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REGULARIZATION VIA MINIMIZING MOVEMENTS

PAOLO PIOVANO

Abstract. The evolution equation, with curvature regularization, that models the mo-
tion of a two-dimensional thin film by evaporation-condensation on a rigid substrate is
considered. The film is strained due to the mismatch between the crystalline lattices of
the two materials. Here, short time existence, uniqueness and regularity of the solution
are established using De Giorgi’s minimizing movements to exploit the L2-gradient flow
structure of the equation. This seems to be the first analytical result for the evaporation-
condensation case in the presence of elasticity.

1. Introduction

In this paper we study the morphologic evolution of an anisotropic epitaxial film de-
posited on a rigid substrate, with the film strained due to a mismatch between the crys-
talline lattices of the two materials. We consider the evaporation-condensation case and
neglect surface diffusion, with the profile of the film being modeled as a grain-vapor in-
terface with the vapor being considered as a reservoir that interacts with the profile of
the film only through the evaporation-condensation process (see [20, Section 19]). We es-
sentially follow the approach that is used in [19] for the surface diffusion case, and just
as in [19] we restrict our attention to the two-dimensional model or, in other words, to a
three-dimensional epitaxially strained film with identical vertical cross-sections.

One of the earliest theories for the evolution of an interface Γ between two phases is
due to Mullins (see [33, 34]), who derived the equations that describe the planar motion
of isotropic grain boundaries by evaporation-condensation and by surface diffusion. Up to
a rescaling, the equations are the motion by mean curvature and the motion by surface
Laplacian of mean curvature, i.e.,

V = k and V = −kσσ on Γ,(1.1)

respectively, where V is the normal velocity, k is the curvature of the evolving interface
and (·)σ is the tangential derivative along the interface. There is a large body of literature
devoted to the study of these equations. In particular, a generalization of Mullins’s mod-
els includes anisotropy (see [20, Section 19.7]). Precisely, the anisotropic surface energy
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functional is

(1.2)

∫
Γ
g(θ) dH1 ,

where the surface energy density g is evaluated at the angle θ that the surface normal
vector ν forms with the x-axis andH1 denotes the one-dimensional measure on the evolving
interface Γ. In particular, in [23, Section 8] and [7, 25] it is shown that the equation for
the evaporation-condensation case becomes

(1.3) βV = (gθθ + g)k − U on Γ,

where U is a constant and the kinetic coefficient β is a material function associated with
the attachment kinetics of the atoms at the interface. We assume the kinetic coefficient to
be constant and so, up to a rescaling, we take β ≡ 1.

Locally, the interface may be described as the graph of a one-dimensional function.
In the context of a thin film over a flat substrate, we set the x-axis on the substrate
upper boundary and describe the thickness of the film by means of a profile function
h : (0, b) × [0, T ] → [0,∞) for a positive length b and a positive time T . In this way, the
graph of h represents the evolving profile Γh of the film. We adopt the sign convention
that the normal vector ν points outward from the region Ωh occupied by the film and k is
negative when the profile is concave. Note that the normal velocity parametrized by the
profile function h is given by

V =
1

J
ht , where J :=

√
1 + |hx|2

and we denote by hx and ht the derivatives with respect to the first and the second com-
ponent, respectively.

In [7, 23], the constant U is included in (1.3) to represent the difference in bulk energies
between the phases. As already mentioned in [23, Remark 3.1], the theory can be extended
to account for deformation (see also [20, 26]). Indeed, the inclusion of deformation is very
important to model epitaxy because the difference in lattice parameters between the film
and the substrate can induce large stresses in the film. In order to release the resulting
elastic energy, the atoms in the film move and reorganize themselves in more convenient
configurations. In analogy with [10, 18, 21] and with the surface diffusion case (see [19]), we
work in the context of the elasticity theory for small deformations. Hence, fixing a time in
[0, T ], the linearized strain is represented by E(u) = 1

2(∇u+∇Tu), where u defined on Ωh

denotes the planar displacement of the bulk material that is assumed to be in (quasistatic)
equilibrium, and the bulk elastic energy is

(1.4)

∫
Ωh

W (E(u)) dz ,

where the elastic energy density W : M2×2
sym → [0,∞) is defined by

W (A) :=
1

2
CA : A ,
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for a positive definite fourth-order tensor C. Furthermore, we model the displacement of
the film atoms at the interface with the substrate using the Dirichlet boundary condition
u(x, 0) = (e0x, 0), where the constant e0 > 0 measures the mismatch between the crystalline
lattices. Moreover, the migration of atoms can eventually result in the formation of surface
patters on the profile of the film, such as undulations, material agglomerates or isolated
islands. However, these non-flat configurations have a cost in terms of surface energy which
is roughly proportional to the area of the profile of the film (see (2.3) below). Therefore,
the evolution of the film profile is the result of the competition between the bulk elastic
energy and the surface energy of the film, and (1.3) becomes

(1.5) V = (gθθ + g)k −W (E(u)) on Γh,

while the corresponding equation in the case of surface diffusion is

V = (−(gθθ + g)k +W (E(u)))σσ on Γh,

where W (E(u)) is defined for each t ∈ [0, T ] as the trace of W (E(u(·, t))) on Γh(·,t) and
u(·, t) is the elastic equilibrium corresponding to h(·, t).

These evolution equations exhibit different behaviors with respect to the sign of the
interfacial stiffness f := gθθ + g. In fact, the equations are parabolic on any angle interval
in which f is strictly positive. In this case, (1.5) has been extensively studied and it
behaves similarly to V = k (see, e.g., [5, 6, 25]). Those angle intervals in which f is
negative are relevant from the materials science viewpoint. In this range, (1.5) is backward
parabolic and unstable and so, in order to analyze its behavior, we consider a higher order
perturbation. The idea consists in allowing for a dependence on curvature of the surface
energy density g in order to penalize surface patterns with large curvature, such as sharp
corners (see [35, 38]). This approach was already suggested in [7] and relies on the physical
argumentations of Herring (see [27, 28]). In [14], the authors choose a quadratic dependence
on curvature for g of the form

(1.6) g(θ, k) := g(θ) +
ε

2
k2 ,

with ε denoting a (small) positive constant (see also [24]). Hence, replacing the surface
energy density in (1.2) with (1.6) and taking into account the bulk elastic energy (1.4), the
total energy of the system at a time t in [0, T ], is

(1.7) F (h) :=

∫
Ωh

W (E(uh)) dz +

∫
Γh

(
g(θ) +

ε

2
k2
)

dH1 ,

where uh(·, t) is the minimizer of the elastic energy (1.4) in Ωh(·,t) under suitable boundary
and periodicity conditions. The resulting parabolic equations are

(1.8) V = (gθθ + g)k −W (E(u))− ε
(
kσσ +

1

2
k3

)
on Γh

for the evaporation-condensation case, and

(1.9) V =

(
−(gθθ + g)k +W (E(u)) + ε

(
kσσ +

1

2
k3

))
σσ

on Γh
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for the surface diffusion case. These equations have been already proposed in [19], where (1.9)
has been analytically studied. To the best of our knowledge, no analytical results ex-
ist in literature for (1.8), unless we restrict ourselves to the case without elasticity, as in
[8, 9, 13, 17, 39] (see also [5, 6]).

In this paper, we prove short time existence, uniqueness, and regularity of spatially
periodic solutions of (1.8). Precisely, we say that (h, u) is a b-periodic configuration in Ωh if
h(·, t) is b-periodic in R and u(x+b, y, t) = u(x, y, t)+(e0b, 0) for each (x, y) in the subgraph
of h(·, t) and any time t ∈ [0, T ]. Given an initial b-periodic profile h0 ∈ H2

loc(R; (0,∞)),
we find a time T0 > 0 such that, for each T < T0, there exists a unique solution (h, u) of
the Cauchy problem

(1.10)



1

J
ht = (gθθ + g)k −W (E(u))− ε

(
kσσ +

1

2
k3

)
in R× (0, T )

divCE(u) = 0 in Ωh

CE(u)[ν] = 0 on Γh and u(x, 0, t) = (e0 x, 0)

(h, u) is a b-periodic configuration in Ωh

h(·, 0) = h0

where W (E(u)) is defined for each t ∈ [0, T ] as the trace of W (E(u(·, t))) on the graph
of h(·, t). See the review article [31, Section 4.2.2] where this problem is proposed to find
further references.

Since (1.8) can be regarded as the gradient flow of the total energy functional F with
respect to the L2-metric, we adopt the minimizing movement method introduced by De
Giorgi (see [3, 4]). The idea is based on the discretization of the time interval [0, T ] in
N ∈ N subintervals with length τN , and on defining inductively the approximate solution
hN at time iτN by a minimum problem that depends on the approximate solution at
the previous time. Precisely, we start with the initial profile hN (·, 0) := h0 and for each
i = 1, . . . , N , we find hN (·, iτN ) as the minimizer of

(1.11) F (h) +
1

2τN
d2 (h, hN (·, (i− 1)τN ))

where the function d, that measures the L2-distance between h and hN (·, (i − 1)τN ), is
chosen so that the Euler equation of this minimum problem corresponds to a time dis-
cretization of (1.8) (see (3.23) below). Then, the discrete-time evolution hN is defined in
[0, T ] as the piecewise constant or linear interpolant of {hN (·, iτN )}. This approach was
already adopted in [2] to deal with the motion of crystalline boundaries by mean curva-
ture. Moreover, minimizing movements have been used also more recently to study mean
curvature type flows in the case without elasticity in [8, 11, 13], and for the equation (1.9)
in [19] (see also [37] for the Hele-Shaw equation and [16]). As already observed in [12], the
basic differences between the evaporation-condensation and the surface diffusion evolution
equations are that the latter preserves the area underneath the film profile and it is a
gradient flow of F with respect to another metric, the H−1-distance (see also [40]).
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The paper is organized as follows. In Section 2 we introduce the incremental minimum
problem (1.11) choosing the appropriate function d (see the penalization term (2.7)), and we
prove the existence of the discrete-time evolutions. Since in the evaporation-condensation
case there are no constraints on the area of Ωh, we proceed in a different way with respect
to [19]. In fact, following an argument in [22, Chapter 12], we find hN among functions
with spatial derivative uniformly bounded by some constant r > 0. In particular, we start
considering admissible profile functions in H2

loc(R; [0,∞)).
In Section 3 we prove that for each T and r, the corresponding discrete-time evolutions

hN converge to a function h in C0,β([0, T ];C1,α([0, b])) for every α ∈
(
0, 1

2

)
and β ∈(

0, 1−2α
8

)
. Furthermore, since we prove that {hN} is equicontinuous in time with respect

to the C1,α-metric, we are allowed to select a time T0 small enough and r0 such that hN
is a weak solution of the time discretization of (1.8) for each T < T0 (see (3.23)). Then,
using the time discretization of (1.8) to estimate higher order derivatives of hN , we prove
that h ∈ L2(0, T ;H4

loc(R)) ∩H1(0, T ;L2
loc(R)). Finally, in Theorem 3.9 we prove that h is

a solution of (1.10), and in Theorem 3.10 we state the regularity properties satisfied by
h. Furthermore, this method provides an estimate of the L∞(0, T ;L∞(R))-norm of hx in
terms of ‖h′0‖∞.

