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Abstract. We present a variational approach to gradient flows of energies of the
form E = φ1−φ2 where φ1, φ2 are convex functionals on a Hilbert space. A global
parameter-dependent functional over trajectories is proved to admit minimizers.
These minimizers converge up to subsequences to gradient-flow trajectories as
the parameter tends to zero. These results apply in particular to the case of
non λ-convex energies E. The application of the abstract theory to classes of
nonlinear parabolic equations with nonmonotone nonlinearities is presented.

Dedicated to the memory of Professor J. J. Moreau.

1. Introduction

Gradient flows arise ubiquitously in connection with the mathematical descrip-
tion of non-equilibrium systems. A variety of dissipative evolution problems can be
variationally formulated in abstract spaces by letting the time-dependent state of
the system t 7→ u(t) ∈ H belong to a real Hilbert space H, the nonconvex energy
E : (0, T )×H → (−∞,+∞] be defined, and imposing

u′(t) = −DE(t, u(t)), t > 0,

where u′ = du/dt stands for the time derivative and DE represent some suitably
defined gradient of the functional E(t, ·). In what follows the symbol (·, ·) denotes
the scalar product in H and ‖ · ‖ is the corresponding norm, whereas the norm in
the normed space B is denoted by ‖ · ‖B.

The focus of this paper is to present a variational approach to gradient flows in
Hilbert spaces in the nonconvex case of

E(t, u) := ϕ1(u)− ϕ2(u)− (f(t), u) (1.1)

for u ∈ D(E(t, ·)) ⊂ H, t ∈ (0, T ),

where D(E(t, ·)) := D(ϕ1) ∩ D(ϕ2). Here ϕ1, ϕ2 : H → [0,+∞] are convex,
proper, and lower semicontinuous functionals and we assume f ∈ L2(0, T ;H).
In particular, we shall be considering strong solutions u ∈ W 1,2(0, T ;H) to the
differential problem

u′(t) + ∂ϕ1(u(t))− ∂ϕ2(u(t)) 3 f(t) in H, for a.e t ∈ (0, T ), (1.2)

u(0) = u0 (1.3)

Key words and phrases. Evolution equations, gradient flow, nonconvex energy, variational
formulation.
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for u0 belonging to a proper subset of D(E(0, ·)). Note that the operators ∂ϕi :
H → 2H (i = 1, 2) are the subdifferentials of ϕi in the sense of convex analysis [27],
namely, for all u ∈ D(ϕi) := {u ∈ H : ϕi(u) <∞}, we define

∂ϕi(u) :=
{
ξ ∈ H : ϕi(v)− ϕi(u) ≥ (ξ, v − u) for all v ∈ H

}
and D(∂ϕi) := {u ∈ D(ϕi) : ∂ϕi(u) 6= ∅}.

The existence of solutions to problem (1.2), (1.3) has been considered in [16, 17,
31, 32] and these abstract results have been indeed applied to nonlinear PDEs such
as degenerate parabolic equations with blow-up terms and Allen-Cahn equations
(see also [1] for a Banach space setting). The case where ϕ2 is quadratic, for instance
ϕ2(u) = λ‖u‖2/2 for some λ ∈ R, is even more classical and usually referred to as
λ-convex case (see [5] as a survey).

Our variational approach is based on the minimization

min{Wε(u) | u ∈ H := L2(0, T ;H), u(0) = u0} (1.4)

of the Weighted Energy-Dissipation (WED for short) functionalWε : H → (−∞,∞]
given by

Wε(u) :=


∫ T

0

e−t/ε

ε

(ε
2
‖u′(t)‖2 + E(t, u(t))

)
dt

if u ∈ W 1,2(0, T ;H), E(·, u(·)) ∈ L1(0, T ), u(0) = u0,

+∞ else.

Here E(·, u(·)) ∈ L1(0, T ) means that u(t) ∈ D(E(t, ·)) = D(ϕ1) ∩ D(ϕ2) for
a.e. t ∈ (0, T ) and the function t 7→ E(t, u(t)) belongs to L1(0, T ).

The relation between the minimization (1.4) of the parameter-dependent WED
functional Wε and the gradient flow (1.2)-(1.3) becomes apparent by (formally)
computing the Euler-Lagrange system corresponding to (1.4), which reads

−εu′′(t) + u′(t) + ∂ϕ1(u(t))− ∂ϕ2(u(t)) 3 f(t) in H, 0 < t < T, (1.5)

u(0) = u0, εu′(T ) = 0. (1.6)

Indeed, the constrained minimization (1.4) of the WED functional corresponds to
an elliptic-in-time regularization of the gradient-flow system (1.2)-(1.3). By letting
uε denote a minimizer of Wε, the variational resolution of the gradient flow would
require to prove that

uε → u for some subsequence, and the limit u solves (1.2)-(1.3). (1.7)

The main result of the paper consists in proving that the variational approach
consisting in (1.4)+(1.7) can be rigorously ascertained in the nonconvex frame of
assumption (1.1). Indeed, this result corresponds to an extension of the former [26],
where the feasibility of the WED approach for λ-convex energies E is investigated.
We shall here tackle the more general nonconvex case of (1.1) under some com-
pactness (see (A2) below) and coercivity assumptions ((A3)-(A4), respectively).
In particular, we assume that ϕ1 − ϕ2 is bounded from below and the monotone
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part ∂ϕ1 dominates the anti-monotone part −∂ϕ2. These assumptions are general
enough to include a variety of different nonlinear PDE problems. The reader is re-
ferred to Ôtani [31, 33, 32], Rossi & Savaré [34] and to Section 6 for an account
on applications.

This extension of the WED approach (1.4)+(1.7) from the λ-convex case of [26]
to the nonconvex case of (1.1) requires the treatment of a number of delicate issues.
To begin with, the WED functionalWε is a priori not lower semicontinuous, posing
already the existence of a minimizer uε to (1.4) into question. Note that in the
λ-convex case of [26] the functional Wε was even uniformly convex for small ε,
entailing indeed the existence of unique global minimizers. Secondly, under the
choice (1.1) the limiting gradient flow (1.2)-(1.3) may show genuine nonuniqueness
of solutions whereas solutions in the λ-convex case are unique. This is reflected
also at the level of the WED functionalWε which may indeed present many critical
points. Finally, the limiting procedure (1.7) requires here the identification of two
nonlinearities, of which one is antimonotone. In this respect, our compactness
assumption, not needed in the λ-convex case, will turn out to be crucial.

