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Nazionale di Alta Matematica).
ASM Subject Clasiffication: 34B10, 35K57, 35B65, 35K51.
Kwywords: nonlocal Cahn-Hilliard equation, reaction term, existence, uniqueness, regularity, phase sep-
aration.

461



1 Introduction

Our aim is to generalize the existence, uniqueness, separation property and regularity
results, proved by Gajewski, Zacharias [GZ] and Londen and Petzeltová [LP2] for the
nonlocal Cahn-Hilliard equation, to the nonlocal Cahn-Hilliard equation with reaction.
Hence, we aim to study the following initial boundary value problem:

∂tu −∇ · (µ∇v) = g(u) in Q, (1.1)

v = f ′(u) + w in Q, (1.2)

w(x, t) =

∫
Ω

K(|x − y|)(1 − 2u(y, t))dy for (x, t) ∈ Q, (1.3)

n · µ∇v = 0 on Γ, (1.4)

u(x, 0) = u0(x), x ∈ Ω, (1.5)

where Q = Ω × (0, T ), Ω ⊂ Rd is a bounded domain, Γ = ∂Ω × (0, T ), and n is the outer
unit normal to ∂Ω. The functions f and µ are definite by

f(u) = u log u + (1 − u) log(1 − u), (1.6)

µ =
1

f ′′(u)
= u(1 − u). (1.7)

The main novelty of the paper is that we can take into account in our analysis of the
reaction term g in (1.1), which can be taken as a Lipschitz continuous function of the
unknown u.

Let us briefly recall here - for the readers’ convenience - the derivation of the non-
local Cahn-Hilliard equation and the comparison with the local one. System (1.1)–(1.5)
describes the evolution of a binary alloy with components A and B occupying a spatial
domain Ω. We denote by u the local concentration of A. To describe phase separation
in binary system one uses generally the standard local Cahn-Hilliard equation, which is
derived (cf. [CH]) from a free energy functional

ECH(u) =

∫
Ω

(
τ 2

2
|∇u|2 + F (u)

)
dx. (1.8)

Here τ denotes a positive parameter, while F (u) stands for the Helmholtz free energy
density of A. It is defined as

F (u) = 2KBTcu(1 − u) + KBTf(u), (1.9)

where KB is the Boltzmann’s constant, T is the system temperature, Tc is called critical
temperature and f is defined as

f(u) = u ln u + (1 − u) ln (1 − u) . (1.10)
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Considering that the dynamics tends to minimize the energy ECH , Cahn obtained ([Ca])
the following equation for u:

ut + ∇ · J = 0 (1.11)

where J is defined as
J = −µ(u)∇v. (1.12)

The function µ is named mobility and v, denoting the first variation of ECH with respect
to u

v =
δECH

δu
= F ′(u) − τ 2∆u, (1.13)

is known as chemical potential. For simplicity in literature the mobility is often chosen
constant although its physical (degenerate) relevant form is

µ = au(1 − u), a > 0 (1.14)

(see [Ca]), where a is a positive function possibly depending on u and ∇u separated from
0 (in literature a is often a positive constant). Hence, equation (1.11) is a fourth order
nonlinear PDE known as Cahn-Hilliard equation:

ut + ∇ ·
(
µ(u)∇(F ′(u) − τ 2∆u)

)
= 0, (1.15)

which is usually coupled with the following boundary conditions:

∂u

∂n
= 0 on ∂Ω and µ(u)n · ∇v = 0 on ∂Ω. (1.16)

This last condition ensures the mass conservation. Indeed, thanks to (1.16), we have:

d

dt

∫
Ω

u =

∫
Ω

ut = −
∫

Ω

∇ · (µ(u)∇v) =

∫
∂Ω

µ(u)n · ∇v = 0.

Despite numerical results on the Cahn-Hilliard equation are in good agreement with
experiments, G. Giacomin and J. L. Lebowitz in [GL1] and [GL2] showed that Cahn-
Hilliard equation cannot be derived from microscopic phenomena. This motivation led
G. Giacomin and J. L. Lebowitz to study the problem of phase separation from the
microscopic viewpoint using statistical mechanics. Then, performing the hydrodynamic
limit they deduced a continuum model. By proceeding in this way they found a nonlocal
version of the Cahn-Hilliard equation that is a second order nonlinear integrodifferential
equation:

ut + ∇ · J = 0 (1.17)

where J is defined as in (1.12), µ denotes the mobility term (defined as in (1.14)), and
v = δE

δu
. Here the energy functional E is given by

E(u) =
1

2

∫
Ω

∫
Ω

K(x − y)(u(x) − u(y))2dxdy +

∫
Ω

f(u) + ku(1 − u)dx. (1.18)

This leads to
v = f ′(u) + w, where w = K ∗ (1 − 2u), (1.19)
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and where K is a symmetric positive convolution kernel, k(x) =
∫
Ω

K(x − y)dy and f is
defined as in (1.10).

Nonlocal Cahn-Hilliard equation is generally coupled with the boundary condition

µ(u)n · ∇v = 0 on ∂Ω. (1.20)

Thus, the mass-conservation is still preserved. Notice that the nonlocal contribution
1
2

∫
Ω

∫
Ω

K(x − y)(u(x) − u(y))2dxdy in (1.18), replacing the local one
∫

Ω
τ2

2
|∇u|2, better

describes the long-range interactions between points in Ω. Moreover, let us note that the
local term

∫
Ω

τ2

2
|∇u|2 could be formally obtained from the nonlocal one (cf. [KRS]).

Adding a reaction term to the Cahn-Hilliard equation is useful in several applications
such as biological models ([KS]), impainting algorithms ([BEG]), polymers ([BO]). Cahn-
Hilliard equation with reaction is

ut + ∇ · J = g(u), (1.21)

where J = −µ∇v and v as in (1.13) or as in (1.19) and g(u) = g(x, t, u).

The main difficulties in studying Cahn-Hilliard equation with reaction are due to the
non-conservation of the mass. Indeed, thanks to the boundary condition (1.20), we have

d

dt

∫
Ω

u =

∫
Ω

g ̸= 0. (1.22)

Some analytical results on the local Cahn-Hilliard equation with reaction term are
[CMZ], [Mi]. Existence and uniqueness for nonlocal Cahn-Hilliard equation with constant
mobility, polynomial potential and reaction term are proved in [DP].

To the best of our knowledge no previous works on the nonlocal Cahn-Hilliard equation
with reaction and with singular potential and degenerate mobility have been proved.
Furthermore, our assumptions on the reaction term (see (G1)-(G3)) are more general
than the ones in [CMZ], [Mi] and [DP] and they are satisfied in every application we
know (cf., e.g., [KS], [BEG], [BO]).

Plan of the paper. In Section 2 we set notation, describe assumptions on the data
and state the main results. Existence and uniqueness are proved in Section 3, while the
regularity results are proved in Section 4. Section 5 is devoted to the proof of the sepa-
ration properties. Some remarks are stated in Section 6. Appendix (Section 7) contains
example of convolution kernels and auxiliary theorems.

2 Assumptions on the data and main results

2.1 Notation

Set Ω ⊂ Rd, d ∈ N, a bounded connected domain with a sufficiently smooth boundary
(e.g., of class C1,1).
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If X is a real Banach space, X∗ will denote its dual. For every z ∈ (H1(Ω))∗ we denote

z̄ =
⟨
z, 1

|Ω|

⟩
. Here ⟨, ⟩ denotes the pairing of H1(Ω) and (H1(Ω))

∗
. Let us introduce also

the space H1
0 (Ω) = {z ∈ H1(Ω) : z̄ = 0}.

Set H1(0, T,X,X∗) = { z ∈ L2(0, T, X) : zt ∈ L2(0, T,X∗)}.
If z ∈ H1(0, T, X, X∗) the symbols z′, ∂tz, ∂z

∂t
, and zt will denote the partial derivative

of z with respect to the t-variable (time). Let f ∈ C1(R), we use the symbol f ′ to denote
the derivative of the function f . Finally, set y ∈ H1([0, T ] × Ω), we indicate the partial
derivative of y with respect to the first variable (time) with the symbols ∂ty or ∂y

∂t
and

the partial derivate of y with respect to the xi−variable with the symbol ∂iy.

If α : Rd → R and β : Ω ⊂ Rd → R are measurable functions α ∗ β will denote the
convolution product definite by α ∗ β(x) =

∫
Ω

α(x − y)β(y)dy for x ∈ Rd.

2.2 Assumptions on the data

The given functions K, u0 and g will be assumed to fulfill the following conditions.

(K) The convolution kernel K : Rd → R satisfies the assumptions

K(x) = K(−x) for a.a. x ∈ Rd, (K1)

sup
x∈Ω

∫
Ω

|K(x − y)| dy < +∞, (K2)

∀p ∈ [1, +∞] ∃rp > 0 such that ∥K ∗ ρ∥W 1,p(Ω) ≤ rp ∥ρ∥Lp(Ω) , (K3)

∃C > 0 such that ∥K ∗ ρ∥W 2,2(Ω) ≤ C ∥ρ∥W 1,2(Ω) ; (K4)

(u0) The initial datum u0 is supposed to satisfy

u0 is measurable, (U01)

0 ≤ u0(x) ≤ 1 for a.a. x ∈ Ω, (U02)

0 < ū0 < 1; (U03)

(G) The reaction term g : Ω × R+ × [0, 1] → R is such that

g(x, t, s) is continuous, (G1)

∃L > 0 such that |g(x, t, s1) − g(x, t, s2)| ≤ L |s1 − s2|
∀s1, s2 ∈ [0, 1], ∀x ∈ Ω, ∀t ∈ R+ (G2)

g(x, t, 0) ≥ 0 ≥ g(x, t, 1) ∀x ∈ Ω, ∀t ∈ R+ . (G3)
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We remark that, as a consequence of (G1), for every T > 0 there exist C > 0 depending
on T so that

|g(x, t, s)| ≤ C ∀s ∈ [0, 1], t ∈ [0, T ], x ∈ Ω. (2.1)

Furthermore, as a consequence of (G2), we have

g is differentiable for a.a. s ∈ [0, 1] and
|∂sg(x, t, s)| ≤ L for a.a. (x, t, s) ∈ Ω × R+ × [0, 1],

where L as in (G2) (see [NZ]).

Remark 1 Some examples of convolution kernels K which satisfy the above conditions
(K1)-(K4) are given by Newton potentials:{

K(|x|) = kd |x|2−d for d > 2
K(|x|) = −k2 ln |x| for d = 2

where kd = cost > 0, gaussian kernel K(|x|) = C exp(− |x|2 /λ) and mollifiers (cf. Section
7.1 in the Appendix).

Remark 2 Examples of functions g which satisfy the conditions (G1)-(G3) are given
by both classical reactions terms as g(u) = ±(u3 − u) and terms used in recent appli-
cations of the Cahn-Hilliard equations as g(x, t, u) = α(x, t)u(1 − u) ([KS]), g(x, t, u) =
λ(x)(h(x)−u) ([BEG]) or g(x, t, u) = −σ(x, t)u ([BO]) where λ, h, α and σ are continuous
and positive functions, h < 1.