This existence result appears to be the first in the presence of elasticity and without
surface diffusion. Moreover, we believe that the method is so general that could be applied
also to the case with surface diffusion (1.9) to prove a short time existence and regularity
result without the use of constant speed parametrizations of the profiles.

Finally, in Section 4 we prove that the solution found with the minimizing movement
method is the unique solution of (1.10) in [0, T ] with T < T0. Since (1.8) does not neces-
sarily preserve the area underneath the profile of the film, the proof is more involved than
the one in [19] for the case with surface diffusion.

The study of the long time existence and the global behavior of the solution of (1.8), as
well as the asymptotic stability, will be the subject of future work.

2. Mathematical setting

In this section we introduce the precise mathematical formulation of the problem. Fol-
lowing the literature (see [10, 19]), we consider periodic conditions on the evolving profile
and on the corresponding elastic displacement. Given a constant b > 0, we denote by
Hm

# (0, b), for m = 0, 1, . . ., the space of all functions in Hm
loc(R) that are b-periodic, en-

dowed with the norm in Hm(0, b). The class of admissible profile functions is

AP :=
{
h : R→ [0,∞) : h ∈ H2

#(0, b)
}
,

for a positive constant b. Furthermore, given h ∈ AP ,

Γh := {z = (x, h(x)) : 0 < x < b} and Ωh := {z = (x, y) : 0 < x < b, 0 < y < h(x)}

denote, respectively, the profile and the reference configuration of the film with respect to

the interval (0, b), while the corresponding sets on all the domain R are denoted by Γ#
h and
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Ω#
h . Moreover, the class of admissible planar displacements is

ADh := {u : Ω#
h → R2 : u ∈ H1(Ωh;R2) , u(·, 0) = (e0·, 0) in the sense of traces,

and u(x+ b, y) = u(x, y) + (e0b, 0) for a.e. (x, y) ∈ Ω#
h } ,(2.1)

where the constant e0 > 0 represents the mismatch between the lattices of the film and
the substrate. Consequently, the functional space of admissible configurations is

Xe0 := {(h, u) : h ∈ AP, u ∈ ADh} .
As in [19], we define the surface energy density g : [0, 2π]→ (0,∞) by

(2.2) g(θ) := ψ(cos θ, sin θ) ,

where ψ : R2 → (0,∞) is a positively one-homogeneous function of class C2 away from
the origin. Note that these are the only hypotheses assumed on ψ throughout the paper.
From these assumptions it follows that there exists a constant C > 0 such that

(2.3)
1

C
|ξ| ≤ ψ(ξ) ≤ C|ξ|

for each ξ ∈ R2.
We recall that W : M2×2

sym → [0,∞) is defined by

W (A) :=
1

2
CA : A ,

with C a constant positive definite fourth-order tensor, and thus the total energy func-
tional (1.7) becomes

(2.4) F (h, u) :=

∫
Ωh

W (E(u)) dz +

∫
Γh

(
ψ(ν) +

ε

2
k2
)

dH1 ,

for each (h, u) ∈ Xe0 , where E(u) := 1
2(∇u+∇Tu), ν is the outer normal vector to Ωh, k

is the curvature of Γh, and ε is a (small) positive constant. In particular, given h ∈ AP ,
we have that

k =

(
h′√

1 + (h′)2

)′
and ν =

(
− h′, 1

)√
1 + (h′)2

.

Consider a non-identically zero profile h ∈ AP and introduce the elastic energy

(2.5)

∫
Ωh

W (E(v)) dz

defined for each v ∈ ADh. Then there exists a minimizer of (2.5) in ADh (see Lemma 5.1)
that is unique due to the Dirichlet condition.

Definition 2.1. Given h ∈ AP with h 6≡ 0, we say that u ∈ ADh is the elastic equilibrium
corresponding to h if u minimizes (2.5) among all v ∈ ADh. Moreover, (h0, u0) ∈ Xe0 is
said to be an initial configuration if h0 6≡ 0 and u0 is the elastic equilibrium corresponding
to h0.
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Consider an initial configuration (h0, u0) ∈ Xe0 , fix r > ‖h′0‖∞, T > 0, N ∈ N, and set

τN := T/N .

We now introduce the iterative minimization process used to define the discrete-time evo-
lutions.

The incremental minimum problem. Set (hr0,N , u
r
0,N ) := (h0, u0), and for i = 1, . . . , N ,

define inductively (hri,N , u
r
i,N ) as a solution of the following minimum problem:

(M r
i,N ) min

{
Gi,N (h, u) : (h, u) ∈ Xe0 and ‖h′‖∞ ≤ r

}
.

The functional Gi,N is given by

(2.6) Gi,N (h, u) := F (h, u) + Pi,N (h) ,

with the penalization term Pi,N defined by

(2.7) Pi,N (h) :=
1

2τN

∫
Γhr
i−1,N

(
h− hri−1,N

Jri−1,N

)2

dH1 =
1

2τN

∫ b

0

(h− hri−1,N )2

Jri−1,N

dx ,

where Jri−1,N :=
√

1 + ((hri−1,N )′)2 .

The incremental minimum problem is well defined. In fact, for each i = 1, . . . , N , we
can recursively find a solution of the minimum problem (M r

i,N ) as it is established by the
following result.

Theorem 2.2. Let (h0, u0) ∈ Xe0 be an initial configuration and let r > ‖h′0‖∞, T > 0
and N ∈ N. Then, for i = 1, . . . , N , the minimum problem (M r

i,N ) admits a solution

(hri,N , u
r
i,N ) ∈ Xe0 with ‖(hri,N )′‖∞ ≤ r.

Proof. Fix i = 1, . . . , N , and if i > 1, consider a solution (hrj,N , u
r
j,N ) of (M r

j,N ) for each

j = 1, . . . , i − 1. We want to find a solution of (M r
i,N ). First observe that by (2.6), (2.7),

and by the minimality of (hrj,N , u
r
j,N ), we have

F (hrj,N , u
r
j,N ) ≤ Gj,N (hrj,N , u

r
j,N ) ≤ Gj,N (hrj−1,N , u

r
j−1,N ) = F (hrj−1,N , u

r
j−1,N ) ,

and so

0 ≤ inf
(h,u)∈Xe0

Gi,N (h, u) ≤ Gi,N (hri−1,N , u
r
i−1,N ) = F (hri−1,N , u

r
i−1,N ) ≤ · · · ≤ F (h0, u0) .

Therefore, we are allowed to select a minimizing sequence {(hn, un)} ⊂ Xe0 for (M r
i,N )

such that ‖h′n‖∞ ≤ r for each n and sup
n
Gi,N (hn, un) <∞.

Since sup
n
Pi,N (hn, un) < ∞ and Jri−1,N ≤

√
1 + r2, we have that {hn} is bounded in

L2(0, b) (by a constant depending on r). Furthermore, {hn} is bounded in H2(0, b) since
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‖h′n‖∞ ≤ r and

(2.8)
ε

2(1 + r2)
5
2

‖h′′n‖2L2([0,b]) ≤
ε

2

∫ b

0

(h′′n)2

(1 + (h′n)2)
5
2

dx =
ε

2

∫
Γhn

k2dH1 <∞ .

Thus, there exists h ∈ AP with ‖h′‖∞ ≤ r such that, up to a subsequence (not relabeled),
hn ⇀ h in H2(0, b) and hn → h in W 1,∞(0, b). Using Fatou’s Lemma, we conclude that

(2.9) Pi,N (h) ≤ lim inf
n→∞

Pi,N (hn) ,

and in view of the continuity of ψ, we have
(2.10)∫

Γh

ψ(ν) dH1 =

∫ b

0
ψ(−h′, 1) dx ≤ lim inf

n→∞

∫ b

0
ψ(−h′n, 1) dx = lim inf

n→∞

∫
Γhn

ψ(ν) dH1,

where in the first and last equality we used the fact that ψ is positively one-homogeneous.

Furthermore, since (1 + (·)2)−
5
4 is uniformly continuous on [−r, r], the sequence {(1 +

(h′n)2)−
5
4 } converges uniformly to (1 + (h′)2)−

5
4 , and so

h′′n

(1 + (h′n)2)
5
4

⇀
h′′

(1 + (h′)2)
5
4

in L2(0, b) ,

due to the weak convergence of {h′′n} in L2(0, b). Thus, we have∫
Γh

k2dH1 =

∫ b

0

(h′′)2

(1 + (h′)2)
5
2

dx

≤ lim inf
n→∞

∫ b

0

(h′′n)2

(1 + (h′n)2)
5
2

dx = lim inf
n→∞

∫
Γhn

k2dH1 .(2.11)

In order to prove that the sequence {un} is bounded in an appropriate space, we need
to apply Lemma 5.1 in the Appendix. For this purpose, we consider a constant

L ≥ sup
n
‖hn‖C1([0,b]) ,

we define a set U := (0, b)× (0,−L(1 + 3b)), and we choose w ∈ H1(U ;R2) with null trace
on (0, b)× {−L(1 + 3b)} and trace equal to (e0·, 0) on (0, b)× {0} such that

(2.12) ‖w‖H1(U ;R2) ≤ C‖Tr(w)‖
H

1
2 (∂U)

for some constant C > 0 (see [29]), where Tr(·) is the trace operator. We may now extend
each un to Uhn := {z = (x, y) : 0 < x < b,−L(1 + 3b) < y < hn(x)} with w, without
relabeling it. Applying Lemma 5.1 to each Uhn , we obtain∫

Uhn

|un|2 dz +

∫
Uhn

|∇un|2 dz ≤ C

(∫
Ωhn

|E(un)|2 dz + ‖Tr(w)‖2
H

1
2 (∂U)

)
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for some constant C > 0 depending only on L. Therefore, since sup
n

∫
Ωhn

|E(un)|2dz <∞,

we have that ‖un‖H1(Uhn ;R2) are equibounded. Proceeding now as in Lemma 5.1, since

each Uhn has Lipschitz boundary, we extend un to the rectangle RL := (0, b) × (−L(1 +
3b), L(1 + 3b)) and we obtain that, up to a subsequence (not relabeled), {un} converges
weakly in H1(RL;R2) to some function u with trace equal to (e0·, 0) on (0, b) × {0} (see

[29]). Furthermore, we extend u to Ω#
h by defining u(x+ b, y) := u(x, y) + (e0b, 0) for every

(x, y) ∈ Ω#
h \ Ωh, so that (h, u) ∈ Xe0 .

Finally, since {E(un)} weakly converges to E(u) in L2(RL;R2) and {hn} convergences
uniformly to h, we conclude that

(2.13)

∫
Ωh

W (E(u)) dz ≤ lim inf
n→∞

∫
Ωhn

W (E(un)) dz ,

which, together with (2.9), (2.10) and (2.11), implies that (h, u) is a minimizer of (M r
i,N ) .

�

Remark 2.3. Let f ∈ H
1
2 (0, b). The previous theorem still holds true if we replace the

Dirichlet boundary condition u(·, 0) = (e0·, 0) in (2.1) with the more general condition
u(·, 0) = (f(·), 0). Precisely, let h0 ∈ H2(0, b) be an initial profile and let r > ‖h′0‖∞, T > 0
and N ∈ N. Then, for i = 1, . . . , N , the functional (2.6) admits a minimizer in

Xr
f := {(u, h) : h ∈ H2(0, b) with ‖h′‖∞ ≤ r , u ∈ H1(Ωh;R2) with u(·, 0) = (f(·), 0)} .

