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Abstract
This paper addresses two-dimensional crystallization in the square lattice. A
suitable configurational potential featuring both two- and three-body short-
ranged particle interactions is considered. We prove that every ground state
is a connected subset of the square lattice. Moreover, we discuss the global
geometry of ground states and their optimality in terms of discrete isoperimet-
ric inequalities on the square graph. Eventually, we study the aspect ratio of
ground states and quantitatively prove the emergence of a square macroscopic
Wulff shape as the number of particles grows.

Keywords: crystallization, square lattice, atomic interaction potentials,
boundary energy, edge isoperimetric inequality

Mathematics Subject Classification: 82D25

1. Introduction

The understanding of the crystallization process in solids is of paramount importance in both
theoretical and applied situations. However, there have been only a few rigorous mathematical
results regarding crystallization. In this paper, we present a comprehensive analysis of the
crystallization of a finite number of particles in the two-dimensional square lattice.

At very low temperature, atomic interactions are expected to be governed solely by the
respective positions of particles. Configurations are identified with the particle positions
{x1, . . . , xn} ∈ R

2 and we are concerned with the minimization of the interaction energy
E : R

2n → R ∪ {+∞}. The crystallization problem consists of characterizing the local and
global geometry of ground-state configurations of E. More precisely, crystallization occurs
when ground states of E are periodic.
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The energy E is here assumed to decompose as E = E2 +E3 where E2 and E3 respectively
describe two- and three-body interactions. The two-body interaction potential E2 is short-
ranged and attractive–repulsive. While E2 favours particles sitting at some specific positive
interatomic distance, E3 encodes three-body interactions by favouring triples of particles
forming π/2 and π bond angles. Under suitable qualifications, specified in section 2, we
prove that finite-particle minimizers of E are subsets of the square lattice (sections 3, 4 and 5).
In particular, note that E3 needs to satisfy non-degeneracy assumptions at minimizers.

Furthermore, we exactly quantify the ground-state energy in terms of the number of
particles. This quantification has a number of consequences as it determines explicitly
the global geometry of ground states. In particular, it provides a complete description of
the surface-tension effect as well as a striking tool towards uniqueness, or rather generic
nonuniqueness, of ground states (section 6). As the energy E favours particle bonding and
‘boundary’ particles necessarily have fewer bonds, ground states can be intuitively expected
to have minimal perimeter, or maximal area. This intuition is made rigorous in section 7, upon
noting that ground states can be characterized as those configurations which realize equality
in a discrete isoperimetric inequality. Additionally, we explicitly compute the exact values of
ground-state perimeter and area in terms of the number of particles.

Finally, in section 8 we prove that ground states converge in a precise quantitative way to
a square as the number of particles grows. In particular, the emergence of a macroscopic Wulff
shape in the large-particle limit is shown. This result nicely reflects the inherent multiscale
nature of the crystallization phenomenon.

To the best of our knowledge this paper represents the first rigorous crystallization results
for the square system. In view of applications, this is of course a quite relevant crystallization
setting. For the sake of putting our contribution into perspective, we shall propose here a
minimal crystallization literature overview. The reader is referred instead to Le Bris and
Lions [14] for a more general perspective.

In the one-dimensional case, crystallization under Lennard-Jones pair interactions E = E2

was first proved by Gardner and Radin in [8]. Since then, a number of results have emerged,
showing, whether or not, with different choices of E2, the stability (under perturbations) and
the minimality properties apply to the configuration of equally spaced particles. We quote in
particular [9, 18, 21] as well as the more recent [3] where a one-dimensional crystallization
problem is addressed in a quantum-mechanical setting.

The first crystallization result in the two-dimensional triangular lattice was established
by Heitmann and Radin in [13] for highly symmetric and singular interactions. More
precisely, in [13] the authors considered the crystallization of an ensemble of hard discs which
maximize relative tangencies (see also [11]). In [16] and [22] the results were refined for first-
neighbour interacting soft discs which allow interaction at distance and have been extended
to quasicrystals in [17]. Instead, the emergence of a macroscopic Wulff shape for short-
range two-body interaction potentials has recently been investigated in [24]. With respect to
these contributions, the novelty of our results consists not only of concentrating on a different
crystalline structure by exploiting three-body interactions, but more relevantly in explicitly
quantifying the ground-state and surface energies and relating ground states with perimeter
and area extremality. In this respect, our results in section 7 on isoperimetric inequalities on
the square graph are closely related to some classical issue in discrete mathematics, see [4,10].
As a consequence of our analysis an explicit quantification of the optimal area and perimeter
is provided.