Our proof of the existence of minimizers in (1.4) follows by a careful study of
the Euler-Lagrange system (1.5)-(1.6). By suitably arguing by approximation, we
shall prove that (1.5)-(1.6) admits at least one strong solution which minimizesWε

globally. At the same time, we can check that all local minimizers of Wε also solve
(1.4).

As for the convergence result (1.7) we shall classically proceed by estimation and
passage to the limit. Here, the crucial tool is a maximal regularity estimate valid
indeed for all solutions of the Euler-Lagrange system (1.5)-(1.6). Combined with
classical lower semicontinuity arguments, this estimate will entail the necessary
compactness in order to identify the limit as ε→ 0.

1.1. Related literature. The elliptic-regularization approach to evolution prob-
lems is classical and has to be traced back at least to Lions and Oleinik [20, 30],
see also [21]. The WED variational principle is mentioned even in the classical
textbook by Evans [13, Problem 3, p. 487].

The WED approach has being brought to new attention by Ilmanen [15], who
used the method to tackle existence and partial regularity of the so-called Brakke
mean-curvature flow of varifolds. The WED functional appears also in Hirano
[14] in connection with the existence of periodic solutions of the gradient flow.

After a ten year lull, the WED formalism has been reconsidered by Mielke &
Ortiz [24] in the context of rate-independent processes, see also the subsequent
[25]. An application of the WED perspective is in Larsen, Ortiz, & Richard-
son [23], where a model for crack-front propagation in brittle materials is advanced.

As for the gradient flow-situation, a preliminary discussion on a linear case is
recalled in [24] together with a first example of relaxation. Two additional examples
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of relaxation related with micro-structure evolution have been provided by Conti
& Ortiz [11]. In the latter papers, the problem of ascertaining the limit ε → 0
was left open and was indeed solved in [26]. In the paper [41] the relaxation of
a WED functional related to mean curvature evolution of Cartesian surfaces and,
more generally, linear growth functionals are considered. The reader is referred
also to the recent paper by Bögelein, Duzaar, & Marcellini [7], where the
WED approach is exploited in order to prove the existence of suitable variational
solutions to the equation

ut −∇ · f(x, u,∇u) + ∂uf(x, u,∇u) = 0

where u : Ω× (0, T )→ Rd and the field f is convex in (u,∇u). The theory for the
gradient flow case has been also extended to the case of curves of maximal slope in
metric spaces in [35, 36]. The doubly-nonlinear case of rate-dependent equations,
corresponding indeed to a dissipation term of homogeneity 1 < p 6= 2, has been
tackled in the series of contributions [2, 3, 4].

Moving from Ilmanen’s paper, De Giorgi conjectured in [12] that the WED
functional procedure could be implemented in the hyperbolic setting of semilinear
waves as well. Results in this direction are in [43] (for the finite-time case) and in
Serra & Tilli [38] (for the infinite-time case). Extensions to mixed hyperbolic-
parabolic semilinear equations and to some different classes of nonlinear energies
are also available [18, 19, 39].

A functional close to WED (with ε fixed though) has been considered by Lucia,
Muratov, & Novaga in connection with traveling waves in reaction-diffusion-
advection problems [22, 28, 29].

2. Assumptions

We shall enlist here the assumptions which are assumed throughout the analysis.

(A1): The functionals ϕ1 and ϕ2 are lower semicontinuous and convex in
H with nonempty effective domains D(ϕi) := {u ∈ H : ϕi(u) <∞} 6= ∅
(i = 1, 2). Moreover, u0 ∈ D(∂ϕ1) and f ∈ L2(0, T ;H).

(A2): There exists a Banach space (X, ‖ · ‖X) compactly embedded in H
such that

‖u‖X ≤ `1(‖u‖)
(
ϕ1(u) + 1

)
for all u ∈ D(ϕ1)

with a non-decreasing function `1 on [0,∞).

(A3): There exist constants k1 ∈ [0, 1), C1 ≥ 0 such that

ϕ2(u) ≤ k1ϕ
1(u) + C1 for all u ∈ D(ϕ1).

In particular, D(ϕ1) ⊂ D(ϕ2).
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(A4): It holds that D(∂ϕ1) ⊂ D(∂ϕ2). Moreover, there exist a constant
k2 ∈ [0, 1) and a non-decreasing function `2 on [0,∞) such that

‖ξ‖2 ≤ k2‖(∂ϕ1)◦(u)‖2 + `2(‖u‖)
(
ϕ1(u) + 1

)
(2.1)

for all u ∈ D(∂ϕ2), ξ ∈ ∂ϕ2(u),

where (∂ϕ1)◦(u) stands for the minimal section of ∂ϕ1(u) (see, e.g., [9]).

Remark 2.1. In [31], the existence result for (1.2)-(1.3) is established under similar
assumptions to the above. However, (A4) is more restrictive compared to [31],
where ϕ1(u) in the right-hand side of (2.1) is indeed replaced by `(ϕ1(u)) for
some non-decreasing function `(·) in R. Such a restriction stems from additional
difficulty in deriving energy estimates for the Euler-Lagrange system (1.5)-(1.6)
(see §3.2 below for more details).

Note that assumption (A3) entails that the energy E is affinely bounded from
below as

E(t, u) ≥ (1− k1)ϕ1(u)− (f(t), u)− C1 for all u ∈ D(ϕ1). (2.2)

In particular, owing to the classical Poincaré estimate in time, the WED functional
Wε turns out to be bounded from below on H.

More precisely, the lower bound (2.2) in combination with the compactness as-
sumption (A2) and the fact that f ∈ L2(0, T ;H) entails that the sublevels of Wε

are bounded in W 1,2(0, T ;H) ∩ L2(0, T ;X), hence compact in C([0, T ];H) due to
the classical Aubin-Lions-Simon Lemma [40].

We warn the reader that in the following we will use the symbol C to indicate a
positive constant, possibly depending on data, and specifically on k1, C1, ϕ1(u0),
‖f‖H, and T but independent of ε and the further approximation parameter λ.
Note that C can change from line to line.