In fact, this result follows from the same arguments used in the previous proof with the
only difference that we need now to select the function w ∈ H1(U ;R2) in (2.12) with null
trace on (0, b)× {−L(1 + 3b)} and trace equal to (f(·), 0) on (0, b)× {0}. We choose such
a function w by extending f to R by [15, Theorem 5.4], using the surjectivity of the trace

operator from H1(R2
−) to H

1
2 (R) (see [29]), and finally truncating near R× {−L(1 + 3b)}

with a cut-off function.

In view of Theorem 2.2 we may define the notion of discrete-time evolution of (1.8).

Definition 2.4. Let (h0, u0) ∈ Xe0 be an initial configuration and let r > ‖h′0‖∞, T > 0
and N ∈ N. For i = 1, . . . , N , consider a solution hri,N to (M r

i,N ) given by Theorem 2.2.

The piecewise linear interpolation hrN : R × [0, T ] → [0,∞) of the functions hri,N , namely
the function defined by

(2.14) hrN (x, t) := hri−1,N (x) +
1

τN
(t− (i− 1)τN )(hri,N (x)− hri−1,N (x))

if (x, t) ∈ R × [(i − 1)τN , iτN ], for i = 1, . . . , N , is said to be a discrete-time evolution
of (1.8). In addition, for each t ∈ [0, T ] we denote by urN (·, t) the elastic equilibrium
corresponding to hrN (·, t).
We observe that, by Theorem 2.2, if (h0, u0) ∈ Xe0 is an initial configuration, r > ‖h′0‖∞
and T > 0, then for each N ∈ N there exists a discrete-time evolution hrN of (1.8) and we

have that hrN (·, t) ∈ AP and

∥∥∥∥∂hrN∂x (·, t)
∥∥∥∥
∞
≤ r for all t in [0, T ].



10 PAOLO PIOVANO

Remark 2.5. In what follows, given a regular height function h : R × [0, T ] → [0,∞),
hx and ht stand for the derivatives with respect to the space and the time, respectively.

Moreover, for each t ∈ [0, T ], given a regular function u(·, t) : Ω#
h(·,t) → R2, we denote

by ∇u(·, t) the gradient of u with respect to the spatial coordinates and by E(u)(·, t) :=
1
2(∇u(·, t) +∇Tu(·, t)) its symmetric part. Furthermore, E(u)(·, h(·, t)) : R→M2×2

sym is the

trace of E(u)(·, t) on Γ#
h(·,t).

We now introduce the notion of a solution of (1.10) in the interval of time [0, T ].

Definition 2.6. Let (h0, u0) ∈ Xe0 be an initial configuration. A solution of (1.10) in [0, T ]
with initial configuration (h0, u0) is a function h ∈ L2(0, T ;H4

#(0, b)) ∩H1(0, T ;L2
#(0, b))

that satisfies h(·, 0) = h0(·) in [0, b], and

(2.15)
1

J
ht = −ε

(
hxx
J5

)
xx

− 5ε

2

(
h2
xx

J7
hx

)
x

+ ∂11ψ(−hx, 1)hxx −W

in (0, b)×(0, T ], where J :=
√

1 + |hx|2, ∂11ψ denotes the second derivative of ψ with respect
to the first component, W (·, t) := W (E(u)(·, h(·, t))) and u(·, t) is the elastic equilibrium
corresponding to h(·, t) for each t ∈ [0, T ].

Note that (2.15) is (1.8) using the parametrization with the height function. Indeed, in
this case the curvature, the normal velocity of the evolving profile Γh, and the outward
normal vector ν to Ωh at the point (·, h(·)) are given, respectively, by

k =

(
hx√

1 + |hx|2

)
x

, V =
1

J
ht and ν =

1

J
(−hx, 1) ,

and (·)σ = 1
J (·)x (see Lemmas 5.2 and 5.3 in the Appendix).

3. Existence and regularity

In this section we establish the existence of a solution of (1.10) in the sense of the Defi-
nition 2.6 for short time intervals and we study its regularity (see Theorems 3.9 and 3.10).
First, we consider an initial configuration (h0, u0) ∈ Xe0 and we prove that, if {hrN} is a
sequence of discrete-time evolutions for r > ‖h′0‖∞ and T > 0 (see Definition 2.4), then,
up to a subsequence (not relabeled), it converges to some function hr as N → ∞. Next,
we select a time T0 small enough and r0 appropriate to have that ‖(hr0i,N )′‖∞ < r0 for

each T < T0, N ∈ N, and i = 1, . . . , N . For T < T0 the profile function hr0i,N satisfies the

Euler-Lagrange equation (3.23) corresponding to the minimum problem (M r0
i,N ). Finally,

using the estimates provided by (3.23), we prove that hr0 is a solution of (1.10) on [0, T ]
for T < T0.

We begin by showing that the discrete-time evolutions hrN introduced in Definition 2.4
are uniformly bounded in L∞(0, T ;H2(0, b)) ∩H1(0, T ;L2(0, b)). In the following, we pay
attention to the dependence on r of the constants involved in the estimates used to select
T0 in Corollary 3.3.



EVOLUTION OF ELASTIC THIN FILMS 11

Theorem 3.1. Let (h0, u0) ∈ Xe0 be an initial configuration and let r > ‖h′0‖∞, T > 0
and N ∈ N. For i = 1, . . . , N , consider a solution hri,N to (M r

i,N ) given by Theorem 2.2
and the related discrete-time evolution introduced in Definition 2.4. Then,∫ T

0

∫ b

0

∣∣∣∣∂hrN∂t (·, t)
∣∣∣∣2 dx dt ≤ C0(r) and sup

i
‖hri,N‖H2(0,b) ≤

√
C0(r)T + C1(r),(3.1)

where C0(r), C1(r) > 0 are constants that depend only on r.
Therefore, up to a subsequence,

(3.2) hrN ⇀ hr in L2(0, T ;H2(0, b)) and hrN ⇀ hr in H1(0, T ;L2(0, b))

as N → ∞, for some function hr ∈ L2(0, T ;H2(0, b)) ∩ H1(0, T ;L2(0, b)). Moreover, for
every γ ∈

(
0, 1

2

)
we have

(3.3) hrN → hr in C0,γ([0, T ];L2(0, b)) as N →∞ ,

hr ∈ L∞(0, T ;H2(0, b)), hr(·, t) ∈ AP , and
∥∥∂hr
∂x (·, t)

∥∥
∞ ≤ r for every t in [0, T ].

Proof. Fix r > ‖h′0‖∞, T > 0 and N ∈ N. For simplicity, in this proof, we disregard the
dependence on r in the notation of hri,N and hrN . For each i = 1, . . . , N , we have that

(3.4) Gi,N (hi,N , ui,N ) ≤ Gi,N (hi−1,N , ui−1,N ) = F (hi−1,N , ui−1,N )

by (2.6), (2.7) and the minimality of (hi,N , ui,N ). Thus, Pi,N (hi,N ) ≤ F (hi−1,N , ui−1,N ) −
F (hi,N , ui,N ) and so,

1

2τN
√

1 + r2

∫ b

0
(hi,N − hi−1,N )2dx ≤ F (hi−1,N , ui−1,N )− F (hi,N , ui,N ) .

Recalling (2.14) and summing over i = 1, . . . , N , since F ≥ 0 we obtain

1

2
√

1 + r2

∫ T

0

∫ b

0

∣∣∣∣∂hN∂t (x, t)

∣∣∣∣2 dx dt ≤ F (h0, u0) ,

i.e. the first estimate in (3.1) with C0(r) := 2
√

1 + r2F (h0, u0). Now, since hN (x, ·) is
absolutely continuous on [0, T ], for all t1, t2 ∈ [0, T ], with t1 < t2, using Hölder’s inequality
and Fubini’s Theorem, we have

‖hN (·, t2)− hN (·, t1)‖L2(0,b) ≤

(∫ b

0

(∫ t2

t1

∂hN
∂t

(x, t)dt

)2

dx

) 1
2

≤

(∫ t2

t1

∥∥∥∥∂hN∂t (·, t)
∥∥∥∥2

L2(0,b)

dt

) 1
2

(t2 − t1)
1
2 .

Therefore, from the first estimate in (3.1) we obtain

(3.5) ‖hN (·, t2)− hN (·, t1)‖L2(0,b) ≤
√
C0(r)(t2 − t1)

1
2
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and, in particular, selecting t1 = 0 and t2 = iτN , since hN (·, 0) = h0(·) and hN (·, iτN ) =

hi,N (·), (3.5) implies that ‖hi,N‖L2(0,b) ≤
√
C0(r)

√
T+‖h0‖L2([0,b]). Furthermore, from (3.4)

we observe that F (hi,N , ui,N ) ≤ F (hi−1,N , ui−1,N ) for each i = 1, . . . , N , and so,

ε

2(1 + r2)
5
2

‖(hi,N )′′‖2L2([0,b]) ≤
ε

2

∫
Γhr
i,N

k2 dH1 ≤ F (hi,N , ui,N ) ≤ · · · ≤ F (h0, u0) .

where we have used the fact that ‖h′i,N‖∞ ≤ r. Thus,

(3.6) ‖h′′i,N‖L2(0,b) ≤ C2(r)

for C2(r) :=
√

2
εF (h0, u0)(1 + r2)

5
4 , and the second estimate in (3.1) follows.

Therefore, since

(3.7) sup
t∈[0,T ]

‖hN (·, t)‖H2(0,b) ≤
√
C0(r)T + C1(r),

up to a subsequence (not relabeled), hN ⇀ h in L2(0, T ;H2(0, b)) for some function h.
On the other hand, the first estimate in (3.1) implies that, up to a further subsequence

(not relabeled),

{
∂hN
∂t

}
converges weakly in L2(0, T ;L2(0, b)), and we deduce that

∂h

∂t
∈

L2(0, T ;L2(0, b)), i.e., h ∈ H1(0, T ;L2(0, b)). Finally, note that (3.5) togheter with Ascoli-
Arzelà Theorem (see e.g. [4, Proposition 3.3.1]), implies (3.3). Thus, since by (3.7) for
each t in [0, T ], we can find a sequence {hNk(·, t)} that converges in W 1,∞(0, b), by the

uniqueness of the limit we have that h(·, t) ∈ AP and
∥∥∂h
∂x(·, t)

∥∥
∞ ≤ r. �

From now on, we denote by {hrN} and hr, respectively, a subsequence and a limit function
provided by Theorem 3.1. In the next result we improve the convergence of {hrN} to hr.

Theorem 3.2. Let (h0, u0) ∈ Xe0 be an initial configuration. For r > ‖h′0‖∞, T > 0, we
have that hr ∈ C0,β([0, T ];C1,α([0, b])) and

(3.8) hrN → hr in C0,β([0, T ];C1,α([0, b])) as N →∞

for every α ∈
(
0, 1

2

)
and β ∈

(
0, 1−2α

8

)
. Furthermore, hr(·, t) → h0 in C1,α([0, b]) as

t→ 0+.

