
FINITE PLASTICITY IN P>P .
PART I: CONSTITUTIVE MODEL

DIEGO GRANDI AND ULISSE STEFANELLI

Abstract. We address a finite-plasticity model based on the symmetric tensor P>P
instead of the classical plastic strain P . Such a structure arises by assuming that the
material behavior is invariant with respect to frame transformations of the intermedi-
ate configuration. The resulting variational model is lower-dimensional, symmetric, and
based solely on the reference configuration. We discuss the existence of energetic solu-
tions at the material-point level as well as the convergence of time discretizations. The
linearization of the model for small deformations is ascertained via a rigorous evolution-
Γ-convergence argument. The constitutive model is combined with the equilibrium sys-
tem in Part II where we prove the existence of quasistatic evolutions and ascertain the
linearization limit [22].

1. Introduction

The inelastic behavior of a polycrystalline solid is classically described in terms of its
deformation gradient F = ∇y with respect to the reference configuration [24]. As the
elastic response is observed to be largely independent from the prior plastic distortion
of the crystalline structure, the deformation gradient is usually decomposed into an elas-
tic and a plastic part. While this decomposition is additive in the small-deformation
regime, at finite strains a multiplicative decomposition F = FeP is used instead [29, 30].
Here Fe is the elastic deformation tensor, describing indeed the elastic response of the
medium, and P is the plastic deformation tensor, encoding the information on the plastic
state . Although other options have been advanced, see for instance [7, 10, 33, 54], this
multiplicative decomposition has now turned to be the reference in finite plasticity. A
justification for this decomposition has been recently provided in [59, 60] on the basis
micromechanical considerations.

Based on the multiplicative decomposition, the elastoplastic evolution of the medium is
described by the time evolution of Fe and P . This results from the competition between
energy-storage and plastic-dissipation mechanisms [55, 63]. A basic structural require-
ment is that of frame indifference [24], imposing indeed the elastic state of the material
to be completely represented in terms of the so-called (right) Cauchy-Green tensor F>e Fe.
Moving from by this observation, the possibility of formulating finite-plasticity models
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in terms of the corresponding plastic Cauchy-Green tensor P>P instead of P has been
already considered in [62, 32, 36, 67]. As we shall see, this possibility is strictly related to
the isotropy of the elastic response of the medium, an assumption which is believed to be
appropriate for describing the plastic behavior of polycrystals under moderate deforma-
tions [15, 27, 56, 57, 65, 68]. The reader is referred to the recent [53] where a comparative
study of plasticity models based on P>P is provided. In the context of shape memory ma-
terials, some corresponding model is advanced in [16, 17] and variationally reformulated
and analyzed in [21].

A formulation in terms of P>P instead of P seems particularly valuable from the com-
putational viewpoint. At first, variables are symmetric and positive definite, reducing
indeed the degrees of freedom of the problem. Furthermore, the symmetry of P>P allows
the use of efficient algorithms, especially in connection with power- and exponential-matrix
evaluations [13]. Secondly, P>P is a true tensor, fully defined on the reference configura-
tion of the medium. This avoids the necessity of introducing intermediate configuration,
a commonly controversial issue [49]. Moreover, such a fully Lagrangian formulation seems
better adapted to finite-element approximations, for all variables are defined on the fixed
reference configuration. Eventually, as we shall see, a formulation in P>P allows for a
sound, rigorous mathematical tractation.

We aim at providing a comprehensive discussion of finite plasticity expressed in terms
of P>P . Starting from classical associative finite plasticity in terms of P , in the present
Part I paper we discuss a general frame allowing an equivalent reformulation in P>P . This
relies on a quite natural plastic-invariance assumption, translating indeed the indifference
of the model with respect to rotations of the intermediate configuration. Quite remarkably,
the model in P>P turns out to be associative with respect to the new variables as well.

The variational structure of the model allows us to prove the existence of variational
solutions of energetic type [18, 40, 47] of the constitutive problem under very general
assumptions on the model ingredients, in particular on the coercivity of the energy.

This existence result relies on an implicit time-discretization scheme. As a by-product
we obtain the convergence of such scheme, both in terms of solution trajectories and of
energy and dissipation.

A second important focus of our analysis is the rigorous justification of the classical
linearization approach for small deformations. Within the small-deformation regime it
is indeed customary to leave the nonlinear finite-strain frame and resort to a linearized
theory. This model reduction is classically justified by heuristic Taylor-expansion argu-
ments. Here, we aim instead at providing a rigorous linearization proof by means of an
evolutionary Γ-convergence analysis in the spirit of the general abstract theory of [45].

The plan of this Part I paper is the following. We describe the constitutive model and
the role of plastic-rotation indifference on Section 2. The existence of energetic solutions
of the constitutive model at the material-point level is discussed in Section 3 and the
corresponding small-deformation limit is presented in Section 4.
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The constitutive problem is combined with the equilibrium system in Part II [22] where
we prove the existence of quasistatic evolutions as limits of time discretizations, provided
the energy is polyconvex [1] and augmented by a gradient term of the form |∇(P>P )|.
Such a term describes nonlocal plastic effects and is inspired to the by-now classical gra-
dient plasticity theory [19, 20, 48, 51]. In particular, its occurrence turns out to be crucial
in order to prevent the formation of plastic microstructures and ultimately ensures the
necessary compactness for the analysis [39, 41]. The only other available finite-plasticity
rate-independent evolution result for the formulation in P [34] features a gradient regu-
larizing term as well. Note however that a time-local existence result was obtained in [50]
where visco-plastic regularization instead of gradient regularization is considered. In the
spirit of [46] we also investigate in Part II the rigorous small-strain linearization limit at
the quasistatic-evolution level.

2. Constitutive model

The finite-plasticity model under consideration corresponds to classical associative fi-
nite plasticity under an invariance assumption with respect to plastic rotations. We limit
ourselves at introducing the constitutive relation, referring indeed the reader to the mono-
graphs [25, 55, 63] for additional material and detail on finite-plasticity formulations.

Before going on let us record here that finite plasticity is to-date a still controversial
subject [49]. It is not our intention to contribute new mechanical arguments to the
ongoing discussion. On the contrary our aim is to present the possibly simplest model in
Cp = P>P presenting a sound variational structure [53]. The main interest in this rather
simplified case relies on the quite detailed mathematical analysis that such a variational
structure allows.

2.1. Tensors. We focus on the three-dimensional setting and systematically use boldface
symbols in order to indicate 2-tensors in R3. The corresponding space is denoted by R3×3.
Given A ∈ R3×3 we classically define its trace as trA := Aii (summation convention),
its deviatoric part as devA = A − (trA)I/3 where I is the identity 2-tensor, and its
(Frobenius) norm as |A|2 := tr (A>A) where the symbol > denotes transposition. The
contraction product between 2-tensors is A:B := AijBij and we classically denote the
scalar product of vectors in R3 by a·b := aibi. The symbols R3×3

sym and R3×3
sym+ stand

for the subsets of R3×3 of symmetric tensors and of symmetric positive-definite tensors,
respectively. Moreover, R3×3

dev indicates the space of symmetric deviatoric tensors, namely
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R3×3
dev := {A ∈ R3×3

sym | trA = 0}. We shall use also the following tensor sets

SL := {A ∈ R3×3 | detA = 1},
SO := {A ∈ SL | A−1 = A>},
GL+ := {A ∈ R3×3 | detA > 0},
GLsym+ := GL ∩ R3×3

sym+,

SLsym+ := SL ∩ R3×3
sym+.