3. Solvability of Euler-Lagrange equations

We proceed to the study of the Euler-Lagrange system (1.5)-(1.6) and prove a
solvability result. Let us begin by specifying the notion of solution we are interested
in.

Definition 3.1 (Strong solutions of Euler-Langrange). A function u ∈ W 2,2(0, T ;H)
is called a strong solution of (1.5)-(1.6) if

(i) u(t) ∈ D(∂ϕ1) for a.e. t ∈ (0, T ).
(ii) There exist ξ, η ∈ L2(0, T ;H) such that, for a.e. t ∈ (0, T ),

−εu′′(t) + u′(t) + ξ(t)− η(t) = f(t), ξ(t) ∈ ∂ϕ1(u(t)), η(t) ∈ ∂ϕ2(u(t)). (3.1)

(iii) u(0) = u0, εu′(T ) = 0.

The main result of this section reads as follows.
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Theorem 3.2 (Existence of strong solutions for Euler-Lagrange). There exists a
strong solution u of (1.5)-(1.6).

The rest of this section is devoted to a proof of this result. The argument consists
of an approximation: we establish existence in the case of smooth functionals ϕ2

and pass to the limit in order to handle the general case of (A1).

3.1. Approximation. We shall be considering the following family of approxi-
mating WED functionals Wε,λ : H → (−∞,∞]

Wε,λ(u) :=


∫ T

0

e−t/ε

ε

(ε
2
‖u′(t)‖2 + Eλ(t, u(t))

)
dt

if u ∈ W 1,2(0, T ;H), ϕ1(u(·)) ∈ L1(0, T ), u(0) = u0,

+∞ else,

where the approximate energy is given by

Eλ(t, u) := ϕ1(u)− ϕ2
λ(u)− (f(t), u) for u ∈ H.

Here, ϕ2
λ ∈ C1,1(H) stands for the Moreau-Yosida approximation of ϕ2 in H, that

is,

ϕ2
λ(u) := inf

v∈H

{
1

2λ
‖u− v‖2 + ϕ2(v)

}
=

1

2λ
‖u− Jλu‖2 + ϕ2(Jλu),

and Jλ is the resolvent for ∂ϕ2 (see, e.g., [9]). In particular, it holds that

ϕ2(Jλu) ≤ ϕ2
λ(u) ≤ ϕ2(u) and ϕ2(Jλu)→ ϕ2(u) for all u ∈ H (3.2)

as λ → 0. Moreover, for all u ∈ L2(0, T ;H) we observe that ϕ2
λ(u(·)) belongs to

L1(0, T ). Let us check that the constrained minimization problem (1.4) admits a
solution when Wε is replaced by the regularized Wε,λ.

Lemma 3.3 (Minimization of Wε,λ). For each ε, λ > 0, the functional Wε,λ admits
a global minimizer uλ in {u ∈ H : u(0) = u0}.

Proof. We first decompose Wε,λ into the difference of two convex functionals:

Wε,λ = C1
ε − C2

ε,λ,

where C1
ε , C2

ε,λ : H → (−∞,∞] are given by

C1
ε (u) :=


∫ T

0

e−t/ε

ε

(ε
2
‖u′(t)‖2 + ϕ1(u(t))− (f(t), u(t))

)
dt

if u ∈ W 1,2(0, T ;H), ϕ1(u(·)) ∈ L1(0, T ), u(0) = u0,

+∞ else

and

C2
ε,λ(u) :=

∫ T

0

e−t/ε

ε
ϕ2
λ(u(t)) dt.

One can easily check that C1
ε is convex, proper, and lower semicontinuous in H.

On the other hand, C2
ε,λ is convex and Fréchet differentiable in H because of the
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Fréchet differentiability of ϕ2
λ in H (see, e.g., [6, 9]). Hence, the wholeWε,λ is lower

semicontinuous on H.

Owing to (A3), we now check that Wε,λ is bounded from below. Indeed, we find
that

Eλ(t, u)
(3.2)

≥ E(t, u)
(2.2)

≥ (1− k1)ϕ1(u)− (f(t), u)− C1 for all u ∈ D(ϕ1).

On the other hand, from the elementary fact

‖u(t)‖2 ≤ 2t

∫ t

0

‖u′(s)‖2 ds+ 2‖u0‖2,

we readily integrate by parts and find that∫ T

0

e−t/ε

ε
‖u(t)‖2 dt ≤ 2T

∫ T

0

e−t/ε‖u′(t)‖2 dt+ 2‖u0‖2.

Hence, we readily check that for any η > 0 there is a constant Cη > 0 such that∫ T

0

e−t/ε

ε
(f(t), u(t)) dt ≤ η

∫ T

0

e−t/ε

ε
‖u(t)‖2 dt+

Cη
ε
‖f‖2

H

≤ 2ηT

∫ T

0

e−t/ε‖u′(t)‖2 dt+ 2η‖u0‖2 +
Cη
ε
‖f‖2

H.

Therefore, setting η = 1/(8T ), one can deduce that

Wε,λ(u) ≥
∫ T

0

e−t/ε

ε

(ε
4
‖u′(t)‖2 + (1− k1)ϕ1(u(t))

)
dt

− C1 −
1

4T
‖u0‖2 − C

ε
‖f‖2

H for all u ∈ H. (3.3)

Hence, the infimum ofWε,λ over H is finite. Moreover, from relation (3.3) it follows
that any minimizing sequence (un) for Wε,λ fulfills the bound∫ T

0

(
‖u′n(t)‖2 + ϕ1(un(t))

)
dt+ sup

t∈[0,T ]

‖un(t)‖ ≤ Cε

for some constant Cε ≥ 0 (depending on ε). Assumption (A2) and the Aubin-
Lions-Simon compactness lemma (see [40, Thm. 3]) entail that (un) is precompact
in C([0, T ];H) ↪→ H. Eventually, the lower semicontinuity ofWε,λ inH entails that
a nonrelabeled subsequence of (un) converges strongly to a minimizer of Wε,λ. �

Our next step consists in proving that global minimizers Wε,λ are solutions of
the corresponding Euler-Lagrange system.