Proof. Fix r > ‖h′0‖∞, T > 0 and N ∈ N. In this proof, we disregard again the dependence
on r in the notation of hri,N and hrN . Since for each t1, t2 in [0, T ], with t1 < t2, the function

g := hN (·, t2)− hN (·, t1) is b-periodic, by the interpolation inequality (5.8), we have that

(3.9) ‖g′‖∞ ≤ K‖g′′‖
3
4

L2(0,b)
‖g‖

1
4

L2(0,b)

for some constant K > 0, and since ‖g′′‖L2(0,b) ≤ 2 sup
i,N
‖h′′i,N‖L2(0,b), we obtain

‖g′‖∞ ≤ K(2C2(r))
3
4 ‖g‖

1
4

L2(0,b)
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where we used (3.6). Thus, by (3.5) we find that

(3.10)

∥∥∥∥∂hN∂x (·, t2)− ∂hN
∂x

(·, t1)

∥∥∥∥
∞
≤ C3(r)(t2 − t1)

1
8 ,

for C3(r) := 2
3
4KC

3
4
2 (r)C

1
8
0 (r) > 0.

Furthermore, by the Mean Value Theorem there exists x̄ ∈ [0, b] such that

g(x̄) =
1

b

∫ b

0
g(x) dx ,

and so

|g(x)| ≤ |g(x)− g(x̄)|+ |g(x̄)| ≤ b‖g′‖∞ +
1√
b
‖g‖L2(0,b) ,

for each x ∈ [0, b]. Therefore, by (3.5) and (3.10), we obtain

(3.11) ‖hN (·, t2)− hN (·, t1)‖∞ ≤ C3(r)b(t2 − t1)
1
8 +

√
C0(r)

b
(t2 − t1)

1
2 .

Moreover, for every α ∈ (0, 1
2), if | · |α denotes the α-Hölder seminorm, we have

(3.12) |g′|α := sup

{
|g′(x)− g′(y)|
|x− y|α

: x, y ∈ [0, b], x 6= y

}
≤ |g′|2α1

2

(
2‖g′‖∞

)1−2α
.

Since (3.7) implies that∣∣∣∣∂hN∂x (·, t2)− ∂hN
∂x

(·, t1)

∣∣∣∣
1
2

≤ 2KM

(√
C0(r)T + C1(r)

)
where KM is the constant of the Morrey’s inequality (see [1, 29]), by (3.10) and (3.12) we
deduce that

(3.13)

∣∣∣∣∂hN∂x (·, t2)− ∂hN
∂x

(·, t1)

∣∣∣∣
α

≤ C4(r, α, T )(t2 − t1)
1−2α

8 ,

for C4(r, α, T ) := 2K2α
M

(√
C0(r)T + C1(r)

)2α
(C3(r))1−2α > 0.

Therefore, it follows from (3.10), (3.11), and (3.13), that for every α ∈ (0, 1
2), hN is

uniformly equicontinuous with respect to the C1,α([0, b])-norm topology and that

(3.14) ‖hN (·, t2)− hN (·, t1)‖C1,α([0,b]) ≤ C(r, α, T )(t2 − t1)
1−2α

8 ,

for some C(r, α, T ) > 0. In particular, we find (3.8) applying Ascoli-Arzelà Theorem (see
e.g. [4, Proposition 3.3.1]). Finally, since ‖hN (·, t)− hN (·, t1)‖C1,α([0,b]) → 0 as t → t1, we
conclude the proof choosing t1 = 0. �

It follows from the previous theorem, that we can select r0 and a small time T1 (the

largest one with respect to the estimate (3.10)) so that

∥∥∥∥∂hr0N∂x
∥∥∥∥
L∞([0,b]×[0,T ])

< r0 for every

T < T1 and N ∈ N.
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Corollary 3.3. Let (h0, u0) ∈ Xe0 be an initial configuration, and set

(3.15) r0 := ‖h′0‖∞ +
√
‖h′0‖2∞ + 1 and T1 :=

(1 + ‖h′0‖2∞)4

σ0(ε)(1 + r2
0)8

,

where σ0(ε) := 210K8ε−3F 4(h0, u0) and K is the interpolation constant in (3.9). Then, for
T < T1 we have that sup

i,N
‖(hr0i,N )′‖∞ < r0.

Proof. We recall that the constant in (3.10) is C3(r) := K(2C2(r))
3
4C

1
8
0 (r), where K is the

interpolation constant in (3.9), C0(r) := 2
√

1 + r2F (h0, u0) and C2(r) :=
√

2
εF (h0, u0)(1+

r2)
5
4 . Hence, C3(r) = σ

1
8
0 (ε)(1 + r2). Therefore, choosing t1 = 0 and t2 = iτN in (3.10) we

find that

‖(hri,N )′‖∞ ≤ (1 + r2)(σ0(ε)T )
1
8 + ‖h′0‖∞ ,

for N ∈ N and i = 1, . . . , N . Thus, if r > ‖h′0‖∞ then it follows that sup
i,N
‖(hri,N )′‖∞ < r

for every T < T1(r), where

(3.16) T1(r) :=
(r − ‖h′0‖∞)8

σ0(ε)(1 + r2)8
.

Choose r0 := ‖h′0‖∞ +
√
‖h′0‖2∞ + 1 to maximize T1(r) and let T1 := T1(r0). �

Remark 3.4. If h0 > 0 then there exists a time T2 = T2(h0) > 0 such that hr0N > 0 in
[0, b]× [0, T ] for every T < T2. Indeed, by (3.11) with t1 = 0 and t2 = t we have that

hr0N (x, t) ≥ h0(x)− C3(r0)bt
1
8 −

√
C0(r0)

b
t

1
2 ≥ min

x∈[0,b]
h0(x)− C3(r0)bT

1
8 −

√
C0(r0)

b
T

1
2

for every (x, t) ∈ [0, b]× [0, T ].

Define

(3.17) T0 := min{T1, T2} ,

and note that Theorems 3.1 and 3.2 hold true for r0 and every T < T0. In the rest of the
paper we assume that T < T0 and, to simplify the notation, we denote h := hr0 , hN := hr0N ,
hi,N := hr0i,N , Jr0i,N := Ji,N , uN := ur0N and ui,N := ur0i,N for all N ∈ N and i = 1, . . . , N .

Moreover, for technical reasons, in the sequel we use the piecewise constant interpolations
of {Ji,N}, and {Vi,N}, where Vi,N is defined by

Vi,N (x) :=
1

τN

hi,N (x)− hi−1,N (x)

Ji−1,N (x)

for every x ∈ R, i = 1, . . . , N and N ∈ N. We will also use the piecewise constant inter-
polations for {ui,N} and {hi,N}, in place of the piecewise linear interpolations introduced
in (2.14).
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Definition 3.5. Let (h0, u0) ∈ Xe0 be an initial configuration, and for N ∈ N and i =
1, . . . , N , consider Ii,N := ((i− 1)τN , iτN ]. Define ũN (z, 0) := u0 for all z ∈ Ωh0 and

(3.18) ũN (z, t) := ui,N (z) for all z ∈ Ωhi,N if t ∈ Ii,N .

Analogously, define h̃N and VN : R× (0, T ]→ [0,∞) by, respectively,

h̃N (·, t) := hi,N and VN (·, t) := Vi,N if t ∈ Ii,N .

In addition, set J̃N :=

√√√√1 +

(
∂h̃N
∂x

)2

.

Remark 3.6. Fix T < T0. In view of Theorem 3.2, we deduce the following convergence
results for {h̃N}, {J̃N} and {VN}.
(i) For α ∈ (0, 1

2),

(3.19) h̃N → h in L∞(0, T ;C1,α([0, b])) ,

as N →∞. This can be easily verified using the equicontinuity of the sequence {hN}
with respect to the C1,α([0, b])-norm topology (see (3.14)).

(ii) It follows from (i) that J̃N → J :=
√

1 + |hx|2 in L∞(0, T ;C([0, b])).

(iii) Furthermore,

(3.20) VN ⇀ V :=
1

J
ht in L2(0, T ;L2(0, b)) .

Indeed, from Definition 2.4 we have that for all t ∈ ((i− 1)τN , iτN ), x ∈ R,

VN (x, t) =
1

Ji−1,N (x)

∂hN
∂t

(x, t) .

Hence, (3.20) follows from (ii) and the fact that
∂hN
∂t

⇀
∂h

∂t
in L2(0, T ;L2(0, b)) by the

second assertion in (3.2).

For the convergence of {uN} and {ũN}, we follow the last part of the proof of [19,
Theorem 3.4], where standard elliptic estimates are used (see [21, Proposition 8.9]). In the
remainder of the paper, we assume that the initial profile is strictly positive, i.e.,

(3.21) h0 > 0 ,

and we use the notation introduced in Remark 2.5.

Theorem 3.7. Let (h0, u0) ∈ Xe0 be an initial configuration with h0 > 0, and let T < T0.
Then

(i) there exists a constant C > 0 such that for all N ∈ N and i = 0, . . . , N ,

‖∇ui,N‖
C0, 12 (Ωhi,N ;M2×2)

≤ C ,

(ii) E(uN )(·, hN )→ E(u)(·, h) in C0,β([0, T ];C1,α([0, b])),
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(iii) E(ũN )(·, h̃N )→ E(u)(·, h) in L∞(0, T ;C1,α([0, b])),

for every α ∈
(
0, 1

2

)
and β ∈

(
0, 1−2α

8

)
, where u(·, t) is the elastic equilibrium corresponding

to h(·, t).

Proof. Recall that by Remark 3.4 we have hN , h̃N > 0 in [0, b] × [0, T ]. Using standard
elliptic estimates (see [21, Proposition 8.9]), for all N ∈ N and i = 0, . . . , N , we may bound

the norm of ∇ui,N in C0, 1
2 (Ωhi,N ;M2×2) by a constant that depends only on the C1, 1

2 [0, b]-
norm of hi,N (and the fourth order tensor C). Thus, the first assertion follows from the
second estimate in (3.1).

In view of Lemma 5.6 and the second estimate in (3.1), the second and third assertions
are implied by (3.8) and (3.19), respectively. �

To simplify the notation, we define the function WN in [0, b]× (0, T ] by WN (·, t) := Wi,N

for each N ∈ N and t ∈ Ii,N , where

Wi,N (x) := W (E(ui,N )(x, hi,N (x))) ,

for each i = 1, . . . , N and x ∈ [0, b]. Consider also, the function defined by W (·, t) :=
W (E(u)(·, h(·, t))) in [0, b] for each t ∈ (0, T ].

Theorem 3.8. Let (h0, u0) ∈ Xe0 be an initial configuration that satisfies (3.21) and let
T < T0. Then

(i) there exists a constant C > 0 such that for each N ∈ N we have

(3.22)

∫ T

0

∫ b

0

∣∣∣∣∣∂4h̃N (x, t)

∂x4

∣∣∣∣∣
2

dx dt ≤ C ;

(ii) h ∈ L2(0, T ;H4(0, b)) and h̃N ⇀ h in L2(0, T ;H4(0, b)).