In [15] another short-range interaction including a three-body term is considered, the E3

part being modelled on the geometry of sp2-covalent bonding of carbon atoms, favouring
2π/3 angles between carbon–carbon bonds. Still, an explicit characterization of ground-state
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energy is provided therein and ground states are shown to be subsets of the hexagonal lattice
(graphene) which suitably minimize their boundary length. With respect to the hexagonal
setting of [15], our results for the square system provide a more comprehensive description of
the global geometry of ground states as well as the macroscopic large-particle shape.

As far as long-range interactions are considered in two dimensions, the first crystallization
result is due to Theil (see [20]), the interactions being governed by a Lennard-Jones-like
two-body potential. This case is considerably more involved since the effect of long-range
interaction needs to be controlled by means of a specific localization technique. In [20],
an infinite crystallization problem is considered in its thermodynamic limit, and it is proved
that the energy of ground states converges to the energy density of a (suitably rescaled) copy
of the regular triangular lattice as the number of particles tends to infinity. Moreover, by
imposing suitable periodic or well-prepared Dirichlet conditions, Theil proved that ground
states necessarily correspond to subsets of the regular triangular lattice. Some seminal
numerical illustration of two-dimensional crystallization can be found in [23]. The result
by Theil has then been reconsidered in [5] by including a three-body interaction term which
favours 2π/3 angles, so that one expects crystallization in the hexagonal lattice instead of
the triangular one. In [5] the authors establish the thermodynamic limit and the hexagonal
crystallization under periodic Dirichlet conditions.

Regarding rigorous crystallization results in three dimensions, the purely two-body case
E = E2 is still open although the natural candidate ground states are the face-centred cubic
(fcc) and the hexagonally close-packed (hcp) lattices. The reader is referred to [7] for some
convincing evidence in this direction. The only available result in three dimensions asks for
an additional E3 three-body term favouring π/3 bonds: the recent paper [6] extends to three
dimensions the analysis of [20]. In particular, the authors quantify the thermodynamic limit
of the energy density of ground states that corresponds to a suitably rescaled fcc-lattice and
prove that ground states are actually fcc-lattice subsets under suitable boundary conditions.
However, by letting E3 favour 2π/3 and 4π/3 bonds, in [15] it is proved that finite ground states
need necessarily to be nonplanar. Furthermore, it is shown in [15] that rolled-up structures like
nanotubes are energetically favourable and that the classical C20 and C60 fullerenes are local
energy minimizers.

2. Energy and elementary properties of configurations

A configuration of n identical particles will be indicated by Cn and identified with the respective
particle positions {x1, · · · , xn} ∈ R

2n. We denote by �ij the distance between two particles xi

and xj , and by θijk the angle determined by the two segments xi − xj and xk − xj (the choice
of the angle orientation being inconsequential) (figure 1).

The energy E = E(Cn) of a configuration Cn is given by

E(Cn) := 1

2

∑
i �=j

E2(�ij ) +
1

2

∑
(i,j,k)∈A

E3(θijk), (1)

where the functions E2 : [0, ∞) → [−1, ∞] and E3 : [0, 2π ] → [0, ∞) are, respectively,
the two-body and the three-body interaction potentials. We choose a strongly repulsive, short-
ranged two-body potential E2 in the form

E2(�) :=




+∞ if � < 1,

−1 if � = 1,

v(�) if 1 < � < �∗,
0 if � � �∗,

(2)
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Figure 1. Notation for bonds and bond angles.
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Figure 2. The interaction functions E2 and E3.

where v is any function taking its values in (−1, 0) and �∗ ∈ (1,
√

2) is a given number
(figure 2). On the other hand, let σ be some constant in (0, π/8) and define

I1 :=
[π

2
− σ,

π

2
+ σ

]
, I2 := [π − σ, π + σ ] , I3 :=

[
3π

2
− σ,

3π

2
+ σ

]
,

I := I1 ∪ I2 ∪ I3. (3)