Lemma 3.4 (Global minimizers solve Euler-Lagrange). For each ε, λ > 0, every
global minimizer uλ of Wε,λ solves

−εu′′λ(t) + u′λ(t) + ∂ϕ1(uλ(t))−Dϕ2
λ(uλ(t)) 3 f(t) in H, 0 < t < T, (3.4)

uλ(0) = u0, u′λ(T ) = 0, (3.5)

where Dϕ2
λ is the Fréchet differential of the C1,1 functional ϕ2

λ.
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Proof. Let uλ be a global minimizer of Wε,λ over H. We claim that

∂C1
ε (uλ)−DC2

ε,λ(uλ) 3 0 (3.6)

where DC2
ε,λ is the Fréchet differential of C2

ε,λ in H. Indeed, since uλ minimizesWε,λ

over H, it follows that

Wε,λ(uλ) ≤ Wε,λ(v) for all v ∈ H,

which particularly implies

C1
ε (uλ)− C1

ε (v) ≤ C2
ε,λ(uλ)− C2

ε,λ(v) for all v ∈ D(C1
ε ).

Let now θ ∈ (0, 1) and w ∈ D(C1
ε ) be arbitrarily fixed. Set v = uλ + θ(w − uλ) ∈

D(C1
ε ). Then, from the convexity of C1

ε , we obtain

θ
(
C1
ε (uλ)− C1

ε (w)
)
≤ C2

ε,λ(uλ)− C2
ε,λ(uλ + θ(w − uλ)) for all w ∈ D(C1

ε ).

Dividing both sides by θ > 0 and taking a limit as θ → 0, from the Fréchet
differentiability of C2

ε,λ, we derive

C1
ε (uλ)− C1

ε (w) ≤
(
DC2

ε,λ(uλ), uλ − w
)
H for all w ∈ D(C1

ε ).

Thus we conclude that ∂C1
ε (uλ) 3 DC2

ε,λ(uλ).

Let us recall from [26] the representation of the relation [u, g] ∈ ∂C1
ε . Indeed, u

minimizes the convex functional

v 7→ C1
ε (v)−

∫ T

0

(g(t), v(t)) dt = C1
ε (v)−

∫ T

0

e−t/ε

ε

(
εet/εg(t), v(t)

)
dt

defined on H. Hence, by applying Theorem 3.1 of [26], one finds that u solves

−εu′′ + u′ + ∂ϕ1(u) 3 f + εet/εg in H, 0 < t < T,

u(0) = u0, u′(T ) = 0, u ∈ W 2,2(0, T ;H).

In addition u satisfies the following maximal regularity estimate:

‖εu′′‖2
H + ‖u′‖2

H + ‖ξ‖2
H ≤ ‖f + εet/εg‖2

H + ε‖(∂ϕ1)◦(u0)‖2 + 2ϕ1(u0), (3.7)

where ξ := f + εeε/tg + εu′′ − u′ is a section of ∂ϕ1(u) and (∂ϕ1)◦(u0) stands for
the element of minimal norm in ∂ϕ1(u0). The Fréchet differential of the functional
C2
ε,λ reads

DC2
ε,λ(u) =

e−t/ε

ε
Dϕ2

λ(u(·)) for all u ∈ H.

By exploiting these representations of ∂C1
ε and DC2

ε,λ and performing an easy com-
putation, (3.6) is rewritten in the form of (3.4)-(3.5). �
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3.2. Uniform estimates and convergences. The next step toward a proof of
Theorem 3.2 consists in deriving uniform estimates independently of λ (as well as
of ε) and pass to the limit as λ→ 0. We start from the former.

Lemma 3.5 (Uniform estimates I). There exists a constant M1 ≥ 0 depending on
k1, C1, ‖u0‖, ϕ1(u0), ‖f‖H, and T but independent of ε, λ such that

ε‖u′λ(0)‖2 +

∫ T

0

‖u′λ(t)‖2 dt+ ϕ1(uλ(T )) ≤M1, (3.8)

sup
t∈[0,T ]

‖uλ(t)‖ ≤M1, (3.9)∫ T

0

ϕ1(uλ(t)) dt ≤M1. (3.10)

Proof. Let us start by testing (3.4) on u′λ(t) in order to get

−ε
2

d

dt
‖u′λ(t)‖2 + ‖u′λ(t)‖2 +

d

dt
ϕ1(uλ(t))−

d

dt
ϕ2
λ(uλ(t)) = (f(t), u′λ(t)). (3.11)

By integrating over (0, T ). Then using the final condition u′λ(T ) = 0 we obtain

ε

2
‖u′λ(0)‖2 +

1

2

∫ T

0

‖u′λ(t)‖2 dt+ ϕ1(uλ(T ))− ϕ2
λ(uλ(T ))

≤ ϕ1(u0)− ϕ2
λ(u0) +

1

2

∫ T

0

‖f(t)‖2 dt.

Since u0 ∈ D(ϕ1) ⊂ D(ϕ2) by (A3), the right-hand side above is bounded. Indeed,
we have

ϕ1(u0)− ϕ2
λ(u0)

(3.2)

≤ ϕ1(u0)− ϕ2(Jλu0) ≤ ϕ1(u0).

Moreover, again by (A3), we can compute

ϕ1(u)− ϕ2
λ(u)

(3.2)

≥ ϕ1(u)− ϕ2(u)
(A3)

≥ (1− k1)ϕ1(u)− C1 for all u ∈ D(ϕ1).

Hence, it follows that

ε‖u′λ(0)‖2 +

∫ T

0

‖u′λ(t)‖2 dt+ ϕ1(uλ(T )) ≤ C,

which, together with uλ(0) = u0, implies

sup
t∈[0,T ]

‖uλ(t)‖ ≤ C.

