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Abstract: We investigate ground state configurations for atomic potentials including
both two- and three-body nearest-neighbor interaction terms. The aim is to prove that
such potentials may describe crystallization in carbon nanostructures such as graphene,
nanotubes, and fullerenes. We give conditions in order to prove that planar energy min-
imizers are necessarily honeycomb, namely graphene patches. Moreover, we provide
an explicit formula for the ground state energy which exactly quantifies the lower-order
surface energy contribution. This allows us to give some description of the geometry
of ground states. By recasting the minimization problem in three-space dimensions, we
prove that ground states are necessarily nonplanar and, in particular, rolled-up structures
like nanotubes are energetically favorable. Eventually, we check that the C20 and C60
fullerenes are strict local minimizers, hence stable.

1. Introduction

Crystallization is a fundamental issue in materials science. As such, it has attracted an
immense deal of attention over the centuries from the physical, chemical, and technolog-
ical viewpoints. In particular, the last decades have witnessed the discovery and applica-
tive exploitation of carbon nanostructures. Among these nanotubes and fullerenes are
three-dimensional carbon molecules showing unprecedented electro-mechanical prop-
erties which make them potentially useful in a wide variety of applications ranging from
chemistry, to nano-electronics, to optics and mechanics. Even more recently, the pro-
duction of isolated graphene sheets has lead to the awarding of the 2010 Nobel Prize
in Physics to Geim and Novoselov. Lightweight and flexible yet extraordinarily strong,
transparent and exceptionally conducting, graphene is presently believed to be one of
the most promising materials available to mankind.

From the microscopic viewpoint, crystallization is the result of interatomic inter-
actions governed by quantum mechanics. At zero temperature, such interactions are
expected to be ruled solely by the geometry of atoms configurations. From a mathemati-
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cal standpoint, given a configuration of n atoms identified with their respective positions
{x1, . . . , xn} and a suitable configurational potential V , one considers the minimization
problem min V ({x1, . . . , xn}). Crystallization hence consists in proving the periodicity
of ground-state configurations of V , that is, the emergence of an ideal crystal-lattice
structure.

The focus of this paper is that of considering some simplified description of crystal-
lization in carbon in the frame of classical potentials. In particular, we let V = V2+V3,
where V2 is a short-ranged two-body interaction energy and V3 is a three-body (angu-
lar) interaction potential. The two-body term V2 favors atoms sitting at some reference
distance from each other. On the other hand, the three-body potential V3 is designed in
order to take its minimum for bond angles of 2π/3, thus corresponding to the classical
covalent bonding behavior between sp2-hybridized carbon orbitals.

The first main result of this paper concerns the crystallization of a finite number of
atoms in the plane: Under suitable conditions on the three-body potential, we show that
planar minimizers of V are graphene patches, namely subsets of the regular hexagonal
lattice (Theorem 6.1). Moreover, we provide the exact formula for the ground-state
energy of n-atoms configurations (Corollary 6.6). The latter quantifies explicitly the
surface energy due to the appearance of boundaries which in turn influences the global
geometry of ground-state configurations.

Secondly, we move our discussion to three space dimensions where we prove that min-
imizers cannot be planar for large n (Theorem 7.1). In particular, our argument consists
in checking that rolled-up structures like nanotubes are energetically competitive with
respect to all planar configurations. Nanotubes and fullerenes are not three-dimensional
ground states of V . On the other hand, we can prove that the fullerenes C20 and C60 are
strict local minimizers, namely stable with respect to perturbations for a large class of
potentials (Theorem 7.3).

Mathematical results on crystallization are by now quite classical in one space dimen-
sion. The reader is referred with no claim of completeness to [2–4,15,18,25–28,36–39]
for a collection of results proving or disproving, under different choices for the energy,
the minimization property of an equally spaced configuration of atoms and its stability
with respect to perturbations. As for two space dimensions, for V = V2 ground states
have been firstly proved to be patches of the triangular lattice (hence crystalline) for some
restricted class of potentials by Heitman and Radin [19] and Radin [29]. The consider-
ably more involved case of Lennard-Jones-like potentials has been analyzed by Theil
[34] in the thermodynamic limit, namely as the number of atoms of the configuration
tends to infinity. This result has then been the extended to the case V = V2+V3 by E
and Li [10]. In particular, by assuming that V2 is Lennard-Jones-like and V3 presents
sufficiently deep and narrow wells at 2π/3 and 4π/3, in [10] it is proved that in the
thermodynamic limit the ground-state energy per atom converges to some specific value
related to the hexagonal lattice.

Our analysis concerns the same class of functionals considered by E and Li [10], but
in the specific case of first-neighbors interactions. Our tenet is that this choice appears
to be well-suited for the description of covalent bonds in carbon, which are necessarily
space localized. We do not take the thermodynamic limit but rather consider a finite
and fixed number of atoms throughout. In particular, we give an explicit characteriza-
tion of the ground state energy for all n-atoms configurations. In order to achieve this,
we shall resort to assuming some qualification on the potential V3, in the same spirit
of Radin [29]. The choice of a suitable assumption frame is here quite delicate: We
need to balance between the competing needs of ensuring crystallization in the plane



Crystallization in Carbon Nanostructures 547

and keeping enough surface tension for the emergence of three-dimensional structures.
Indeed, our specific assumptions on V3 are strong enough to entail that planar crystals
are nothing but graphene patches. On the other hand, they are weak enough to permit
three-dimensionality, see Sect. 7.

Let us mention that crystallization problems in three dimensions appear to be very
challenging. In particular, we presently have no characterization of three-dimensional
ground states for the energy V . In the case of two-body potentials V2 rigorous crystalliza-
tion results are still not available although face-centered cubic (FCC) and hexagonally
close-packed (HCP) lattices are clearly the natural candidates to be ground states. We
refer to [11] for some quantitative evidence in this direction. On the other hand, we shall
mention the result announced by Flatley and Theil [12], see also [17], who argue that,
by considering also three-body interactions V = V2+V3 where V3 favors π/3 bonds,
the thermodynamic limit of the energy density of ground states corresponds to that of a
suitably rescaled FCC lattice.

2. Energy

The understanding of the spatial arrangement of atoms into molecules by energy min-
imization is often referred to as geometry optimization [13]. In particular, the crystal-
lization results recalled in the Introduction are examples of geometry optimization via
classical potentials. Geometry optimization requires the specification of a suitable con-
figurational energy. Many different model energies are in use, depending on the required
level of detail as well as the dimension of the systems.

Ab initio configurational energies are obtained by quantum mechanical models. The
chemical behavior of an atom or a molecule is governed by its electronic structure which
in turn is described by the Schrödinger equation. In a time-independent non-relativistic
frame, by assuming the standard Born–Oppenheimer approximation, nuclei are regarded
as classical particles and Quantum Mechanics is involved for the description of the elec-
trons only. Within this framework, by letting {x1, . . . , xn} indicate the nuclei positions,
the energy can be written as V ({x1, . . . , xn}) := minψ E(x1, . . . , xn;ψ). Functional
E is a quadratic form acting on the electronic wave function ψ : (R3×Z2)

m → C.
The latter ψ depends on positions and spins (m being the number of electrons),
it is normalized in L2 and antisymmetric in the usual sense. In particular, one has
E(x1, . . . , xn;ψ) = ∫

(R3×Z2)m
ψ∗Hψ , where H is the electronic hamiltonian oper-

ator, parametrized by the nuclei positions {x1, . . . , xn}, and accounting for Coulomb
interactions and for the kinetic energy of electrons. The direct treatment of the above
minimization of E is often precluded by the inherent number of dimensions, and the
explicit form of V is generally not available. A variety of approximated quantum models
including Density Functional Theory and Hartree–Fock-type models have been devised.
See [22] for a general overview on all these issues. Still, for the treatment of large sys-
tems one often relies instead on the minimization of classical potential energies. In such
a case, V takes an explicit form, usually of Lennard-Jones type. More general poten-
tials, accounting for multiple body interactions, can be used for capturing different atom
bonding behaviors.

We consider here classical potentials minimization and focus on a minimal abstract
frame capable of inducing graphene-like periodicity at zero temperature. Our choice of
the energy (see below) is inspired by the many empirical potentials that have been set
forth in order to describe interactions between carbon atoms, see the reference modeling
papers [5,6,33] as well as the discussion in [13]. Let us emphasize the mathematical
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Fig. 1. Notation for bonds and bond angles

nature of our analysis, being beyond our purposes to target in detail the indeed quite rich
physics and chemistry of carbon. A rigorous planar crystallization result, in the same
spirit of [10,19,29,34,41], is our first goal.