The tensor cofA is the cofactor matrix of A. For A invertible we have that cofA =
(detA)A−>. For any symmetric positive-definite matrix A ∈ R3×3

sym+, the real power As

is classically defined, for any s ∈ R, in terms of its eigenvalues (λ1, λ2, λ3), λi > 0 and

trAs = λs1 + λs2 + λs3, detAs = (λ1λ2λ3)s.

In particular, the square root A1/2 is uniquely defined in GLsym+. The matrix logarithm
logCp is globally uniquely defined in SLsym+. In particular, one has that tr (logCp) =
log(detCp) = 0 for all Cp ∈ SLsym+. Given any symmetric, positive-definite 4-tensor C
we denote by |A|2C := A:CA the corresponding induced (squared) norm on R3×3

sym. The
product CA is here classically defined as (CA)ij := Cij`kA`k.

In the following we denote by ∂ϕ the subdifferential of the smooth or of the convex,
proper, and lower semicontinuous function ϕ : E → (−∞,∞] where E is a normed space
with dual E∗ and duality pairing 〈·, ·〉 [4]. In particular, y∗ ∈ ∂ϕ(x) iff ϕ(x) <∞ and

〈y∗, w−x〉 ≤ ϕ(w)− ϕ(x) ∀w ∈ E.

A caveat on notation: in the following we use the same symbol c in order to indicate a
generic constant, possibly depending on data and varying from line to line.

2.2. Deformation. We consider an elastoplastic body occupying the reference configu-
ration Ω, which is assumed to be a nonempty, open, connected, and bounded subset of R3

with Lipschitz boundary ∂Ω. The three-dimensional setting is here chosen for the sake of
notational definiteness only: both modeling and analysis could be reformulated in one or
two dimensions.

The deformation of the body is described by y : Ω → R3 and is assumed to be such
that the deformation gradient F := ∇y is almost everywhere defined and belongs to GL+.
The deformation gradient F is classically decomposed as [29, 30]

F = FeP (2.1)

where Fe denotes the elastic part of F and P its plastic part. In particular, the plastic
tensor P describes the internal plastic state of the material and fulfills

detP = 1

in order to express the isochoric nature of plastic deformations, as customary in metal
plasticity [63]. The heuristics for the multiplicative decomposition (2.1) resides in the
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classical chain rule: in case y can be interpreted as a composition ye◦yp of an elastic and a
plastic deformation, the set yp(Ω) is termed intermediate (or structural) configuration and
∇y = ∇ye(yp)∇yp. Note nonetheless that the tensors Fe and P need not be gradients as
the compatibility conditions curlFe = 0 and curlP = 0 may not hold. Correspondingly,
the intermediate configuration can be understood in a local sense only [49]. We refer
to the recent [59, 60] for a justification of the multiplicative decomposition (2.1) in two
dimensions consisting in a kinematic analysis of elastoplastic deformation in plastic-slip
and dislocation systems.

The (right) Cauchy-Green symmetric tensors associated to the three deformation gra-
dients are defined by

C := F>F ∈ GLsym+, Ce := F>e Fe ∈ GLsym+, Cp := P>P ∈ SLsym+.

In particular, we have that detCp = (detP )2 = 1. Note that these tensors are all true
tensorial quantities, all defined on the reference configuration, whereas F , Fe, P are
two-points tensors.

2.3. Energy. The evolution of the elastoplastic body is governed by the interplay be-
tween energy-storage mechanisms and plastic-dissipative effects. We assume from the
very beginning the response of the medium to be hyperelastic [66] and start by specifying
the energy density of the medium by imposing the additive decomposition

We(Fe) +Wp(P ) (2.2)

into an elastic and a plastic (or hardening) energy term.

The elastic energy density We : GL+ → [0,∞) is required to be C1 and frame indifferent
[66], namely

We(RFe) = We(Fe) ∀R ∈ SO. (2.3)

Frame indifference implies that the elastic energy can be expressed solely in terms of the
tensor Ce. Indeed, given Fe ∈ GL+ by polar decomposition there exists a rotation matrix

R ∈ SO such that Fe = RC
1/2
e and

We(Fe) = We(R
>Fe) = We(C

1/2
e ) =: Ŵe(Ce)

where now Ŵe : GLsym+ → [0,∞). Since Ce = P−>CP−1, we rewrite the additive
decomposition (2.2) in the form

W (C,P ) = Ŵe(Ce) +Wp(P ) (2.4)

We admit here hardening effects of a purely kinematic nature. These are modulated by
the plastic-energy density Wp : SL→ [0,∞), which we assume to be C1. Let us explicitly
remark that we are not considering here additional internal hardening dynamics. In par-
ticular, isotropic hardening is not directly included in our frame. Our choice is motivated
by the mere sake of simplicity. Additional internal parameters could be considered as
well.
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2.4. Plastic-rotation indifference. The crucial assumption of our analysis is that the
material behavior is invariant by plastic rotations. This invariance is formulated as

We(FeQ) = We(Fe), Wp(QP ) = Wp(P ) ∀Q ∈ SO (2.5)

for all Fe ∈ GL+ and P ∈ SL. The condition on We corresponds to isotropy, whereas Wp

can be nonisotropic instead. The condition on Wp is then nothing but frame indifference
with respect to the intermediate configuration. As already commented in the Introduction,
the restriction to an isotropic elastic response is considered to be well-suited to describe
finite-plastic phenomena in polycrystalline materials [15, 27, 56, 57, 68] possibly also in
combination with additional mechanical effects [12, 31, 65] and structures [28, 37].

By using the polar decomposition P = QC
1/2
p for Q ∈ SO we have

Fe = FP−1 = FC−1/2
p Q>.

The isotropy of We from (2.5) then yields We(Fe) = We(FC
−1/2
p ). By combining frame

indifference and isotropy of We one can equivalently rewrite the elastic energy density as

We(Fe) = We(FC−1/2
p ) = Ŵe

(
(FC−1/2

p )>FC−1/2
p

)
= Ŵe(C

−1/2
p CC−1/2

p ).

On the other hand, the invariance of Wp under plastic rotations (2.5) entails thatWp(P ) =

Wp(C
1/2
p ). We hence define the function Ŵp : SLsym+ → [0,∞] by

Ŵp(Cp) := Wp(C1/2
p )

and rewrite the energy density (2.4) as

W (C,P ) = Ŵ (C,Cp) = Ŵe(C
−1/2
p CC−1/2

p ) + Ŵp(Cp). (2.6)

The state of the system is hence described by the pair

(C,Cp) ∈ GLsym+ × SLsym+.

Henceforth, we systematically employ the hat superscript in order to identify quantities
written in terms of the Cauchy-Green tensors Ce and Cp.

2.5. Constitutive relations. In order to introduce the constitutive relations we shall
here follow the classical Coleman-Noll procedure [8]. By assuming smoothness, from (2.4)
we compute

d

dt
W (C,P ) = ∂CW :Ċ + ∂PW :Ṗ . (2.7)

This identifies the thermodynamic forces associated to C and P . In particular, the
evolution of C is driven by the classical second Piola-Kirchhoff stress tensor S

S(C,P ) := 2 ∂CW (C,P ) = 2P−1∂CeŴe(Ce)P
−> ∈ R3×3

sym (2.8)

Similarly, the thermodynamic force conjugated to P is

N (C,P ) := −∂PW (C,P ) = ∂CeŴe(Ce) : ∂PCe− ∂PWp(P ) = −P>CS− ∂PWp (2.9)
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The last equality follows from the identities 2∂CeŴe = PSP> and

∂PCe : B = −2P−>CP−1BP−> ∀B ∈ R3×3.