By integrating (3.11) over (0, t) and using (A3) we obtain

ε

2
‖u′λ(0)‖2 +

1

2

∫ t

0

‖u′λ(τ)‖2 dτ + (1− k1)ϕ1(uλ(t))− C1

≤ ϕ1(u0)− ϕ2
λ(u0) +

ε

2
‖u′λ(t)‖2 +

1

2

∫ T

0

‖f(t)‖2 dt for all t ∈ (0, T ).
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Integrating both sides over (0, T ) again, we obtain

(1− k1)

∫ T

0

ϕ1(uλ(t)) dt

≤ T

(
C1 + ϕ1(u0) +

1

2

∫ T

0

‖f(t)‖2 dt

)
+
ε

2

∫ T

0

‖u′λ(t)‖2 dt,

which together with (3.8) implies∫ T

0

ϕ1(uλ(t)) dt ≤ C

and estimate (3.10) follows. �

Lemma 3.6 (Uniform estimates II). There exists a constant M2 ≥ 0 depending on
M1, k2, T , `2(M1), ‖f‖H, ϕ1(u0) and ε‖(∂ϕ1)◦(u0)‖2 but independent of ε, λ such
that ∫ T

0

‖εu′′λ(t)‖2 dt+

∫ T

0

‖ξλ(t)‖2 dt ≤M2, (3.12)∫ T

0

‖Dϕ2
λ(uλ(t))‖2 dt ≤M2. (3.13)

Proof. The maximal regularity estimate (3.7) entails that

‖εu′′λ‖2
H + ‖u′λ‖2

H + ‖ξλ‖2
H

≤ ‖Dϕ2
λ(uλ(·)) + f‖2

H + ε‖(∂ϕ1)◦(u0)‖2 + 2ϕ1(u0)

(A4)

≤ k2‖ξλ‖2
H + `2

(
sup
t∈[0,T ]

‖uλ(t)‖

)(∫ T

0

ϕ1(uλ(t)) dt+ T

)
+

∫ T

0

(
2‖Dϕ2

λ(uλ(t))‖‖f(t)‖+ ‖f(t)‖2
)

dt+ ε‖(∂ϕ1)◦(u0)‖2 + 2ϕ1(u0).

Hence, by using (A4) once more and using Young’s inequality for the third term
in the right-hand side above, we derive from (3.8)-(3.10) with (A1), in particular
u0 ∈ D(∂ϕ1), that

‖εu′′λ‖2
H + ‖u′λ‖2

H + ‖ξλ‖2
H ≤ C,

which together with (A4) implies∫ T

0

‖Dϕ2
λ(uλ(t))‖2 dt ≤ C.

Note that C depends only on M1, k2, T, `2(M1), ‖f‖H, ϕ1(u0) and ε‖(∂ϕ1)◦(u0)‖2.
�

Remark 3.7. The assumption u0 ∈ D(∂ϕ1) of (A1) is only used to derive the uni-
form estimates of Lemma 3.6, where the boundedness of ε‖(∂ϕ1)◦(u0)‖2 is crucial.
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In fact, in the same spirit of [26] this assumption can be relaxed as

u0 ∈ D(∂ϕ1) and there exist u0,ε ∈ D(∂ϕ1) satisfying u0,ε → u0 in H

and ϕ1(u0,ε) + ε‖∂ϕ1(u0,ε)‖2 ≤ C

by replacing u0 of the minimization (1.4) with u0,ε. Such data u0 correspond to
the nonlinear interpolation class B1/2,∞(∂ϕ1) between D(∂ϕ1) and its closure in H
introduced by D. Brézis [8] (see also [10] and [33]).

Let us now move on to the limit passage as λ → 0. Owing to the obtained
uniform estimates, up to some not relabeled subsequence, we have

uλ → u weakly in W 2,2(0, T ;H),

ξλ → ξ weakly in L2(0, T ;H),

Dϕ2
λ(uλ(·))→ η weakly in L2(0, T ;H).

Using (A2) together with (3.9) and (3.10) and by virtue of the classical Aubin-
Lions-Simon Lemma [40, Thm. 3], we have

uλ → u strongly in C([0, T ];H).

From the demiclosedness of maximal monotone operators, we also obtain the iden-
tification [u(t), ξ(t)] ∈ ∂ϕ1. The inclusion [u(t), η(t)] ∈ ∂ϕ2, for a.e. t ∈ (0, T )
follows then by a standard monotonicity argument (see, e.g., §1.2 of [6, Chap.II]).
Since X is compactly embedded in H (equivalently, H ≡ H∗ ↪→ X∗ compactly),
possibly extracting a further subsequence we derive from (3.8) and (3.12) that

u′λ → u′ strongly in C([0, T ];X∗).

In particular, u′(T ) = 0. We hence conclude that u solves (3.4)-(3.5) in the strong
sense.

4. Minimization of WED functionals

Let us eventually turn our attention to the minimization of WED functionals
Wε over H. Assumption (A2) and the lower bound (2.2) entail coercivity for
Wε in W 1,2(0, T ;H) ∩ L1(0, T ;X) (see (3.3)). Still, the functional Wε might not
be lower semicontinuous, so that the Direct Method of the calculus of variations
cannot be directly used. We resort instead to proving that some solution of the
Euler-Lagrange system is indeed a global minimizer of Wε.

Theorem 4.1 (Minimization of WED functionals). For each ε > 0 fixed, let uε
be the strong solution of (1.5)-(1.6) obtained in Theorem 3.2. Then, uε is a global
minimizer of Wε on H.

Proof. Let uλ be a global minimizer of Wε,λ on H, namely

Wε,λ(uλ) ≤ Wε,λ(v) for all v ∈ H. (4.1)
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We note that, for any v ∈ D(Wε) ⊂ D(C1
ε ),

Wε,λ(v) = C1
ε (v)−

∫ T

0

e−t/ε

ε
ϕ2
λ(v(t)) dt→Wε(v) as λ→ 0,

since ϕ2
λ(v(t))→ ϕ2(v(t)) for a.e. t ∈ (0, T ) and ϕ2

λ(v(·)) ≤ ϕ2(v(·)) ∈ L1(0, T ). As
for the left-hand-side of (4.1), by the convergences obtained in §3.2 and (3.2), we
infer that

lim inf
λ→0

Wε,λ(uλ) ≥ lim inf
λ→0

C1
ε (uλ)− lim sup

λ→0

∫ T

0

e−t/ε

ε
ϕ2(uλ(t)) dt.

By the definition of subdifferential, we note that

ϕ2(uλ(t))− ϕ2(u(t)) ≤
(
Dϕ2

λ(uλ(t)), uλ(t)− u(t)
)
,

which implies

lim sup
λ→0

∫ T

0

e−t/ε

ε
ϕ2(uλ(t)) dt ≤

∫ T

0

e−t/ε

ε
ϕ2(u(t)) dt.

Moreover, by the lower semicontinuity of C1
ε on H,

lim inf
λ→0

C1
ε (uλ) ≥ C1

ε (u).

We conclude that
lim inf
λ→0

Wε,λ(uλ) ≥ Wε(u).