The three-body potential E3 is assumed to vanish only at π/2, π , and 3π/2, symmetric with
respect to π (which motivates the factor 1/2 in front of the three-body energy term), convex
in I1, and to satisfy the following non-degeneracy and symmetry conditions:

E3(θ) > 8 if θ ∈
(

θmin,
2π

5

]
, (4a)

E3(θ) > 4 if θ /∈ I, (4b)

E3(θ) = E3(θ +
π

2
) = E3(θ + π) if θ ∈ I1, (4c)

E′
3,−

(π

2

)
:= lim

t↗0

1

t
E3(t+π/2) < − 2

π
. (4d)

We say that two particles xi and xj are bonded or that there is an (active) bond between xi and
xj , if 1 � �ij < �∗. This particularly entails that E2(�ij ) is negative. The set A appearing
in the second sum in (1) is defined as the set of all triples (i, j, k) for which the angle θijk

separates two active bonds. The angle θijk is said to be a (active) bond angle if (i, j, k) ∈ A.
Note that the hard-interaction assumption E2 = ∞ on (0, 1) can be relaxed by making E2

very large in a left neighbourhood of 1 (see [5, 20, 24]).
The set of vertices and line segments corresponding to active bonds forms a graph which

we call a bond graph. In the following, we often identify configurations with the respective
bond graph, and use equivalently the terms particle or vertex, and bond or edge. It is worth
noting that, as E2(�) vanishes for � �

√
2, the bond graph is necessarily planar. Indeed,

given a quadrilateral with all sides and one diagonal in [1,
√

2), the second diagonal is at
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Figure 3. Examples of flags (bold in the first two) and a bridge (bold in the last picture).

least
√

2. In particular, all interactions are restricted to nearest neighbours only. Additionally,
one can use definition (2) and check that the minimal angle between two active bonds is
θmin := 2 arcsin(1/(2

√
2)) ≈ 0.23 π for all finite-energy configurations.

We recall that the bond graph is said to be connected if each two vertices are joinable
by a simple path. In this case, by a slight abuse of terminology, we will also say that the
corresponding configuration is connected. As all bonds are line segments, every simple cycle
in the bond graph is a polygon (note that, possibly, some internal angles of a polygon may
be equal to π ). Let us term acyclic all bonds which do not belong to any polygon. Among
these we distinguish between flags and bridges. A bridge is an acyclic bond contained in some
simple path connecting two particles that belong to distinct polygons. Flags are instead all
other acyclic bonds, see figure 3.

In the following, we will often refer to the removal of a given bonded particle x from an
n-particles configuration. By this we mean that we consider another n-particles configuration
such that the particle x is relocated so far away that it has no active bonds. Observe that
an acyclic bond univocally identifies two maximal (by set inclusion), distinct connected
subconfigurations (each containing one and only one of the vertices of that bond). By removal of
the acyclic bond we mean that we consider another configuration where these subconfigurations
are rigidly moved sufficiently far apart so that such bond is deactivated. Moreover, each flag
can be considered as corresponding to a single particle. In particular, if a configuration has f

flags one may remove the f flag-bonds by removing exactly f particles.
In order to introduce the notion of defect, we define an elementary polygon of a

configuration as a simple cycle with no bonds in its interior region. A defect is an elementary
polygon with more than four bonds. We say that a configuration is defect-free if it has no
defects.

The aim of this paper is to investigate the global minimizers of the energy E, for any fixed
n ∈ N. We shall term these global minimizers ground states. Note that ground states exist
for every n ∈ N. Indeed, E is continuous and the ground-state energy is clearly negative (for
all n > 1). Hence, all ground states are necessarily contained in a sufficiently large ball (if
particles are too far apart, no bonds are active and we have E = 0). This proves the coercivity
of E. As the energy is clearly rotation and translation invariant, we shall tacitly assume in all
of the following that statements are to be considered up to isometries.