Proof. By Corollary 3.3, for all N ∈ N and i = 1, . . . , N , hi,N satisfies the Euler-Lagrange
equation

(3.23)
∫ b

0

[
ε
h′′i,N
J5
i,N

ϕ′′ − 5ε

2

(h′′i,N )2

J7
i,N

h′i,Nϕ
′ − ∂1ψ(−h′i,N , 1)ϕ′

]
dx+

∫ b

0

(Wi,N + Vi,N )ϕdx = 0

for all ϕ ∈ AP , where ∂1ψ is the partial derivative of ψ with respect to the first component
and Wi,N (x) is a continuous function in [0, b] by Theorem 3.7. In particular, for all N ∈ N,
i = 1, . . . , N , and ϕ ∈ C2

c (0, b), we have that∫ b

0
fi,Nϕ

′′dx = 0 ,

where the function fi,N , defined by

fi,N (x) := ε
h′′i,N
J5
i,N

+

∫ x

0

(
5ε

2

(h′′i,N )2

J7
i,N

h′i,N + ∂1ψ(−h′i,N , 1)

)
dr+

∫ x

0

∫ r

0
(Wi,N + Vi,N ) dζ dr ,
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for x ∈ [0, b], belongs to L2(0, b). Therefore, we conclude that

(3.24) fi,N (x) = ci,Nx+ di,N

for every x ∈ [0, b] and some constants ci,N and di,N . Now, solving (3.24) for h′′i,N , we
obtain

(3.25)

h′′i,N =
J5
i,N

ε

[
−
∫ x

0

(
5ε

2

(h′′i,N )2

J7
i,N

h′i,N + ∂1ψ(−h′i,N , 1)

)
dr

−
∫ x

0

∫ r

0
(Wi,N + Vi,N ) dζ dr + ci,Nx+ di,N

]
,

from which we conclude that h′′i,N is absolutely continuous on [0, b], and so it is b-periodic

(since hi,N is b-periodic). Furthermore, differentiating both side of (3.24) and solving the
resulting equation for h′′′i,N , we obtain

(3.26) h′′′i,N =
5

2

(h′′i,N )2

J2
i,N

h′i,N +
J5
i,N

ε

(
−∂1ψ(−h′i,N , 1)−

∫ x

0
(Wi,N + Vi,N ) dr + ci,N

)
.

Hence, h′′′i,N is also absolutely continuous on [0, b], and so it is b-periodic. Differentiat-

ing (3.24) once more and solving the resulting equation for h
(iv)
i,N , we obtain

h
(iv)
i,N = 10

h′′′i,Nh
′′
i,Nh

′
i,N

J2
i,N

+
5

2

(h′′i,N )3

J2
i,N

− 35

2

(h′′i,N )3(h′i,N )2

J4
i,N

+

+
J5
i,Nh

′′
i,N

ε
∂11ψ(−h′i,N , 1)−

J5
i,N

ε
(Wi,N + Vi,N ) .

Thus, since ψ is of class C2 away from the origin, hi,N ∈ C4([0, b]), and so hi,N ∈ H4
#(0, b)

with h
(iv)
i,N b-periodic. Furthermore, by Theorems 3.1 and 3.7, we have∫ b

0
|h(iv)
i,N |

2 dx ≤ C

∫ b

0

(
1 + |h′′i,N |6 + |h′′′i,N |2|h′′i,N |2 + V 2

i,N

)
dx

≤ C

∫ b

0
|h′′i,N |6 dx+ C

∫ b

0
|h′′′i,N |3 dx+ C

∫ b

0

(
1 + V 2

i,N

)
dx ,

where in the last inequality we used Young’s inequality. Now we apply (5.7) and (5.8) to
h′′i,N to estimate ‖h′′i,N‖L6(0,b) and ‖h′′′i,N‖L3(0,b), respectively. It follows that

‖h(iv)
i,N ‖

2
L2 ≤ C‖h′′i,N‖5L2‖h(iv)

i,N ‖L2 + C‖h′′i,N‖
5
4

L2‖h
(iv)
i,N ‖

7
4

L2 + C

∫ b

0

(
1 + V 2

i,N

)
dx

≤ γ‖h(iv)
i,N ‖

2
L2(0,b) + Cγ

∫ b

0

(
1 + V 2

i,N

)
dx ,(3.27)
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where in the last inequality we used Young’s inequality with an arbitrary γ > 0 and (3.1)
to estimate ‖h′′i,N‖L2 . Choosing γ < 1 in (3.27), multiplying for T

N , and summing over all
i = 1, . . . , N , we obtain

N∑
i=1

T

N

∫ b

0
|h(iv)
i,N |

2 dx ≤ C
∫ T

0

∫ b

0

(
1 + V 2

N

)
dx dt .

Hence, recalling the definition of h̃N since VN is bounded in L2(0, T ;L2(0, b)) by (3.20) we
obtain (i).

We now prove the second assertion. We start by considering M > N , i = 1, . . . , N and
j = 1, . . . ,M . Subtracting to (3.23) the Euler-Lagrange equation satisfied by hj,M , and
considering the test function ϕ = hi,N − hj,M , we obtain∫ b

0

(
h′′i,N
J5
i,N

−
h′′j,M
J5
j,M

)
(h′′i,N − h′′j,M ) dx =

5

2

∫ b

0

(
(h′′i,N )2

J7
i,N

h′i,N −
(h′′j,M )2

J7
j,M

h′j,M

)
(h′i,N − h′j,M ) dx

+
1

ε

∫ b

0

(
∂1ψ(−h′i,N , 1)− ∂1ψ(−h′j,M , 1)

)
(h′i,N − h′j,M ) dx

−1

ε

∫ b

0

(Wi,N −Wj,M ) (hi,N − hj,M ) dx(3.28)

−1

ε

∫ b

0

(Vi,N − Vj,M ) (hi,N − hj,M ) dx .

Fix η > 0 and recall the notation Ii,N = ((i− 1)τN , iτN ] and Ij,M = ((j− 1)τN , jτN ]. Since

h̃N → h in L∞(0, T ;C1([0, b])), for N and M sufficiently large and for every i and j such
that |Ii,N ∩ Ij,M | 6= 0, we have that ‖hi,N − hj,M‖C1([0,b]) ≤ η. We claim that

(3.29)

∫ b

0
|h′′i,N − h′′j,M |2 dx ≤ Cη

∫ b

0
(1 + |Vi,N |+ |Vj,M |) dx

for some constant C > 0. Indeed, the left-hand side of (3.28) satisfies∣∣∣∣∣
∫ b

0

(
h′′i,N
J5
i,N

−
h′′j,M
J5
j,M

)
(h′′i,N − h′′j,M ) dx

∣∣∣∣∣
≥
∫ b

0

|h′′i,N − h′′j,M |2

J5
i,N

dx−

∣∣∣∣∣
∫ b

0
h′′j,M

(
1

J5
j,M

− 1

J5
i,N

)
(h′′i,N − h′′j,M ) dx

∣∣∣∣∣
≥ C

∫ b

0
|h′′i,N − h′′j,M |2 dx−

∫ b

0

∣∣∣∣∣ 1

J5
j,M

− 1

J5
i,N

∣∣∣∣∣ |h′′j,M |(|h′′i,N |+ |h′′j,M |) dx

≥ C
∫ b

0
|h′′i,N − h′′j,M |2 dx− Cη

where we used the Lipschitz continuity of the function s 7→ (1 + s2)−
5
2 on [0, r0], Ji,N ≤√

1 + r2
0, and (3.6). Thus, the claim follows from the fact that the absolute value of the
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right-hand side may be estimated from above by Cη for some constant C > 0, since hi,N ,
hj,M ≤ r0, (3.6), ∂1ψ is continuous away from the origin, and in view of assertion (iii) of
Theorem 3.7.

Furthermore, integrating (3.29) over Ii,N ∩ Ij,M , we have that for N and M sufficiently
large, ∫

Ii,N∩Ij,M

∫ b

0

∣∣∣∣∣∂2h̃N
∂x2

(x, t)−∂
2h̃M
∂x2

(x, t)

∣∣∣∣∣
2

dx dt

≤ Cη
∫
Ii,N∩Ij,M

∫ b

0
(1 + |Vi,N |+ |Vj,M |) dx dt

for each i and j such that |Ii,N ∩ Ij,M | 6= 0. Now, we first fix i = 1, . . . , N , and sum the
previous estimate with respect to every j such that |Ii,N ∩ Ij,M | 6= 0 to obtain∫

Ii,N

∫ b

0

∣∣∣∣∣∂2h̃N
∂x2

(x, t)−∂
2h̃M
∂x2

(x, t)

∣∣∣∣∣
2

dx dt

≤ Cη
∫
Ii,N

∫ b

0
(1 + |VN |+ |VM |) dx dt ,

and then we sum over i, so that (3.20) implies

(3.30)

∫ T

0

∫ b

0

∣∣∣∣∣∂2h̃N
∂x2

(x, t)− ∂2h̃M
∂x2

(x, t)

∣∣∣∣∣
2

dx dt ≤ Cη

for M , N sufficiently large and some constant C > 0.
Moreover, by (5.6),∫ b

0

∣∣∣∣∣∂3h̃N
∂x3

(x, t)− ∂3h̃M
∂x3

(x, t)

∣∣∣∣∣
2

dx

≤ C

∫ b

0

∣∣∣∣∣∂4h̃N
∂x4

(x, t)− ∂4h̃M
∂x4

(x, t)

∣∣∣∣∣
2

dx

 1
2
∫ b

0

∣∣∣∣∣∂2h̃N
∂x2

(x, t)− ∂2h̃M
∂x2

(x, t)

∣∣∣∣∣
2

dx

 1
2

.

Finally, we integrate with respect to t and use Hölder’s inequality, the first assertion
and (3.30) to deduce that

(3.31)

∫ T

0

∫ b

0

∣∣∣∣∣∂3h̃N
∂x3

(x, t)− ∂3h̃M
∂x3

(x, t)

∣∣∣∣∣
2

dx dt ≤ Cη
1
2 ,

for N and M sufficiently large. Thus, by (3.30) and (3.31),
{
∂2h̃N
∂x2

}
is a Cauchy sequence

in L2(0, T ;H1(0, b)) and, since by Theorem 3.1 and (3.19) h̃N ⇀ h in L2(0, T ;H2(0, b)),

we have that h̃N → h in L2(0, T ;H3(0, b)). Hence, in view of (i) we obtain that h̃N ⇀ h
in L2(0, T ;H4(0, b)). �
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Note that h ∈ L2(0, T ;H4
#(0, b)) ∩ H1(0, T ;L2

#(0, b)) and recall Definition 2.6. In the

following theorem, we prove the existence of a solution of (1.10) in [0, T ] for T < T0.

Theorem 3.9. Let (h0, u0) ∈ Xe0 be an initial configuration such that h0 > 0, and let
T0 > 0 be as defined in (3.17). Then the Cauchy problem (1.10) admits a solution in [0, T ]
for each T < T0 in the sense of Definition 2.6.