In the plastic-rotation indifferent case one can perform an analogous analysis by exploiting

the structure of the energy W (C,P ) = Ŵ (C,Cp). In particular, we obtain

d

dt
Ŵ (C,Cp) =

1

2
S(C,Cp) : Ċ − 1

2
T (C,Cp) : Ċp, (2.10)

where S(C,Cp) = 2 ∂CŴ (C,Cp) is, with a slight abuse of notation, the second Piola-
Kirchhoff stress tensor (2.8), while

T (C,Cp) := −2∂CpŴ (C,Cp) ∈ R3×3
sym. (2.11)

We point out that a direct calculation of T via the evaluation of ∂CeŴe(Ce) : ∂CpCe

is troublesome as it involves the computation of derivatives of matric square roots in

Ce = C
−1/2
p CC

−1/2
p . On the other hand, one can compare (2.7) and (2.10) in order oto

get that 2N (C,P ) : Ṗ = T (C,Cp) : Ċp so that

N (C,P ) = P T (C,Cp) (2.12)

follows. Then, by comparing this with (2.9), assuming Wp(P ) = Ŵp(Cp), we have [21]

T (C,Cp) = C−1
p CS − 2∂CpŴp = 2P−1Ce∂CeŴe(Ce)P

−> − 2∂CpŴp(Cp).

2.6. Flow rule in terms of P . The plastic evolution is formulated in terms of a given
yield function φ = φ(P ,N ) : SL × R3×3 → R whose sublevel {φ(P ,N ) ≤ 0} represents
the elastic domain. We assume that for all given P ∈ SL the yield function N 7→ φ(P ,N )
is convex and that φ(P ,0) < 0.

Given the conjugacy of N and P from (2.7), we classically prescribe the flow rule in
complementarity form as

Ṗ = ż ∂Nφ(P ,N ), ż ≥ 0, φ ≤ 0, żφ = 0. (2.13)

This position falls within the class of associated plasticity models for the rate Ṗ is pre-
scribed to belong to the normal cone of the yield surface {φ(P ,N ) = 0}. By dualization,
this can be equivalently reformulated as

N ∈ ∂ṖR(P , Ṗ ) (2.14)

where the infinitesimal dissipation R(P , Ṗ ) is the Legendre conjugate of the indicator
function of the elastic domain {φ(P ,N ) ≤ 0} with respect to its second argument,
namely

R(P , Ṗ ) := sup{N :Ṗ | φ(P ,N ) ≤ 0}. (2.15)

According to the definition of N , we can rephrase (2.14) as

∂ṖR(P , Ṗ ) + ∂PW (C,P ) 3 0. (2.16)
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2.7. Flow rule in terms of Cp. In order to possibly formulate a flow rule in terms of
Cp only, a plastic-rotation indifferent assumption on the dissipation has to be introduced.
Relation (2.12) entails that a frame rotation in the intermediate configuration, i.e. the
transformation P → QP for Q ∈ SO, induces a corresponding transformation on the
conjugated variable N , namely N → QN . This suggests the following plastic-rotation
indifferent assumption

φ(QP ,QN ) = φ(P ,N ) ∀Q ∈ SO (2.17)

and all P ∈ SL and N ∈ R3×3. From the definition (2.15) of R, the invariance (2.17) of
the yield function implies the corresponding invariance of the infinitesimal dissipation

R(P , Ṗ ) = R(QP ,QṖ ) ∀Q ∈ SO.

Under assumption (2.17) the flow rule can be formulated solely in terms of Cp. Define
indeed

φ̂(Cp,T ) := φ(C1/2
p ,C1/2

p T ). (2.18)

From relation (2.12) and the plastic-rotation indifferent assumption (2.17), by using the

polar decomposition P = RC
1/2
p , definition (2.18) yields

φ(P ,N ) = φ̂(Cp,T ).

Note that the function T 7→ φ̂(Cp,T ) is convex and φ̂(Cp,0) < 0 for all given Cp ∈
SLsym+. We aim now at showing that a flow rule in terms of Ċp follows from the flow rule
(2.13). As T is symmetric, we compute

Ṗ = ż∂Nφ(P ,N )
(2.12)
= ż∂N φ̂(Cp,N

>P−>) = P−>ż∂T φ̂(Cp,T ) (2.19)

where we have also used that ∂T φ̂(Cp,T ) is symmetric. Then, one has that

Ċp = Ṗ>P + P>Ṗ = 2ż ∂T φ̂(Cp,T ).

Thus, the flow rule in complementarity form for Cp

1

2
Ċp = ż ∂T φ̂(Cp,T ), ż ≥ 0, φ̂ ≤ 0, żφ̂ = 0. (2.20)

This can be equivalently expressed in the dual form

1

2
T ∈ ∂Ċp

R̂(Cp, Ċp), (2.21)

where the infinitesimal dissipation R̂(Cp, Ċp) is the Legendre conjugate of the indicator

function of the elastic domain {φ̂(Cp,T ) ≤ 0} with respect to T /2, i.e.

R̂(Cp, Ċp) := sup

{
T :

1

2
Ċp | φ̂(Cp,T ) ≤ 0

}
=

1

2
sup

{
T :Ċp | φ(C1/2

p ,C1/2
p T ) ≤ 0

}
=

1

2
sup

{
C1/2

p T :C−1/2
p Ċp | φ(C1/2

p ,C1/2
p T ) ≤ 0

}
(2.15)
=

1

2
R(C1/2

p ,C−1/2
p Ċp).

(2.22)
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One can rewrite (2.21) as

∂Ċp
R̂(Cp, Ċp) + ∂CpŴ (C,Cp) 3 0 (2.23)

and check the dissipative character of the model. In fact, by definition of the second
Piola-Kirchhoff stress (2.8), we have

d

dt
Ŵ (C,Cp)− S:

1

2
Ċ = ∂CpŴ (C,Cp):

1

2
Ċp

≤ R̂(Cp,0)− R̂(Cp, Ċp) = −R̂(Cp, Ċp) ≤ 0

where we have exploited the very definition of subdifferential. In particular, for all suffi-
ciently smooth evolutions, we have that

d

dt
Ŵ (C,Cp) ≤ S:

1

2
Ċ.

Before closing this subsection, let us remark that the combination of frame (2.3) and
plastic-rotation indifference (2.5), (2.17) entail that the model is invariant under the
trasformations Fe → QFeR and P → RP with respect to all Q, R ∈ SO. This invariance
is already advocated in [5, 23] as a natural requirement in relation with the multiplicative
decomposition F = FeP , see also [49, Formula (4.5)].

2.8. Equivalence of the flow rules. We check here that the the flow rule in P (2.13)
and that in Cp (2.20) are indeed equivalent. Assume that t 7→ P (t) solves the flow rule
(2.13) along with the initial condition P (0) = P0 ∈ SL. Subsection 2.7 proves that, by
defining t 7→ Cp(t) := P (t)>P (t) one has that Cp(t) solves (2.20) with initial condition
Cp(0) = P0

>P0.

Conversely, let t 7→ Cp(t) solve (2.20) with initial condition Cp(0) = Cp0 ∈ SLsym+

and fix a P0 ∈ SL such that Cp0 = P>0 P0. This uniquely determines R0 ∈ SO such that

P0 = R0C
1/2
p0 . Define t 7→ P (t) := R0Cp(t)1/2 and check that both Ṗ>P and P>Ṗ are

symmetric. Hence, (2.19) entails that

P>Ṗ ∈ ż∂T φ̂(Cp,T ) = P>∂Nφ(P ,N )

and the flow rule (2.13) follows.