We refer to Z
2 as the square lattice and to the graph binding nearest neighbours in Z

2

as the square graph. A configuration is said to be square if it is a subset of Z
2 and its bond

graph is a subset of the square graph. Given a square configuration Cn we define its z-row and
z-column by

Cn(·, z) := {(p, q) ∈ Cn : q = z} and Cn(z, ·) := {(p, q) ∈ Cn : p = z} (5)

for every z ∈ Z. A square configuration Cn is defined to be convex by rows and columns if for
every z ∈ Z both the bond graph of the row Cn(·, z) and the bond graph of the column Cn(z, ·)
of Cn are connected. In particular, we have that a square configuration Cn that is convex by
rows and columns is defect-free.
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We also introduce the class of regular configurations, thought of as small distortions of
square ones. We say that a configuration is regular if each of its particles has at most four
bonds, each of the polygons in its bond graph has at least four edges, and all the bond angles
are in I . The relevance of this concept is clarified by the following elementary result.

Proposition 2.1. All ground states are regular.

Proof. Since the minimum bond angle θmin is greater than 2π/9, the number of bonds of
ground-state particles needs to be less than nine. The case of a particle x with a number of
bonds between five and eight is excluded by hypothesis (4a) since the energy would strictly
decrease by removing x. Moreover, every polygon in a ground state has at least 4 edges
from (4a). In fact, if a bond graph of a ground state contains a triangle, then this will have
an internal angle which is smaller or equal to π/3. Therefore, again in view of (4a), we
can find a configuration with strictly lower energy by removing the particle associated to that
angle. This contradicts the fact that the bond graph of a ground state contains a triangle.
Analogously, the fact that all the bond angles of a ground state need to be in I follows directly
from hypothesis (4b). �

Finally, denoting by b = b(Cn) the number of bonds in the bond graph of a given
configuration Cn, it is straightforward to check the lower energy bound

E � −b. (6)

Indeed, (6) follows from the fact that E3 � 0 and E2 � −1. In particular, equality holds in
(6) if and only if Cn is square. We conclude that the energy of square configurations can be
computed by simply counting the number of bonds. Additionally, let us remark that defects in
square configurations necessarily have at least eight bonds.

3. Boundary energy

Given a configuration Cn, we say that x ∈ Cn is a boundary particle if it is not contained
in the interior region of any polygon of the bond graph, and we call a bond connecting two
boundary particles a boundary bond. In the following, we denote by d = d(Cn) the number
of boundary particles of Cn. Accordingly, the remaining n − d vertices will be addressed
as interior vertices. Furthermore, we define the bulk configuration Cbulk

n as the configuration
consisting of all the n − d interior vertices of Cn and denote by Ebulk = Ebulk(Cn) the energy
(1) corresponding to Cbulk

n . Moreover, we call boundary energy Ebnd = Ebnd(Cn) the function
defined by

Ebnd(Cn) := E(Cn) − Ebulk(Cn) = E(Cn) − E(Cbulk
n ). (7)

In addition, we denote by � = �(Cn) and by � = �(Cn), respectively, the set of all bonds
and the set of all bond angles which are deactivated in Cn by removing boundary particles.
We stress that some of the angles in �(Cn) may be adjacent to interior vertices of Cn. In the
following we will often omit the dependence of these objects on the configuration Cn being
considered, when no ambiguity arises.

Since E2 � −1 we observe that Ebnd satisfies

Ebnd � −#� +
∑
θi∈�

E3(θi) (8)

and the latter holds with an equality if (and not only if) the configuration is square. In such
case Ebnd equals the cardinality of � up to sign.

The following lemma provides the crucial estimate on Ebnd.
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Lemma 3.1. Let n � 4 and let Cn be a connected regular configuration without flags and
bridges. Then,

Ebnd � −2d + 4. (9)

Proof. Since Cn is connected and does not have any flags or bridges, its bond graph contains
a boundary polygon, made by the d boundary particles and the bonds between them, and
containing all the other n − d particles in its interior region. In the following, we will denote
the boundary polygon by Pd . Furthermore, since Cn is also regular, all the internal angles of
Pd need to be in I , the set defined in (3). Let ε, η, and ν be the ratios of the internal angles of
Pd that belong to I1, I2, and I3, respectively. Furthermore, we denote by ϕi , for i = 1, . . . , εd,
the internal angles of Pd that are in I1, by ψi , for i = 1, . . . , ηd, the internal angles of Pd in
I2, and by ξi , for i = 1, . . . , νd, the internal angles of Pd in I3.