Consequently, we obtain Wε(u) ≤ Wε(v) for all v ∈ D(Wε). �

We next check that every (possibly local) minimizer of Wε is a strong solution
of the Euler-Lagrange equation.

Theorem 4.2 (Minimizers solve Euler-Lagrange). Let ε > 0 be fixed and let uε be a
global or local minimizer of Wε over H. Then, uε is a strong solution of (1.5)-(1.6)
on [0, T ].

Proof. In caseWε admits a unique minimizer, Theorem 4.1 ensures that it coincides
with the strong solution of (1.5)-(1.6) whose existence has been proved in Theorem
3.2.

Let us define, for every δ > 0,

Wδ
ε (u) :=Wε(u) +

1

2δ

∫ T

0

e−t/ε

ε
‖u(t)− uε(t)‖2 dt for u ∈ H.

In case uε is a (possibly non-unique) global minimizer of Wε over H, we have

Wδ
ε (uε) =Wε(uε) <Wε(u) +

1

2δ

∫ T

0

e−t/ε

ε
‖u(t)− uε(t)‖2 dt =Wδ

ε (u)

for all u ∈ H\{uε} and any δ > 0. Hence uε is the unique global minimizer ofWδ
ε .

In case uε is a local minimizer but not a global one, there exists r > 0 such that

Wε(uε) ≤ Wε(v) for all v ∈ B(uε; r)
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where B(uε; r) indicates the neighborhood of uε given by

B(uε; r) :=

{
v ∈ H :

∫ T

0

e−t/ε

ε
‖u(t)− uε(t)‖2 dt < r2

}
.

In particular, B(uε; r) contains no global minimizer. Let us take δ > 0 such that

m+
r2

2δ
>Wε(uε),

where m is the minimum value of Wε over H. Then, we observe that

Wδ
ε (uε) =Wε(uε) < m+

r2

2δ
≤ Wε(u) +

1

2δ

∫ T

0

e−t/ε

ε
‖u(t)− uε(t)‖2 dt =Wδ

ε (u)

for all u 6∈ B(uε; r). As for u ∈ B(uε; r) \ {uε}, one can readily check Wδ
ε (uε) <

Wδ
ε (u) as in the last case. Therefore, we conclude that

Wδ
ε (uε) <Wδ

ε (u) for all u ∈ H \ {uε}.
In particular, uε is the unique (global) minimizer of Wδ

ε over H. As we readily
observe that

Wδ
ε (u) =Wε(u) +

∫ T

0

e−t/ε

ε

{
1

2δ
‖u(t)‖2 −

(
u(t),

uε(t)

δ

)}
dt

+
1

2δ

∫ T

0

e−t/ε

ε
‖uε(t)‖2 dt,

the minimization of Wδ
ε over H is equivalently rewritten as that of

Ŵδ
ε (u) :=Wε(u) +

∫ T

0

e−t/ε

ε

{
1

2δ
‖u(t)‖2 −

(
u(t),

uε(t)

δ

)}
dt,

which also satisfies assumptions (A1)-(A4) with ϕ1(u) and f(t) replaced by ϕ̂1(u) :=

ϕ1(u) + ‖u‖2/(2δ) and f̂(t) := f(t) + uε(t)/δ, respectively. Moreover, ∂ϕ̂1(u) =

∂ϕ1(u) + u/δ. Therefore the unique global minimizer uε of Ŵδ
ε is a strong solution

of the Euler-Lagrange system for Ŵδ
ε , i.e.,

−εu′′(t) + u′(t) + ∂ϕ1(u(t))− ∂ϕ2(u(t)) +
1

δ
(u(t)− uε(t)) 3 f(t).

By substituting u = uε, one deduces that uε solves (1.5)-(1.6) as well. �

5. Convergence of minimizers as ε→ 0

The focus of this section is to check that minimizers ofWε converge to a solution
of the gradient flow (1.2)-(1.3) as ε→ 0. Let us first introduce the following:

Definition 5.1 (Strong solution of the gradient flow). A function u ∈ W 1,2(0, T ;H)
is called a strong solution of (1.2), (1.3) if

(i) u(t) ∈ D(∂ϕ1) for a.e. t ∈ (0, T ).
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(ii) There exists functions ξ, η ∈ L2(0, T ;H) such that

u′(t) + ξ(t)− η(t) = f(t), ξ(t) ∈ ∂ϕ1(u(t)), η(t) ∈ ∂ϕ2(u(t)) in H

for a.e. t ∈ (0, T ).
(iii) u(0) = u0.

Our convergence result reads as follows:

Theorem 5.2 (Convergence of minimizers). Let εn → 0 and let uεn be global or
local minimizers of Wεn over H. Then, there exists a not relabeled subsequence
such that

uεn → u weakly in W 1,2(0, T ;H) and strongly in C([0, T ];H)

where u is a strong solution of the gradient flow (1.2)-(1.3).

Proof. For simplicity, we write ε instead of εn. Let uε be global or local minimizers
of Wε over H. Then by Theorem 4.2, they are strong solutions of the Euler-
Lagrange system (1.5)-(1.6). Recalling Lemmas 3.5 and 3.6 along with the limiting
procedure in §3, one can derive

ε‖u′ε(0)‖2 +

∫ T

0

‖u′ε(t)‖2 dt+

∫ T

0

ϕ1(uε(t)) dt ≤ C, (5.1)

sup
t∈[0,T ]

‖uε(t)‖ ≤ C, (5.2)∫ T

0

‖εu′′ε(t)‖2 dt+

∫ T

0

‖ξε(t)‖2 dt ≤ C, (5.3)∫ T

0

‖ηε(t)‖2 dt ≤ C. (5.4)

Here, ξε(t) and ηε(t) are elements of ∂ϕ1(uε(t)) and ∂ϕ2(uε(t)), respectively, as in
(3.1). By taking not relabeled subsequences one has

uε → u weakly in W 1,2(0, T ;H) and strongly in C([0, T ];H),

ξε → ξ weakly in L2(0, T ;H),

ηε → η weakly in L2(0, T ;H).