2.9. Choice of the yield function. We shall now leave the abstract discussion of the
previous subsections and choose the yield function as

φ(P ,N ) := |dev (NP>)| − r. (2.24)

Here r > 0 is a given yield threshold activating the plastic evolution. The latter choice of
yield function is inspired by the classical von Mises theory and has to be traced back to
Mandel [35], see also [25]. In particular, for all given P ∈ SL, the function N 7→ φ(P ,N )
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is convex and φ(P ,0) = −r < 0. Moreover, φ fulfills plastic-rotation invariance (2.17).
Correspondingly, the flow rule (2.13) is here specified as

ṖP−1 ∈


ż

dev (NP>)

|dev (NP>)|
for dev (NP>) 6= 0,

ż
{
A ∈ R3×3

dev | |A| ≤ 1
}

for dev (NP>) = 0.

(2.25)

The infinitesimal dissipation R(P , Ṗ ) from (2.15) reads

R(P , Ṗ ) = sup
{
Ṗ :N | φ(P ,N ) ≤ 0

}
= sup

{
ṖP−1:B | |devB| ≤ r

}
= 2R̃(ṖP−1)

with

R̃(A) :=

{ r

2
|A| if tr (A) = 0,

∞ else.
(2.26)

Let us now rewrite the flow rule in terms of Cp. According to (2.18) and (2.24), we
have that

φ̂(Cp,T ) = |dev (C1/2
p TC1/2

p )| − r
hence the flow rule (2.20) reads

Ċp ∈ 2


żC1/2

p

dev (C
1/2
p TC

1/2
p )

|dev (C
1/2
p TC

1/2
p )|

C1/2
p for dev (C

1/2
p TC

1/2
p ) 6= 0,

ż
{
A ∈ R3×3

dev | |A| ≤ 1
}

for dev (C
1/2
p TC

1/2
p ) = 0.

(2.27)

Equivalently, by dualization we rewrite the flow rule in the form (2.23), where the infini-

tesimal dissipation R̂(Cp, Ċp) reads

R̂(Cp, Ċp) = R(C1/2
p ,C−1/2

p Ċp) = R̃(C−1/2
p ĊpC

−1/2
p ) (2.28)

in accordance with (2.22). Note that the flow rule (2.27) induces an evolution in SLsym+.

In fact, as ĊpC
−1
p = 2żC

1/2
p DC

−1/2
p for some D ∈ R3×3

dev with |D| ≤ 1, we have that

tr (ĊpC
−1
p ) = 2ż tr (C1/2

p DC−1/2
p ) = 2ż trD = 0.

This implies by Jacobi’s formula that

d

dt
detCp = tr (ĊpC

−1
p ) = 0.

Hence, the evolution preserves the determinant constraint. This in particular entails that
eigenvalues cannot change sign along smooth evolutions, so that positive definiteness is
also conserved. Secondly, it is clear from the above expression (2.27) that Ċp is symmetric,
so that evolution preserves symmetry as T is symmetric. Note that the preservation of
the determinant constraint follows solely from the choice of the flow rule. On the other
hand, the symmetric character of the evolution is a combined effect of the form of the
flow rule and of the energy.
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As already commented in the Introduction, the possibility of reformulating the consti-
tutive model in terms of Cp instead of using P is advantageous in terms of computa-
tional complexity. Indeed, Cp belongs to the five-dimensional connected manifold SLsym+

whereas P is in SL which is eight dimensional. Moreover, this brings also a computa-
tional advantage as matrix computations such as exponentials, logarithms, and powers are
considerably faster on SLsym+. Finally, the fully Lagrangian formulation in Cp requires
no intermediate configurations. In particular, space discretizations can be based on the
reference configuration only. The reader is referred to the recent [53] for a comparative
discussion of the many finite-plasticity model based on Cp available in the literature. The
main result of [53] consists in proving in the isotropic case that all these constitutive
relations coincide, and coincide to the one of this paper. Recall however that no isotropy
in Wp is assumed throughout our analysis.

2.10. Formulation via the logarithmic plastic strain. By using the isomorphism

log : SLsym+ → R3×3
dev ,

the material constitutive model (2.23) can be equivalently reformulated in the variables

(C, logCp) ∈ GLsym+ × R3×3
dev .

An interesting feature of this choice is that the internal variable logCp takes values in the
linear space R3×3

dev . The logarithm of the tensor Cp is nothing but the Hencky plastic strain
2Hp = logCp. A discussion of the relevance of this notion in the realm of finite-strain
theories can be found in [52].

3. Energetic solvability of the constitutive model

This section is focused on the proof of the existence of suitable variational solutions of
the constitutive model (2.23) at the material-point level. Assume to be given an initial
state Cp,0 ∈ SLsym+ as well as the deformation history t ∈ [0, T ] 7→ C(t) ∈ GLsym+.
We are here interested in finding a trajectory t ∈ [0, T ] 7→ Cp(t) ∈ SLsym+ solving the
evolution problem (2.23), namely

∂Ċp
R̂(Cp, Ċp) + ∂CpŴ (C(t),Cp) 3 0, Cp(0) = Cp,0. (3.1)

The latter problem is conveniently framed within the classical theory of energetic for-
mulations [18, 40, 47]. We refer the reader to these references and especially to the
recent monograph [44] for a detailed discussion on the relevance of such a weak notion of
solvability.

Let us indicate the time-dependent energy as E(Cp, t) := Ŵ (C(t),Cp) and replace
the infinitesimal dissipation R by the dissipation metric D : SLsym+ × SLsym+ → [0,∞]
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defined through the formula

D(Cp, Ĉp) := inf

{∫ 1

0

R̂(Cp(t), Ċp(t))dt | Cp ∈ C1(0, 1; SLsym+),

Cp(0) = Cp, Cp(1) = Ĉp

}
. (3.2)

As the function R̂(Cp, ·) is smooth for Ċp 6= 0, positively 1-homogeneous, and has strictly
convex square power, D results in a Finsler metric [42]. In particular, D is symmetric and

fulfills the triangle inequality. The actual choice of R̂ entails the possibility of explicitly
computing

D(Cp, Ĉp) = D
(
I,C−1/2

p ĈpC
−1/2
p

)
=
r

2

∣∣ log
(
C−1/2

p ĈpC
−1/2
p

)∣∣ (3.3)

as detailed in Appendix A.

An energetic solution to (3.1) starting from Cp,0 is a trajectory t ∈ [0, T ] 7→ Cp(t) ∈
SLsym+ such that Cp(0) = Cp,0 and for all t ∈ [0, T ] the following two conditions hold

Cp(t) ∈ S(t) :=
{
Cp ∈ SLsym+ | E(Cp, t) ≤ E(Ĉp, t) +D(Cp, Ĉp) ∀Ĉp ∈ SLsym+

}
,

(3.4)

E(Cp(t), t) + Diss[0,t](Cp) = E(Cp,0, t) +

∫ t

0

∂τE(Cp(τ), τ)dτ. (3.5)

In the latter, we have denoted the total dissipation on [0, t] by

Diss[0,t](Cp) := sup

{
N∑
i=1

D(Cp(ti−1),Cp(ti))

}
where the supremum is taken over all partitions {0 = t0 ≤ t1 ≤ . . . . . . tN = t} of [0, t].
Condition (3.4) is usually referred to as global stability. It expresses the optimality of the

current state Cp(t) against possible competitors Ĉp with respect to the complementary en-

ergy, augmented by the dissipation from Cp(t) to Ĉp. Relation (3.5) imposes the balance
between the actual complementary energy E(Cp(t), t) plus total dissipation Diss[0,t](Cp)

and initial energy E(Cp,0, t) plus work of the external actions
∫ t

0
∂τE(Cp(τ), τ)dτ . It hence

corresponds to energy conservation.