We should also stress that this description regards the zero temperature situation and
we recall that in some regimes two dimensional crystal ordering is prevented at positive
temperature, see for instance [14].

We shall be considering two-dimensional particle systems. We will turn to 3D issues
later in Sect. 7. Let Cn be a configuration of n identical atoms to be identified with
their respective positions x1, . . . , xn ∈ R

2. The energy of such configuration will result
from the contribution of both two-body and three-body interactions. In particular, given
the atoms xi and x j we denote their distance by �i j = |xi−x j | and we associate to all
ordered triples xi , x j , xk the angle θi jk determined by the segments xi−x j and xk−x j
(choose anti-clockwise orientation, for definiteness), see Fig. 1.

The energy of the configuration will be given by the sum

V = 1

2

∑

i �= j

V2(�i j ) +
1

2

∑

A

V3(θi jk). (1)

Here, the two-body interaction potential V2 : [0,∞) → [−1,∞] is such that

V2 = ∞ on [0, 1), V2(1) = −1, V2(r) > −1 for r > 1, V2(r) = 0 for r ≥ √
2.

(2)

In particular, r = 1 represents the (normalized) carbon bond length and the constraint
V2 = ∞ on [0, 1) is usually referred to as hard-interaction assumption, see Fig. 2.
We say that xi and x j are bonded or that there is a (active) bond between xi and x j if
1 ≤ �i j <

√
2. The set of (active) bonds forms a graph which we call bond graph and

the fact that the functional V2 vanishes for r ≥ √
2 entails that the graph is topologically

planar: given a quadrilateral with all sides and one diagonal in [1,√2) the second
diagonal is at least

√
2. In particular, we are restricting interactions to nearest-neighbors

only. The factor 1/2 in front of the two-body interaction part obviously reflects the fact
that �i j = � j i , namely every bond is counted twice in the sum.

As for three-body interactions we let V3 = μv where μ > 0, v : [0, 2π ] → [0,∞)

is Lipschitz continuous, v vanishes just in 2π/3 and 4π/3, and v(2π−θ) = v(θ). We
also require that v is convex on [3π/5, 11π/15] and, for α in such interval, there holds
v(α+2π/3) = v(α). The set A in definition (1) corresponds to the triples (i, j, k) such
that 1 ≤ �i j , � jk <

√
2, namely such that x j is bonded to both xi and xk (in this case

we say that θi jk is a (active) bond angle).
The current form of V extracts the main common features of the empirical car-

bon potentials proposed in the literature: short-range pair-interactions and bond-angles
penalization between nearest-neighbors, see [5,6,33].
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Fig. 2. The potentials V2 and V3: grey boxes illustrate (3)–(4)

The first main assumption of our theory is that the three-body interaction part of the
energy does not degenerate in a prescribed quantitative fashion. In particular, we shall
ask μ to be large enough in order to have

V3 > 8 on (θmin, π/2], (3)

V3 > 3 on (θmin, 3π/5) ∪ (5π/7, 9π/7) ∪ (7π/5, 2π−θmin), (4)

see again Fig. 2. In the latter θmin := 2 arcsin(1/(2
√

2)) ≈ 0.23π is the minimal angle
which is attainable by a pair of active bonds. Note that some quantitative requirement
of this sort is clearly necessary as the ground states for μ = 0 could be patches of
the triangular lattice [29,34]. Hence, by progressively increasing μ, some symmetry-
breaking bifurcation is to be expected (see Sect. 4). In particular, note that an analogous
size assumption on μ is subsumed in [10] as well.

A second main assumption of our theory is that V3 grows linearly out of optimal
angles. In particular, we assume that μ is large enough in order to have

V ′
3,−(2π/3) < −3/π (5)

where V ′
3,− denotes the left derivative. This is reminiscent of Radin soft-interaction

assumption from [29].
Before moving on we shall comment that assumptions (2)–(5) are chosen here for the

sake of maximizing simplicity rather than generality. In particular, our theory remains
valid under some weaker assumptions at the expense of some more elaborate arguments.

First, the two-body interaction potential V2 can be generalized in order to avoid
the hard-interaction restriction. In particular, we can assume that V2 is large in a right
neighborhood of 0 only (still keeping the unique minimizer r = 1), see Fig. 3. Namely,
we could ask for

V2 ≥ 1

γ
on (0, 1−γ ), V2(1) = −1, V2(r) >−1 for r > 1, V2(r)=0 for r ≥1+γ,

for some small γ > 0. Indeed, under the latter assumptions the statement in [10, Lemma
2.3] entails that all bonds in a ground state configuration have a minimal length which
can be made arbitrarily close to one by letting γ small. In particular, for some critical γ
we will have that the maximal number of bonds per ground state atom will be necessarily
smaller than nine. As it will become apparent below, this is actually enough in order
to run our analysis (see Lemma 3.1). We however prefer to stick to the case of hard
interactions here for the sake of notational simplicity.

As for the assumptions on the three-body interaction part of the energy, one again
could ask for some weaker conditions with respect to (3). For instance, in case V2

vanishes on [1+ε,∞) for some ε <
√

2−1, assumption (3) can be weakened as follows
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Fig. 3. A more general choice for V�

Fig. 4. Two limiting examples for the potential V3

V3 > 6 + [ε/0.15] on (θε, π/2].
Here, θε = 2 arcsin(1/(2+2ε)) is now the minimal bond angle which is attainable by a
pair of active bonds of length smaller than 1+ε. In particular, θmin < θε < π/3 and we
have that θε → π/3 as ε → 0. Moreover, the symbol [·] stands for the right-continuous
integer part function defined as x → [x] = max{z ∈ Z : z ≤ x}. In particular, the
above assumption gets weaker as ε → 0. We however prefer to stick to assumption (3)
in order to keep it independent from V2 (that is, from ε). Concerning assumption (4),
the values 3π/5 and 5π/7 are also not restrictive, one could take other numbers around
2π/3. Notice that due to the structural assumptions on V3, the condition V3(5π/7) ≥ 3
implies that also V3(3π/5) > 3. Still we prefer to write assumption (4) giving emphasis
to the pentagonal angle 3π/5 which will play a role in the sequel.

Assumption (5) is needed in order to give a control on the energy of boundary atoms of
the bond graph. However, we remark that we do not have the same requirement (the Radin
soft-interaction assumption [29]) on the two-body potential. This is interesting because
in the case μ = 0, when we are reduced to a two-body interaction, finite crystallization
is not known when omitting such requirement (see also [41]). In our result, the two-
body term can have the general form of a short-ranged Lennard-Jones-like potential (see
Fig. 3).

Let us mention that our assumptions on the potential V3 are somehow intermediate
between the two limiting situations depicted in Fig. 4. The function vs is singular at
bond angles 2π/3 and 4π/3 whereas vd is differentiable at those values. In particular,
vd recalls the Stillinger-Weber interaction potential given in some normalized form
by vd(θ) = (cos θ+1/2)2 [32] and already mentioned in [10], see also [5,6,33]. By
assuming V3 = μvs (for μ > 0 large) the planar crystallization problem would be
drastically simplified as all bond angles at finite energy would be forced to 2π/3. On the
other hand, this would prevent from considering three-dimensional structures since three
adjacent 2π/3-bonds are necessarily planar. Namely, nanotubes and fullerenes would
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Fig. 5. Examples of flags (bold in the first two) and a bridge (bold in the last picture)

be out of reach of the theory. On the contrary, by letting V3 = μvd , three-dimensional
ground states are even more favored (see Sect. 7 below) but planar crystallization is
presently not known for finite-atoms configurations. We need here to balance between
these two issues by assuming V3 to be sufficiently singular at minima in order to entail
planar crystallization but not too singular to allow for three-dimensionality.

In order to prove that planar ground-state configurations of V are subsets of the
hexagonal lattice, we develop an induction argument on bond-graph layers which is
reminiscent of that of [19,29,39]. In comparison with these papers, some extra care is
here needed since the richer geometric structure of the hexagonal lattice calls for nontriv-
ial adaptations. Our analysis departs from the former contributions in the control of the
boundary energy. This is obtained by a novel argument based on the estimate of the ratio
between two and three-bonded boundary vertices (Lemma 6.2). Moreover, the former
results are here complemented in the direction of the discussion of the global geom-
etry of ground-state configurations. In particular, we provide some explicit geometric
construction in Sect. 4.