Moreover, by the demiclosedness of maximal monotone operators, we also conclude
that [u(t), ξ(t)] ∈ ∂ϕ1 and [u(t), η(t)] ∈ ∂ϕ2 for a.e. t ∈ (0, T ). This completes the
proof. �

6. Applications to nonlinear PDEs

We shall now present some applications of the abstract theory to classes of non-
linear parabolic equations with nonmonotone terms. The crucial point is of course
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to fulfill the control conditions (A3)-(A4). We illustrate here three examples, show-
ing indeed such control. All examples consists of parabolic equations of the form

ut − div γ(x,∇u) + g(u) = 0

for possibly nonlinear functions γ and g (precise assumptions and statements are
below).

In Subsection 6.1 we give the detail of a quasilinear example where the balancing
of monotone and nonmonotone terms occurs within in the term g(u) only. This
corresponds to the case of Allen-Cahn equations. Subsection 6.2 is then devoted
to the case when the whole term g(u) is antimonotone and gets balanced by the
term div γ(∇u), corresponding indeed to the case of semilinear heat equations.
Eventually, Subsection 6.3 deals with quasilinear equations where γ is itself non-
monotone. In particular, conditions (A3)-(A4) are there realized by splitting the
term div γ(∇u) into a linear monotone and a smooth nonmonotone part. It should
be clear that these examples are meant to illustrate the applicability of the theory
and can indeed be extended and combined in different ways.

Throughout this section, let Ω be a nonempty, open, connected, and bounded
domain of RN with smooth boundary ∂Ω.

6.1. Quasilinear Allen-Cahn equations. We consider the problem

∂tu−∆pu+W ′(u) = f in Ω× (0, T ), (6.1)

u = 0 or ∂νu = 0 on ∂Ω× (0, T ), (6.2)

u(·, 0) =u0 in Ω, (6.3)

where ∂t = ∂/∂t, f = f(x, t) is given, ∂νu denotes the outer normal derivative of u
on ∂Ω, and W is the double-well potential given by

W (u) :=
1

m
|u|m − 1

q
|u|q for u ∈ R

with exponents 1 < q < m <∞. Then W ′(u) = |u|m−2u− |u|p−2u. Here ∆p is the
so-called p-Laplacian given by

∆pu := ∇ ·
(
|∇u|p−2∇u

)
, 1 < p <∞.

In order to reduce the Allen-Cahn system (6.1)–(6.3) to our abstract setting, let
H = L2(Ω) and

X =

{
W 1,p

0 (Ω) ∩ Lm(Ω) for the Dirichlet case,

W 1,p(Ω) ∩ Lm(Ω) for the Neumann case

endowed with the norm

‖u‖X :=
(
‖u‖2

Lm(Ω) + ‖∇u‖2
Lp(Ω)

)1/2
.
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Define the convex functionals ϕ1, ϕ2 on H by

ϕ1(u) =


1

p

∫
Ω

|∇u|p dx+
1

m

∫
Ω

|u|m dx if u ∈ X,

+∞ else

and

ϕ2(u) =


1

q

∫
Ω

|u|q dx if u ∈ Lq(Ω),

+∞ else.

Then, ϕ1 and ϕ2 are lower semicontinuous on H with D(ϕ1) = X and D(ϕ2) =
Lq(Ω). Moreover, ∂ϕ1(u) and ∂ϕ2(u) coincide with −∆pu + |u|m−2u and |u|q−2u,
respectively, in the sense of distribution.

The Euler-Lagrange equation (1.5)-(1.6) can be written in the following form

−ε∂2
t uε + ∂tuε −∆puε +W ′(uε) = f in Ω× (0, T ), (6.4)

uε = 0 or ∂νuε = 0 on ∂Ω× (0, T ), (6.5)

uε(·, 0) =u0 in Ω. (6.6)

We make the following assumption on data.

(H1): f ∈ L2(0, T ;L2(Ω)), u0 ∈ X satisfies −∆pu0 + |u0|m−2u0 ∈ L2(Ω), and

q < m, 2 < max {m, p∗} with p∗ :=


Np

N − p
if p < N,

+∞ else.
(6.7)

Assumption (A1) obviously holds. Then, (A2) is easily checked, because the
boundedness of ϕ1(un) and (6.7) entail that (un) is precompact in H = L2(Ω).
One can derive (A3) from the fact that q < m. Finally, let us comment on the
validity of (A4). For any k2 ∈ (0, 1), using q < m, one can take C2 > 0 such that∥∥|u|q−2u

∥∥2
= ‖u‖2(q−1)

L2(q−1)(Ω)
≤ k2‖u‖2(m−1)

L2(m−1)(Ω)
+ C2 = k2

∥∥|u|m−2u
∥∥2

+ C2

for any u ∈ L2(m−1)(Ω). On the other hand∥∥|u|m−2u
∥∥2

+ ‖∆pu‖2 ≤
∥∥−∆pu+ |u|m−2u

∥∥2
for all u ∈ D(∂ϕ1).

Hence (A4) holds true.

By virtue of Theorems 3.2, 4.1, 4.2 and 5.2, we can hence conclude the following:

Theorem 6.1 (Quasilinear Allen-Cahn equations). Assume (H1). Then, the fol-
lowing (i)-(iii) hold.

(i) For every ε > 0, the corresponding WED functional Wε admits a global
minimizer.

(ii) Let uε be a global or local minimizer of Wε. Then, uε strongly solves the
Euler-Lagrange equation (6.4)-(6.6) in Ω× (0, T ).
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(iii) For every sequence εn → 0 there exists a not relabeled subsequence uεn such
that uεn → u weakly in W 1,2(0, T ;L2(Ω)) ∩ Lp(0, T ;Z) ∩ Lm(0, T ;Lm(Ω))
and strongly in C([0, T ];L2(Ω)) (where we set Z := W 1,p(Ω) or Z :=
W 1,p

0 (Ω) for Neumann or Dirichlet boundary conditions, respectively). The
limit u strongly solves the Allen-Cahn problem (6.1)-(6.3) in Ω× (0, T ).

Remark 6.2. The convex decomposition of the double-well potential W can be
applied to more general settings. Indeed, let f := W ′ be of class C1 in R and
decompose its derivative f ′ as follows:

f ′ = (f ′)+ − (−f ′)+,

where (·)+ stands for the positive part. As we clearly observe that

f(u(x)) = f(0) +

∫ u(x)

0

(f ′(s))+ ds−
∫ u(x)

0

(−f ′(s))+ ds,

one can define two functionals ϕ1 and ϕ2 as ∂ϕ1(u)(x) = −∆pu(x) + f(0) +∫ u(x)

0
(f ′(s))+ ds and ∂ϕ2(u)(x) =

∫ u(x)

0
(−f ′(s))+ ds.