Since the sum of the internal angles of a polygon with d sides is π(d − 2), we observe
that

ε dϕ + η dψ + ν dξ = π(d − 2), (10)

where

ϕ := 1

εd

εd∑
i=1

ϕi, ψ := 1

ηd

ηd∑
i=1

ψi and ξ := 1

νd

νd∑
i=1

ξi .

Furthermore, by (4c) and by the convexity of E3 in I1 we have that

E3(ψi) = E3

(
ψi−π

2

)
+ E3

(π

2

)
� 2E3

(
ψi

2

)
(11)

for every i = 1, · · · , ηd, and

E3(ξi) = E3 (ξi−π) + E3

(π

2

)
+ E3

(π

2

)
� 3E3

(
ξi

3

)
(12)

for every i = 1, · · · , νd.
Let us consider a boundary vertex x and the associated internal angle θ of Pd . Since Cn

is regular and since σ < π/8 in (3), we may observe the following facts. If θ is in I1, then
x needs to be two-bonded, because otherwise there would be a bond angle at x smaller than
5π/16 and so not in I . Both bonds at x are then edges of Pd . If θ ∈ I2, then x is at most
three-bonded since, otherwise, by arguing as above there would be a bound angle smaller than
3π/8. Finally, for the case in which θ is in I3 we remark that x has at most two interior bonds,
still because Cn is regular. As a consequence, we get an elementary estimate on the cardinality
of �, that is

#� � d + ηd + 2νd = εd + 2ηd + 3νd. (13)

By estimates (8), (11), (12) and (13) we obtain that

Ebnd � −εd − 2ηd − 3νd +
εd∑
i=1

E3(ϕi) + 2
ηd∑
i=1

E3

(
ψi

2

)
+ 3

νd∑
i=1

E3

(
ξi

3

)

� −εd − 2ηd − 3νd + εdE3(ϕ) + 2ηdE3

(
ψ

2

)
+ 3νdE3

(
ξ

3

)

� −(ε+2η+3ν)d + (ε+2η+3ν)dE3

(
π(d−2)

(ε+2η+3ν)d

)
, (14)
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where we used the convexity of E3 in I1 in the second inequality, while the third inequality
follows from (10) and again the convexity of E3 in I1. Therefore, we have that

Ebnd � −δd + δdE3(α(δ)), (15)

where

δ := ε + 2η + 3ν and α(δ) := π(d − 2)

δd
.

Now, we observe that if δ � δ∗ := 2 − 4/d, the assertion (9) holds true. In fact, we have

Ebnd � −δ∗d = −2d + 4, (16)

since E3 is always nonnegative. Thus, it remains to verify the assertion for δ > δ∗. In this
case, since α(δ) < α(δ∗) = π/2, the hypothesis (4d) yields

E3(α(δ)) � E3

(π

2

)
+ V ′

3,−
(π

2

) (
α(δ)−π

2

)
> − 2

π

(
α(δ)−π

2

)
= δd − 2d + 4

δd
. (17)

From the latter it easily follows that

−δd + δdE3(α(δ)) � −2d + 4.

In view of relation (15), this completes the proof. �
An immediate corollary of the boundary-energy estimate of lemma 3.1 reads as follows.

Corollary 3.2. Let n � 4 and let Cn be a connected regular configuration without flags and
bridges. If Cn is nonsquare and Cbulk

n is square, then inequality (9) is strict.

Proof. By following the proof of lemma 3.1 we aim at verifying that if a bond in � has not
length 1 or a bond angle of � is not in {π/2, π, 3π/2}, then

Ebnd > −2d + 4. (18)

We begin by observing that the inequality (14) is strict if the length of a bond in � is not 1 or
if an angle in � which is adjacent to an interior vertex differs from π/2, π , or 3π/2, and thus
in these cases relation (18) holds.