2.3 Main results

Before stating the main results of this work, let us introduce the definition of weak solution
to system (1.1)-(1.5).

Definition 3 Let u0, K, g be such that conditions (U01)-(U03), (K1)-(K4), (G1)-(G3)
are satisfied. Then, given T ∈ (0, +∞), u is a weak solution to (1.1)-(1.5) on [0, T ] if

u ∈ H1(0, T, H1(Ω),
(
H1(Ω)

)∗
), (2.2)

0 ≤ u ≤ 1 a.e. in Q, (2.3)

w = K ∗ (1 − 2u) a.e. in Q,

w ∈ C([0, T ],W 1,∞(Ω)),

u(0) = u0 in L2(Ω),

and the following variational formulation is satisfied almost everywhere in (0, T ) and for
every ψ ∈ H1(Ω)

⟨ut, ψ⟩ + (µ(u)∇w,∇ψ) + (∇u,∇ψ) = (g(u), ψ). (2.4)
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Remark 4 As consequence of (2.2), u ∈ C([0, T ], L2(Ω)). Hence, the initial condition
(1.5) makes sense. Moreover, let us note that this notion of solution turns out to be
particularly useful since it does not involve the potential f and so it can be stated for
solutions u ∈ [0, 1], not necessarily different from 0 and 1 (cf. also [FGR] for further
comments on this point).

Here we state our first result whose proof is given in Section 3.

Theorem 5 Let (K1)-(K4), (U01)-(U03) and (G1)-(G3) be satisfied. Then there exists
unique

u ∈ H1(0, T, H1(Ω), (H1(Ω))∗)(↪→ C([0, T ], L2(Ω)))

weak solution to (1.1) in the sense of Definition 3.

Furthermore, if ui, i ∈ {1, 2}, are two solutions to (1.1)-(1.4) in the sense of Definition
3 with initial data u0i, i ∈ {1, 2}, then, for every t ∈ [0, T ], the following continuous
dependence estimate:

∥u1 − u2∥L∞(0,t,L2(Ω)) ≤ exp(Ct) ∥u01 − u02∥L2(Ω) (2.5)

holds true, where C > 0 does not depend on t nor on u01 and u02.

The proof is given in Section 3.

Under additional assumptions on the initial data u0 and the function g we obtain more
regularity on u, as stated in the following result proved in Section 4.

Theorem 6 Let the assumptions of Theorem 5 be satisfied. Let u be the weak solution to
(1.1)-(1.5) in the sense of Definition 3. Moreover, assume that g and u0 satisfy:

∃L > 0 such that |g(x, t1, s) − g(x, t1, s)| ≤ L |t1 − t2| ,
∀t1, t2 ∈ [0, T ], ∀x ∈ Ω, ∀s ∈ [0, 1], (G4)

u0 ∈ H2(Ω), (2.6)

and
n · (∇(u0) + µ(u0)∇K ∗ (1 − 2u0)) = 0 on ∂Ω. (2.7)

Then u ∈ L∞(0, T, H2(Ω)).

Remark 7 Since u ∈ L∞(0, T, H2(Ω)) ∩ C([0, T ] , L2(Ω)), thanks to Lemma 32 in the
Appendix, we have u ∈ C([0, T ] , Hs(Ω)) for every s < 2 and hence u ∈ C([0, T ] , L∞(Ω))
if d ≤ 3.

If the initial data do not satisfy (2.6)-(2.7) the solution u is more regular only on the
set [T0, T ] for any T0 > 0.
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Corollary 8 Let u be solution to (1.1)-(1.5) in the sense of Definition 3. Let the assump-
tions of Theorem 5 be satisfied. Assume that g satisfies (G4). Then, for every T0 ∈ (0, T ),
u ∈ L∞(T0, T,H2(Ω)).

More regularity on v can be obtained under an additional assumption on the initial
datum.

Theorem 9 Let the assumption of Theorem 5 be satisfied and let u0 such that

f ′(u0) ∈ L2(Ω). (2.8)

Then the weak solution u given by Theorem 5 fulfills

v ∈ L∞(0, T, L2(Ω)) ∇v ∈ L2(0, T, L2(Ω)). (2.9)

Remark 10 As a consequence of Theorem 9 the function v = f ′(u) + w is well defined.
Hence u ̸= 0 and u ̸= 1 a.e. in Ω×[0, T ]. Furthermore u also satisfies the weak formulation
given by Definition 3 with

⟨ut, ψ⟩ + (µ(u)∇v,∇ψ) = (g(u), ψ), v = f ′(u) + w,

instead of (2.4).

Corollary 8 and Theorem 9 are proved in Section 4.

In [LP2, Theorem 2.1] Londen and Petzeltová obtained the separation properties for
the solution to (1.1)-(1.5) with g = 0. We prove here the same results in the case g
satisfies (G1)-(G3).

Theorem 11 Let the assumptions of Theorem 6 be satisfied and d ≤ 3. Then

∀T0 ∈ (0, T ) ∃ k > 0 such that k ≤ u(x, t) ≤ 1 − k for a.a. x ∈ Ω, t ∈ (T0, T ). (2.10)

Furthermore, if
∃ k̃ > 0 such that k̃ ≤ u0 ≤ 1 − k̃, (2.11)

then T0 = 0.

Remark 12 If u0 do not satisfy (2.6) or (2.7), using Corollary 8 and applying Theorem
11 on the set (t, T ) where t > 0 is small enough, we can anyway obtain (2.10).

Theorem 11 is proved in Section 5.

3 Existence and uniqueness

This section is devoted to the proof of Theorem 5. We first prove uniqueness of solutions
by demonstrating estimate (2.5), then we prove existence of solutions by approximating
our problem with a more regular problem Pε and then passing to the limit as ε → 0 via
suitable a-priori estimates and compactness results.
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3.1 Uniqueness

We now prove the uniqueness of the solution. In the following formulas the symbol C
denotes a positive constant depending on T , K, and g. It may vary even within the same
line.

Proof of (2.5). Let ui and u0i be as in Theorem 5. Then

⟨∂tui, ψ⟩ = − (∇ui + µi∇wi,∇ψ) + (g(ui), ψ) ∀ψ ∈ H1(Q), a.e. in (0, T ), (3.1)

where µi = µ(ui) = ui(1 − ui) and wi = K ∗ (1 − 2ui). Computing the difference of (3.1)
with i = 1 and i = 2, choosing ψ = u := u1 − u2 and integrating on (0, t), t ∈ (0, T ], we
obtain

1

2
∥u(t)∥2

L2(Ω) −
1

2
∥u01 − u02∥2

L2(Ω) =

∫ t

0

⟨∂tu, u⟩ (3.2)

= −
∫ t

0

∫
Ω

|∇u|2

−
∫ t

0

∫
Ω

(µ1∇w1 − µ2∇w2)∇u

+

∫ t

0

∫
Ω

(g (u1) − g (u2))u.

Using the bounds on u1, u2, µ1 and µ2 (see (1.7) and (2.3)) and assumption (K3) we obtain
the following estimates∣∣∣∣∫

Ω

(µ1∇w1 − µ2∇w2)∇u

∣∣∣∣ ≤ 1

2

∫
Ω

|∇u|2 +
1

2

∫
Ω

|µ1∇w1 − µ2∇w2|2

and ∫
Ω

|µ1∇w1 − µ2∇w2|2 ≤
∫

Ω

|µ1(∇w1 −∇w2)|2 +

∫
Ω

|(µ1 − µ2)∇w2|2

≤C ∥∇w1 −∇w2∥2
L2(Ω)

+

∫
Ω

|(u1 − u2)(1 − u1 − u2)∇w2|2

≤C ∥∇w1 −∇w2∥2
L2(Ω) + C ∥∇w2∥2

L∞(Ω) ∥u∥
2
L2(Ω)

≤Cr2
2 ∥u∥

2
L2(Ω) + Cr2

∞ ∥u∥2
L2(Ω) ≤ C ∥u∥2

L2(Ω)

where r2 and r∞ as in (K3). Furthermore, using (G2) we have∫
Ω

(g(u1) − g(u2))u ≤
∫

Ω

Lu2 ≤ L ∥u∥2
L2(Ω) ,

where L as in (G2). So, thanks to (3.2), for every t ∈ (0, T ), we obtain

∥u(t)∥2
L2(Ω) ≤ 2 ∥u01 − u02∥2

L2(Ω) + C

∫ t

0

∥u∥2
L2(Ω) .

Using the Gronwall’s Lemma, we get (2.5), and so also uniqueness of solutions is proved.
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3.2 Existence

In order to show the existence of the solution to (1.1)–(1.5) we study an approximate
problem Pε depending on a parameter ε. We prove the existence of the solution uε to Pε

and, finally, we obtain u as limit (for ε → 0) of uε in a proper functional space.

3.2.1 Approximate problem Pε

We start extending the domain of the function g(x, t, s) to every s ∈ R since we cannot
prove that the solution uε to the approximate problem satisfies the condition uε ∈ [0, 1]
for a.a. x ∈ Ω, t ∈ [0, T ]. Let us define the function g1 : Ω × R+ × R → R:

g1(x, t, s) = g(x, t, 0) ∀x ∈ Ω ∀t ∈ R+, s ≤ 0
g1(x, t, s) = g(x, t, s) ∀x ∈ Ω ∀t ∈ R+, s ∈ [0, 1]
g1(x, t, s) = g(x, t, 1) ∀x ∈ Ω ∀t ∈ R+, s ≥ 1

.