We shall leave aside the discussion on the actual capability of energetic solutions of
reproducing actual physical behaviors [43, 61, 64] and limit ourselves in recording that
these solutions arise as limits of time-discretizations. Assume to be given a partition
{0 = t0 < t1 < · · · < tN = T} of the interval [0, T ]. One is interested in incrementally
solving the minimization problems

Cp,i = Argmin {E(Cp, ti) +D(Cp,i−1,Cp) | Cp ∈ SLsym+} for i = 1, . . . , N. (3.6)

These can be tackled by direct variational methods and, in particular, have at least a
solution (Cp,0,Cp,1, . . . ,Cp,N) under suitable coercivity assumptions. In the following we
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will establish the convergence to energetic solutions of piecewise constant interpolants

C
k

p(t) of sequences (Cp,0,C
k
p,1, . . . ,C

k
p,Nk

) of solutions of (3.6) corresponding to partitions

{0 = tk0 < tk1 < . . . < tkNk
= T} with time step τ k = max(tki−tki−1) tending to zero. We

shall be using the assumption

|F>e ∂FeWe(Fe)| ≤ c1(1+We(Fe)) ∀Fe ∈ GL+ (3.7)

for some positive constant c1. Assumption (3.7) entails the controllability of the ten-
sor F>e ∂FeWe(Fe) by means of the energy. It is a crucial condition in finite-deformation
theories [2, 3] and, moreover, is compatible with polyconvexity (see later on). In partic-
ular, this assumption is naturally satisfied for a large class of isotropic elasticity models,
including Ogden materials [6].

Let us record that condition (3.7) has already been considered in the quasistatic context
[18, 34, 46] and that it implies

|∂FeWe(Fe)F
>
e | ≤ c(1+We(Fe)) ∀Fe ∈ GL+ (3.8)

for some c, depending on c1. This implication has been proved in [3, Prop. 2.3] for any
frame-indifferent energy function We(Fe). With a completely similar argument, one can
prove that, for isotropic functions We(Fe), (3.8) implies (3.7) so that these two conditions
are equivalent in the frame of (2.5). We remark that (3.7)-(3.8) imply that We has
polynomial growth [3, Prop. 2.7]. Note that this growth restriction is not needed at
the modeling level but turns out to be unavoidable for proving existence of solutions. In

addition to the control (3.7) we require Ŵp to be coercive. Namely, we ask that

the sublevels of Ŵp are compact. (3.9)

This coercivity requirement on Ŵp will be strengthened for the linearization limit later
on, see (4.3).

The main result of this section reads as follows.

Theorem 3.1 (Energetic solvability of the constitutive material relation). Assume (3.7)
and (3.9). Let the deformation t 7→ C(t) ∈ C1(0, T ; GLsym+) and the initial state
Cp,0 ∈ S(0) be given. Then, there exists an energetic solution of (3.1) starting from
Cp,0. More precisely, for all partitions {0 = tk0 < tk1 < . . . < tk

Nk = T} with time
step τ k = max(tki−tki−1) the incremental minimization problems (3.6) admit a solution
{Cp,0,C

k
p,1, . . . ,C

k
p,Nk} and, as τ k → 0, the corresponding piecewise backward-constant

interpolants t 7→ C
k

p(t) on the partition admit a not relabeled subsequence such that, for
all t ∈ [0, T ],

C
k

p(t)→ Cp(t), Diss[0,t](C
k

p)→ Diss[0,t](Cp), E(C
k

p(t), t)→ E(Cp(t), t),

and ∂tE(C
k

p(·), ·)→ ∂tE(Cp(·), ·) in L1(0, T ) where Cp in an energetic solution of (3.1).
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3.1. Proof of Theorem 3.1. Given the compactness assumption (3.9), the assertion of
Theorem 3.1 follows from the classical energetic solvability theory [44] by checking that

D is lower semicontinuous and nondegenerate, namely,

D(Cp, Ĉp) ≤ D(Cp, C̃p) +D(C̃p, Ĉp) ∀Cp, Ĉp, C̃p ∈ SLsym+

and D(Cp, Ĉp) = 0 ⇔ Cp = Ĉp,

min{D(Cp,Cp,k), D(Cp,k,Cp)} → 0 ⇒ Cp,k → Cp, (3.10)

The power ∂tE is controlled by the energy, namely,

∃c2 > 0 ∀Cp ∈ SLsym+ : E(Cp, ·) ∈ C1(0, T ), ∂tE : {E ≤ c2} → R is continuous,

and |∂tE(Cp, t)| ≤ c2(1+E(Cp, t)) ∀t ∈ [0, T ], (3.11)

Stable states are closed:

Cp,k ∈ S(tk) and (Cp,k, tk)→ (Cp, t) ⇒ Cp ∈ S(t). (3.12)

Conditions (3.10) follow from the following lemma.

Lemma 3.2. The map D fulfills

D(Cp, Ĉp) ≤ R̃(logCp− log Ĉp) ∀Cp, Ĉp ∈ SLsym+. (3.13)

In particular, D is locally Lipschitz continuous and we have the bound

D(Cp, Ĉp) ≤ 2r(|Cp|+|Ĉp|+6) ∀Cp, Ĉp ∈ SLsym+. (3.14)

Proof. Given Cp ∈ SLsym+, let L = logCp ∈ R3×3
dev and define the curve t ∈ [0, 1] 7→

C(t) = exp(tL) ∈ SLsym+ connecting I and Cp. Note that tr (C−1Ċ) = tr (L) = 0, so

that R̂(Cp(t), Ċp(t)) = r|L|/2, and

D(I,Cp) ≤
∫ 1

0

R̂(Cp(t), Ċp(t)) dt =
r

2
|L|.

An analogous argument entails that D(Cp, I) ≤ r|L|/2. Let now λ3 ≥ λ2 ≥ λ1 > 0 with
λ1λ2λ3 = 1 be the eigenvalues of Cp. Then, µi = log λi are the eigenvalues of L. As we
have that µ1 + µ2 + µ3 = 0, we deduce

|L| ≤ |µ1|+ |µ2|+ |µ3| ≤ 4 log λ3 ≤ 4(λ3 − 1) ≤ 4|Cp−1|.
Hence

D(I,Cp) ∨D(Cp, I) ≤ 2r|Cp−1|.
By the triangle inequality, we hence obtain estimate (3.14).

Let now Cp, Ĉp ∈ SLsym+ be given and define L = logCp and L̂ = log Ĉp. The curve

t ∈ [0, 1] 7→ A(t) := exp(tL̂ + (1−t)L) ∈ SLsym+ connects Cp and Ĉp and it is such that

tr (A−1Ȧ) = tr (L−L̂) = 0. Hence

D(Cp, Ĉp) ≤
∫ 1

0

R̃(A−1(t)Ȧ(t)) dt = R̃(L−L̂) = R̃(logCp− log Ĉp)
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so that the local Lipschitz continuity of D follows from that of the logarithm, see Appen-
dix B. �

The closure of the stable states (3.12) is a consequence of the continuity of E and D,
see again Lemma 3.2. We are hence left with the treatment of the power ∂tE(Cp, t), see
(3.11). Let us start by computing

∂tE(Cp, t) = ∂tŴe(Ce) = ∂CeŴ (Ce):Ċe

= ∂CeŴ (C−1/2
p C(t)C−1/2

p ):C−1/2
p Ċ(t)C−1/2

p . (3.15)

As Ŵe ∈ C1 and the square root is continuous [24, pag. 23], the continuity of the map
Cp 7→ ∂tE(Cp, t) follows.

