLd

ω̄ū. In particular, Fl]d
ωu

t induces a flow of
Hamiltonian automorphisms on PL.

Proof. Since dωu|E = du|E = 0, the ū as above exists. For all v̄ ∈ C∞(PL,R) and
v ∈ C∞(M,R) with v|L = v̄ ◦ π we then get

(]PLd
ω̄ū)(π(x))v̄ = {v̄, ū}PL(π(x)) = {v, u}M (x)

= (]dωu)(x)v = (]dωu)(x)(v̄ ◦ π) = (π∗]dωu)(x)v̄.

Here we use that, by assumption, ]dωu is tangent to L.

Now we consider the case of Lie group actions.

Lemma 1. Let G and H be two finite dimensional, connected Lie groups acting
symplectically on an l.c.s. manifold (M,Ω, ω) with moment mappings ψG and ψH .
Then

(1) agl
∗
gψH = ψH , for all g ∈ G,

(2) agl
∗
gψ̂H(Y ) = ψ̂H(Y ), for all Y ∈ h, g ∈ G,

(3) TψH · ζGX + ω(ζGX)ψH = 0, for all X ∈ g,
(4) Lω

ζGX
ψ̂H(Y ) = 0, for all Y ∈ h, X ∈ g,

(5) ζHh (x) ⊆ ζGg (x)⊥, for all x ∈M and
(6) {ψ̂G(X), ψ̂H(Y )} = 0, for all X ∈ g, Y ∈ h

are equivalent. Moreover each statement is equivalent to the corresponding state-
ment with the rôles of G and H exchanged. If these equivalent conditions are
satisfied, then [ζGX , ζ

H
Y ] = 0 for all X ∈ g, Y ∈ h and the actions of G and H

commute.

Proof. From Ω(ζGX , ζ
H
Y ) = −Lω

ζGX
ψ̂H(Y ) = {ψ̂G(X), ψ̂H(Y )} we obtain the equiva-

lence of (4), (5) and (6). Since and LωZ ψ̂(Y ) = 〈Tψ ·Z+ω(Z)ψ, Y 〉 these are equiva-
lent to (3). (1) and (2) are the infinitesimal versions of (3) and (4). The equivalence
to the statements with the rôles of G and H exchanged is obvious from the sym-
metry of (5) or (6). From (6) we also get [ζGX , ζ

H
Y ] = −]dω{ψ̂G(X), ψ̂H(Y )} = 0,

i.e. the actions of G and H commute. �

Assume that the equivalent conditions of Lemma 1 are satisfied and suppose L
satisfies the assumptions of Theorem 1. Then ζHY is tangential to L and thus at
least H◦, the id component of H, leaves L invariant.

Theorem 2. Let (M,Ω, ω), G, L and GL satisfy the conditions of Theorem 1.
Moreover let H be another finite dimensional Lie group, acting symplectically on
(M,Ω, ω) with equivariant moment mapping ψH , such that agl∗gψH = ψH for all
g ∈ G. Finally assume that the actions of G and H commute and suppose that
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H leaves L invariant. Then the H-action descends to a symplectic action on PL,
which has an equivariant moment mapping naturally induced from ψH .

Proof. Since the action of G and H commute the action of H descends to an action
l̄ on PL. Moreover we have

π∗ l̄∗h(Ω̄, ω̄) = l∗hπ
∗(Ω̄, ω̄) ∼ l∗hi∗(Ω, ω) = i∗l∗h(Ω, ω) ∼ i∗(Ω, ω),

and thus the uniqueness part of Theorem 1 yields l̄∗h(Ω̄, ω̄) ∼ (Ω̄, ω̄), i.e. H acts
symplectically on PL. Now let a ∈ C∞(L,R+) be such that π∗Ω̄ = 1

a i
∗Ω and

π∗ω̄ = i∗ω + da
a . From agl

∗
gψH = ψH and agl

∗
ga = a for all g ∈ GL, we obtain

l∗g(
1
aψH) = 1

aψH on L, and thus 1
aψH descends to ψ̄H ∈ C∞(PL, h∗). Moreover we

have
π∗(āh l̄∗hψ̄H) = (π∗āh)l∗h( 1

aψH) = Ad∗h−1( 1
aψH) = π∗(Ad∗h−1 ψ̄H)

and hence ψ̄H is equivariant. Since we have

π∗dω̄ ˆ̄ψH(Y ) = dπ
∗ω̄( 1

a ψ̂(Y )) = iζHY π
∗Ω̄ = π∗iζ̄HY Ω̄,

ψH is a moment mapping. �

Suppose G is connected and let L satisfy the conditions of Theorem 1. Let f be a
Hamiltonian function, H = R acting via the flow of ]dωf . Then f is an equivariant
moment mapping. Suppose agl∗gf = f for all g ∈ G, or equivalently Lω

ζGX
f = 0 for

all X ∈ g. Then by Lemma 1 all assumptions of Theorem 2 are satisfied, and one
obtains an induced Hamiltonian system on PL.
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