3. Geometric Preliminaries

3.1. Bond graph. In the sequel, the notation Cn = {x1, . . . , xn} will refer to both the
n-atoms configuration and its bond graph. In particular, we shall use equivalently the
terms atom for vertex and bond for edge. Given a configuration, its energy is defined
according to (1). In analogy with Quantum Mechanics, we will term ground states the
global minimizers of the energy. If no ambiguity arises, for simplicity of notation we will
denote the energy of a given configuration by V . Similarly, the number of bonds will be
denoted by b. As the energy is clearly rotation and translation invariant, we shall tacitly
assume in all of the following that statements are to be considered up to isometries.
Note that, having fixed the number of atoms of a configuration, all ground states are
necessarily contained in a ball of sufficiently large radius. In particular, the energy V is
coercive, ground states exist, and the ground-state energy is negative.

A bond graph is connected if each two vertices are joinable through a simple path.
Any simple cycle of the bond graph is a polygon. We term acyclic all bonds which do
not belong to any simple cycle. Among these we distinguish between flags and bridges.
We call bridge an acyclic bond which is contained in some simple path connecting two
atoms which are included in two distinct cycles. On the other hand, we term flags all
other acyclic bonds, see Fig. 5.

The bond graph would increase in the number of connected components by removing
an acyclic bond. Here, we refer to removal of a bond as of considering another config-
uration where the bond subgraphs connected by the bond are shifted apart from each
other in such a way that they are not bonded anymore. This can be done for any acyclic
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bond. We will denote by f (resp. g) the number of flags (resp. bridges). In what follows,
we shall also refer to the removal of a given bonded atom x from a configuration. With
this, we mean that we consider another configuration such that the atom x is relocated
so far away that it has no active bonds. Notice that each flag can be considered as cor-
responding to a single atom: if we have f flags we can always remove exactly f atoms
in order to deactivate the flag bonds.

Moving from energetic considerations, we shall record here some first elementary
properties of the bond graph of ground states.

Lemma 3.1. Ground-state atoms have at most three bonds.

Proof. Note that each atom has at most eight bonds as θmin > 2π/9. Assume now that
the bonds at xi are four or more. Hence, at least one of the bond angles centered in xi
is smaller than or equal to π/2. Then, assumption (3) ensures that by removing xi the
energy would strictly decrease. Indeed, no more of eight bonds are deactivated by this
removal and the drop in V3 is at least 8 by assumption (3). This contradicts the fact that
the original configuration was a ground state. ��
Lemma 3.2. In a ground state all polygons have at least 6 edges and all convex polygons
are hexagons.

Proof. Assume that the bond graph of a ground state contains a simple pentagon. Then,
at least one of the internal angles of the pentagon is smaller or equal to 3π/5. Let this
angle θi jk be centered at x j . On the other hand, all bond angles are at least θmin, and so is
θi jk . Therefore, if we remove x j we strictly decrease the energy because of assumption
(4) (no more than three bonds are deactivated due to Lemma 3.1 and the drop in V3
is more than 3). This contradicts the fact that the configuration is a ground state. The
same argument excludes simple polygons with four or three edges. Suppose now to
have a simple, convex polygon with more than 6 edges. Then, there is at least one bond
angle which is greater than or equal to 5π/7 and less than or equal to π . Therefore, due
to assumption (4), by removing the corresponding atom we again strictly decrease the
energy and contradict minimality. ��

3.2. Honeycomb graph. In the mathematical and chemical literature one can find a
remarkable nonuniformity of notation and terminology when referring to hexagonal
lattice structures. We hence start by clarifying here the objects we are going to deal with.
We fix the hexagonal lattice to be the planar set {pa+qb+rc : p, q ∈ Z, r = 0, 1} with
a = (

√
3, 0), b = (

√
3/2, 3/2), and c = (

√
3, 1), see Fig. 6, and term honeycomb the

corresponding graph binding nearest neighbors. Note that the honeycomb graph is planar,

Fig. 6. Honeycomb graph
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connected, and all edges have unit length. We say that a configuration is honeycomb if
it is a subset of the hexagonal lattice. Using the nonnegativity of V3 and the minimality
of V2 for unit length bonds, it is clear that the elementary estimate

V ≥ −b (6)

holds, with equality if and only if the configuration is honeycomb. That is, in honeycomb
configurations the energy is computed by simply counting the number of bonds.

We aim at proving that all ground states of the energy V are honeycomb (Theo-
rem 6.1). A preliminary step in this direction is the following.

Proposition 3.3. Let Cn with 1 ≤ n ≤ 6 be a ground state. Then, Cn is honeycomb and
its energy is −(n−1) if n ≤ 5 and −6 if n = 6.

Proof. Let n ≤ 5. As we have the lower bound (6) and it is trivial to construct honeycomb
configurations with n atoms and n − 1 bonds, the result is achieved if we prove that the
maximal number of bonds is n − 1. Notice that for n ≤ 5 each bond is a flag, otherwise
there would be polygons with less than 6 edges, which is excluded by Lemma 3.2.
Therefore, starting from a reference atom, if we add the other n − 1 vertices one by one,
each of them adds at most a flag.

If n = 6, either we have (at most) five flags or we have a hexagon, and the energy of
the regular hexagon with unit-length bonds is −6. ��

3.3. Boundary energy. Within the bond graph, we say that an atom is a boundary atom
if it is not contained in the interior region of any simple cycle. Let us define the energy
of a boundary atom xi as V (i) = −ri − si/2 where ri is the number of interior bonds at
xi (0 or 1), and si is the number of boundary bonds at xi (1, 2 or 3). Taking into account
Lemma 3.1, the possible values of the energy of a boundary atom of a ground state
are xi are −1/2,−1,−3/2, and −2. Given a n-atoms configuration Cn , we define its
bulk, denoted by Cbulk

n , as the subconfiguration obtained by dropping all the boundary
atoms. The bulk is therefore a (n−d)-atoms configuration, where d denotes the number
of boundary vertices of Cn . We define V bulk as the energy of Cbulk

n . Then, the energy of
Cn can be seen as the sum of two contributions: V bulk and V bnd, where

V bnd := V − V bulk, (7)

that is, V bnd accounts for active bonds and bond angles of the configuration Cn that are
not in Cbulk

n .
From the definition of V bnd, we have

V bnd ≥
d∑

i=1

V (i) +
∑

i

V3(θi ) ≥
d∑

i=1

V (i), (8)

where the second sum is extended to all the bond angles that contribute to V bnd, (we stress
that some of these may be adjacent to interior vertices). Notice that there is equality if the
configuration is honeycomb: in this case indeed −∑d

i=1 V (i) is reduced to the number
of bonds in Cbnd

n .
In view of Lemma 3.2, we name defect any elementary polygon (that is, a simple cycle

with no bonds in its interior region) in the bond graph which is not a hexagon (a polygon



554 E. Mainini, U. Stefanelli

with six bonds). A configuration Cn is then said to be defect-free if all its elementary
polygons are hexagons. Later on, we will see that ground states enjoy this property (see
Proposition 6.7). Moreover, notice that in a honeycomb configuration at least a vertex
of the hexagonal lattice is missing in the interior of a defect, and the minimal defect has
12 edges.

A distinguished role is also played by configurations with connected bond graph, no
flags and no bridges ( f = g = 0). The bond graph is then delimited by a simple cycle
that we call the boundary polygon. For such graphs we adapt from [29] the following

Lemma 3.4. Consider a ground state Cn. Suppose that Cn is connected and it has no
flags nor bridges. Then,

n − d ≥ −4V + 6 − 5n, (9)

and equality holds if and only if Cn is a defect-free honeycomb configuration.

Proof. Let h j be the number of elementary j-gons in the bond graph and h be the total
number of elementary polygons. We have

∑

j≥1

jh j = 2b − d,

because by summing all bonds of elementary polygons, interior bonds are counted twice.
From the latter and Lemma 3.2 we deduce

6h ≤ 2b − d

where h is the number of elementary polygons, with equality if and only if all elementary
polygons have six bonds. Combining this with the Euler formula h + n = b + 1 we get

n − d ≥ 4b − 5n + 6. (10)

Making use of the lower bound (6) we obtain the result. ��

4. Daisies

As we will see in the next section, ground states are honeycomb, so that one would
search for a honeycomb configuration attaining the maximal number of bonds. This can
be heuristically restated as some minimality of the perimeter of the honeycomb configu-
ration. This section is devoted to the explicit construction of some of these configurations,
providing a reference energy value, namely

V = −[β(n)] where β(n) := 3n/2 − √
3n/2.

By the specific geometry of the hexagonal lattice, it is quite natural to expect the
leading term in the energy to be −3n/2 since each atom has three bonds and the bond
angle contribution is zero. The additional lower-order correction

√
3n/2 is then the effect

of boundary bonds.
We consider a very special class of subsets Dk of the hexagonal lattice with n = 6k2

atoms which we term daisies because of their symmetry. Daisies are constructed in a
recursive way. We define the daisy D1 to be a hexagon and construct the daisy D2 by
externally attaching to all bonds of D1 another hexagon. Then, the daisy D3 is constructed
by adding hexagons such that any boundary bond of D2 has a new hexagon constructed
on it. We continue constructing recursively for the daisy Dk , see Fig. 7.