In order to prove the bound on the power in terms of the energy, recall that Ċe =
P−>ĊP−1. Hence, we have that

∂tE(Cp, t) = ∂CeŴ (Ce):Ċe =
1

2
(F−1

e ∂FeW (Fe)):(P
−>ĊP−1)

=
1

2
(∂FeW (Fe)F

>
e ):(F−>e P−>ĊP−1F−1

e )

=
1

2
(∂FeW (Fe)F

>
e ):(F−>ĊF−1).

Note that the map t 7→ F−>(t)Ċ(t)F−1(t) is bounded as t 7→ C(t) ∈ GLsym+ is C1 and
|F−1| = |C−1/2|. By exploiting the control (3.8) we get

|∂tE(Cp, t)| ≤
1

2
c1(1+We(Fe))|C−1/2(t)Ċ(t)C−1/2(t)|

≤ c(1+Ŵe(Ce)) ≤ c(1+E(Cp, t)) (3.16)

which delivers the required bound.

4. Small-deformation limit for the constitutive model

We turn now our attention to the study of the case of small-deformations. The main
result of this Section is a rigorous linearization limit for the constitutive model at the
material-point level. This will follow from an application of the evolutive Γ-convergence
theory from [45].

Linearization arguments are classically based on Taylor expansions for energy and dis-
sipation densities. Here we concentrate instead on the proof of a variational convergence
result. Indeed, we are here proving not only that the driving functionals are converging
but, more significantly, that the whole trajectories converge. This brings to a rigorous
variational justification of the linearization approach. On the other hand, as the limit-
ing problem corresponds to classical elastoplasticity with linear kinematic hardening, this
limits serves as cross-validation of the finite-strain model under consideration.
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In order to tackle the small-deformation situation, we concentrate on suitably rescaled
differences between C or Cp and the identity. In particular, given ε > 0 we reformulate
the problem in the variables

e :=
1

2ε
(C−I) ∈ R3×3

sym, z :=
1

2ε
logCp ∈ R3×3

dev . (4.1)

The tensor e is nothing but the ε-rescaled Green-Saint Venant strain. By assuming
y = id + εu where u is the rescaled displacement of the body, one has

C = (I+ε∇u)>(I+ε∇u) = I + 2ε∇usym + ε2∇u>∇u.

In particular ∇usym = (∇u+∇u>)/2 corresponds to e to first order.

The choice for z is in the same spirit and corresponds to the ε-rescaled Hencky plastic
strain [52]. Indeed Cp = exp(2εz) so that Cp ∼ I + 2εz to first order, in analogy with
the definition of C = I + 2εe. The different choice for z is motivated by the nonlinear
nature of the state space SLsym+. In particular, we use here the fact that the logarithm
is an isomorphism between SLsym+ and R3×3

dev in order to replace the the nonlinear finite-
plasticity state space SLsym+ with the linear space R3×3

dev , corresponding indeed to the
small-deformation limit. This is crucial in order to avoid the ε-dependence in the state
spaces.

By using the equivalent variables (4.1) we introduce the rescaled energy density Wε :
R3×3

sym × R3×3
dev → [0,∞] as

Wε(e, z) :=
1

ε2
Ŵ (C,Cp)

(4.1)
=

1

ε2
Ŵe

(
exp(−εz)(I+2εe) exp(−εz)

)
+

1

ε2
Ŵp

(
exp(2εz)

)
.

The relevance of this scaling is revealed for Ŵe and Ŵp twice differentiable at I by
computing Taylor expansions. In particular, by assuming with no loss of generality that

the densities are normalized so that Ŵe(I) = Ŵp(I) = 0, that the reference configuration
is stress-free (∂FeWe(I) = 0), and that the thermodynamic force T conjugated to Cp

vanishes at nonplasticized states (∂CpŴp(I) = 0), we compute

Ŵe(C
−1/2
p CC−1/2

p ) = Ŵe

(
exp(−εz)(I+2εe) exp(−εz)

)
=

1

2
ε2(e−z):4∂2

Ce
Ŵe(I)(e−z) + o(ε2) =

1

2
ε2|e−z|2C + o(ε2)

Ŵp(Cp) =
1

2
ε2z:4∂2

Cp
Ŵp(I)z + o(ε2) =

1

2
ε2|z|2H + o(ε2).

We have here used the fact that exp(−εz) = I − εz + o(ε) and defined the elasticity C
and hardening tensors H as follows

C := 4∂2
Ce
Ŵe(I) = ∂2

Fe
We(I), H := 4∂2

Cp
Ŵp(I).
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These fourth-order tensors are clearly symmetric, for they are Hessians. In addition, due
to frame- and plastic-rotations indifference the tensors C and H present the so-called
minor symmetries as well, namely

Cij`k = C`kij = Cijk`, Hij`k = H`kij = Hijk`.

As for the dissipation metric, by rescaling D by ε we define Dε : R3×3
dev ×R3×3

dev → [0,∞]
as

Dε(z1, z2) :=
1

ε
D(Cp1,Cp2)

(4.1)
=

1

2ε
D
(

exp(εz1), exp(2εz2)
)
.

Note that the scaling of the energy and of the dissipation is different for it corresponds
for the different homogeneity of these terms.

Assume now to be given t ∈ [0, T ] 7→ e(t) ∈ R3×3
sym ∈ C1(0, T ) and define accordingly the

rescaled complementary energy densities Eε(z, t) := Wε(e(t), z). Moreover, let the initial
values z0ε ∈ Sε(0) be given, where Sε(t) denotes the stable states at time t ∈ [0, T ] with
respect to (R3×3

dev , Eε, Dε). By changing back variables via (4.1) one finds that Cp,0ε =
exp(2εz0ε) ∈ S(0) where the latter denotes the stable states at t = 0 with respect to
(SLsym+, E/ε

2, D/(2ε)). In particular, by virtue of Lemma 3.1 there exists an energetic
solution t ∈ [0, T ] 7→ zε(t) ∈ R3×3

dev corresponding to (R3×3
dev , Eε, Dε) and starting from z0ε.

We shall term zε a finite-plasticity trajectory in the following.

The focus of this section is to check that finite-plasticity trajectories zε converge in the
small-deformation limit ε→ 0 to the unique linearized-plasticity trajectory. The limiting
linearized model is specified by letting

W0(e, z) :=
1

2
|e−z|2C +

1

2
|z|2H, E0(z, t) := W0(e(t), z), D0(z, ẑ) := r|ẑ−z|.

Given z0 ∈ R3×3
dev , one can apply the abstract tools from [45] and find an energetic solution

corresponding to (R3×3
dev , E0, D0) and starting from z0. As W0 is quadratic, the latter

energetic solution turns out to be a strong solution of the constitutive relation of linearized
plasticity with linear kinematic hardening

r∂|z|+ (C+H)z ∈ Ce(t), z(0) = z0 (4.2)

and it is thus unique [26]. We shall refer to this solution as the linearized-plasticity
trajectory in the following.

The main result of this section reads as follows.