Proof. Fix ϕ ∈ C∞c ((0, b)× (0, T )). It follows from (3.23) that for all N ∈ N,∫ b

0

[
ε

(h̃N )xx

J̃5
N

ϕxx −
5ε

2

(h̃N )2
xx

J̃7
N

(h̃N )xϕx − ∂1ψ(−(h̃N )x, 1)ϕx +WNϕ

]
dx = −

∫ b

0
VNϕdx

in (0, T ]. Integrating over (0, T ], we obtain

(3.32)

∫ T

0
AN dt = −

∫ T

0

∫ b

0
VNϕdxdt ,

where

AN :=

∫ b

0

[
ε

(h̃N )xx

J̃5
N

ϕxx −
5ε

2

(h̃N )2
xx

J̃7
N

(h̃N )xϕx − ∂1ψ(−(h̃N )x, 1)ϕx +WNϕ

]
dx

in (0, T ]. By Lebesgue Dominated Convergence Theorem, {AN} converges to

A :=

∫ b

0

[
ε
hxx
J5

ϕxx −
5ε

2

h2
xx

J7
hxϕx − ∂1ψ(−hx, 1)ϕx +Wϕ

]
dx

in L1(0, T ). Indeed, we have that

|AN | ≤ C‖ϕ‖C2((0,b)×(0,T ))

∫ b

0

[
|(h̃N )xx|+ |(h̃N )xx|2 +WN

]
dx

in (0, T ] for some constant C > 0, since (h̃N )x is uniformly bounded in [0, b] × (0, T ],

∂1ψ is continuous away from the origin, and J̃N ≥ 1. Thus, by (3.1) and assertion (i)
of Theorem 3.7, AN is uniformly bounded in (0, T ]. Moreover, AN → A L1-a.e. in
(0, T ) because ∂1ψ is continuous away from the origin, WN (·, t) → W (·, t) in C([0, b]) by

Theorem 3.7, and h̃N (·, t)→ h(·, t) in C2([0, b]) by Theorem 3.8.
Therefore, since AN → A in L1(0, T ) and also by (3.20), we obtain that∫ T

0

∫ b

0

[
ε
hxx
J5

ϕxx −
5ε

2

h2
xx

J7
hxϕx − ∂1ψ(−hx, 1)ϕx +Wϕ

]
dx dt = −

∫ T

0

∫ b

0
V ϕ dx dt .

Integrating by parts, we have

(3.33)

∫ T

0

∫ b

0
fϕdx dt = 0 ,

where the function f defined in [0, b]× (0, T ) by

f := ε

(
hxx
J5

)
xx

+
5ε

2

(
h2
xx

J7
hx

)
x

+ (∂1ψ(−hx, 1))x +W + V ,
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belongs to L2(0, T ;L2(0, b)). Indeed, since hx is uniformly bounded in [0, b]× [0, T ], J ≥ 1,
and ∂11ψ is continuous away from the origin, we have∫ T

0

∫ b

0
|f |2 dx dt ≤ C

∫ T

0

∫ b

0

[
|hxxxx|2 + |hxxx|2|hxx|2 + |hxx|6 + |hxx|2 +W 2 + |V |2

]
dx dt

≤ C
∫ T

0

∫ b

0

[
1 + |hxxx|2|hxx|2 + |hxx|6

]
dx dt

≤ C
∫ T

0

∫ b

0

[
1 + |hxxx|3 + |hxx|6

]
dx dt

for some constant C > 0, where in the second inequality we used the fact that h belongs to
L2(0, T0;H4(0, b)), (3.20) and Theorem 3.7, while the last one follows from Young’s inequa-
lity. Moreover, since hxx(·, t) ∈ H2

#(0, b) for L1-a.e. t in [0, T0], we may use the interpolation

results (5.7) and (5.8) to estimate ‖hxxx(·, t)‖L3(0,b) and ‖hxx(·, t)‖L6(0,b), respectively, as
done in (3.27), and then applying again Young’s inequality, we obtain∫ T

0

∫ b

0
|f |2 dx dt ≤ C

[
1 +

∫ T

0

∫ b

0
|hxxxx|2 dx dt+

∫ T

0

(∫ b

0
|hxx|2 dx

)5

dt

]
.

Note that since h ∈ L2(0, T ;H4(0, b)) ∩ L∞(0, T ;H2(0, b)), the right-hand side of the
previous inequality is bounded.

By the arbitrariness of ϕ and the density of C∞c ((0, b)× (0, T )) in L2((0, b)× (0, T )), we
deduce from (3.33) that f ≡ 0. Thus, h satisfies

V = −ε
(
hxx
J5

)
xx

− 5ε

2

(
h2
xx

J7
hx

)
x

− (∂1ψ(−hx, 1))x −W ,

which is (2.15). �

The following regularity result applies to the solution h of (1.10) for T < T0.

Theorem 3.10. Let (h0, u0) ∈ Xe0 be an initial configuration such that h0 > 0 and let
T < T0. Then, the solution h of (1.10) in [0, T ] given in Theorem 3.9, satisfies:

(i) h ∈ L2(0, T ;H4
#(0, b)) ∩ L∞(0, T ;H2

#(0, b)) ∩H1(0, T ;L2
#(0, b)),

(ii) h ∈ C0,β([0, T ];C1,α([0, b])) for every α ∈
(
0, 1

2

)
and β ∈

(
0, 1−2α

8

)
,

(iii) ‖hx‖L∞(0,T ;L∞(0,b)) ≤ ‖h′0‖∞ +
√
‖h′0‖2∞ + 1,

(iv) h ∈ L
12
5 (0, T ;C2,1

# ([0, b])) ∩ L
24
5 (0, T ;C1,1

# ([0, b])).

Proof. Properties (i)-(iii) have been established in Theorems 3.1, 3.2, 3.8, and Corollary 3.3.
In order to prove (iv), we fix N,M ∈ N and we follow [19, Corollary 3.7]. By (5.8), we
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have∥∥∥∂3h̃N
∂x3

(·, t)− ∂3h̃M
∂x3

(·, t)
∥∥∥
∞

≤ C

(∫ b

0

∣∣∣∂4h̃N
∂x4

(x, t)− ∂4h̃M
∂x4

(x, t)
∣∣∣2 dx

) 5
12
(∫ b

0

∣∣∣∂h̃N
∂x

(x, t)− ∂h̃M
∂x

(x, t)
∣∣∣2 dx

) 1
12

L1-a.e. in [0, T ]. Raising both sides to the power 12
5 , integrating over [0, T ] and recall-

ing (3.22), we obtain∫ T

0

∥∥∥∥∥∂3h̃N
∂x3

(·, t)− ∂3h̃M
∂x3

(·, t)

∥∥∥∥∥
12
5

∞

dt ≤ C sup
t∈[0,T ]

∥∥∥∥∥∂h̃N∂x (·, t)− ∂h̃M
∂x

(·, t)

∥∥∥∥∥
2
5

∞

.

Then, by (3.19) we have that h̃N → h in L
12
5 (0, T ;C2,1

# ([0, b])) and h ∈ L
12
5 (0, T ;C2,1

# ([0, b])).

Furthermore, by (5.6), we have∥∥∥∥∥∂2h̃N
∂x2

(·, t)− ∂2h̃M
∂x2

(·, t)

∥∥∥∥∥
∞

≤ C

∥∥∥∥∥∂3h̃N
∂x3

(·, t)− ∂3h̃M
∂x3

(·, t)

∥∥∥∥∥
1
2

∞

∥∥∥∥∥∂h̃N∂x (·, t)− ∂h̃M
∂x

(·, t)

∥∥∥∥∥
1
2

∞

L1-a.e. in [0, T ]. Thus, raising both sides to the power 24
5 , we proceed as before to conclude

that h̃N → h in L
24
5 (0, T ;C1,1

# ([0, b])) and h ∈ L
24
5 (0, T ;C1,1

# ([0, b])).
�

4. Uniqueness

From Theorem 4.1 below, it follows that the solution provided by Theorem 3.9 is the
unique solution of (1.10) in [0, T ] for T < T0. Since (2.15) does not necessarily preserve
the area underneath the profile of the film, the proof is more involved than the one in [19]
for the case with surface diffusion.

Theorem 4.1. Let (h0, u0) ∈ Xe0 be an initial configuration such that h0 > 0, and let
T > 0. If h1, h2 ∈ L2(0, T ;H4

#(0, b)) ∩ L∞(0, T ;H2
#(0, b)) ∩ H1(0, T ;L2

#(0, b)) are two

solutions of (1.10) in [0, T ] with initial configuration (h0, u0) (see Definition 2.6), then
h1 = h2.

Proof. For simplicity of notation, in this proof, we denote by (·)′ the differentiation with
respect to x. Consider a constant M > 0 such that

(4.1) ‖hi‖L∞(0,T ;H2
#(0,b)) ≤M

for i = 1, 2. We want to apply Gronwall’s Lemma to the function

t 7→ H(t) :=

∫ b

0
|h2 − h1|2 dx+

∫ b

0
|h′2 − h′1|2 dx .
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We claim that H ∈W 1,1(0, T ), and that there exists a constant C > 0, that depends only
on M , such that

(4.2)
∂H

∂t
(t) ≤ CG(t)H(t)

for almost every t ∈ (0, T ), where

G(t) := 1 + ‖h(iv)
1 (·, t)‖2L2 + ‖h(iv)

2 (·, t)‖2L2 .

We proceed in four steps. In the sequel of this proof, constants denoted by the same symbol
may change from formula to formula.

Step 1: We begin by proving that H ∈W 1,1(0, T ), and that for almost every t ∈ (0, T ),
we have

(4.3)
1

2

∂

∂t

∫ b

0
|h2 − h1|2 dx =

∫ b

0

(
∂h2

∂t
− ∂h1

∂t

)
(h2 − h1) dx ,

and

(4.4)
1

2

∂

∂t

∫ b

0
|h′2 − h′1|2 dx = −

∫ b

0

(
∂h2

∂t
− ∂h1

∂t

)
(h′′2 − h′′1) dx .

To this purpose, we mollify the b-periodic function h̄ defined in R× (−T, 2T ) by

h̄(·, t) :=


(h2 − h1)(·, t) if t ∈ [0, T ],

(h2 − h1)(·,−t) if t ∈ (−T, 0),

(h2 − h1)(·, 2T − t) if t ∈ (T, 2T ).

For each ε > 0 small enough, the mollification h̄ε is defined and smooth in R × [0, T ] and
so, it satisfies

1

2

∂

∂t

∫ b

0
|h̄ε|2 dx =

∫ b

0

∂h̄ε
∂t

h̄ε dx and
1

2

∂

∂t

∫ b

0
|h̄′ε|2 dx = −

∫ b

0

∂h̄ε
∂t

h̄′′ε dx(4.5)

in [0, T ], where we used the fact that h̄ε(·, t) is b-periodic for each t ∈ [0, T ]. Furthermore,
h̄ε → h̄ in H1((0, b)× (0, T )) since h̄ ∈ H1((−b, 2b)× (−T, 2T )), and h̄′′ε → h̄′′ in L2((0, b)×
(0, T )) since h̄′′ ∈ L2((−b, 2b) × (−T, 2T )) (see [29]). Therefore, by (4.5) we obtain that∫ b

0 |h̄|
2 dx and

∫ b
0 |h̄

′|2 dx are weakly differentiable in the sense of distributions in (0, T ) and
satisfy (4.3) and (4.4), respectively.
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Step 2: Inserting (2.15) for h1 and h2 in (4.3), integrating by parts, and using the
periodicity of h1(·, t) and h2(·, t), we obtain

1

2

∂

∂t

∫ b

0
|h2 − h1|2 dx =− ε

∫ b

0

[
h′′2
J5

2

(J2(h2 − h1))′′ − h′′1
J5

1

(J1(h2 − h1))′′
]

dx

+
5ε

2

∫ b

0

[
(h′′2)2h′2
J7

2

(J2(h2 − h1))′ − (h′′1)2h′1
J7

1

(J1(h2 − h1))′
]

dx

+

∫ b

0
∂1ψ(−h′2, 1)(J2(h2 − h1))′ − ∂1ψ(−h′1, 1)(J1(h2 − h1))′ dx(4.6)

−
∫ b

0
(W2J2 −W1J1)(h2 − h1) dx =: I1 + I2 + I3 + I4 ,

where Ji and Wi refer to the function hi for i = 1, 2. In the sequel of this step, we estimate
the integrals on the right-hand side of the previous equality.