We remark that g1 satisfies (G1)-(G3). Furthermore

∣∣g1(x, t, s)
∣∣ ≤ C ∀s ∈ R ∀(x, t) ∈ Q (3.3)

where C as in (2.1) and

g1(x, t, s1) ≥ 0 ≥ g1(x, t, s2) ∀t ∈ R+, ∀x ∈ Ω, ∀s1 ≤ 0, ∀s2 ≥ 1. (3.4)

Let us consider the approximate problem Pε: find a solution u (we do not use the
symbol uε for simplicity of notation) to

⟨∂tu, ψ⟩ + (µε∇v,∇ψ) =
(
g1(u), ψ

)
∀ψ ∈ H1(Ω), a.e. in (0, T ), (3.5)

v = f ′
ε(u) + w a.e. in Q (3.6)

w = K ∗ (1 − 2u) a.e. in Q, (3.7)

n · µε∇v = 0 a.e. on Γ, (3.8)

u(0, x) = u0(x), for a.a. x ∈ Ω, (3.9)

where
µε = max{µ + ε, ε} (3.10)

and fε is the solution to the following Cauchy-problem:

f ′′
ε = (1 + 2aε)

1

µε

, f ′
ε(

1

2
) = f ′(

1

2
), and fε(

1

2
) = f(

1

2
), (3.11)

where aε = (1+4ε)1/2−1
2

. Thanks to (1.7) and (3.10), we have

µε(s) =


ε for s < 0
(s + aε) (1 + aε − s) for s ∈ [0, 1]
ε for s > 0

. (3.12)
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Hence, µε is continuous. We remark that µε(s) is not decreasing for s ≤ 1/2 and not
increasing for s ≥ 1/2. This yields

ε ≤ µε ≤ µε(1/2) =
1 + 4ε

4
. (3.13)

From (3.11) and (3.12) it follows

f ′′
ε (s) =


1+2aε

ε
for s < 0

1+2aε

(s+aε)(1+aε−s)
for s ∈ [0, 1]

1+2aε

ε
for s > 0

(3.14)

and, in particular,

0 < f ′′
ε (s) ≤ 1 + 2aε

ε
. (3.15)

Furthermore f ′′
ε satisfies the symmetry property

f ′′
ε

(
1

2
+ s

)
= f ′′

ε

(
1

2
− s

)
∀s ∈ R. (3.16)

Thanks to (3.15), f ′
ε is increasing and, thanks to f ′

ε(1/2) = f(1/2) = 0, f ′
ε(s) < 0 for

s < 1/2 and f ′
ε(s) > 0 for s > 1/2. Using (3.14) we now obtain

f ′
ε(s) < 0 for s < 0

f ′
ε(s) = ln

(
aε+s

1+aε−s

)
for s ∈ [0, 1].

f ′
ε(s) > 0 for s > 1

(3.17)

Furthermore f ′
ε satisfies

f ′
ε

(
1

2
+ s

)
= −f ′

ε

(
1

2
− s

)
∀s ∈ R. (3.18)

Since f ′′
ε ≤ 1+2aε

ε
and f ′

ε(1/2) = 0, we have f ′
ε(s) ≤ 1+2aε

ε
(s − 1/2) for s ≥ 1/2. So, using

(3.18), we get

|f ′
ε(s)| ≤

1 + 2aε

ε
|s − 1/2| ∀s ∈ R. (3.19)

As a consequence of (3.17) s = 1
2

minimizes fε(s). From (3.18) we have

fε

(
1

2
+ s

)
= fε

(
1

2
− s

)
∀s ∈ R. (3.20)

Now, we show that

fε(s) ≥
1

2ε
s2 − cε ∀s ∈ R, (3.21)

where cε is a positive constant depending on ε. We start showing

fε(s) ≥
1 + aε

2ε
(s − 1/2)2 − c′ε ∀s ∈ R (3.22)
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where c′ε is a positive constant depending on ε. We prove (3.22) for s > 1/2; the proof
for s < 1/2 can be obtained using (3.20). As a consequence of (3.14) we have f ′

ε(s) =
1+2aε

ε
(s− 1) + f ′

ε(1), s > 1. Furthermore f ′
ε(s) ≥ 0 for s > 1/2 as a consequence of (3.17).

Hence f ′
ε(s) ≥ 1+2aε

ε
s − 1+2aε

ε
∀s > 1/2 (the right term is negative for s ∈ [1/2, 1]). From

the last inequality follows by integration

fε(s) − fε(1/2) ≥ 1 + 2aε

2ε
s2 − 1 + 2aε

ε
s − 1 + 2aε

2ε

1

4
+

1 + 2aε

ε

1

2

≥ 1 + 2aε

2ε
s2 − δs2 − 1 + 2aε

2ε

1

4δ
− 1 + 2aε

2ε

1

4
+

1 + 2aε

ε
∀δ > 0.

We take into account 1+2aε

2ε
> 1+aε

2ε
, choose δ suitably and get (3.22). Hence,

1 + aε

2ε
(s − 1/2)2 =

1 + aε

2ε
(s2 − s − 1/4)

≥ 1 + aε

2ε
((1 − δ)s2 − 1/4 − 1

8δ
) ∀δ > 0 .

Choosing δ suitably small and using 1+aε

2ε
> 1

2ε
we have (3.21).

3.2.2 Existence of the solution to the approximate problem

The following lemma states the existence of a solution to (3.5)-(3.9) for a fixed ε > 0
small enough.

Lemma 13 Let ε < 1
2r2

(r2 as in (K3)). Let (K1)-(K3), (G2), (G1) and (3.3) be
satisfied. Then there exists

u ∈ H1(0, T,H1(Ω), (H1(Ω))∗) ∩ L∞(0, T, L2(Ω))

solution to (3.5)-(3.9) such that∥∥µ1/2
ε (u) |∇v|

∥∥
L2(0,T,L2(Ω))

≤ C

where C is a positive constant depending on ε.

Proof. The argument is based on a Faedo-Galerkin’s approximation scheme. We intro-
duce the family {ei}i∈N of eigenfunctions of −∆ + Id : V → V ∗ as a Galerkin base in
V = H1(Ω). We define the orthogonal projector Pn : H = L2(Ω) → Vn = span({ei}n

i=1)
and u0n = Pnu0. We then look for functions of the form

un(t) =
n∑

k=1

αk(t)ek and vn(t) =
n∑

k=1

βk(t)ek

which solve the following approximating problem

(u′
n, ψ) + (µε(un)∇vn,∇ψ) = (g1

n, ψ) ∀ψ ∈ Vn (3.23)

vn = Pn(K ∗ (1 − 2un) + f ′
ε(un))

g1
n = Pn

(
g1(un)

)
un(0) = u0n. (3.24)
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This approximating problem is equivalent to solve a Cauchy problem for a system of
ODEs in the n unknowns (αi). As a consequence of (3.10), (G1), (G2) and (3.11), for
every ψ ∈ Vn, the functions (m(un)∇vn,∇ψ) and (gn, ψ) are locally Lipschitz with respect
to the variables αi uniformly in t. Hence there exists Tn ∈ R+ such that system (3.23)
has an unique solution α1, . . . , αn, β1, . . . , βn ∈ C1([0, Tn); R).

We now want to prove a-priori estimates for un uniformly in n. Henceforth we shall
denote by C a positive constant which depend on ε, but it is independent of n and t.
The values of C may possibly vary even within the same line. We choose ψ = vn as test
function and get

(u′
n, vn) + (µε(un)∇vn,∇vn) = (g1

n, vn).

Thus,

(u′
n, vn) = (u′

n, f ′
ε(un)) + (u′

n, K ∗ (1 − 2un))

=
d

dt

(∫
Ω

fε(un) +

∫
Ω

∫
Ω

K(x − y)un(x)(1 − un(y))

)
.

From this follows by integration on (0, t):(∫
Ω

fε(un) +

∫
Ω

∫
Ω

K(x − y)un(x)(1 − un(y))

)
(t) +

∫ t

0

∫
Ω

µε(un) |∇vn|2 (3.25)

=

∫ t

0

(g1
n, vn) +

(∫
Ω

fε(un) +

∫
Ω

∫
Ω

K(x − y)un(x)(1 − un(y))

)
(0).

Thanks to (3.19) we have |f ′
ε(s)| ≤ C |s| + C. Due to (3.3), we have

(g1
n, f ′

ε(un)) ≤ C + C ∥un∥2
H . (3.26)

Using (3.21) and (K3), we obtain, for δ > 0 to be announced,∫
Ω

∫
Ω

K(x − y)un(x)(1 − un(y)) (3.27)

+

∫
Ω

fε(un) ≥ 1

2ε

∫
Ω

un
2 − cε + (K ∗ (1 − un), un)H

≥ 1

2ε
∥un∥2

H − cε − r2 ∥un∥H ∥1 − un∥H

≥
(

1

2ε
− r2

)
∥un∥2

H − Cε − r2 |Ω| ∥un∥H

≥
(

1

2ε
− r2 − δ

)
∥un∥2

H − Cδ,ε,

where Cδ,ε denotes a constant depending on both ε and δ. Since 1
2ε

> r2, we choose δ
such that

(
1
2ε

− r2 − δ
)

= C > 0. From (3.3) and (K3) follows

(g1
n, K ∗ (1 − 2un)) ≤ C ∥K ∗ (1 − 2un)∥H (3.28)

≤ C + C ∥un∥H ≤ C + C ∥un∥2
H .
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Using (3.25), (3.26), (3.27) and (3.28) we get

∥un(t)∥2
H +

∫ t

0

∫
Ω

µε(un) |∇vn|2 ≤ C + C

∫ t

0

∥un∥2
H . (3.29)

We now use Gronwall’s Lemma and get the estimates

∥un∥L∞(0,T,H) ≤ C (3.30)

and ∥∥µ1/2
ε (un) |∇vn|

∥∥
L2(0,T,H)

≤ C. (3.31)

Furthermore, as consequence of (3.13) and (K3), we obtain, for every δ > 0 and some
Cδ > 0, ∫

Ω

µε(un) |∇vn|2 ≥ ε

∫
Ω

|∇vn|2

= ε

∫
Ω

∣∣∣∣(1 + 2aε)∇un

µε(un)
+ ∇K ∗ (1 − 2un)

∣∣∣∣2
≥ c

∫
Ω

|∇un|2 + C

∫
Ω

|∇K ∗ (1 − 2un)|2

+ C

∫
Ω

∇un∇K ∗ (1 − 2un)

≥ (c − δ)

∫
Ω

|∇un|2 − (C + Cδ) r2

(
∥un∥2

L2(Ω) + 1
)

where r2 as in (K3) and c is a positive constant depending on ε. If δ is small enough, then∫
Ω

µε(un) |∇vn|2 ≥ c

∫
Ω

|∇un|2 − C ∥un∥2
L2(Ω) − C.

Hence, from (3.29) we get

∥un∥L2(0,T,V ) ≤ C, (3.32)

∥∇vn∥L2(0,T,H) ≤ C. (3.33)

Furthermore, (K3), (3.19) and (3.30) yield

|vn| =

∣∣∣∣ 1

|Ω|

∫
Ω

vn

∣∣∣∣ = C

∣∣∣∣∫
Ω

f ′
ε(un) +

∫
Ω

K ∗ (1 − 2un)

∣∣∣∣
≤ C ∥un∥2

H + C + ∥K ∗ (1 − 2un)∥2
H ≤ C ∥un∥2

H + C ≤ C.

Using the Poincaré-Wirtinger inequality we get

∥vn∥L2(0,T,V ) ≤ C. (3.34)

Moreover, thanks to (3.3), we obtain∥∥g1
n

∥∥
L2(Q)

≤ C. (3.35)
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In order to estimate u′
n, from (3.23), using (3.13), we obtain

⟨u′
n, ψ⟩ = −(µε(un)∇vn,∇ψ) + (gn, ψ) ≤ C ∥∇vn∥H ∥∇ψ∥H +

∥∥g1
n

∥∥
H
∥ψ∥H

≤ (C ∥∇vn∥H +
∥∥g1

n

∥∥
H

) ∥ψ∥V .

So, the estimates (3.33) and (3.35) yield

∥u′
n∥L2(0,T,V ∗) ≤ C.