Theorem 4.1 (Small-deformation limit of the constitutive model). Assume Ŵp to be
coercive in the following sense

Ŵp

(
exp(2A)

)
≥ c3|A|2 ∀A ∈ R3×3

dev (4.3)
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where c3 is a positive constant. Moreover, let Ŵe and Ŵp have quadratic behavior at
identity, namely

∀δ > 0 ∃cδ > 0 ∀|A| ≤ cδ :∣∣∣∣Ŵe(I+2A)−1

2
|A|2C

∣∣∣∣+

∣∣∣∣Ŵp

(
exp(2A)

)
−1

2
|A|2H

∣∣∣∣ ≤ δ|A|2. (4.4)

Let zε be finite-plasticity trajectories starting from well-prepared initial data z0ε ∈ Sε(0),
namely

z0ε → z0 ∈ R3×3
dev and Eε(z0ε, 0)→ E0(z0, 0). (4.5)

Then, for all t ∈ [0, T ]

zε(t)→ z(t), DissDε,[0,t](zε)→ DissD0,[0,t](z), Eε(zε(t), t)→ E0(z(t), t)

where z is the unique linearized-plasticity trajectory starting from z0.

Note that the coercivity condition (4.3) corresponds to a quantitative version of the
weaker (3.9). Indeed, as A is symmetric and deviatoric, large negative eigenvalues of A
may arise only in presence of some large positive eigenvalue. In this case, the norm the
exponential matrix is necessarily large as well.

Let us also remark that the quadratic behavior (4.4) of Ŵe is equivalent to the following

∀δ > 0 ∃c̃δ > 0 ∀|A| ≤ c̃δ :

∣∣∣∣We(I+A)−1

2
|A|2C

∣∣∣∣ ≤ δ|A|2. (4.6)

Condition (4.4) implies in particular that Ŵe and Ŵp are twice differentiable at the
identity and

Ŵe(I) = Wp(I) = 0, ∂CeŴe(I) = ∂CpŴp(I) = 0,

4∂2
Ce
Ŵe(I) = C, 4∂2

Cp
Ŵp(I) = H.

On the other hand, these conditions imply (4.4) in case Ŵe and Ŵp are C2 in a neighbor-
hood of the identity.

Let us start by preparing some convergence lemmas for the energy density and the
dissipation metrics.

Lemma 4.2 (Convergence of Eε). Under the assumptions of Theorem 4.1 we have that
Eε → E0 locally uniformly in z and uniformly in t.

Proof. Let z ∈ SLsym+. We have that exp(−εz) = I − εz + ε2L, where L is bounded in
terms of |z| only. In particular, we have that

exp(−εz)(I+2εe(t)) exp(−εz) = (I−εz+ε2L)(I+2εe(t))(I−εz+ε2L)

= I + ε(e(t)−z) + ε2L̂
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where the matrix L̂ is bounded in terms of ‖e‖L∞ and |z| only. Let now δ > 0 and

cδ > 0 from (4.4) be given and let ε so small that |ε(e(t)−z)+ε2L̂| + |εz| ≤ cδ. Such an
ε depends on ‖e‖L∞ and |z|. Then, by (4.4) we have that

|Eε(z, t)−E0(z, t)|

=

∣∣∣∣ 1

ε2
Ŵe(I+ε(e(t)−z)+ε2L̂) +

1

ε2
Ŵp

(
exp(2εz)

)
− 1

2
|e(t)−z|2C −

1

2
|z|2H

∣∣∣∣
≤
∣∣∣∣12 |e(t)−z+εL̂|2C −

1

2
|e(t)−z|2C

∣∣∣∣+ δ|(e(t)−z)+εL̂|2 + δ|z|2 ≤ c(ε+δ)

where the positive constant c depends on ‖e‖L∞ and |z|. As δ > 0 is arbitrary the local
uniform convergence follows. �

Lemma 4.3 (Convergence of Dε). Under the assumptions of Theorem 4.1 we have that

(zε, ẑε)→ (z, ẑ) =⇒ lim
ε→0

Dε(zε, ẑε) = R̃(z−ẑ).

Proof. By exploiting the explicit form of D (3.3) we have

Dε(zε, ẑε) =
1

ε
D(exp(2εzε), exp(2εẑε))

(3.3)
=

r

2ε

∣∣ log
(

exp(−εzε) exp(2εẑε) exp(−εzε)
)∣∣

=
r

2ε

∣∣ log
(
I+2ε(ẑε−zε)+O(ε2)

)∣∣ =
r

2ε

∣∣2ε(ẑε−zε)+O(ε2)
∣∣ = r|ẑε−zε|+ O(ε). �

Note that the assertion of Lemma 4.3 is stronger than that of the former [46, Lem. 3.4]
where only the Γ-convergence Dε → D was discussed. This improvement is based on the
use of the explicit form of D from (3.3).

4.1. Proof of Theorem 4.1. The assertion follows by applying the abstract convergence
result of [45, Thm. 3.1]. Given the convergences from Lemmas 4.2-4.3 we just need to
check the following mutual recovery sequence condition

∀(zε, tε)→ (z, t) s. t. zε ∈ Sε(tε) ∀ẑ ∈ R3×3
dev ∃ẑε ∈ R3×3

dev :

lim sup
ε→0

(
Eε(ẑε, tε)−Eε(zε, tε)+Dε(ẑε, zε)

)
≤ Eε(ẑ, t)−E0(z, t)+D0(ẑ, z). (4.7)

Assume to be given zε ∈ S(tε) so that (zε, tε)→ (z, t) and ẑ ∈ R3×3
dev . Then, by choosing

the constant (mutual recovery) sequence ẑε = ẑ we readily compute that

Eε(ẑε, tε)− Eε(zε, tε) +Dε(zε, ẑε)

= Eε(ẑε, tε)− Eε(zε, tε) +
1

2ε
D
(

exp(2εzε), exp(2εẑ)
)

(3.13)

≤ Eε(ẑ, tε)− Eε(zε, tε) + R̃(ẑ−zε).
In particular, by exploiting the local uniform convergence Eε → E0 from Lemma 4.2, the

smoothness of We and e, and the continuity of R̃, we conclude for (4.7).
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Appendix A. Explicit form of the dissipation distance D

The specific form of the infinitesimal dissipation R̂ entails the possibility of explicitly
expressing D as a function of its arguments. We shall prove here the following.

Lemma A.1 (Explicit form of D). For all Cp, Ĉp ∈ SLsym+ we have that

D(Cp, Ĉp) = D
(
I,C−1/2

p ĈpC
1/2
p

)
=
r

2

∣∣ log
(
C−1/2

p ĈpC
1/2
p

)∣∣. (A.1)

Before moving on let us mention that the possibility of giving an explicit form for D
is quite exceptional [38] and that (A.1) is already mentioned in [34]. We present here a
proof for the sake of completeness and start by preparing two lemmas.