We start by computing the energy of a daisy. In particular, we have he following.
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Fig. 7. Daisies D1, D2, and D3

Proposition 4.1. For all daisies we have V = −[β(n)].
Proof. Given the daisy Dk we denote by nk the number of atoms, bk the number of bonds,
dk the number of boundary atoms, d(2)k the number of two-bonded boundary atoms, ek
the number of hexagons possessing boundary atoms, hk the number of hexagons.

By referring directly to the construction of Dk , we can easily check that the following
recursive relations hold true

dk = 12 + dk−1, d1 = 6, (11)

nk = nk−1 + dk, n1 = 6, (12)

bk = bk−1 + 3d(2)k−1 + 6, b1 = 6, (13)

d(2)k = d(2)k−1 + 6, d(2)1 = 6. (14)

Moreover, note that ek = 6k−6 for k ≥ 2 and e1 = 1. From relation (11) we have

dk = 12k − 6.

Substituting the latter into relation (12) we find

nk = nk−1+12k−6 = 6 +
k∑

j=2

(12 j−6) = 6 + 6(k+2)(k−1)− 6(k−1) = 6k2,

and we observe that indeed 3nk/2 = 9k2 is a square. On the other hand, we have that
ek = dk −d(2)k and d(2)k = 6k (so that indeed ek = 6k −6). The total number of hexagons
in Dk is hence

hk = 1 +
k∑

j=2

(6 j−6).

Eventually, from relation (13) we can now deduce that the number of bonds of the daisy
Dk is

bk = bk−1+3dk−1+6 = bk−1+18(k−1)+6 = 6 +
k∑

j=1

(18 j−12) = 9k2−3k.

Now the assertion follows using (6), where equality is true for honeycomb configurations
like daisies, as
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Fig. 8. Symmetric ground states for μ = 0

V = −bk = −9k2 + 3k = −3n/2 +
√

3n/2

and the latter is integer. ��
By inspecting the proof of the latter Lemma one realizes that indeed daisies can be

constructed for n = 6k2 only. We conjecture that, for such choice of n, daisies are the
unique ground states of V . On the other hand, for n �= 6k2, the nonuniqueness of the
ground states can be easily checked.

Before moving on let us mention that some specific highly-symmetric ground-state
structure can be identified also in the case of simple two-body interaction potentials.
For instance, by setting μ = 0 in V and considering the two-body soft disk potential of
Radin [29], we may find a symmetric ground state represented by an hexagon of edge k,
constructed on the triangular lattice, see Fig. 8. The value of the ground state energy for
n-atoms configuration is obtained in [19,29] as −[3n −√

12n−3] and symmetric states
(daisies) in this context correspond indeed to integer values of

√
12n−3. In this respect,

the reader is referred also to Yeung, Friesecke, and Schmidt [41] and Schmidt [31] for an
analysis on the clustering of atoms and the emergence of an overall geometric shape as
an effect of surface tension (still for the case μ = 0). A discussion on the surface energy
term in the thermodynamic limit n → ∞ is in Theil [35] where it is proved that it can
be expressed as a surface integral involving just the surface normal and the interaction
potential. As mentioned in Sect. 2, the size of μ (which indeed modulates the relation
between two- and three-body interactions) is clearly responsible for the symmetry pattern
of ground states. In particular, by progressively increasing μ from zero, a symmetry-
breaking phenomenon is expected to occur so that ground states turn from triangular
to hexagonal patches. Some quantitative estimates in this direction are indeed available
in dependence of n. For instance, by letting n = 7 one can argue that the honeycomb
ground state lattice will surely be preferred to the triangular one (left in Fig. 8) as soon
as μ > 5/(18v(π/3)+3v(π)). The appearance of intermediate geometries between the
triangular and the honeycomb phases is to be expected.

5. Energy Bound

The aim of this section is that of proving an upper energy estimate for ground states. In
particular, we check for the following.

Proposition 5.1. For all ground states Cn we have V ≤ −[β(n)].
Indeed, the latter inequality will be proved to be an equality and a characterization

of ground states later on in Corollary 6.6. The proof of Proposition 5.1 consists in
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Fig. 9. Construction of the (6k2+m)-atom configuration for k = 3, m = 4

exhibiting Cn which realizes the inequality V ≤ −[β(n)]. This has already been done in
Proposition 4.1 for daisies, namely for n = 6k2. For all other values of n, we proceed by
an explicit construction corresponding to some sort of geometric interpolation between
the two closest daisies.

Proof. Proposition 4.1 proves the assertion for n = 6k2. Let 6k2 < n < 6(k+1)2 and
define m = n − 6k2 so that 1 ≤ m < 12k + 6. We shall be computing the energy of
a ground state with exactly 6k2 + m atoms by progressively adding the m atoms to the
daisy Dk . From here on we assume that k ≥ 2 as the possibility of creating ground states
with n < 24 atoms can be easily checked by hand (equivalently, by some simplified
version of the arguments below).

Step 1: Construction of a (6k2+m)-atom configuration. Let us first describe our con-
struction: Starting from Dk we add a new atom x in the bond graph in such a way that it
gets bonded to the uppermost among the rightmost atoms of Dk . Then, we add x + (0, 1)
as a second atom. Subsequently, we progressively add atoms in by letting each new atom
be bonded both with the latest added one and, possibly, with some atom of Dk . One can
easily realize that this uniquely defines a procedure in order to (clockwise) add m atoms
to Dk , see Fig. 9.

Our aim now is to compute the number of new bonds which have been activated.
By increasing m we progressively complete a connected series of new hexagons which
correspond to the boundary hexagons of Dk+1. Initially, one needs three new atoms to
form a new hexagon. Then, one new hexagon is created every second newly added atom.
This goes on for exactly k − 1 hexagons so that the number of newly activated bonds is

dm
k :=

[
3

2
m − 1

2

]

for 1 ≤ m ≤ 3 + 2(k−2) = 2k − 1.

Then, the k-th hexagon of this series is a corner hexagon of Dk+1, in gray in Fig. 9.
This needs three new atoms to be completed, thus activating four new bonds. From there
on, one completes a new hexagon (activating three new bonds) every two newly added
atoms until m = 4k. As for the number of bonds, one has to sum up the newly activated
bonds with those which were already active for m = 2k − 1. In particular, we have
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dm
k =

[
3

2
(m−(2k−1))− 1

2

]

+

[
3

2
(2k−1)− 1

2

]

=
[

3

2
m − 1

]

for 2k ≤ m ≤ 4k.

This procedure can be restarted in correspondence to every corner hexagon of Dk+1 and
gives

dm
k =

[
3

2
m − 1

2
q

]

for 2(q−1)k+q−2+2(q−2)− ≤ m ≤ 2qk+q−2

and q = 1, . . . , 6, (15)

where we have used the notation x− = max{0,−x} for the negative part. Note that, for
q = 6, we reach exactly m = 2qk+q−2 = 12k+4. From there, we complete the last
hexagon of Dk+1 by achieving

d12k+5
k = 18k + 4 and d12k+6

k = 18k + 6.

Let us recall from Proposition 4.1 that the numbers bk and dk of bonds and boundary
bonds, respectively, of Dk are dk+1 = 12k + 6 and bk = 9k2 − 3k. In particular, we
have checked that by adding m = dk+1 = 12k+6 atoms to Dk one can reconstruct Dk+1.
Moreover, the number of bonds of our (6k2+m)-atom configuration is

b6k2+m = 9k2 − 3k + dm
k .

Step 2: The energy of the constructed configuration. In order to prove the result, making
use of (6), we check that

−V = b6k2+m = 9k2 − 3k + dm
k ≥

[
3

2
(6k2+m)−

√
3

2
(6k2+m)

]

for 1≤m < 12k+6.

Equivalently, by using (15), we aim at proving that

[

−3k +
3

2
m − 1

2
q

]

≥
[

3

2
m −

√

9k2+
3

2
m

]

for 2(q−1)k+q−2+2(q−2)− ≤ m ≤ 2qk+q−2 and q = 1, . . . , 6,

that is

−3k +
3

2
m − 1

2
q ≥

[
3

2
m −

√

9k2+
3

2
m

]

for 2(q − 1)k + q − 2 + 2(q − 2)− ≤ m ≤ 2qk + q − 2 and q = 1, . . . , 6. (16)

Note that the sequence

m →
[

3

2
m −

√

9k2+
3

2
m

]

− 3

2
m

attains its maximum for m = 2(q−1)k+q−2+2(q−2)−. By substituting the latter into
(16) we reduce ourselves in proving

−3k + q ≥
[

3

2
q −

√

9k2+3(q−1)k +
3

2
q − 3 + 3(q−2)−

]

for q = 1, . . . , 6.
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The latter corresponds to the following

1 − 3k + q >
3

2
q −

√

9k2+3(q−1)k +
3

2
q − 3 + 3(q−2)− for q = 1, . . . , 6.