Using compactness results, we obtain for a not relabeled subsequence

un ⇀ u weakly in L2(0, T, V ), (3.36)

un ⇀ u weakly* in L∞(0, T, H), (3.37)

u′
n ⇀ u′ weakly in L2(0, T, V ∗), (3.38)

f ′
ε(un) ⇀ f ∗

ε weakly* in L∞(0, T, H), (3.39)

vn ⇀ v weakly in L2(0, T, V ). (3.40)

Taking into account Theorem 28 in the Appendix, we have

un → u strongly in L2(0, T, H) and a.e. in Q. (3.41)

Functions µε and g1 are continuous, so, using (3.3) and (3.13), we have (thanks to domi-
nated convergence Theorem)

µε(un) → µε(u) a.e. in Q , (3.42)

g1(un) → g1(u) in L2(0, T,H). (3.43)

Hence
µε(un)∇vn ⇀ µε(u)∇v weakly in L2(Q). (3.44)

Indeed, let ψ ∈ L2(0, T, H), i ∈ {1, . . . , d}. From∫ T

0

(µε(un)∂ivn, ψ) =

∫ T

0

(∂ivn, µε(un)ψ)

we get ∫ T

0

(∂ivn, µε(un)ψ) =

∫ T

0

(∂iv, µε(u)ψ) +

∫ T

0

(∂ivn − ∂iv, µε(u)ψ)

+

∫ T

0

(∂ivn, (µε(un) − µε(u)) ψ) .

Thanks to (3.13), (3.34) and (3.42), using dominated convergence Theorem we obtain∣∣∣∣∫ T

0

(∂ivn, (µε(un) − µε(u)) ψ)

∣∣∣∣ ≤ ∥∂ivn∥L2(0,T,H) ∥(µε(un) − µε(u)) ψ∥L2(0,T,H)

≤ C ∥(µε(un) − µε(u)) ψ∥L2(0,T,H) → 0
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for n → +∞. Furthermore, as consequence of (3.13), µε(u)ψ ∈ L2(0, T,H) and so, thanks

to (3.40), we have
∫ T

0
(∂iv − ∂ivn, µε(u)ψ) → 0 for n → +∞. This yields (3.44).

Finally, using (3.39), (3.41) and continuity of f ′
ε, we have f∗

ε = f ′
ε(u). The convergences

(3.36)-(3.40), (3.41), (3.42)-(3.44) are enough to pass to the limit (n → +∞) in (3.23)-
(3.24) and to deduce that u is solution to (3.5).

Furthermore, thanks to Fatou Lemma and (3.31), we get∥∥µ1/2
ε (u) |∇v|

∥∥
L2(0,T,L2(Ω))

≤ lim inf
n→∞

∥∥µ1/2
ε (un) |∇vn|

∥∥
L2(0,T,L2(Ω))

≤ C.

Lemma 13 is now proved.

3.2.3 Passing to the limit as ε → 0

In order to show Theorem 5 it is necessary to pass to the limit ε → 0 in (3.5)-(3.9). Hence,
we need to perform here uniform - with respect to ε - estimates on the solution (uε, vε, wε)
to (3.5)-(3.9). Henceforth we shall denote by C a positive constant which doesn’t depend
on ε and t. The values of C may possibly vary even within the same line.

Let us choose now ψ = uε as test function in (3.5). We get (using (3.13) and assump-
tions (K3) and (3.3))

1

2

d

dt
∥uε∥2

L2(Ω) = ⟨u′
ε, uε⟩ = −

∫
Ω

µε∇uε∇vε +

∫
Ω

uεg
1(uε)

≤ −
∫

Ω

|∇uε|2 −
∫

Ω

µε∇uε∇wε + C ∥uε∥2
L2(Ω) + C

≤ −
∫

Ω

|∇uε|2 + C ∥∇uε∥L2(Ω) ∥K ∗ (1 − 2uε)∥H1(Ω)

+ C ∥uε∥2
L2(Ω) + C

≤ (δ − 1)

∫
Ω

|∇uε|2 + Cδ ∥uε∥2
L2(Ω) + Cδ

for every δ > 0 and some Cδ depending on δ. Moving (δ − 1)
∫
Ω
|∇uε|2 on the left side of

the inequality, choosing δ < 1 and using Gronwall’s Lemma we get

∥uε∥L∞(0,T,L2(Ω)) + ∥∇uε∥L2(0,T,L2(Ω)) ≤ C (3.45)

and therefore
∥uε∥L2(0,T,H1(Ω)) ≤ C. (3.46)

Using ψ = vε as test function in (3.5), we have

d

dt

{∫
Ω

fε(uε) +

∫
Ω

[K ∗ (1 − uε)] uε

}
+

∫
Ω

µε |∇vε|2 (3.47)

= ⟨u′
ε, vε⟩ +

∫
Ω

µε |∇vε|2 =

∫
Ω

g1(uε)f
′
ε(uε) +

∫
Ω

g1(uε)wε.
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Thanks to (3.3), (K3) and (3.45), we infer∫
Ω

g1(uε)wε ≤ C ∥wε∥L2(Ω) ≤ C ∥uε∥L2(Ω) ≤ C

and ∣∣∣∣∫
Ω

[K ∗ (1 − uε)] uε

∣∣∣∣ ≤ ∥uε∥L2(Ω) ∥K ∗ (1 − 2uε)∥L2(Ω) ≤ C.

Moreover, (3.4) and (3.17) yield the following estimate∫
Ω

g1(uε)f
′
ε(uε) =

∫
uε≤0

g1(uε)f
′
ε(uε) (3.48)

+

∫
uε≥0

g1(uε)f
′
ε(uε) +

∫
uε∈(0,1)

g1(uε)f
′
ε(uε)

≤
∫

uε∈(0,1)

g1(uε) ln(uε + aε)

−
∫

uε∈(0,1)

g1(uε) ln(1 − uε + aε).

Since aε ↘ 0 as ε → 0, we may assume - without loss of generality - that 0 < aε < 1/2 for
ε small enough. So ln(s + aε) ≤ 0 for s ∈ (0, 1/2) and ln(1 − s + aε) ≤ 0 for s ∈ (1/2, 1).
Hence, thanks to (G3), we have −g1(0) ln(s + aε) ≥ 0 for s ∈ (0, 1/2). Furthermore, (3.3)
yields |g1(s) ln(s + aε)| ≤ C for s ∈ (1/2, 1). Finally, thanks to (G2), we obtain∫

uε∈(0,1)

g1(uε) ln(uε + aε) ≤
∫

uε∈(0,1/2)

g1(uε) ln(uε + aε) (3.49)

+

∫
uε∈(1/2,1)

∣∣g1(uε) ln(uε + aε)
∣∣

≤
∫

uε∈(0,1/2)

(
g1(uε) − g1(0)

)
ln(uε + aε) + C

≤ −
∫

uε∈(0,1/2)

Luε ln(uε + aε) + C

≤ −
∫

uε∈(0,1/2)

L (uε + aε) ln(uε + aε) + C ≤ C

where L is the Lipschitz constant for g. The proof of

−
∫

uε∈(0,1)

g1(uε) ln(1 − uε + aε) ≤ C (3.50)

is analogous. Integrating (3.47) in time, we obtain∥∥∥(µε)
1/2 ∇vε

∥∥∥
L2(Q)

≤ C,∣∣∣∣∫
Ω

fε(uε)

∣∣∣∣ ≤ C. (3.51)
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Therefore (see (3.5))
∥u′

ε∥L2(0,T,(H1(Ω))∗) ≤ C.

Using compactness results as in Lemma 13 we obtain (for a not relabeled subsequence)
that there exists u ∈ H1(0, T, H1(Ω), (H1(Ω))∗) ∩ L∞(0, T, L2(Ω)) such that

uε ⇀ u weakly in L2(0, T,H1(Ω)),

uε ⇀ u weakly* in L∞(0, T, L2(Ω)),

uε → u strongly in L2(0, T, L2(Ω)) and a.e. in Q, (3.52)

u′
ε ⇀ u′ weakly in L2(0, T,

(
H1(Ω)

)∗
),

g1(uε) → g1(u) pointwise a.e. in Q.

Furthermore, (K3) yields

wε → w = K ∗ (1 − 2u) in L2(0, T, H1(Ω)). (3.53)

Thanks to (3.12) we get
µε(uε) → µ(u) a.e. in Q, (3.54)

therefore
µε(uε)∇wε → µ(u)∇w in L2(Q).

Indeed

∥µε(uε)∇wε − µ(u)∇w∥L2(Ω) ≤ ∥(µε(uε) − µ(u))∇wε∥L2(Ω)

+ ∥µ(u) (∇wε −∇w)∥L2(Ω) ≤ ∥µε(uε) − µ(u)∥L2(Ω) ∥∇wε∥L2(Ω)

+ ∥µ(u)∥L2(Ω) ∥∇wε −∇w∥L2(Ω) .

Using (3.13), (3.53), (3.54) and dominated convergence Theorem we have

∥µε(uε) − µ(u)∥L2(Ω) ∥∇wε∥L2(Ω) → 0 and ∥µ(u)∥L2(Ω) ∥∇wε −∇w∥L2(Ω) → 0 for ε → 0.

Now, we can pass to the limit ε → 0 in (3.5)-(3.9) and obtain u solution to (1.1)-(1.5)
with g1 instead of g. In order to prove Theorem 5, we are only left to show that

0 ≤ u ≤ 1

holds. From (3.10) we have that µε(s) = ε for every s < 0 and s > 1. Hence, as
consequence of (3.14), f ′′

ε (s) = 1+2aε

ε
for every s < 0 and s > 1. Therefore for s > 1 we

have

f ′
ε(s) ≥

1 + 2aε

ε
(s − 1) + f ′

ε(1) ≥ 1 + 2aε

ε
(s − 1).

Finally, for s > 1, we get

fε(s) ≥
1 + 2aε

2ε
(s − 1)2 + fε(1).
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Likewise, we can prove for s < 0:

fε(s) ≥
1 + 2aε

2ε
s2 + fε(0).

So, thanks to (3.51),∫
uε>1

(uε − 1)2 ≤ 2µε(1)

1 + 2aε

∫
uε>1

|fε(uε)| −
2µε(1)

1 + 2aε

∫
uε>1

|fε(1)|

≤ µε(1)

1 + 2aε

(
C − 2

∫
uε>1

|fε(1)|
)

.

Using (1.6) and taking into account that µε(1)
1+2aε

= o(1), fε(1) = o(1) for ε → 0 we get∫
u>1

(u − 1)2 = 0.

Hence u ≤ 1 a.e. in Q. The proof of u ≥ 0 a.e. in Q is analogous.

This yields g1(u) = g(u), so u is solution to (1.1)-(1.5) for every g that satisfies (G1)-
(G3).

4 Regularity

Section 4 is devoted to the proofs of Theorem 6, Corollary 8 and Theorem 9. Our proofs
of Theorem 6 and Corollary 8 follows the guide-line of proof of Theorem 2.2 in [LP2],
where the same results are proved in the case g = 0.