Lemma A.2 (Trace inequality). One has

tr
(

exp(B)A exp(−B)A
)
≥ tr(A2) ∀A,B ∈ R3×3

sym. (A.2)

Proof. As B is symmetric and the trace is invariant under coordinate changes we can
assume with no loss of generality that exp(B) is diagonal, namely exp(B)ij = Biδij.
Indicate the coefficients of A by Aij and compute

tr
(

exp(B)A exp(−B)A
)

= A2
11 + A2

22 + A2
33 +

(
B1

B2

+
B2

B1

)
A2

12 +

(
B2

B3

+
B3

B2

)
A2

13 +

(
B1

B3

+
B3

B1

)
A2

23

≥ A2
11 + A2

22 + A2
33 + 2

(
A2

12 + A2
13 + A2

23

)
= tr (A2). �

Lemma A.3 (Inequality on exponentials). Let A ∈ C1(0, 1;R3×3
sym) and define G(t) =

exp(A(t)). Then

|G−1/2(t)Ġ(t)G−1/2(t)| ≥ |Ȧ(t)| ∀t ∈ (0, 1) (A.3)

Proof. By the matrix-exponential derivation formula

G−1/2(t)Ġ(t)G−1/2(t) = G−1/2(t)

(∫ 1

0

exp(αA(t))Ȧ(t) exp((1−α)A(t))dα

)
G−1/2(t)

=

∫ 1/2

−1/2

exp(sA(t))Ȧ(t) exp(−sA(t))ds.
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We hence compute that

|G−1/2(t)Ġ(t)G−1/2(t)|2 = tr
((
G−1/2(t)Ġ(t)G−1/2(t)

)2)
=

∫ 1/2

−1/2

(∫ 1/2

−1/2

tr
(

exp(sA(t))Ȧ(t) exp(−sA(t)) exp(rA(t))Ȧ(t) exp(−rA(t))dr
))

ds

=

∫ 1/2

−1/2

(∫ 1/2

−1/2

tr
(

exp((s−r)A(t))Ȧ(t) exp((r−s)A(t))Ȧ(t)
)

dr

)
ds

=

∫ 1

−1

tr
(

exp(uA(t))Ȧ(t) exp(−uA(t))Ȧ(t)
)

(1−|u|) du

(A.2)

≥
∫ 1

−1

tr
(
Ȧ2(t)

)
(1−|u|) du = tr

(
Ȧ2(t)

)
= |Ȧ2(t)|2. �

Proof of Lemma A.1. Let us start by proving the first equality in relation (A.1). We will
use the fact that for all G ∈ SLsym+ and Cp ∈ C1(0, 1; SLsym+) one has

R̂(Cp, Ċp) = R̂(GCpG,GĊpG). (A.4)

Let ε > 0 and take t 7→ Cp(t) : [0, 1]→ SLsym+ so that Cp(0) = Cp, Cp(1) = Ĉp, and

D(Cp, Ĉp) ≥
∫ 1

0

R̂(Cp(t), Ċp(t)) dt− ε.

Define now C̃p(t) := C
−1/2
p Cp(t)C

−1/2
p and use relation (A.4) in order to get

D(I,C−1/2
p ĈpC

−1/2
p ) ≤

∫ 1

0

R̂(C̃p(t),
˙̃
Cp(t)) dt

=

∫ 1

0

R̂(Cp(t), Ċp(t)) dt ≤ D(Cp, Ĉp) + ε

By interchanging the roles of Cp(t) and C̃p(t) one obtains

D(Cp, Ĉp) ≤ D(I,C−1/2
p ĈpC

−1/2
p ) + ε

so that D(Cp, Ĉp) = D(I,C
−1/2
p ĈpC

1/2
p ) follows.

In order to prove the second equality in (A.1) it remains to check that

D(I,Cp) =
r

2
| logCp| ∀Cp ∈ SLsym+. (A.5)

Let B(t) := etH , where H = log(Cp) ∈ SLsym+. As R̂(B(t), Ḃ(t)) = (r/2)|H| we
readily have that D(I,Cp) ≤ (r/2)|H|. On the other hand, for all ε > 0 one finds
t 7→ Cp(t) = exp(H(t)) ∈ SLsym+ so that H(0) = 0, H(1) = logCp, and

D(I,Cp) + ε ≥
∫ 1

0

R̂(Cp(t), Ċp(t)) dt.
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By using inequality (A.3) one deduces

D(I,Cp) + ε ≥ r

2

∫ 1

0

|Ḣ| dt ≥ r

2

∣∣∣∣∫ 1

0

Ḣ dt

∣∣∣∣ =
r

2
| logCp|. �

Appendix B. Local Lipschitz continuity

We comment here on the local Lipschitz continuity of the matrix logarithm and the
matrix fractional power on SLsym+. This is a consequence of the unit determinant con-
straint, which allows to control the moduli of the matrix eigenvalues and their reciprocals
in terms of the matrix norm.

Lemma B.1 (Local Lipschitz continuity). We have that

| logC1− logC2| ≤ c(1 + (|C1| ∨ |C2|)2)|C1−C2| ∀C1, C2 ∈ SLsym+ (B.1)

for some positive constant c > 0. In particular, given any compact K ⊂ SLsym+ there
exists cK > 0 such that | logC1− logC2| ≤ cK |C1−C2| for all C1,C2 ∈ K. Moreover, for
all α ∈ R, we have that

|C α
1 −C α

2 | ≤ cKα|C1−C2| ∀C1, C2 ∈ K (B.2)

for some positive constant cKα.

Proof. Let σi ⊂ (0,∞) be the spectrum of Ci, for i = 1, 2, and λ0 = min{σ1 ∪ σ2} > 0.
Since detCi = 1 one easily checks that

λ0 ≥ |C1|−2 ∧ |C2|−2. (B.3)

The logarithm of Ci can be calculated via the Cauchy Integral Formula (for operators)
[14, Ch. 7]

logCi =

∫
γ

log z

zI −Ci

dz,

where γ is a closed contour in the analyticity region of log z (one can take γ ⊂ {Re z > 0},
for instance) and winds one time around σ1 ∪ σ2. Therefore

logC1− logC2 = (C1−C2)

∫
γ

log z

(zI−C1)(zI−C2)
dz

= (C1−C2)

∫
γ̄

log z

(zI−C1)(zI−C2)
dz,

where, in the last equality, we have replaced γ the infinite straight line γ̄ = {x0+it | t ∈ R},
x0 ∈ (0, λ0), since the modulus of the integrand behaves like z 7→ | log z| |z|−2 at infinity.
For all z ∈ γ̄ we have

Re z = x0 < λ0 ⇒
∣∣∣∣ 1

zI −Ci

∣∣∣∣ ≤ √
3

|z − λ0|
.
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We hence compute that

| logC1− logC2| ≤ |C1−C2|
∫
γ̄

3| log z|
|z − λ0|2

dz ≤ 3

2
|C1−C2|

∫ ∞
−∞

| log(x2
0 + t2)|+ π

(x0 − λ0)2 + t2
dt.

The last inequality follows from the elementary control

| log(x0+it)| ≤ 1

2
| log(x2

0+t2)|+ |ϑ| ≤ 1

2

(
| log(x2

0+t2)|+ π
)

for ϑ := arctan(t/x0) ∈ (−π/2, π/2). As this estimate holds for any x0 ∈ (0, λ0), by
letting x0 → 0 we obtain

| logC1− logC2| ≤ 3|C1−C2|
∫ ∞

0

| log t2|+ π

λ2
0 + t2

dt.

We can now elementarily compute that∫ ∞
0

π

λ2
0 + t2

dt =
π2

2λ0

,

∫ ∞
0

| log t2|
λ2

0 + t2
dt ≤ −2

∫ 1

0

log t

λ2
0

dt+

∫ ∞
1

log t2

t2
dt =

2

λ2
0

+ c.

Eventually, we have proved that

| logC1− logC2| ≤ c

(
1+

1

λ2
0

)
|C1−C2|

(B.3)

≤ c
(
1 + (|C1| ∨ |C2|)2

)
|C1−C2|.

As for the matrix power C 7→ Cα, we simply use C α = exp(α logC) and recall that the
exponential map is uniformly Lipschitz on compact sets. �
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