By taking the square on both sides, this is equivalent to

1

4
q2 − 2q − 3(q−2)− − 2 < 3k for q = 1, . . . , 6,

which is clearly true as k ≥ 1. ��

6. Ground States are Honeycomb

This section brings us to our main crystallization result in the plane. In particular, we
prove the following.

Theorem 6.1. Ground states are honeycomb and connected.

The most important tool for proving the latter is a boundary energy estimate. This
requires assumptions (4) and (5) on the three-body potential V3 and reads as follows.

Lemma 6.2. Let n ≥ 6. Let Cn be a ground state and assume it to be connected with no
flags nor bridges. Then,

V bnd ≥ − [3d/2] + 3. (17)

Proof. Since no flags nor bridges are present, we can consider the boundary polygon of
Cn . We denote by ε ∈ [0, 1] the ratio of its concave angles, by ϕi , i = 1, . . . , εd such
angles, and by αi , i = 1, . . . (1−ε)d the remaining ones. Of course we have

α(1−ε)d + ϕεd =
(1−ε)d∑

i=1

αi +
εd∑

i=1

ϕi = π(d−2), (18)

where α (resp. ϕ) denotes the mean value of the angles αi (resp. ϕi ). By the assumption
(4) and the fact that Cn is a ground state we have that each convex angle αi is not less
than 3π/5, so that α ≥ 3π/5, and similarly ϕ ≥ 9π/7 (arguing as in Lemmas 3.1 and
3.2). Inserted into relation (18), these bounds entail

ε ≤ 7

12
− 35

12d
<

7

12
. (19)

Let us consider the energy estimate (8), also recalling that each atom has at most three
bonds since Cn is a ground state, see Lemma 3.1. As the sum over the angles therein
is made by nonnegative terms, we may reduce it to the ones involving just boundary
atoms (thus neglecting the angles adjacent to interior vertices that contribute to V bnd).
The energy of boundary vertices is −1 in correspondence of convex angles (no more
then two bonds are there, otherwise an angle would be less than or equal to π/2) and it
is not less than −2 otherwise. Summing up we write the basic estimate

V bnd ≥ −(1−ε)d − 2εd +
(1−ε)d∑

i=1

V3(αi ) +
εd∑

i=1
i∈P

(
V3(ϕ

1
i )+V3(ϕ

2
i )

)
+

εd∑

i=1
i∈Q

V3(ϕi ), (20)
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where Q is the set of indices i for which the vertex in ϕi is two-bonded and P is the set
of the remaining indices. Moreover, if the vertex corresponding to ϕi is three-bonded,
that is if i ∈ P , we are denoting with ϕ1

i , ϕ
2
i ∈ (3π/5, 5π/7) the two angles forming ϕi .

Then, the structural assumptions on V3 entail

V3(ϕ
1
i ) + V3(ϕ

2
i ) ≥ 2V3(ϕi/2) for any i ∈ P,

V3(ϕi ) = V3(ϕi−2π/3) + V3(2π/3) ≥ 2V3(ϕi/2) for any i ∈ Q.

Hence, still making use of the (local) convexity of V3, from (20) and (18) we get

V bnd ≥ −(1+ε)d +
(1−ε)d∑

i=1

V3(αi ) +
εd∑

i=1

2V3(ϕi/2)

≥ −(1+ε)d + (1−ε)dV3(α) + 2εdV3(ϕ/2)

≥ −(1 + ε)d + (1+ε)dV3(α0(ε)), (21)

where

α0(ε) := π(d−2)

(1+ε)d
.

We will obtain the lower bound for V bnd by minimizing the right-hand side in (21)
with respect to ε ∈ [0, 7/12). The estimate V bnd ≥ −[3d/2] + 3 follows easily if
ε ≤ ([d/2]−3)/d, as in this case it is enough to consider the first term in the right
hand side of (21) (notice also that ([d/2]−3)/d is nonnegative, because d ≥ 6 from
Lemma 3.2). Thus, in view of (19), and recalling that εd has to be integer, we may
reduce to the case ε ∈ [

ε∗, 7/12
]
, where ε∗ := ([d/2]−2)/d. That is, we are left with

V bnd ≥ min
ε∗≤ε≤7/12

−(1+ε)d + (1 + ε)dV3(α0(ε)). (22)

We let F(ε) := (1+ε)d (V3(α0(ε))− 1), on [ε∗, 7/12]. If the minimizer is attained at ε̄
such that α0(ε̄) ≤ 3π/5, then it is enough to apply assumption (4), which immediately
gives F(ε̄) ≥ 0 proving the result. So let us assume that the minimizer is attained at
ε̄ ∈ [ε∗, 7/12] such that α0(ε̄) > 3π/5. In this case, since ε → α0(ε) is decreasing we
have that

α0(ε
∗) > α0(ε) > α0(ε̄) > 3π/5 for any ε ∈ (ε∗, ε̄). (23)

Therefore, since V3 is convex and decreasing on (3π/5, 2π/3) we have

V3(α0(ε
∗)) ≥ V3(2π/3) + (α0(ε

∗)−2π/3)V ′
3 −(2π/3) and V ′

3(α0(ε
∗)) ≤ V ′

3 −(2π/3).
(24)

Using the identity (1+ε)α′
0(ε) = −α0(ε), we compute the derivatives of F ,

1

d
F ′(ε)=V3(α0(ε))−1 − α0(ε)V

′
3(α0(ε)) and

1

d
F ′′(ε) = −α0(ε)α

′
0(ε)V

′′
3 (α0(ε)),

and we see that the estimates (24) entail

1

d
F ′(ε∗) = V3(α0(ε

∗))− 1 − α0(ε
∗)V ′

3(α0(ε
∗))

≥ (α0(ε
∗)−2π/3)V ′

3 −(2π/3)− 1 − α0(ε
∗)V ′

3 −(2π/3)
= −1 − (2π/3)V ′

3 −(2π/3) > 0,
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where we made use of assumption (5) for the last inequality. On the other hand, since
α′

0(ε) ≤ 0, from the monotonicity (23) and the convexity of V3 on (3π/5, 2π/3)we have
F ′′(ε) ≥ 0 on [ε∗, ε̄] which, together with F ′(ε∗) > 0 entails that F is non decreasing
on [ε∗, ε̄]. As ε̄ minimizes F we conclude that ε̄ = ε∗. The result eventually follows,
since we have

F(ε∗) = (1+ε∗)d
(
V3(α0(ε

∗))−1
)

≥ ([3d/2]−2)
(
(α0(ε

∗)−2π/3)V ′
3 −(2π/3)− 1

)

≥ ([3d/2]−2)

(
πd − 2π − 2π [3d/2]/3 + 4π/3

[3d/2] − 2
V ′

3 −(2π/3)− 1

)

≥ −[3d/2] + 2 − π

3
V ′

3 −(2π/3)

> −[3d/2] + 3, (25)

where we used again relations (24) and assumption (5). ��
An immediate corollary of the boundary energy estimate of Lemma 6.2 reads as

follows.

Corollary 6.3. Let n ≥ 6. Let the ground state Cn be connected and have no flags nor
bridges. If Cbulk

n is honeycomb and Cn is not, then inequality (17) is strict. Equality in
(17) implies that d is even.

Proof. By following the proof of Lemma 6.2 we shall identify the cases of equality in
all the inequalities. Assuming that Cbulk

n is honeycomb, if the length of some bond of
Cn is not 1, we have strict inequalities in (8) and (20). We also have a strict inequality
in (20) if some of the angles that we neglected therein (the ones adjacent to interior
vertices that contribute to V bnd) is different from 2π/3 or 4π/3. Moreover, the only
case of possible equality in (21) corresponds to ε = ([d/2]−3)/d, since the proof of
Lemma 6.2 shows that all other cases entail the strict inequality. If α0(([d/2]−3)/d) is
not equal to 2π/3 (which is the case if d is odd), the term involving V3 in the right-hand
side of (21) gives a positive contribution, so that the inequality is strict. Summing up, if
Cbulk

n is already known to be honeycomb the equality V bnd = −[3d/2] + 3 implies that
the entire configuration Cn is honeycomb as well. ��

Before proceeding with the proof Theorem 6.1, we state some useful, elementary
inequalities for the function β(n) = 3n/2 − √

3n/2.