Then, we notice that Ebnd = −2d + 4 implies that the sum of the images through E3 of all
the bond angles in � is equal to δdE3(α(δ)). Thus, if we prove that α(δ) = π/2 or, in other
words, that δ = δ∗, then it would follow that all the bond angles are in {π/2, π, 3π/2} and the
assertion of the corollary would hold. Therefore, we are reduced to prove the following claim:
Ebnd = −2d + 4 implies δ = δ∗. To establish the claim we can easily show that, if δ �= δ∗,
then (18) holds. In fact, if δ > δ∗, then inequality (18) follows from relation (17), while if
δ < δ∗, then the inequality in (16) is strict and this again implies the inequality (18). Hence,
the claim holds and the proof is complete. �

4. Construction of candidate ground states

The aim of this section is to present by construction a family of configurations that will be
later proved to be ground states in theorem 5.1. In particular, for all n we find a configuration
Dn with energy

E(Dn) = −β(n),

where, the function β is defined by

β(n) := �2n − 2
√

n �
and �x� := max{z ∈ Z : z � x} denotes the lower right-continuous lower integer-part
function. Let us firstly record here a remark on the function β which actually stands as an
alternative (and equivalent) definition by recursion of β.
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Proposition 4.1. We have that

β(n+1) = β(n) +

{
1 if n = m2 or n = m2 + m for some m ∈ N

2 else.

Proof. Let us firstly discuss the case n = m2. One has that β(n+1) = β(m2+1) = β(m2) + 1
if and only if ⌊

1 − 2
√

m2+1
⌋

= −2m.

The latter is indeed equivalent to the inequalities

−2m � 1 − 2
√

m2+1 < −2m + 1

which can be easily checked.
In case n is not a square, we define m = �√n� and let � = n−m2 so that 1 � � < 2m+ 1.

We have that

β(n) = β(m2+�) = 2m2 + 2�2 +
⌊
−2

√
m2+�

⌋
.

Since −2m−2 < −2
√

m2+� < −2m we have that −2m−2 � �−2
√

m2+�� � −2m−1. The
assertion follows upon proving that the function � → �−2

√
m2+�� takes the values −2m − 2

for � � m and −2m − 1 for � � m + 1. As the latter function is monotone, it suffices to find
the first integer �∗ such that −2m − 1 = �−2

√
m2+�∗�. Given the above considerations, such

�∗ is the smallest integer such that

m +
1

2
�

√
m2+�

which is in turn is equivalent to

m2 + m +
1

4
< m2 + �

which holds if and only if � > m + 1/4. Hence, �∗ = m + 1 and the assertion follows. �
In the sequel, we will make use of the following property of the function β in order to

discuss the connectedness of ground states, see theorem 5.1.

Proposition 4.2. Let n � 2 and let m < n be an integer. Then,

β(n−m) + β(m) + 1 < β(n).

Proof. The assertion follows by computing

β(n−m) + β(m) + 1 �
⌊

2(n − √
n − m − √

m) + 1
⌋

�
⌊

2n − 2
√

n + 1
⌋ = β(n) + 1

where we have used the fact that
√

n <
√

n−m +
√

m. �
The main result of this section is the following proposition which provides an upper bound

in the ground state energy for every n ∈ N.

Proposition 4.3. For all n there exists a configuration Dn with E = −β(n).

Proof. The proof consists of constructing subsets of the square lattice with exactly β(n) bonds.
This is immediate for n � 4. Let n > 4 and m = �√n�. If n = m2 then the m × m square has
exactly β(m2) bonds. If n = m2 +� for some 1 � � < 2m+1 we construct Dn by starting from
the m × m square and adding progressively � particles at specific sites of the square lattice.
In particular, we add the first particle right above the uppermost among the leftmost particles

725



Nonlinearity 27 (2014) 717 E Mainini et al

1 2 3 4 5

Figure 4. Construction of Dn with E(Dn) = −β(n).

in the m × m square and then proceed clockwise by adding additional particles bonded to the
previously added ones and, whenever possible, to the original m × m square, see figure 4.
By means of the representation of proposition 4.1 it may be easily proved that this procedure
produces a configuration with exactly β(m2+�) bonds. �

5. Ground states are square

This section brings the main result of the paper, consisting of a characterization of the ground-
state geometry as well as an explicit determination of the ground-state energy.

Theorem 5.1. If Cn is a ground state, then Cn is square, connected, and

E(Cn) = −β(n). (19)

Proof. Thanks to proposition 2.1 we may work with regular configurations.
Let n < 4 and let Cn be a ground state. Since polygons with less than 4 edges are excluded

in the bond graph of Cn, the maximum number of bonds is n − 1. Thus, the assertion follows
from (6) and the fact that we can easily construct square connected configurations with n − 1
bonds. Note also that for n = 4 the maximum number of bonds is 4 and the unit square is
the ground state. So, we now assume that the assertion holds for any ground state Cm with
m < n (in particular this entails that the energy of any m-particles configuration with m < n

is greater than or equal to −β(m)). We will prove that it holds also for Cn in some steps.