First, we consider I1 and I2 and observe that

I1 + I2 + ε

∫ b

0

|h′′2 − h′′1|2

J4
2

dx =ε

∫ b

0
h′′1

(
1

J4
2

− 1

J4
1

)
(h′′2 − h′′1) dx

+
3ε

2

∫ b

0

(
(h′′2)2h′2
J6

2

− (h′′1)2h′1
J6

1

)
(h′2 − h′1) dx

+
5ε

2

∫ b

0

(
(h′′′2 )3(h′2)2

J8
2

− (h′′′1 )3(h′1)2

J8
1

)
(h2 − h1) dx

−
∫ b

0

(
(h′′2)3 + h′′′2 h

′′
2h
′
2 + h′′′2 h

′′
2(h′2)3

J8
2

− (h′′1)3 + h′′′1 h
′′
1h
′
1 + h′′′1 h

′′
1(h′1)3

J8
1

)
(h2 − h1) dx .

In view of (4.1), h′1 and h′2 are uniformly bounded and so there exists a constant Cε > 0
that depends on M such that

(4.7) inf
(0,b)×(0,T )

ε

J4
2

≥ Cε .

Thus, since for n ∈ N the function s 7→ (1 + s2)−
n
2 is locally Lipschitz continuous and we

have

(4.8) |(h′′2)n − (h′′1)n| ≤ (‖h′′1‖n−1
∞ + ‖h′′2‖n−1

∞ )|h′′2 − h′′1|
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in (0, b)× (0, T ), we obtain

I1+I2 + Cε

∫ b

0
|h′′2 − h′′1|2 dx ≤ C

[∫ b

0
|h′′1||h′′2 − h′′1||h′2 − h′1|dx+

∫ b

0
|h′′2|2|h′2 − h′1|2 dx

+ (‖h′′1‖∞ + ‖h′′2‖∞)

∫ b

0
|h′′2 − h′′1||h′2 − h′1|dx+

∫ b

0
(|h′′2||h′2 − h′1|)(|h′′2|2|h2 − h1|) dx

+ (‖h′′1‖2∞ + ‖h′′2‖2∞)

∫ b

0
|h′′2 − h′′1||h2 − h1|dx+

∫ b

0
(|h′′2||h′2 − h′1|)(|h′′′2 ||h2 − h1|) dx

+

∫ b

0
|h′′2||h′′′2 − h′′′1 ||h2 − h1| dx+

∫ b

0
|h′′′1 ||h′′2 − h′′1||h2 − h1| dx

]
.

We now apply Young’s inequality to each integral on the right-hand side of the previous
inequality. Precisely, for the integrals that present the term |h′′2 − h′′1| or |h′′′2 − h′′′1 |, we use
Young’s inequality with a parameter η > 0. In this way, we have that

I1 + I2 + Cε

∫ b

0
|h′′2 − h′′1|2 dx ≤ η

∫ b

0
|h′′′2 − h′′′1 |2 dx+ η

∫ b

0
|h′′2 − h′′1|2 dx

+Cη
(
‖h′′1‖2∞ + ‖h′′2‖2∞

) ∫ b

0
|h′2 − h′1|2 dx(4.9)

+Cη(‖h′′2‖2∞ + ‖h′′1‖4∞ + ‖h′′2‖4∞ + ‖h′′′1 ‖2∞ + ‖h′′′2 ‖2∞)

∫ b

0
|h2 − h1|2 dx .

Next, we estimate I3 from above. As before, we begin by observing that

I3 =

∫ b

0
(∂1ψ(−h′2, 1)J2 − ∂1ψ(−h′1, 1)J1)(h′2 − h′1) dx

+

∫ b

0
(∂1ψ(−h′2, 1)

h′′2h
′
2

J2
− ∂1ψ(−h′1, 1)

h′′1h
′
1

J1
)(h2 − h1) dx .

Then, using the fact that the function s 7→ ∂1ψ(s, 1) is locally Lipschitz continuous, and
again invoking the fact that h′1 and h′2 are uniformly bounded, we have

I3 ≤ C
[∫ b

0
|h′2 − h′1|2 dx+

∫ b

0
|h′′2||h′2 − h′1||h2 − h1| dx+

∫ b

0
|h′′2 − h′′1||h2 − h1| dx

]
≤ η

∫ b

0
|h′′2 − h′′1|2 dx+ C

∫ b

0
|h′2 − h′1|2 dx+ Cη(1 + ‖h′′2‖2∞)

∫ b

0
|h2 − h1|2 dx .(4.10)

Now, we consider I4. Observe that by Lemma 5.6 and by the definition of W , there
exists a constant C, that depends on M , such that ‖Wi‖L∞((0,b)×(0,T )) ≤ C for i = 1, 2,
and

(4.11)

∫ b

0
|W2 −W1|2 dx ≤ C‖h1 − h2‖2H2 ≤ C

∫ b

0
|h2 − h1|2 dx+ C

∫ b

0
|h′′2 − h′′1|2 dx

in (0, T ), where in the last estimate we applied Poincaré inequality. Therefore, since the

function s 7→ (1 + s2)
1
2 is locally Lipschitz continuous, Wi and h′i are uniformly bounded
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for i = 1, 2, we have

I4 := −
∫ b

0
(W2J2 −W1J1)(h2 − h1) dx

≤ C
∫ b

0
|W2 −W1||h2 − h1|dx+ C

∫ b

0
|h′2 − h′1||h2 − h1|dx

≤ η
∫ b

0
|W2 −W1|2 dx+ C

∫ b

0
|h′2 − h′1|2 dx+ Cη

∫ b

0
|h2 − h1|2 dx(4.12)

≤ η
∫ b

0
|h′′2 − h′′1|2 dx+ C

∫ b

0
|h′2 − h′1|2 dx+ Cη

∫ b

0
|h2 − h1|2 dx ,

where in the second inequality we used Young’s inequality (with and without a small
parameter η > 0), while in the last we used (4.11).

Finally, combining (4.9), (4.10) and (4.12) with (4.6), we obtain that

∂

∂t

∫ b

0
|h2−h1|2 dx+ Cε

∫ b

0
|h′′2 − h′′1|2 dx ≤ η

∫ b

0
|h′′′2 − h′′′1 |2 dx+ η

∫ b

0
|h′′2 − h′′1|2 dx

+ Cη
(
1 + ‖h′′1‖2∞ + ‖h′′2‖2∞

) ∫ b

0
|h′2 − h′1|2 dx+ Cη(1 +D)

∫ b

0
|h2 − h1|2 dx ,(4.13)

for a small η > 0 and for a function D defined in (0,T) by

(4.14) D(t) :=
∑
i=1,2

(
‖h′′i (·, t)‖2∞ + ‖h′′i (·, t)‖4∞ + ‖h′′′i (·, t)‖2∞

)
.

Step 3: We now insert (2.15) for h1 and h2 in (4.4). Since(
h′′i
J5
i

)′′
=

(
h′′′i
J5
i

)′
− 5

(
(h′′i )

2h′i
J7
i

)′
for i = 1, 2, integrating by parts and using the periodicity of h1(·, t) and h2(·, t), we have
that

1

2

∂

∂t

∫ b

0
|h′2 − h′1|2 dx =−

∫ b

0

[
ε
h′′′2
J5

2

− 5ε

2

(h′′2)2h′2
J7

2

+ ∂1ψ(−h′2, 1)

]
(J2(h′′2 − h′′1))′ dx

+

∫ b

0

[
ε
h′′′1
J5

1

− 5ε

2

(h′′1)2h′1
J7

1

+ ∂1ψ(−h′1, 1)

]
(J1(h′′2 − h′′1))′ dx(4.15)

+

∫ b

0
(W2J2 −W1J1)(h′′2 − h′′1) dx := Ī1 + Ī2 + Ī3 .

Proceeding analogously to the second step, we estimate the integrals on the right-hand side
of the previous equality.
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First, we observe that

Ī1 + Ī2 + ε

∫ b

0

|h′′′2 − h′′′1 |2

J4
2

dx =−ε
∫ b

0

h′′′1

(
1

J4
2

− 1

J4
1

)
(h′′′2 − h′′′1 ) dx

−ε
∫ b

0

(
h′′′2 h

′′
2h
′
2

J6
2

− h′′′1 h
′′
1h
′
1

J6
1

)
(h′′2 − h′′1) dx

+
5ε

2

∫ b

0

(
(h′′2)2h′2
J6
2

− (h′′1)2h′1
J6
1

)
(h′′′2 − h′′′1 ) dx

+
5ε

2

∫ b

0

(
(h′′2)3(h′2)2

J8
2

− (h′′1)3(h′1)2

J8
1

)
(h′′2 − h′′1) dx

−
∫ b

0

(∂1ψ(−h′2, 1)J2 − ∂1ψ(−h′1, 1)J1)(h′′′2 − h′′′1 ) dx

−
∫ b

0

(∂1ψ(−h′2, 1)
h′′2h

′
2

J2
− ∂1ψ(−h′1, 1)

h′′1h
′
1

J1
)(h′′2 − h′′1) dx .

Thus, recalling (4.7) and using as before the facts that h′1 and h′2 are uniformly bounded,

that for n ∈ N, (4.8) holds, and that the functions s 7→ (1 + s2)−
n
2 and s 7→ ∂1ψ(s, 1) are

locally Lipschitz continuous, we obtain

Ī1+Ī2 + Cε

∫ b

0

|h′′′2 − h′′′1 |2 dx ≤ C
[∫ b

0

|h′′′1 ||h′′′2 − h′′′1 ||h′2 − h′1|dx

+

∫ b

0

(|h′′2 ||h′′2 − h′′1 |)(|h′′′2 ||h′2 − h′1|) dx+

∫ b

0

|h′′2 ||h′′′2 − h′′′1 ||h′′2 − h′′1 |dx+

∫ b

0

|h′′′1 ||h′′2 − h′′1 |2 dx

+

∫ b

0

|h′′2 |2|h′′′2 − h′′′1 ||h′2 − h′1|dx+ (‖h′′1‖∞ + ‖h′′2‖∞)

∫ b

0

|h′′′2 − h′′′1 ||h′′2 − h′′1 |dx

+

∫ b

0

(|h′′2 ||h′′2 − h′′1 |)(|h′′2 |2|h′2 − h′1|) dx+ (‖h′′1‖2∞ + ‖h′′2‖2∞)

∫ b

0

|h′′2 − h′′1 |2 dx

+

∫ b

0

|h′′′2 − h′′′1 ||h′2 − h′1|dx+

∫ b

0

|h′′2 ||h′′2 − h′′1 ||h′2 − h′1|dx+

∫ b

0

|h′′2 − h′′1 |2 dx

]
.