Lemma 6.4. Let n ≥ 1. Then [β(n−1)] + 1 ≤ [β(n)] and [β(n−1)] + 3 ≥ [β(n+1)].
Proof. By definition of β, the inequality β(n −1)+1 ≤ β(n) (which implies the desired
one) is equivalent to

√
3n/2 − 3/2 ≤ √

3n/2 − 3/2. The latter is clearly true for any
positive integer. Analogously, the inequality β(n − 1) + 3 ≥ β(n + 1) is equivalent to√

3n/2 − 3/2 ≤ √
3n/2 + 3/2 which again can be directly checked. ��

Lemma 6.5. Let n ≥ 12 and 6 ≤ m, n−m ≤ n. Then,

[β(m)] + [β(n−m)] + 1 ≤ [β(n)] (26)

and the equality holds if and only if n = 12 and m = 6.
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Proof. Note that β is increasing and strictly convex. In particular, it is immediate to
check that m → β(m) + β(n−m) attains its maximum over the given range for m = 6
or m = n−6. Hence, we have that

[β(m)] + [β(n−m)] + 1 ≤ β(m) + β(n−m) + 1 ≤ β(6) + β(n−6) + 1

= 6 +
3

2
(n−6)−

√
3

2
(n−6) + 1.

For all n large enough, the above right-hand side is strictly smaller than β(n)− 1 which
in turn is controlled by [β(n)]. In particular, it is easily proved that

6 +
3

2
(n−6)−

√
3

2
(n−6) + 1 < β(n)− 1 = 3

2
n −

√
3

2
n − 1

whenever n ≥ 17, so that the assertion follows. The remaining cases n = 12, . . . , 16
can be checked directly. ��
Proof of Theorem 6.1. We aim at proving the following claim: If Cn is a ground state
then it is honeycomb, connected, and V = −[β(n)]. In order to check this we proceed
by induction on n. For n ≤ 6 the claim follows from Proposition 3.3. Let us assume that
it holds for all ground states Cm with m < n and prove it for n.

Step 1: Nonhoneycomb Cn with flags. Suppose that the ground state Cn is not honeycomb
and has a flag. If Cn−1 obtained by cutting the flag is not honeycomb, by induction its
energy is strictly greater than −[β(n−1)], therefore

V > − [β(n−1)] − 1 (27)

since each flag decreases the energy at most by 1. By combining the latter with the
inequality [β(n−1)] + 1 ≤ [β(n)] from Lemma 6.4 we obtain that V > −[β(n)]. This
contradicts the fact that Cn is a ground state by Proposition 5.1. If Cn−1 is honeycomb,
then the considered flag is not of unit length or creates an angle which is not 2π/3 nor
4π/3 (otherwise Cn would have been honeycomb itself). By the inductive assumption the
energy of Cn−1 is greater than or equal to −[β(n−1)], and in this case the contribution
of the flag to the energy is strictly greater than −1, thus (27) holds and we conclude that
V > −[β(n)] in the same way, again contradicting the fact that Cn is a ground state.

Step 2: Nonhoneycomb Cn with bridges. Suppose that the ground state Cn is not hon-
eycomb and has a bridge. Consider the two subconfigurations Cm and Cn−m which are
connected by the bridge. If both Cm and Cn−m are honeycomb and Cn is not, then the
bridge is not of unit length or creates an angle which is not 2π/3 nor 4π/3 (otherwise
Cn would have been honeycomb itself), so that its contribution to the energy is strictly
greater than −1. By the induction assumption we get

V > −[β(m)] − [β(n−m)] − 1 ≥ −[β(n)],
where the latter inequality follows from Lemma 6.5. This contradicts the fact that Cn is
a ground state by Proposition 5.1. In case one out of Cm or Cn−m is not honeycomb, the
sum of their energies is strictly greater than −[β(m)] − [β(n−m)] by induction. Since
the bridge contribution to the energy is in general greater than or equal to −1, we still
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get V > −[β(m)] − [β(n−m)] − 1 and we conclude V > −[β(n)] with Lemma 6.5.
Hence, Cn is not a ground state, a contradiction.

Step 3: Cn not connected. If the ground state Cn has two or more connected components,
by arguing similarly as above we use the induction assumption and obtain an inequality
of the form V ≥ −[β(m)] − [β(n−m)]. This still implies V > −[β(n)] by using
Lemma 6.5 contradicting the fact that Cn is a ground state.

Step 4. Nonhoneycomb and connected Cn with no flags nor bridges. Owing to Steps
1–3, we are left with the most important case, a connected ground state Cn with no flags
nor bridges. Suppose that Cn is not honeycomb. Then, either the bulk is not honeycomb
itself, or it is still honeycomb. In the first case, by induction

V bulk > −
[

3

2
(n−d)−

√
3

2
(n−d)

]

. (28)

In the second case, we have

V bnd > − [3d/2] + 3, (29)

as a consequence of Corollary 6.3. By using relations (7) and (17), and recalling that by
induction we always have V bulk ≥ −[β(n−d)], in both cases we get

V > −
[

3

2
(n−d)−

√
3

2
(n−d)

]

− [3d/2] + 3 ≥ −
[

3

2
n −

√
3

2
(n−d)

]

+ 3. (30)

Since the right-hand side is integer, the strict inequality implies

− ([−V ] +1) ≥ −3

2
n +

√
3

2
(n−d) + 3. (31)

On the other hand, as Cn is not honeycomb we have from (6) that V > −b. We recall
that V is negative (otherwise it is obvious that V > −[β(n)], hence Cn is not a ground
state). Since b is integer, −V < b implies [−V ] ≤ b − 1, which, together with relation
(10), entails

4[−V ] ≤ 4b − 4 ≤ 6n − d − 6 − 4.

This is equivalent to

n − d ≥ 4([−V ]+1)− 5n + 6. (32)

By using relation (32) into inequality (31) we get

−([−V ] +1) ≥ −3

2
n +

√
3

2
(4([−V ]+1)−5n+6) + 3.

As the function x → x + 3n/2 − 3 −√
3(−4x+6−5n)/2 is nondecreasing and vanishes

for x = −β(n), the above inequality implies

−([−V ] +1) ≥ −3

2
n +

√
3

2
n,

but now the left hand side is integer, therefore

V > −([−V ] +1) ≥ −
[

3

2
n −

√
3

2
n

]

.

That is, V > −[β(n)] contradicting the fact that Cn is a ground state.



564 E. Mainini, U. Stefanelli

Step 5: Energy equality. We have shown that Cn is honeycomb and connected. Since
we already know that V ≤ −[β(n)] by Proposition 5.1, what we are left to prove is the
opposite inequality.

As Cn is honeycomb, in case it has a flag, by using induction and the fact that a flag
decreases the energy at most by 1, we have that V ≥ −[β(n−1)] − 1. Then, the lower
bound V ≥ −[β(n)] follows by Lemma 6.4. If Cn has two subconfigurations that are
connected by a bridge (or that are two distinct connected components), by induction
we find V ≥ −[β(n−m)] − [β(m)] − 1, where n − m,m are the numbers of atoms
of the subconfigurations. Then, the lower bound V ≥ −[β(n)] follows by applying
Lemma 6.5. The case of more connected components is reduced to the previous one.

Finally, if Cn has a single connected component, no flags and no bridges, by using
(7), induction, and Lemma 6.2 we get that

V ≥ −[β(n−d)] − [3d/2] + 3 ≥ −
[

3

2
n −

√
3

2
(n−d)

]

+ 3.

Then, using relation (9) we find

V ≥ −
[

3

2
n −

√
3

2
(−4V −5n+6)

]

+ 3 ≥ −3

2
n +

√
3

2
(−4V −5n+6) + 3.

By following the final part of Step 4, the above inequality implies V ≥ −β(n), upon
noting that the function x → x + 3n/2 − 3 − √

3(−4x+6−5n)/2 is nondecreasing and
vanishing for x = −β(n). But V = −b since Cn is honeycomb. In particular V is integer
and the assertion V ≥ −[β(n)] follows. ��

By considering the proof of Theorem 6.1, we are in the position of stating a charac-
terization of ground states in terms of their energy. In particular, we have the following.

Corollary 6.6. Ground states are characterized by the equality V = −[β(n)].
By using Corollary 6.6, one immediately obtains that all daisies as well as all config-

urations constructed in the proof of Proposition 5.1 are ground states. Moreover, one can
check that the only ground state with a bridge is the right-most configuration in Fig. 5.
Indeed, let a ground state contain a bridge connecting two subsets of m and n−m atoms
each. By Theorem 6.1, the configuration is honeycomb. From minimality we necessarily
have that m and n realize the equality in relation (26). Hence, by Lemma 6.5 we have
that n = 2m = 12.