4.1 Proof of Theorem 6

The following Lemmas 14-17 are preliminary results needed in order to prove Theorem 6.

Lemma 14 Let the assumption of Theorem 6 be satisfied. Then the solution u to (1.1)-
(1.5) in the sense of Definition 3 satisfies

ut ∈ L∞(0, T,
(
H1(Ω)

)∗
) ∩ L2(0, T, L2(Ω)). (4.1)

Proof. First we observe that, thanks to (2.6), ut(0) ∈ (H1(Ω))
∗
. From (5.3), we have

ūt =

∫
Ω

g(x, t, u(x, t)) dx for a.a. t ∈ [0, T ].

Hence, as consequence of (2.1), since Ω is bounded, we have

ūt ∈ L∞(0, T ) and ∥ūt∥L∞(0,T ) ≤ C. (4.2)
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Denote H−1
0 (Ω) = (H1

0 (Ω))
∗
. In order to show (4.1) we only have to prove

Ut = ut − ūt ∈ L∞(0, T, H−1
0 (Ω)) ∩ L2(0, T, L2(Ω)).

It is not hard to show that Ut ∈ H−1
0 (Ω) for a.a. t ∈ [0, T ]. Let ∆N : H1

0 (Ω) → H−1
0 (Ω) be

the realization of the Laplacian with the Neumann boundary conditions. Henceforth we
will proceed formally: the proof can be made exact by approximation of the t-derivative
by the corresponding quotient. Differentiating equation (2.4) with respect to t and taking
the scalar product with ∆−1

N Ut we can prove the following

d

dt
∥Ut∥2

H−1
0 (Ω) = 2(Utt, Ut)H−1

0 (Ω) (4.3)

= 2(∇∆−1
N Utt,∇∆−1

N Ut)L2(Ω) = −2
(
Utt, ∆

−1
N Ut

)
and, using (1.4) and (2.7),⟨

∇(µ∇v)t, ∆
−1
N Ut

⟩
= −

(
(µ∇w)t ,∇∆−1

N Ut

)
L2(Ω)

−
(
∇ut,∇∆−1

N Ut

)
L2(Ω)

(4.4)

= −
(
(µ∇w)t ,∇∆−1

N Ut

)
L2(Ω)

−
(
∇Ut,∇∆−1

N Ut

)
L2(Ω)

= −
(
(µ∇w)t ,∇∆−1

N Ut

)
L2(Ω)

+ ∥Ut∥2
L2(Ω) .

Hence, adding together (4.3) and (4.4), we obtain

1

2

d

dt
∥Ut∥2

H−1
0 (Ω) + ∥Ut∥2

L2(Ω) = −
(
Utt, ∆

−1
N Ut

)
L2(Ω)

(4.5)

+
(
(µ∇w)t ,∇∆−1

N Ut

)
L2(Ω)

+
⟨
∇(∇u + µ∇w)t, ∆

−1
N Ut

⟩
.

Starting from (1.1) and differentiating with respect to t we obtain Utt = utt − ūtt =
utt −

∫
Ω

∂t (g (u)) = ∇ut + (µ∇w)t + ∂t(g (u))−
∫

Ω
∂t (g (u)). So, thanks to (4.5), we have

1

2

d

dt
∥Ut∥2

H−1
0 (Ω) + ∥Ut∥2

L2(Ω) =
(
(µ∇w)t ,∇∆−1

N Ut

)
(4.6)

−
(
∂t (g (u)) , ∆−1

N Ut

)
+

(∫
Ω

∂t (g (u)) , ∆−1
N Ut

)
.

Using (K3), (1.7) and (2.3) we estimate

∥µt∇w + µ∇wt∥L2(Ω) ≤ ∥ut(1 − 2u)∇w∥L2(Ω) + ∥∇(K ∗ (1 − 2u))t∥L2(Ω)

≤ ∥ut∥L2(Ω) ∥∇w∥L∞(Ω) + ∥∇(K ∗ ut)∥L2(Ω)

≤ C ∥ut∥L2(Ω) .

Hence, using (4.2), we get

(µt∇w + µ∇wt,∇∆−1
N Ut) ≤ C ∥ut∥L2(Ω)

∥∥∇∆−1
N Ut

∥∥
L2(Ω)

(4.7)

≤ C(1 + ∥Ut∥L2(Ω)) ∥Ut∥H−1
0 (Ω)

≤ 1

2
∥Ut∥2

L2(Ω) + C ∥Ut∥2
H−1

0 (Ω) + C ∥Ut∥H−1
0 (Ω) .
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Assumptions (G2) and (G4) together with (4.2) yield∣∣∣(∂tg(u), ∆−1
N Ut

)
L2(Ω)

∣∣∣ =
∣∣∣(gu(u)ut, ∆

−1
N Ut

)
L2(Ω)

(4.8)

+
(
gt(u), ∆−1

N Ut

)
L2(Ω)

∣∣∣
≤ L ∥ut∥L2(Ω)

∥∥∆−1
N Ut

∥∥
L2(Ω)

+ C
∥∥∆−1

N Ut

∥∥
L2(Ω)

≤ 1

4
∥Ut∥2

L2(Ω) + C
∥∥∆−1

N Ut

∥∥2

L2(Ω)

+ C
∥∥∆−1

N Ut

∥∥
L2(Ω)

+ C.

Since ∆−1
N Ut ∈ H1

0 (Ω), thanks to Poincaré’s inequality, we have∥∥∆−1
N Ut

∥∥
L2(Ω)

≤ C
∥∥∇∆−1

N Ut

∥∥
L2(Ω)

= C ∥Ut∥H−1
0 (Ω) .

From (4.8) it follows∣∣∣(∂tg(u), ∆−1
N Ut

)
L2(Ω)

∣∣∣ ≤ 1

4
∥Ut∥2

L2(Ω) (4.9)

+ C ∥Ut∥H−1
0 (Ω) + C ∥Ut∥2

H−1
0 (Ω) .

Similarly we get∣∣∣∣∣
(∫

Ω

∂tg(u), ∆−1
N Ut

)
L2(Ω)

∣∣∣∣∣ ≤ 1

8
∥Ut∥2

L2(Ω) (4.10)

+ |Ω|C ∥Ut∥H−1
0 (Ω) + C |Ω|2 ∥Ut∥2

H−1
0 (Ω) .

Finally, (4.6), (4.7), (4.9) and (4.10) yield

1

2

d

dt
∥Ut∥2

H−1
0 (Ω) +

1

8
∥Ut∥2

L2(Ω) ≤ C ∥Ut∥H−1
0 (Ω) + C ∥Ut∥2

H−1
0 (Ω)

≤ C + C ∥Ut∥2
H−1

0 (Ω) .

Integrating in time and using Gronwall’s Lemma we get ∥Ut∥L∞(0,T,H−1
0 (Ω))+∥Ut∥L2(0,T,L2(Ω)) ≤

C and so (recalling (4.2)) that

∥ut∥L∞(0,T,(H1(Ω))∗) + ∥ut∥L2(0,T,L2(Ω)) ≤ C.

This concludes the proof of the lemma.

Lemma 15 Let the assumptions of Theorem 6 be satisfied. Then the solution u to (1.1)-
(1.5) in the sense of Definition 3 satisfies

ut ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T, H1 (Ω)).
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Proof. Thanks to (4.2) and to the fact that ∇ūt = 0, we need only to prove that Ut ∈
L∞(0, T, L2(Ω))∩L2(0, T,H1 (Ω)). We proceed as in Lemma 14, but after differentiating
in time we multiply by Ut (instead of ∆−1

N Ut). After integrating by parts with respect to
t we obtain

1

2

d

dt
∥Ut∥2

L2(Ω) = −(µt∇w + µ∇wt + ∇Ut,∇Ut)L2(Ω)

+ (∂tg(u), Ut)L2(Ω) −
(∫

Ω

∂tg(u), Ut

)
L2(Ω)

≤ C ∥ut∥L2(Ω) ∥∇Ut∥L2(Ω) − ∥∇Ut∥2
L2(Ω) + C ∥Ut∥L2(Ω)

≤ C ∥Ut∥L2(Ω) + C ∥Ut∥2
L2(Ω) −

1

2
∥∇Ut∥2

L2(Ω) .

Integrating with respect to t, we get

∥Ut(t)∥2
L2(Ω) +

∫ t

0

∥∇Ut∥2
L2(Ω) ≤ ∥Ut(0)∥2

L2(Ω) + C

∫ t

0

∥Ut∥2
L2(Ω) .

We remark that ∥Ut(0)∥2
L2(Ω) is bounded (thanks to (2.6)). This, coupled with Lemma 14

and Gronwall’s Lemma, yields

∥ut∥L∞(0,T,L2(Ω)) + ∥ut∥L2(0,T,H1(Ω)) ≤ C.

This concludes the proof of the lemma.

Lemma 16 Let the assumptions of Theorem 6 be satisfied. Then the solution u to (1.1)-
(1.5) in the sense of Definition 3 satisfies

∇u ∈ L∞(0, T, L2(Ω)). (4.11)

Proof. Thanks to (2.2) and Lemma 15 we have ∇u ∈ H1(0, T, L2(Ω)) and hence (4.11)
follows.

Lemma 17 Let the assumptions of Theorem 6 be satisfied. Then the solution u to (1.1)-
(1.5) in the sense of Definition 3 satisfies u ∈ L∞(0, T,H2(Ω)).

Proof. We rewrite equation (2.4) in the form:

⟨ut, ψ⟩ = ⟨∆u, ψ⟩ + ((1 − 2u)∇u∇w + µ∆w + g(u), ψ) ∀ψ ∈ H1(Ω) and a.a. t ∈ (0, T ).

We remark that ut ∈ L∞(0, T, L2(Ω)) thanks to Lemma 15; (1−2u)∇u∇w ∈ L∞(0, T, L2(Ω))
as a consequence of Lemma 16; µ∆w ∈ L∞(0, T, L2(Ω)) because of (K4) and Lemma 16.
From (2.1) follows g(u) ∈ L∞(0, T, L2(Ω)). So

⟨∆u, ψ⟩ = (ξ, ψ) ∀ψ ∈ H1(Ω) for a.a. t ∈ (0, T ) (4.12)
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where
ξ = ut + (1 − 2u)∇u∇w + µ∆w + g(u) ∈ L∞(0, T, L2(Ω)). (4.13)

Thanks to (2.3) and Lemma 16, we have

u ∈ L∞(0, T,H1(Ω)) ∩ L∞(Q).

So, through (K3) and (K4) we get

w ∈ L∞(0, T,H2(Ω)) ∩ L∞(0, T, W 1,∞(Ω)) and ∇w ∈ L∞(0, T, H1(Ω)) ∩ L∞ (Q) .