6.2. Sublinear heat equations. Consider the following problem

∂tu−∆u− |u|q−2u = f in Ω× (0, T ), (6.8)

u = 0 on ∂Ω× (0, T ), (6.9)

u(·, 0) =u0 in Ω (6.10)

with 1 < q < 2. Suppose that

(H2): f ∈ L2(0, T ;L2(Ω)), u0 ∈ H2(Ω) ∩H1
0 (Ω) and 1 < q < 2.

Let H = L2(Ω) and X = H1
0 (Ω) and define ϕ1 on H by

ϕ1(u) =


1

2

∫
Ω

|∇u|2 dx if u ∈ X,

+∞ else,
(6.11)

and ϕ2 as in Subsection 6.1. Then assumptions (A1) and (A2) can be checked
as in §6.1. By virtue of the continuous embedding H1

0 (Ω) ↪→ Lq(Ω) and Young’s
inequality, for any k1 ∈ (0, 1) there exists C1 ≥ 0 such that

ϕ2(u) =
1

q
‖u‖qLq(Ω) ≤ C‖∇u‖q ≤ k1ϕ

1(u) + C1 for all u ∈ X.

Thus (A3) follows. As for (A4), for any k2 ∈ (0, 1), one can take C2 ≥ 0 such that∥∥|u|q−2u
∥∥2

= ‖u‖2(q−1)

L2(q−1)(Ω)

≤ C‖u‖2(q−1)

H2(Ω)

≤ C ‖∆u‖2(q−1) ≤ k2 ‖∆u‖2 + C2

as q < 2. We used here the continuous embedding H2(Ω) ↪→ L2(q−1)(Ω) as well as
elliptic estimates.
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The Euler-Lagrange equations for WED functionals Wε in the current setting
can be written in the form:

−ε∂2
t uε + ∂tuε −∆uε − |uε|q−2uε = f in Ω× (0, T ), (6.12)

uε = 0 on ∂Ω× (0, T ), (6.13)

uε(·, 0) =u0 in Ω. (6.14)

Theorem 6.3 (Sublinear heat equation). Assume (H2). Then, the same conclu-
sions of Theorem 6.1 hold. More precisely, for any ε > 0 there exists a global min-
imizer of the corresponding WED functional Wε. Moreover, any (local or global)
minimizer uε solves (6.12)-(6.14). Furthermore, for any εn → 0, one can take
a nonrelabeled subsequence uεn such that uεn → u weakly in W 1,2(0, T ;L2(Ω)) ∩
L2(0, T ;H1

0 (Ω)) and strongly in C([0, T ];L2(Ω)) and the limit u is a strong solu-
tion of the sublinear heat problem (6.8)-(6.10).

6.3. Quasilinear equations. Let us consider the following

∂tu−∆u+ kdiv (b(x,∇u)) = f in Ω× (0, T ), (6.15)

u = 0 on ∂Ω× (0, T ), (6.16)

u(·, 0) =u0 in Ω. (6.17)

Here, we assume that

(H3): the field b = (bi) : Ω× RN → RN satisfies

|divxb(x, ξ)| ≤ C(|ξ|+ 1), |∇ξb(x, ξ)| ≤ C, (6.18)

where divxb(x, ξ) :=
∑N

i=1 ∂bi(x, ξ)/∂xi and ∇ξb(x, ξ) := (∂bi(x, ξ)/∂ξj),
for all ξ ∈ RN and a.e. x ∈ Ω, and has the form b(x, ξ) = ∇ξF (x, ξ) where
F : Ω × Rn → [0,+∞) is such that F ∈ C1,1(Ω × Rn), F (x, ·) is convex
and F (x, 0) = 0 for all x ∈ Ω, |F (x, ξ)| ≤ C0(1 + |ξ|2) for some C0 > 0,
and u0 ∈ H2(Ω) ∩H1

0 (Ω), f ∈ L2(0, T ;L2(Ω)).

Then, by letting H = L2(Ω) and X = H1
0 (Ω) (other boundary conditions would

also be amenable), defining ϕ1 as in (6.11), and letting

ϕ2(u) =

 k

∫
Ω

F (x,∇u(x)) dx if u ∈ X,

+∞ else,

we can reformulate (6.15)-(6.17) in the abstract form of (1.2)-(1.3). Our abstract
result applies whenever the constant k ≥ 0 is chosen to be small enough. Indeed,
assumptions (A1) and (A2) follow as in Subsection 6.1 and (A3) is immediate as
soon as k < 1/(2C0). As for (A4) we exploit (6.18) and compute almost everywhere

|div b(x,∇u(x))| =
∣∣divx b(x,∇u(x)) +∇ξb(x,∇u(x)) : D2u(x)

∣∣
≤ C(1 + |∇u(x)|+ |D2u(x)|),
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where D2u(x) stands for the Hessian matrix of u(x). It follows that

‖div b(·,∇u(·))‖2 ≤ C3

(
1 + ‖∇u‖2 + ‖∆u‖2

)
for some C3 > 0. Hence, Assumption (A4) is fulfilled as soon as k < 1/C3.

The Euler-Lagrange equations for WED functionals Wε in the current setting
can be written in the form:

−ε∂2
t uε + ∂tuε −∆uε − kdiv b(x,∇uε) = f in Ω× (0, T ), (6.19)

uε = 0 on ∂Ω× (0, T ), (6.20)

uε(·, 0) =u0 in Ω. (6.21)

Theorem 6.4 (Quasilinear equation). Assume (H3) and take k < 1/max{2C0, C3}.
Then, the same conclusions of Theorem 6.1 hold. More precisely, for any ε > 0
there exists a global minimizer of the corresponding WED functional Wε. More-
over, any (local or global) minimizer uε solves (6.19)-(6.21). Furthermore, for any
εn → 0, one can take a nonrelabeled subsequence uεn such that uεn → u weakly in
W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) and strongly in C([0, T ];L2(Ω)) and the limit
u is a strong solution of the quasilinear problem (6.15)-(6.17).
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