We conclude the geometric characterization of ground states by showing that they
have no defects. In the following lemma, given a honeycomb configuration with some
defect, we name sink each vertex of the hexagonal lattice which is missing in the interior
of the defect.

Proposition 6.7. All ground states are defect-free.

Proof. It is enough to consider ground states without flags, because if a ground state
Cn has f flags, the (n− f )-atoms configuration obtained by removing all flags is still
a ground state. Indeed, suppose that this is not the case. Then, since the energy drop
due to each flag is at most 1, we have V > −[β(n− f )] − f . Hence, Lemma 6.4 yields
V > −[β(n)], a contradiction to minimality due to Corollary 6.6.
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Suppose there is a single sink in a honeycomb configuration. This corresponds to a
twelve edges defect. By filling the sink one activates three bonds. So it is enough to take
a two-bonded boundary atom (which does always exist) and place it at the sink and the
energy decreases. This shows that a configuration with only a single sink is not a ground
state.

Then, we use induction on the number m of sinks. Assume that any honeycomb
configuration with a defect containing at most m − 1 sinks, m > 1, is not a ground
state and let by contradiction Cn−1 be a ground state (hence honeycomb) with a defect
containing m sinks. We shall be distinguishing two cases. At first, suppose that in the
defect with m sinks there is a sink at distance 1 from three distinct vertices of the defect.
In this case it is again enough to move a two-bonded boundary atom and place it in
correspondence of that sink in order to decrease the energy and contradict minimality.
On the other hand, suppose that in the defect with m sinks, there is no sink at distance
1 from three distinct vertices of the defect. Since the defect is a closed polygon, it
necessarily possess at least two consecutive interior angles of 2π/3. This means that
three consecutive edges of the defect belong to the same unit hexagon. Therefore, placing
two atoms in the two sinks completing the hexagon would mean activating three new
bonds: we let Cn+1 be this new configuration. Since Cn+1 has m − 2 sinks, by induction
there holds

−[β(n+1)] < V (Cn+1) = V (Cn−1)− 3.

Combining this with the second inequality of Lemma 6.4, we deduce V (Cn−1) >

−[β(n−1)], a contradiction. ��

7. Nonplanar Ground States

The energy V has a clear planar nature as it consists of two- and three-body interaction
terms only. On the other hand, the very definition of V makes sense also in three-
dimensional space. In this section, we investigate some consequence of assuming V to be
defined on configurations of atoms in R

3. The aim is that of relating V to the description
of some specific three-dimensional allotropes of carbon: fullerenes and nanotubes. We
shall not attempt to review on the complex phenomenology of these molecules, let us just
record from Kroto [21] that fullerenes are clusters of carbon atoms forming a so-called
closed cage composed of twelve pentagons and an unrestricted number of hexagons.
Among these, the most common is C60 which consists of twelve planar pentagons and
twenty planar hexagons (soccer ball). The existence of fullerenes has been theoretically
speculated since the 1970s. Their experimental discovery by Curl, Kroto, and Smalley
in 1985 lead to the 1996 Nobel Prize in Chemistry.

Nanotubes are cylindrical structures with atom-thick carbon walls. Ideally, nanotubes
can be visualized as the result of the roll-up of a graphene strip (sometimes referred to
as a graphene nanoribbon). In particular, given the characteristic chiral vector (p, q),
the roll-up is such that the atom x gets identified with x + pa + qb. Nanotubes are
called armchair for p = q, zigzag for p = 0, and chiral in all other cases, see Fig. 10.
Carbon nanotubes (either single- or multi-walled) show remarkable electro-mechanical
properties and are believed to be possibly playing a major technological role in the near
future. The reader is referred to [1,40] and the references therein for an account on
atomistic-based description of the mechanics of carbon nanotubes.

Our functional frame, although extremely simplified, describes to some extent the
emergence of these three-dimensional structures. Of course nonplanar ground states
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Fig. 10. Rolling-up of nanotubes from a graphene sheet

exist. Indeed, whenever a planar ground state exhibits a flag (and already for n = 4) one
can find a nonplanar configuration realizing exactly the same energy by simply tilting the
flag out of the plane. On the other hand, one may then wonder whether by dropping the
planarity constraint one could realize a strictly smaller energy. In other words, if three-
dimensional ground states happen to be necessarily nonplanar. Leaving this issue open
for small n (for n = 6, even in three space dimensions, the regular hexagon, the benzene
cycle, is the only ground state), the first result of this section proves that ground states
are necessarily nonplanar for large n. This evidence is reminiscent of the applicative
difficulty of realizing two-dimensional crystallization in practice. The reader is also
referred to Grivopoulos [16] for an argument against honeycomb crystallization for an
infinite configuration interacting via Lennard-Jones-like potentials in two-dimensional
space. Before moving on let us mention that the results of this section do not require
assumption (5) but are rather valid in some more generality. In particular, we can allow
here some differentiable potential V3, possibly of the form V3 = μvd , see Fig. 4.

Theorem 7.1. There exists no planar ground state for large n.

Proof. We aim at exhibiting a three-dimensional configuration whose energy is strictly
less than −[3n/2−√

3n/2] by rolling-up a sufficiently big planar hexagonal configura-
tion. In doing so, we pay some three-body energy as we are forced to leave the optimal
bond angles 2π/3 but we are gaining on the two-body interaction term as we are acti-
vating extra bonds by rolling-up. We shall show that the overall balance is favorable.

Let us focus first on the case of n = 6k2. We shall consider the daisy Dk to be ideally
embedded in an infinite hexagonal lattice and roll it up in an armchair nanotube defined
by the vector (k, k). By resorting to either the so-called conventional (or rolled-up) model
[9] or the polyhedral model for nanotubes [7], we have that the bond angles (depending
on the model either all of them or some of them, the others being 2π/3) behave like

θ = 2π/3 + O(1/k2) as k → ∞.

Hence, the energy loss in the three-body interaction term fulfills

1

2

∑

A

V3(θi jk) ∼ ck2V3(2π/3 + O(1/k2)) = O(1) as k → ∞.
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On the other hand, the gain in the two-body energy part is exactly −k for it amounts to
a fixed finite number of newly activated bonds. In particular, one can compute that

Vrolled−up = −9k2 + 3k − k + O(1) = −3n/2 +
√

2n/3 + O(1)

< −3n/2 +
√

3n/2 = Vplanar for n large. (33)

Hence, it is enough to take a sufficiently large n = 6k2 in order to have that the
rolled-up daisy is favorable with respect to the planar one.

The argument for general n is analogous, just starting from a ground state which is
intermediate between daisies, in the same spirit as in the proof of Proposition 5.1. ��

Before moving on we shall comment that the same argument of Theorem 7.1 applies
to the behavior of a nanotube as well. Indeed, assume to be given a indefinitely long
graphene strip cut along some orthogonal direction to a given chiral vector (p, q), see
the dashed lines in Fig. 10. Arguing as in the proof of Theorem 7.1 we clearly have
that, by letting p+q be large enough, one can find a critical strip width starting from
which it is energetically favorable to roll-up the strip into a nanotube. The emergence of
such a critical width somehow relates to the fact that, depending on the chiral direction,
some minimal nanotube diameter is observed. Moreover, the energy loss by rolling-up
increases with the strip width. This represents the evidence that larger nanotubes show
enhanced stability.

An interesting feature of the functional V is its capability to predict the aspect ratio
of carbon nanotubes, as suggested by Mielke [24]. In particular, we can check that, by
progressively adding atoms to a nanotube, its diameter remains constant and its length
scales with the number of atoms. This provides an illustration of the fact that carbon
nanotubes are presently grown to lengths which are up to 108 times the diameter. This
corresponds to the fact that, by progressively increasing n, namely adding atoms to a
carbon nanotube, the functional V drives the structure to maintain a constant diameter
and to grow at the ends. We record this fact in the following statement.

Proposition 7.2. The length of a nanotube scales like n.