Furthermore, since ∂Ω ∈ Lip, then n ∈ L∞(∂Ω), where n denotes the outer unit normal
on ∂Ω. Hence (see [BG], Theorem 2.7.4), we have

∂w

∂n
∈ L∞(0, T, H1/2(∂Ω)) ∩ L∞ (0, T, L∞ (∂Ω)) . (4.14)

Thanks to (2.3) and Lemma 16, ∇µ(u) = (1 − 2u)∇u ∈ L∞(0, T, L2 (Ω)). Thus

µ (u) ∈ L∞(0, T,H1/2 (∂Ω)). (4.15)

Recalling that 0 ≤ u ≤ 1 and 0 ≤ µ (s) ≤ 1 for every s ∈ [0, 1] we can extend µ so that
0 ≤ µ (s) ≤ 1 for every s ∈ R. Hence,

µ (u) ∈ L∞ (0, T, L∞ (∂Ω)) . (4.16)

Combining (4.14), (4.15) and (4.16) we obtain

µ(u)
∂w

∂n
∈ L∞ (

0, T, H1/2(∂Ω)
)
. (4.17)

From (1.4) follows
∂u

∂n
= n · µ∇w = µ(u)

∂w

∂n
a.e. on ∂Ω,

and so, thanks to (4.17),
∂u

∂n
∈ L∞ (

0, T,H1/2(∂Ω)
)
. (4.18)

Finally, using an elliptic regularity theorem (Theorem 31 in the Appendix), we get

u ∈ H2(Ω) for a.a. t ∈ (0, T )

and

∥u∥H2(Ω) ≤ C

(
∥u∥L2(Ω) + ∥ξ∥L2(Ω) +

∥∥∥∥∂u

∂n

∥∥∥∥
H1/2(∂Ω)

)
for a.a. t ∈ [0, T ].

Combining u ∈ L∞(0, T, L2(Ω)), (4.13) and (4.18) we obtain

u ∈ L∞(0, T,H2 (Ω)).

This concludes the proof of the lemma.

483



Theorem 6 follows directly from Lemma 17.

In order to prove Corollary 8 we proceed as follows. Since

u ∈ L2(0, T,H1(Ω)),

we have that for a.a. T0 ∈ (0, T ), u(T0) ∈ H1(Ω). Hence, we can prove Lemma 14
for the solution to (1.1)-(1.4) on [T0 − ε, T ] where 0 < ε < T0/2. Therefore, there exists
s ∈ [T0−ε, T0] such that ∥ut(s)∥L2(Ω) is finite. We now proceed as in Lemma 15, 16 and 17

working on the set [s, T ] and choosing u(s) as initial data and we get u ∈ L∞(s, T,H2(Ω))
and so u ∈ L∞(T0, T, H2(Ω)).

4.2 Proof of Theorem 9

We now prove Theorem 9. Let the assumption of Theorem 9 be satisfied. Let uε be the
solution of the approximate problem Pε.

We first prove, by applying an Alikakos’ iteration argument as in [BH2, Theorem 2.1],
that the family of approximate solutions uε is uniformly bounded in L∞ (Ω). To see this,
let us take ψ = |uε|p−1uε as test function in (3.5), where p > 1. Then we get the following
differential identity:

1

p + 1

d

dt
∥uε∥p+1

Lp+1(Ω) + p

∫
Ω

µε(uε)f
′′
ε (uε)|∇uε|2|uε|p−1 (4.19)

+ p

∫
Ω

µε(uε)∇wε∇uε|uε|p−1 =

∫
Ω

g(uε)uε|uε|p−1.

Actually, the above choice of test function would not be generally admissible. Neverthe-
less, the argument can be made rigorous by means of a density procedure, e.g., by first
truncating the test function |uε|p−1uε and then passing to the limit with respect to the
truncation parameter. By using (3.10), (3.11) we obtain

p

∫
Ω

µε(uε)f
′′
ε (uε)|∇uε|2|uε|p−1 ≥ 4p

(p + 1)2 c

∫
Ω

∣∣∣∇|uε|
p+1
2

∣∣∣2 (4.20)

where c > 0 not depending on ε. Therefore, by combining (4.19) with (4.20) we deduce

1

p + 1

d

dt
∥uε∥p+1

Lp+1(Ω) +
4p

(p + 1)2 c

∫
Ω

∣∣∣∇|uε|
p+1
2

∣∣∣2 + p

∫
Ω

µε(uε)∇wε∇uε|uε|p−1 (4.21)

≤
∫

Ω

g(uε)uε|uε|p−1 ≤ C

∫
Ω

|uε|p.

Starting from (4.21) and using the fact that |µε(uε)| ≤ C, we can argue exactly as in
[BH2, Proof of Theorem 2.1] in order to conclude that

∥uε∥L∞(Ω) ≤ C. (4.22)
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Hence we can choose ψ = f ′′
ε (uε)f

′
ε(uε) as test function in (3.5) and get

1

2

d

dt
∥f ′

ε(uε)∥2
L2(Ω) +

∫
Ω

µε∇vεf
′′
ε (uε)∇(f ′

ε(uε)) +

∫
Ω

µε∇vεf
′′′
ε (uε)f

′
ε(uε)∇uε

=

∫
Ω

g1(uε)f
′′
ε (uε)f

′
ε(uε). (4.23)

We now observe that, thanks to (3.14) and (3.17), f ′′
ε (s)f ′

ε(s) ≤ 0 if s < 1/2 and
f ′′

ε (s)f ′
ε(s) ≥ 0 if s > 1/2. Thus, recalling (3.4), we have∫

uε<0

g1(uε)f
′′
ε (uε)f

′
ε(uε) ≤ 0 and

∫
uε>1

g1(uε)f
′′
ε (uε)f

′
ε(uε) ≤ 0.

Furthermore, as a consequence of assumptions (G2) and (G3) and of (3.14), we get∫
0≤uε≤1/2

g1(uε)f
′′
ε (uε)f

′
ε(uε) ≤

∫
0≤uε≤1/2

(
g1(uε) − g1(0)

)
f ′′

ε (uε)f
′
ε(uε)

≤
∫

0≤uε≤1/2

Luεf
′′
ε (uε)f

′
ε(uε)

≤ C

∫
0≤uε≤1/2

f ′
ε(uε) ≤ C ∥f ′

ε(uε)∥L2(Ω)

and ∫
1/2≤uε≤1

g1(uε)f
′′
ε (uε)f

′
ε(uε) ≤ C ∥f ′

ε(uε)∥L2(Ω) .

These inequalities yield ∫
Ω

g1(uε)f
′′
ε (uε)f

′
ε(uε) ≤ C ∥f ′

ε(uε)∥L2(Ω) . (4.24)

Recalling (K3) and (3.46) we obtain∫
Ω

µε∇vεf
′′
ε (uε)∇(f ′

ε(uε)) =

∫
Ω

µεf
′′
ε (uε) |∇(f ′

ε(uε))|2 (4.25)

+

∫
Ω

µε∇wεf
′′
ε (uε)∇(f ′

ε(uε))

≥ 1/2

∫
Ω

|∇(f ′
ε(uε))|2 − C.

We now observe that
µεf

′′′
ε (uε)∇uε = γε∇(f ′

ε(uε))

where

γε = f ′′′
ε (uε)µ

2
ε

1

µεf ′′
ε (uε)

= f ′′′
ε (uε)µ

2
ε (1 + o(ε)) .
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It is not hard to show that |γε| ≤ C. Hence, by using (4.22), (K3) and the fact that
γε(s)f

′
ε(s) ≥ 0 for every s ∈ R, we obtain∫

Ω

µε∇vεf
′′′
ε (uε)f

′
ε(uε)∇uε =

∫
Ω

γε |∇f ′
ε(uε)|2 f ′

ε(uε) (4.26)

+

∫
Ω

γε∇f ′
ε(uε)f

′
ε(uε)∇wε

≥ 1/4

∫
Ω

|∇f ′
ε(uε)|2 − C

∫
Ω

|f ′
ε(uε)|2 |∇wε|2

≥ 1/4

∫
Ω

|∇f ′
ε(uε)|2 − C

∫
Ω

|f ′
ε(uε)|2 .

Hence, combining (4.24)-(4.26) together with (4.23), we obtain

1

2

d

dt
∥f ′

ε(uε)∥2
L2(Ω) +

1

8

∫
Ω

|∇f ′
ε(uε)|2 ≤ C + C ∥f ′

ε∥
2
L2(Ω) .

Using Gronwall’s Lemma, (2.8) and the fact that

|f ′
ε(s)| ≤ |f ′(s)|, ∀s ∈ [0, 1], ε > 0,

we finally get

∥f ′
ε(uε)∥L2(0,T,H1(Ω)) ≤ C and ∥f ′

ε(uε)∥L∞(0,T,L2(Ω)) ≤ C.

Thus, recalling wε is bounded in L∞(0, T, L2(Ω))∩L2(0, T,H1(Ω)) independently of ε, we
obtain (2.9) and complete the proof of Theorem 9.

Remark 18 Since uε → u a.e. in Ω × [0, T ], thanks to [Ro, Theorem 8.3], vε → v =
f ′(u) + w weakly in L2(0, T, H1(Ω)). Hence f ′(u) ∈ L2(Q) and, thus, u ∈ (0, 1) a.e. in
Ω × [0, T ]. Furthermore, u also satisfies the weak formulation given by Definition 3 with

⟨ut, ψ⟩ + (µ(u)∇v,∇ψ) = (g(u), ψ), v = f ′(u) + w,

instead of (2.4).

5 Separation properties

This section is devoted to the study of separation from singularities of the solution u to
(1.1)-(1.5): we show that the solution of our problem separates from the pure phases 0
and 1 after an arbitrary short time T0; more precisely we prove that for every T0 ∈ (0, T )
there exists k > 0 such that k ≤ u(x, t) ≤ 1 − k for a.a. x ∈ Ω, t ∈ [T0, T ]. Moreover, if
u0 separates from 0 and 1 then T0 = 0.

In [LP2] Londen and Petzeltová proved these results in case g = 0. Our proof follows
the guide line of [LP2, Theorem 2.1]. The main difference is due to the non-conservation
of the quantity ū(t) = 1

|Ω|

∫
Ω

u(x, t). We focus only on the parts of the proof which differ

from [LP2, Theorem 2.1].
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Remark 19 Since 0 ≤ u ≤ 1, a necessary condition to u being separated from 0 and 1 is

0 < ū(t) =
1

|Ω|

∫
Ω

u(x, t)dx < 1 ∀t ∈ [0, T ]. (5.1)

The following Lemmas 20 and 21 show that 0 < ū(t) < 1 ∀t ∈ [0, T ]. Moreover they
estimate the measure of a level set of u uniformly in t. These estimates will be used in
proving Theorem 11.

Lemma 20 Let u be the weak solution to (1.1)-(1.5) in the sense of Definition 3, let
(U03) and (G2) be satisfied. Then, there exist b0 > 0 and c0 > 0 not depending on t such
that, ∣∣Ωt

1

∣∣ ≥ c0 > 0 (5.2)

where Ωt
1 = {x ∈ Ω : u(x, t) ≥ b0}.