We then apply Young’s inequality to each integral on the right-hand side of the previous
inequality. Precisely, for the integrals that present the term |h′′′2 − h′′′1 | we apply Young’s
inequality with a parameter η > 0. In this way, we have

Ī1 + Ī2+Cε

∫ b

0
|h′′′2 − h′′′1 |2 dx ≤ η

∫ b

0
|h′′′2 − h′′′1 |2 dx

+ Cη
(
1 + ‖h′′1‖2∞ + ‖h′′2‖2∞ + ‖h′′′1 ‖∞

) ∫ b

0
|h′′2 − h′′1|2 dx(4.16)

+ Cη(1 + ‖h′′2‖2∞ + ‖h′′2‖4∞ + ‖h′′′1 ‖2∞ + ‖h′′′2 ‖2∞)

∫ b

0
|h′2 − h′1|2 dx .
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Next, we estimate Ī3 from above. From the facts that the function s 7→ (1 + s2)
1
2 is

locally Lipschitz continuous, that Wi and h′i are uniformly bounded for i = 1, 2 and (4.11),
it follows that

Ī3 ≤ C
∫ b

0
|W2 −W1||h′′2 − h′′1| dx+ C

∫ b

0
|h′′2 − h′′1||h′2 − h′1| dx

≤ C
∫ b

0
|h′′2 − h′′1|2 dx+ C

∫ b

0
|h′2 − h′1|2 dx+ C

∫ b

0
|h2 − h1|2 dx ,(4.17)

where we used Young’s inequality and (4.11).
Now, since

‖h′′2 − h′′1‖L2 ≤ C‖h′′′2 − h′′′1 ‖
1
2

L2‖h′2 − h′1‖
1
2

L2

by (5.6) applied to h′2 − h′1 with j = 1 and m = 2, we observe that

Cη
(
1 + ‖h′′1‖2∞ + ‖h′′2‖2∞ + ‖h′′′1 ‖∞

) ∫ b

0
|h′′2 − h′′1|2 dx

≤ Cη
(
1 + ‖h′′1‖2∞ + ‖h′′2‖2∞ + ‖h′′′1 ‖∞

)
‖h′′′2 − h′′′1 ‖L2‖h′2 − h′1‖L2(4.18)

≤ η
∫ b

0
|h′′′2 − h′′′1 |2 + Cη

(
1 + ‖h′′1‖4∞ + ‖h′′2‖4∞ + ‖h′′′1 ‖2∞

) ∫ b

0
|h′2 − h′1|2

where, in the last inequality, we used again Young’s inequality for η > 0.
Finally, by (4.15), (4.16), (4.17) and (4.18), we obtain

∂

∂t

∫ b

0
|h′2 − h′1|2 dx+ Cε

∫ b

0
|h′′′2 − h′′′1 |2 dx ≤

≤ η
∫ b

0
|h′′′2 − h′′′1 |2 dx+ Cη (1 +D)

∫ b

0
|h′2 − h′1|2 dx+ C

∫ b

0
|h2 − h1|2 dx ,(4.19)

where D is the function defined in (0, T ) by (4.14).
Step 4: Adding (4.13) and (4.19), and choosing η small enough, we deduce that

(4.20)
∂H

∂t
(t) ≤ C(1 +D(t))H(t) ,

for some costant C > 0 and for each t ∈ (0, T ). We note that, for each t ∈ (0, T ) and for
i = 1, 2, by (5.7) with m = 2, p = 2, and q =∞ applied to h′′i (·, t), we have

‖h′′i (·, t)‖∞ ≤ C‖h
(iv)
i (·, t)‖

1
4

L2(0,b)
‖h′′i (·, t)‖

3
4

L2(0,b)
≤ CM

3
4 ‖h(iv)

i (·, t)‖
1
4

L2(0,b)
,

and by (5.8) with m = 2, j = 1, p = 2, and q =∞ again applied to h′′i (·, t), we have

‖h′′′i (·, t)‖∞ ≤ C‖h(iv)
i (·, t)‖

3
4

L2(0,b)
‖h′′i (·, t)‖

1
4

L2(0,b)
≤ CM

1
4 ‖h(iv)

i (·, t)‖
3
4

L2(0,b)
.

Therefore, we may find a constant C > 0 that depends only on M such that D(t) ≤ CG(t),
and so (4.2) follows from (4.20). In view of the fact that G ∈ L1(0, T ), we may apply
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Gronwall’s Lemma to obtain that H satisfies

H(t) ≤ H(0) exp

(∫ t

0
G(s) ds

)
for every t ∈ [0, T ]. Since H(0) = 0, this concludes the proof.

�

5. Appendix

In this section we collect some results used throughout the paper. We begin by estab-
lishing a Korn-type inequality for subgraphs of Lipschitz functions.

Lemma 5.1. Let h : [0, b] → [−L,L] be a Lipschitz function with Liph ≤ L for some
L > 0 and consider Uh := {z = (x, y) : 0 < x < b,−L(1 + 3b) < y < h(x)}. If 1 < p < ∞,
then there exists a constant C = C(p, b, L) > 0 such that

(5.1)

∫
Uh

|u|p dz +

∫
Uh

|∇u|p dz ≤ C
∫
Uh

|E(u)|p dz ,

for all u ∈W 1,p(Uh;R2) with u(·,−L(1 + 3b)) = 0 (in the sense of traces).

Proof. Fix a ball B contained in (0, b) × (−L(1 + 3b),−L(1 + 2b)). Since Uh is an open
bounded domain starshaped with respect to B, by a classical version of Korn’s inequality
(see [32, 36]) there exists a constant C1 = C1(p, b, L) > 0 such that

(5.2)

∫
Uh

|∇u|p dz ≤ C1

(∫
Uh

|u|p dz +

∫
Uh

|E(u)|p dz

)
for all u ∈W 1,p(Uh;R2). Thus, it is enough to prove that

(5.3)

∫
Uh

|u|p dz ≤ C2

∫
Uh

|E(u)|p dz

for some constant C2 = C2(p, b, L) > 0. By contradiction, assume that there exists a
sequence {hn} as in the statement and a sequence {un} ⊂W 1,p(Uhn ;R2) of functions with
un(·,−L(1 + 3b)) = 0 (in the sense of traces) such that∫

Uhn

|un|p dz > n

∫
Uhn

|E(un)|p dz .

By the Ascoli-Arzelà Theorem, since {hn} is bounded in C0,1([0, b]) by L, up to a subse-
quence (not relabeled), it converges uniformly to a Lipschitz function h̄ with Lip h̄ ≤ L.
Furthermore, for every n ∈ N, the function

vn :=
un

‖un‖Lp(Uhn )

satisfies ∫
Uhn

|vn|p dz = 1 ,

∫
Uhn

|E(vn)|p dz → 0 as n→∞ ,(5.4)
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and its trace on the segment (0, b)× {−L(1 + 3b)} is equal to zero. Hence,

sup
n

∫
Uhn

|∇vn|p dz < +∞

by (5.2), and since Uhn has Lipschitz boundary we can extend the functions vn to the
rectangle RL := (0, b) × (L(1 + 3b),−L(1 + 3b)) in such a way that {vn} is bounded in
W 1,p(RL;R2) with null trace on (0, b) × {−L(1 + 3b)}. Thus, up to a subsequence (not
relabeled), {vn} converges weakly in W 1,p(RL;R2) to some function v. Note that (5.4)
implies that

(5.5)

∫
Uh̄

|v|p dz = 1 ,

since {vnχUhn} converges to vχUh̄ in Lp(RL;R2) by the Lebesgue Dominated Theorem and
the uniqueness of the limit. Moreover, v has trace zero on the segment (0, b)×{−L(1+3b)}
(see [29]), and {E(vn)} converges weakly to E(v) in Lp(RL;R2). Thus, in view of the
uniform convergence of {hn} to h̄ and by the Lebesgue Monotone Convergence Theorem,
we have ∫

Uh̄

|E(v)|p dz ≤ lim inf
n→∞

∫
Uhn

|E(vn)|p dz = 0 ,

and so E(v) ≡ 0 L2-a.e in Uh̄. Since Uh̄ is connected, this yields that v(z) = a + Az for
some a ∈ R2 and some skew-symmetric matrix A ∈ M2×2. Thus, since v is continuous,
v(·,−L(1 + 3b)) = 0 in (0, b) and so a = 0 and A = 0. We have reached a contradiction
with (5.5).

�

The following two lemmas provide the identities used to derive (2.15). The proofs can
be found in the Appendix of [19].

Lemma 5.2. Let g be the function introduced in (2.2). Then,

g(θ) + gθθ(θ) =
∂11ψ(cos θ, sin θ)

sin2 θ

for every θ ∈ (0, 2π) \ {π}.

Lemma 5.3. The curvature regularization term satisfies the identity

kσσ +
1

2
k3 =

(
hxx
J5

)
xx

+
5

2

(
h2
xx

J7
hx

)
x

for h sufficiently smooth.

For the convenience of the reader, we present here some interpolation inequalities that are
used throughout the paper, and that are essentially contained in [1] and in the Appendix of
[19] (see also [30]). We recall that given a bounded open interval I ⊂ R, Wm,p

# (I) denotes

the space of all functions in Wm,p
loc (R) that are |I|-periodic, endowed with the norm of

Wm,p(I).
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Theorem 5.4. Let I ⊂ R be a bounded open interval. Let j, m be positive integers such
that 0 ≤ j < m, and let 1 ≤ p ≤ q ≤ ∞ be such that mp > 1. Then, there exists a constant
K > 0 such that for all f ∈Wm,p

# (I)

(5.6) ‖f (j)‖Lp(I) ≤ K‖f (m)‖
j
m

Lp(I)‖f‖
m−j
m

Lp(I) .

In addition, if either f vanishes at the boundary or
∫
I f dx = 0, then

(5.7) ‖f‖Lq(I) ≤ K‖f (m)‖θLp(I)‖f‖
1−θ
Lp(I) ,

where θ := 1
m

(
1
p −

1
q

)
.

The following result follows from Theorem 5.4.

Corollary 5.5. Let I ⊂ R be a bounded open interval. Let j, m be positive integers such
that 0 < j < m and let 1 ≤ p ≤ q ≤ ∞ be such that (m − j)p > 1. Then, there exists a
constant K > 0 such that for all f ∈Wm,p

# (I)

(5.8) ‖f (j)‖Lq(I) ≤ K‖f (m)‖ηLp(I)‖f‖
1−η
Lp(I) ,

where η := 1
m

(
1
p −

1
q + j

)
.

Proof. Since f (j) ∈Wm−j,p
# (I) and

∫
I f

(j)dx = 0, by (5.7) we have

‖f (j)‖Lq(I) ≤ K‖f (m)‖θLp(I)‖f
(j)‖1−θLp(I) ,

with θ := 1
m−j

(
1
p −

1
q

)
, which, together with (5.6), yields (5.8). �

Finally, the following elliptic estimate was established in [19, Lemma 6.10] using [21,
Proposition 8.9]. Recall Remark 2.5 for the notation.

Lemma 5.6. Let M > 0 and c0 > 0. Consider h1, h2 ∈ H2
#(0, b) with hi ≥ c0 and

‖hi‖H2
#(0,b) ≤ M for i = 1, 2, and let u1 and u2 the corresponding elastic equilibrium in

Ωh1 and Ωh2, respectively. Then, for every α ∈ (0, 1
2 ]

‖E(u1)(·, h1(·))− E(u2)(·, h2(·))‖C1,α([0,b]) ≤ C‖h1 − h2‖C1,α([0,b])

for some constant C > 0 depending only on M , c0 and α.
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