Proof. For the sake of definiteness, let us focus on zigzag nanotubes. Other geometries
can be treated analogously. Assume to be given a rectangular graphene patch consisting
in λ rows of w hexagons, piled up in a zigzag configuration (that is (p, q) = (w+1, 0)).
The patch can be conveniently rolled up in direction (1, 0) as soon as its widthw is large
enough (and regardless of its length λ). By rolling up the patch one activates new bonds
so that the energy drops, to first order, by the quantity −λ + 1. On the other hand, the
roll-up causes the angles to deviate from the optimal angle 2π/3 by some quantity of the
order of w−2 (recall that w is large). Correspondingly, the energy loss per angle bond
is proportional to w−2 (see the proof of Theorem 7.1) and, by summing up for the n
atoms, we get that the loss in the three-body interaction contribution scales like nw−2.
As n is proportional towλ (again to first order), we have checked that the roll-up entails
an energy change of the order of 1 − λ + cλ2n−1. By minimizing the latter with respect
to λ we identify the optimal scalings as λ ∼ n and w is constant. ��

Let us conclude this discussion by explicitly remarking that nanotubes are not ground
states for large n. Indeed, the argument of Proposition 7.2 entails that the energy of a
nanotube scales like −3n/2 + O(n). The factor −3n/2 follows since each atom in the
nanotube has three bonds. The O(n) correction takes into account the fact that bond angles
are non-optimal. Note that, by increasing n bond angles do not change since the diameter
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of the nanotube is constant from Proposition 7.2. On the other hand, the computation
in (33) shows that the energy of a rolled-up daisy behaves like −3n/2 + O(

√
n), as

well as the energy of the daisy itself. By increasing n the radius of the rolled-up daisy
increases and its bond angles get closer to the optimal 2π/3. This is reflected in the
different scaling of the correction term. Eventually, for large n it is better to roll-up a
daisy instead of a rectangular patch.

7.1. Stability of fullerenes. From the applicative viewpoint, the stability of carbon struc-
tures and, particularly, of fullerenes bears of course a crucial relevance. The aim of this
section is to present a rigorous stability proof within our variational frame. In particular,
we prove that the two fullerenes C20 (unsaturated dodecahedrane, a regular dodeca-
hedron) and C60 (the smallest fullerene presenting isolated pentagons) are strict local
minimizers for the energy provided the three-body interaction part is decreasing and
strictly convex around 3π/5.

Theorem 7.3. Let V3 decreasing and convex in a neighborhood of 3π/5. Then, C20 and
C60 are strict local minimizers, hence stable.

Let us comment that the monotonicity and convexity of V3 follows for the Stillinger–
Weber potential (see Sect. 2) and it is completely independent of the size of μ. In par-
ticular, the validity of Theorem 7.3 is independent from the actual form of the two-body
interaction term V2 which can be arbitrarily chosen, provided that attains its minimum
in 1. On the other hand, let us remark that under assumption (4), no fullerene is a ground
state as the energy decreases by removing the five vertices of a pentagon.

Proof of Theorem 7.3. Let us develop the proof for C60 = {x1, . . . , x60}, the argument
for C20 being analogous. Let {x̃1, . . . , x̃60} be some small perturbation of C60. We shall
prove that indeed, Ṽ > V . The perturbed configuration has exactly twelve 5-cycles
and twenty 6-cycles. Within the bond angles of the perturbed configuration we shall
distinguish between internal angles of 5-cycles and those of 6-cycles. In particular, we
indicate πk

j the angles of 5-cycles ( j = 1, . . . , 5, k = 1, . . . , 12) and by hk
j those of

6-cycles ( j = 1, . . . , 6, k = 1, . . . , 20). Note now that, due to the convexity of V3 we
have that, for all k,

5∑

j=1

V3(π
k
j ) ≥ 5V3

⎛

⎝1

5

⎛

⎝
5∑

j=1

πk
j

⎞

⎠

⎞

⎠ . (34)

On the other hand, we have that

1

5

⎛

⎝
5∑

j=1

πk
j

⎞

⎠ ≤ 3

5
π. (35)

Indeed, the latter is a consequence of the fact that the internal angles of a 5-cycle sum up
at most to 3π . In particular, we have equality if and only if the 5-cycle is planar. Hence,
owing to (34) and the monotonicity of V3 we get that

5∑

j=1

V3(π
k
j ) ≥ 5V3 (3π/5) (36)

and we have equality if and only if we have equality in (35). Hence, we can compute
that
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Ṽ = 1

2

∑

i, j

V2(�̃i j ) +
1

2

12∑

k=1

5∑

j=1

V3(π
k
j ) +

1

2

20∑

k=1

6∑

j=1

V3(h
k
j )

≥ 1

2

∑

i, j

V2(�i j ) +
1

2

12∑

k=1

5V3 (3π/5) = V

since hexagonal angles and bond lengths can only improve in passing to V . In particular,
we have equality in the latter if and only if all pentagons and hexagons are planar and
regular. That is if and only if the perturbation is trivial. ��

A specific trait of the latter proof is that it crucially uses the planarity of the faces.
This restricts our argument to the only two fullerenes which present just planar faces,
namely C20 and C60 [30]. This restriction sounds quite severe as fullerenes are believed
to possibly exist for arbitrary (even) 20 ≤ n �= 22 and in a variety of different isomers.
In particular, the nonisomorphic closed carbon cages for n ≤ 84 amount to 222509 [8].
The investigation for possible stability criteria of the few observed fullerenes within this
wide family has of course triggered intense research and it would be probably too naive
to expect our simple variational technique (which is, once again, purely geometric) to be
decisive in this matter. Let us however mention that the possible relevance of planarity
of the faces with respect to stability has been recently emphasized [20].

Still, the two fullerenes included in our result are truly remarkable structures. C60
is the most common fullerene as it is generally the first one to form during clustering,
probably due to its uniformly distributed strain energy [21]. As such, C60 clearly has a
predominant role within the fullerene class. The fullerene C20 is expected to possibly
show a variety of interesting properties including superconductivity. Note however that
the production of C20 is very delicate [23].

Eventually, we remark that the stability result of Theorem 7.3 applies to all structures
made of regular planar pentagons and planar hexagons, possibly also nonclosed. In
particular, our argument confirms that graphene patches and planar ground states are
strict local minimizers in three dimensions. Moreover, one obtains also the stability of
corrannulene, an open carbon cage formed by a pentagon surrounded by five hexagons,
as well as of other corannulene-based molecules.

7.2. Other three-dimensional configurations. We presently do not have a characteriza-
tion of ground states of V in three-dimensions. Still, under assumption (3) we can readily
exclude that ground states are patches of FCC or HCP lattices, namely the candidate
ground states for two-body interactions V = V2 [12,17]. Indeed, in both these cases one
easily checks that an internal atom has exactly twelve active bonds and at least eight
bond angles of π/3 (depending on the lattice). Hence, by removing an internal atom
the energy of the resulting configuration fulfills Vnew < Vold + 12 − 8V3(π/3). Under
assumption (3), Vnew < Vold and FCC or HCP patches are not ground states.

Besides nanotubes and fullerenes, other intrinsically three-dimensional crystalline
carbon allotropes exist: diamond and lonsdaleite. These are characterized by the
occurrence of four-bonded atoms with bond angles equal to the tetrahedral angle
θτ = 2 arctan(

√
2) arising in connection with so-called sp3-hybridized orbitals. The

computation of V to the leading order for both diamond and lonsdaleite gives V ∼
(−2 + 6V3(θτ ))n. In particular, if and only if V3(θτ ) ≤ 1/12 (which is still compatible
with assumptions (3)–(5), although, given v, it cannot be enforced by merely trigger-
ing the constant μ) some sufficiently large (and suitably shaped) collection of diamond
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or lonsdaleite crystals realize a smaller energy than the corresponding planar ground
state. Hence, such ensembles may be used for contradicting planarity in the proof of
Theorem 7.1 (although under an extra assumption).

The latter argument can also be localized: By assuming V3(θτ ) > 2/3 we can exclude
that diamond and lonsdaleite are ground states in three dimensions. Indeed, in this case
it would be energetically favorable to remove from a ground state any four bonded atom
being the center of a regular tetrahedron. Note incidentally that surface tension effects
are not negligible for small n: Letting for instance n = 5, the single tetrahedron has
energy V = −4 + 6V (θτ ) which is strictly larger than the planar ground state energy
−[3 · 5/2−√

3 · 5/2] = −4 which is, for instance, obtained with a single chain of four
bonds.

We shall remark that our functional V is specifically tailored to the description of sp2-
hybridized bonds and, as such, it appears to be not well-suited for describing intrinsically
three-dimensional situations such as that of diamond and lonsdaleite. Indeed, let V3 be
strictly convex around θτ (as for the Stillinger-Weber potential). Hence, a tetrahedral
configuration for n = 5 with unit bonds is stable if and only if the sum of the bond
angles is locally maximal. It can be proved that this is not the case for the regular
tetrahedron (which may however be checked to be stationary for V ). This entails in
particular that diamond and lonsdaleite are not local minimizers of V .
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