Proof. Let us assume |Ω| = 1 for simplicity. We observe ū(t) − ū0 =
∫ t

0
d
ds

ū(s)ds =∫ t

0
⟨u′, 1⟩ =

∫ t

0
(g, 1) =

∫ t

0

∫
Ω

g. Therefore

ū(t) = ū0 +

∫ t

0

∫
Ω

g(u). (5.3)

Thanks to (2.2) we have u ∈ C([0, T ] , L2(Ω)). Hence, the function ū : t ∈ [0, T ] 7→ ū(t) ∈
[0, 1] is continuous. We first prove that there exists c > 0 not depending on t such that

ū(t) ≥ c ∀t ∈ [0, T ]. (5.4)

Suppose, by contradiction, that there exists t′ ∈ (0, T ] such that t′ = min{t ∈ [0, T ] :
ū(t) = 0}. So u(t′) = 0 a.a. x ∈ Ω. Due to (G3), g(u(t′)) ≥ 0. As a consequence
of (G2) there exists L > 0 such that |g(x, t, s1) − g(x, t, s2)| ≤ L |s1 − s2| ∀(x, t, si) ∈
Ω × [0, T ] × [0, 1], i ∈ {1, 2}. Hence, from (5.3), it follows

ū(t) = ū0 +

∫ t

0

∫
Ω

g(u) ≥ ū0 +

∫ t

0

∫
Ω

(g(u(s)) − g(u(t′))) ds

≥ ū0 − L

∫ t

0

∫
Ω

u(s)ds = ū0 − L

∫ t

0

ū(s)ds ∀t ∈ [0, T ].

Then ū(t) is bounded below by ū(t) ≥ ū0 exp(−Lt) > 0 ∀t ∈ [0, T ]. This contradicts
ū(t′) = 0. Hence, (5.4) holds.

Set b0 = 1
2
c. Then ∣∣Ωt

1

∣∣ ≥ 1

2
c = c0 > 0.

Indeed, suppose, by contradiction, |Ωt
1| < 1

2
c, then c ≤ ū(t) =

∫
Ωt

1
u +

∫
ΩrΩt

1
u ≤

∫
Ωt

1
1 +∫

ΩrΩt
1

c
2

< c
2

+ c
2
|Ω r Ωt

1|. Hence |Ω r Ωt
1| > 1 which is a contradiction.
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Lemma 21 Let u be a weak solution to (1.1)-(1.5) in the sense of Definition 3, let (U03)
and (G2) be satisfied. Then there exist b0 > 0 and c0 > 0 not depending on t such that∣∣Ωt

2

∣∣ ≥ c0 > 0

where Ωt
2 = {x ∈ Ω : u(x, t) ≤ 1 − b0}.

Proof. The proof is analogous to the proof of Lemma 20.

The main result of this section is the following proposition.

Proposition 22 Let assumption of Theorem 11 be satisfied. Then, for every T0 ∈ (0, T ),
there exists k > 0 depending on T0 and ū0 such that

k ≤ u(x, t) for a.a. x ∈ Ω, t ∈ [T0, T ] . (5.5)

Furthermore, if there exists k̃ > 0 such that

k̃ ≤ u0 a.e. in Ω, (5.6)

then T0 = 0.

Proof. In order to prove Proposition 22 we follow the guide line of [LP2, Theorem 2.1] .
We show only the parts of the proof which differ from [LP2, Theorem 2.1]. It is enough
to show that ln(u(·, t)) is bounded in L∞(Ω) by a constant depending on T0 and ū0 for
every t ∈ [T0, T ].

We prove first Proposition 22 assuming (5.6). Without loss of generality, thanks to
Remark 7, we may assume that 0 < u(t) a.e. in Ω for every t ∈ [0, T ].

Denote
Mr(t) = ∥ln(u(·, t))∥Lr(Ω) for r ∈ N.

We first derive a differential inequality for Mr(t). Setting r = 1 and using (2.3) and (2.4)
we get

d

dt
M1(t) =

d

dt

∫
Ω

(− ln(u)) = −
⟨

u′,
1

u

⟩
=

∫
Ω

∇
(

1

u

)
(∇u + µ∇w) −

∫
Ω

1

u
g(u).

From g(0) ≥ 0 (see (G3)) and g(x, t, s) Lipschitz continuous in s (see (G2)) follows the
estimate

−g(u)

u
≤ −g(u)

u
+

g(0)

u
= −g(u) − g(0)

u
≤ Lu

u
= L, (5.7)

where L denotes the Lipschitz constant of g. So

−
∫

Ω

1

u
g(u) ≤ C. (5.8)
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Using

|∇ ln(u)|2 = −∇u∇
(

1

u

)
, (5.9)

∇ ln(u)

u
= −∇

(
1

u

)
(5.10)

and (1.7), (2.2), (2.3), (K3) we prove the following estimate

d

dt
M1(t) ≤ −

∫
Ω

|∇ ln(u)|2 −
∫

Ω

∇ ln(u)

u
µ∇w + C (5.11)

= −
∫

Ω

|∇ ln(u)|2 −
∫

Ω

(1 − u)∇ ln(u)∇w + C

≤ −1

2

∫
Ω

|∇ ln(u)|2 + C

∫
Ω

|∇w|2 + C

≤ −1

2

∫
Ω

|∇ ln(u)|2 + C

∫
Ω

|u|2 + C

≤ −1

2

∫
Ω

|∇ ln(u)|2 + C.

Let b0, Ωt
1 and c0 be as in Lemma 20. Using Poincarè’s inequality (7.9) (cf. Theorem 29

in the Appendix), (2.3) and (5.2), we obtain∫
Ω

|∇ ln(u)|2 ≥ C
∣∣Ωt

1

∣∣2 ∫
Ω

∣∣∣∣∣ln(u) − 1

|Ωt
1|

∫
Ωt

1

ln(u)

∣∣∣∣∣
2

(5.12)

≥ C
∣∣Ωt

1

∣∣2 ∫
Ω

|ln(u)|2 +

∫
Ω

1

|Ωt
1|

2

(∫
Ωt

1

ln(u)

)2

− 2

|Ωt
1|

∫
Ω

ln(u)

∫
Ωt

1

ln(u)

]

≥ C
∣∣Ωt

1

∣∣2 (∫
Ω

|ln(u)|2 − 2

|Ωt
1|

∫
Ω

ln(u)

∫
Ωt

1

ln(u)

)

≥ Cc2
0

((∫
Ω

|ln(u)|
)2

+
2

c0

∫
Ω

|ln(u)|
∫

Ωt
1

ln(b0)

)
≥ C (M1(t))

2 − CM1(t)

≥ C (M1(t))
2 − C.

Combining together (5.11) and (5.12), we get

d

dt
M1(t) ≤ −C1 (M1(t))

2 + C2.

Proceeding as in [LP2, Lemma 3.1], it is possible to prove that for every T0 ∈ [0, T ] there
exists m1 depending on ū0 and T0 such that

M1(t) ≤ m1 ∀t ∈ [T0, T ]. (5.13)
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We remark that m1 does not depend on M1(0). We now derive a differential inequality
for Mr. Using (2.4) we get

d

dt
Mr(t) =

d

dt

(∫
Ω

(− ln(u))r

)1/r

= −1

r

(∫
Ω

(− ln(u))r

)1/r−1 ∫
Ω

r

⟨
ut,

(− ln(u))r−1

u

⟩
= (Mr)

1−r

∫
Ω

∇

(
(− ln(u))r−1

u

)
(∇u + µ∇w)

− (Mr)
1−r

∫
Ω

g (u)
(− ln(u))r−1

u
.

We focus on the last term only. Using Hölder’s inequality with Hölder conjugates r
r−1

and
r we obtain

M r−1
r−1 =

∫
Ω

(− ln u)r−1 ≤
(∫

Ω

1

) 1
r
(∫

Ω

(− ln u)(r−1) r
r−1

) r−1
r

(5.14)

= |Ω|
1
r M r−1

r .

Hence
Mr−1 ≤ |Ω|

1
r(r−1) Mr. (5.15)

So

− (Mr)
1−r

∫
Ω

g (u)
(− ln(u))r−1

u
≤ C (Mr)

1−r

∫
Ω

(− ln(u))r−1 (5.16)

= C (Mr)
1−r (Mr−1)

r−1

≤ |Ω|
1
r C (Mr)

1−r (Mr)
r−1 ≤ C,

where C does not depend on r. Using (5.16) and proceeding as in [LP2, Lemma 3.1], it
is possible to prove the differential inequality

d

dt
Mr ≤ −C3

1

r2
(Mr)

2 + C4m1Mr + C5r,

where m1 as in (5.13) and, hence, the following inequality for every T̄ ∈ (0, T ]

sup
t≥T̄

Mr(t) ≤ B1(T̄ )r3 ∀r ∈ [1, +∞), (5.17)

where B1(T̄ ) is decreasing on (0, +∞) and such that T̄B1(T̄ ) is increasing for T̄ large
enough. Furthermore B1(T̄ ) does not depend on the initial Mr(0) and on r. Proceeding
as in [LP2, Lemma 3.2 and Lemma 3.3], we can show that

∀T0 > 0 ∃B > 0 such that Mr(t) ≤ B ∀t ≥ T0,
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where B depends on T0 and ū0, but not on pointwise values of u0. Passing to the limit
r → ∞ we obtain

∥ln(u(·, t))∥L∞(Ω) ≤ B ∀t ∈ [T0, T ] (5.18)

and so (5.5).

The Proposition 22 is proved when (5.6) holds. If (5.6) is not satisfied, we prove
Proposition 22 by approximation: we approximate u0 with un

0 satisfying (5.6) and employ
the continuous dependence (see Remark 7) of solutions to get (5.18) even for u0 which
does not satisfy (5.6) (see [LP2]).

Proposition 23 Let assumption of Theorem 6 be satisfied. Then for every T0 ∈ (0, T )
there exists k > 0 depending on T0 and ū0 such that

u(x, t) ≤ 1 − k for a.a. x ∈ Ω and t ∈ [T0, T ] . (5.19)

Furthermore, if there exists k̃ such that

u0 ≤ 1 − k̃ (5.20)

then T0 = 0.

Proof. We obtain Proposition 23 from Proposition 22 with U = 1 − u.

Combining Proposition 22 and Proposition 23 we conclude the proof of Theorem 11.

6 Remarks and generalizations

Remark 24 If the solution to (1.1)-(1.5) is defined on [0, +∞) Londen and Petzeltová
proved in [LP2] that (under the assumptions of Theorem 11 with g = 0) u separates from
0 and 1 (after T0 > 0) uniformly in time, i.e. for every T0 > 0 there exists k > 0 such that
for every t > T0 k ≤ u(t) ≤ 1−k. We remark that, if g ̸= 0, the separation properties are
not uniform in time even if g satisfies assumptions of Theorem 11. Indeed, set g(u) = −u.
Assumptions (G1), (G2), (G3) are satisfied. So, for every T > 0, there exists an unique
u solution to (1.1)-(1.5) definite over the whole set [0, T ]. We have already noticed that
ūt =

∫
Ω

g(u) = −
∫
Ω

u = −ū. So, we have ū(t) = ū0 exp(−t) and

ū(t) → 0 for t → +∞. (6.1)

Hence, it is not possible to estimate k ≤ u(t) for every t > T0 with k > 0 not depending
on t.

Remark 25 It is not hard to prove that our theorems can be obtained also for functions
g that satisfy

g(x, t, s) is continuous with respect to t and s and measurable with respect to x

instead of (G1). Indeed, continuity with respect to x is used only to ensure (2.1).
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Remark 26 We now remark that assumption (G3) is natural. To the best of the authors’
knowledge, our assumptions on g are satisfied in every work in which Cahn-Hilliard equa-
tion with reaction is studied (see, e. g., [KS], [BEG], [BO] or [DP]). Furthermore, suppose
that there exists c < 0 such that g(x, t, s) ≤ c < 0 for a.a. (x, t, s) ∈ Ω×[0, T ]×[0, 1], then it
is possible to prove that doesn’t exist u solution to (1.1)-(1.5) on [0, T ] for T large enough.
Indeed, suppose, by contradiction that such a u exists. Then ūt =

∫
Ω

g(u) < c|Ω| < 0, so
ū(t) ≤ ū0 + c|Ω|t. Hence, ū(t) < 0 if t is large enough. Furthermore it is possible to show
that such a t can be chosen arbitrary small (if ū0 is small enough). This argument doesn’t
prove that our assumptions are sharp, but shows that they can be considered natural.

Remark 27 Theorem 5 can be also extended to the nonlocal convective Cahn-Hilliard
equation with convection

ut + V · ∇u + ∇ · J = g(u)

where V denotes the flow speed and J as in (1.12) (see [FGR, Section 6]).

7 Appendix

7.1 Examples of convolution kernels

In this Section we provide examples of convolution kernels satisfying assumptions (K1)-
(K4). We prove that

K1(x) = C exp(−|x|2/λ),

K2(x) =

{
C exp( −h2

h2−|x|2 ) if |x| < h

0 if |x| ≥ h

and {
K3(|x|) = kd |x|2−d for d > 2
K3(|x|) = −k2 ln |x| for d = 2

,

where h, λ, kd > 0, satisfy (K1)-(K4).

We start considering K1 and K2. They satisfy (K1) trivially. It is not hard to show
that K1 and K2 are C∞ (

Rd
)
∩ W 2,p

(
Rd

)
for every 1 ≤ p ≤ ∞. As consequence we have

the estimates (for i = 1, 2)∫
Ω

|Ki(x − y)|dy ≤
∫
Rd

|Ki(x − y)|dy ≤
∫
Rd

|Ki(y)|dy = ∥Ki∥L1(Rd) ,
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which yields (K2). Set ρ ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. Then∫
Ω

|Ki ∗ ρ|p =

∫
Ω

|
∫

Ω

Ki(x − y)ρ(y)dy|pdx = (7.1)

≤
∫

Ω

|
(∫

Ω

|Ki(x − y)|
p

p−1 dy

) p−1
p

(∫
Ω

|ρ(y)|pdy

) 1
p

|pdx

≤ ∥ρ∥p
Lp(Ω)

∫
Ω

∥Ki∥p−1

L
p

p−1 (Rd)
dx

= ∥ρ∥p
Lp(Ω) ∥Ki∥p−1

L
p

p−1 (Rd)
|Ω| ≤ C ∥ρ∥p

Lp(Ω) ,

where C is a positive constant depending on p. Since K1 and K2 are C∞ (
Rd

)
∩W 2,p

(
Rd

)
we have

∂j(Ki ∗ ρ) = ∂jKi ∗ ρ and

∂jl(Ki ∗ ρ) = ∂jlKi ∗ ρ ∀j, l ∈ {1, ..., d} i = 1, 2.

Proceeding as above we get∫
Ω

|∂j(Ki ∗ ρ)|p =

∫
Ω

|∂jKi ∗ ρ|p ≤ ∥ρ∥p
Lp(Ω) ∥∂jKi∥p−1

L
p

p−1 (Rd)
|Ω| (7.2)

= C ∥ρ∥p
Lp(Ω) ∀j ∈ {1, ..., d}

and ∫
Ω

|∂jl(Ki ∗ ρ)|p =

∫
Ω

|∂jlKi ∗ ρ|p ≤ ∥ρ∥p
Lp(Ω) ∥∂jlKi∥p−1

L
p

p−1 (Rd)
|Ω| (7.3)

= C ∥ρ∥p
Lp(Ω) ∀j ∈ {1, ..., d},

where C > 0 depends on p. From estimates (7.1) and (7.2) follows (K3), and, from (7.3),
follows (K4).

We now prove that K3 satisfies (K1)-(K4). (K1) holds trivially. Property (K2) holds
thanks to ∫

Ω

ln |x − y|dy ≤
∫

B1(x)

ln |x − y|dy +

∫
ΩrB1(x)

ln |x − y|dy (7.4)

≤ C + |Ω| ln(max{diam(Ω), 1}) for d = 2∫
Ω

|x − y|2−ddy ≤
∫

B1(x)

|x − y|2−ddy +

∫
ΩrB1(x)

|x − y|2−ddy

≤ C + |Ω| for d > 2.

In order to prove (K3) and (K4) we proceed as follows. Since Ω is bounded, there exists
R > 0 such that BR ⊇ Ω, where BR = {x ∈ Rd : |x| < R}. Let A ⊂ Rd be a measurable
set and denote

IA(x) =

{
1 for x ∈ A
0 for x /∈ A

.
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We have

∥K3 ∗ ρ∥p
Lp(Ω) =

∫
Ω

∣∣∣∣∫
Ω

K3(x − y)ρ(y)dy

∣∣∣∣p dx

≤
∫
Rd

IBR
(x)

∣∣∣∣∫
Rd

K3(x − y)ρ(y)IΩ(y)dy

∣∣∣∣p dx

≤
∫
Rd

∣∣∣∣∫
Rd

IB2R
(x − y)K3(x − y)ρ(y)IΩ(y)dy

∣∣∣∣p dx

= ∥K ′
3 ∗ ρ′∥p

Lp(Rd) ,

where K ′
3 = K3 · IB2R

and ρ′ = ρ · IΩ. Using Young’s inequality we get, for every
p ∈ [1, +∞],

∥K ′
3 ∗ ρ′∥Lp(Rd) ≤ ∥K ′

3∥L1(Rd) ∥ρ
′∥Lp(Rd) . (7.5)

Proceeding as in (7.4) we obtain

∥K ′
3∥L1(Rd) =

∫
B2R

|K3(y)| dy ≤ C.

Hence, from (7.5), we have

∥K3 ∗ ρ∥Lp(Ω) ≤ C ∥ρ′∥Lp(Rd) = C ∥ρ∥Lp(Ω) . (7.6)

Similar computations show

∥∇K3 ∗ ρ∥Lp(Ω) = ∥∇K3∥L1(BR) ∥ρ∥Lp(Ω) . (7.7)

We remark that, for every d ≥ 2, |∇K3(x)| ≤ Cd|x|1−d where Cd denotes a positive
constant depending on d. Hence, we get∫

BR

|∇K3(x − y)| dy ≤
∫

B1(x)

|∇K3(x − y)| dy +

∫
BRrB1(x)

|∇K3(x − y)| dy

≤ C

∫
B1(x)

|x − y|1−ddy + C ≤ C.

So, (7.6) and (7.7) yield

∥K3 ∗ ρ∥W 1,p(Ω) ≤ C
(
∥∇K3 ∗ ρ∥Lp(Ω) + ∥K3 ∗ ρ∥Lp(Ω)

)
(7.8)

≤ C ∥ρ∥Lp(Ω) .

This proves (K3). Property (K4) is proved thanks to (7.8) and [GT, Theorem 9.9].

7.2 Auxiliary theorems

Theorem 28 Let V ⊆ H ⊆ V ∗ be an Hilbert tern. Let {un} be a sequence such that
un : [0, T ] → V and

∥un∥L2(0,T,V ) ≤ C, ∥u′
n∥Lp(0,T,V ∗) ≤ C
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where p > 1 and C > 0 not depending on n. Then there exists a subsequence {unk
} such

that
unk

→ u in L2(0, T,H).

Proof. This Theorem is proved in [Ro], Theorem 8.1.

Theorem 29 Let Ω ⊂ Rd, d ∈ N, be a bounded domain with boundary of class C1,1. Let
z ∈ H1(Ω) and Ω1 ⊆ Ω such that |Ω1| > 0. Then there exists C ≥ 0 depending on Ω and
Ω1 such that ∥∥∥∥z − 1

|Ω1|

∫
Ω1

z

∥∥∥∥
L2(Ω)

≤ C
1

|Ω1|
∥∇z∥L2(Ω). (7.9)

Proof. This inequality follows from [Zi], Lemma 4.3.1.

Theorem 30 Let Ω ⊂ Rd, d ∈ N, be a bounded domain with boundary of class C1,1. Let
z ∈ H1(Ω). Then there exists C ≥ 0 depending on Ω such that

∥z∥2
L2(Ω) − Cδ−d/2 ∥z∥2

L1(Ω) ≤ δ ∥∇z∥2
L2(Ω) ∀δ ∈ (0, 1/2) . (7.10)

Proof. This inequality is consequence of Gagliardo-Nierenberg interpolation inequality.
A proof can be found in [Ni], lecture II.

Theorem 31 Let Ω ⊂ Rd, d ∈ N, be a bounded domain with boundary of class C1,1.
Denote with n the outer unit normal on ∂Ω. Let ξ ∈ L2(Ω) and η ∈ H1/2(∂Ω). If
z ∈ H1(Ω) is weak solution to {

∆z = ξ in Ω
∂Ω
∂n

= η on ∂Ω
.

Then z ∈ H2(Ω). Furthermore there exists C > 0 not depending on η and ξ such that

∥z∥H2(Ω) ≤ C
(
∥z∥L2(Ω) + ∥ξ∥L2(Ω) + ∥η∥H1/2(∂Ω)

)
.

Proof. This theorem follows from [BG], Theorem 3.1.5.

Lemma 32 Let V, B, Y be Banach spaces such that V is compact embedded in B and B
continuous embedded in Y . Let ϕ ∈ L∞(0, T, V ) ∩ C([0, T ], Y ). Then

ϕ ∈ C([0, T ], B). (7.11)

Proof. Let {sn}n∈N ⊂ [0, T ] such that sn → s∞ for n → ∞. Then ϕ(sn) → ϕ(s∞) in
Y and {ϕ(sn)} is bounded in V . Thus there exists a subsequence snk

such that ϕ(snk
) is

convergent in B and thus in Y. Thanks to the uniqueness of the limit, we have ϕ(snk
) →

ϕ(s∞) in B. Thanks to the arbitrariness of {sn, s∞}n∈N we have (7.11).
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