Step 1: Cn not connected. Suppose by contradiction that the ground state Cn has two or more
distinct connected components. Let Cm, Cn−m be two subconfigurations such that no bond joins
each other. By the induction assumption E(Cn) = E(Cm) + E(Cn−m) � −β(m) − β(n−m).
This implies E(Cn) > −β(n) by using proposition 4.2, contradicting the fact that Cn is a
ground state, see proposition 4.3.

Step 2: Nonsquare Cn with flags or bridges. Suppose by contradiction that the ground state Cn

is nonsquare. If a bridge is there, consider the two subconfigurations Cm and Cn−m obtained
by removing that bridge. If both Cm and Cn−m are square and Cn is not, then the bridge is not
of unit length or creates an angle which is not a minimum of E3. In particular, its contribution
to the energy of Cn is strictly greater than −1. By the inductive assumption we obtain

E(Cn) > −β(m) − β(n−m) − 1. (20)
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If one of the two configurations Cm or Cn−m is not square, than E(Cm) + E(Cn−m) >

−β(m) − β(n−m) by induction. Since the bridge contribution to the energy is in general
greater than or equal to −1, we still get (20). In both cases by (20) and by Proposition 4.2
we conclude that E(Cn) > −β(n), and this contradicts the fact that Cn is a ground state.
If flags are present, then there is a one-bonded particle x (the bond being a flag) and we let
Cn−1 = Cn \ {x}. If Cn−1 is nonsquare, by induction E(Cn−1) > −β(n−1), therefore

E(Cn) > −β(n−1) − 1 (21)

since the energy drop in removing x is in modulus at most 1. Such a drop is strictly less than 1
if Cn−1 is square, as in such case the flag under consideration is not of unit length or creates an
angle which is not a minimum of E3 (otherwise Cn would have been square itself). Then by the
inductive assumption (21) still holds. In both cases, by combining (21) and β(n−1)+1 � β(n)

from proposition 4.1, we obtain again that E(Cn) > −β(n), a contradiction.

Step 3. Nonsquare and connected Cn with no flags nor bridges. Owing to steps 1–2, we are
left with the more relevant case of a connected ground state Cn with no flags nor bridges.
Suppose by contradiction that Cn is not square. Then, either the bulk is nonsquare or we are
in the assumptions of corollary 3.2. In the first case, by induction

Ebulk > −β(n − d).

In the second case, by corollary 3.2, we have

Ebnd > −2d + 4.

Thus, by (9) and by the fact that from the inductive hypothesis it follows that Ebulk � −β(n−d),
in both cases we obtain

E = Ebulk + Ebnd > −
⌊

2(n−d) − 2
√

n−d
⌋

− 2d + 4 = −2n −
⌊
−2

√
n−d

⌋
+ 4.

Since the right-hand side is integer, the strict inequality implies

− (�−E� +1) � −2n + 2
√

n−d + 4. (22)

We now prove that

n − d � 2(�−E�+1) − 3n + 4, (23)

by adapting an argument from [16,22]. To this end, let hj be the number of elementary j -gons
in the bond graph and h be the total number of elementary polygons. We clearly have∑

j�1

jhj = 2b − d,

and so we obtain that

4h � 2b − d (24)

since all elementary polygons have at least four edges. Combining this with the Euler formula
h + n = b + 1 we get

n − d � 2b − 3n + 4. (25)

On the other hand, as Cn is not square we have from relation (6) that E > −b. Since b is
integer, −E < b implies �−E� � b − 1, which, together with relation (25), entails (23).

By (22) and (23) we finally obtain that

−(�−E� +1) � −2n + 2
√

2(�−E�+1) − 3n + 4 + 4.
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Since the function x → x + 2n − 2
√−2x − 3n + 4 − 4 is nondecreasing and vanishes at

x = −2n + 2
√

n, the above inequality implies

−(�−E� +1) � −2n + 2
√

n,

but now the above left-hand side is integer, therefore

E > −(�−E� +1) � − ⌊
2n−2

√
n
⌋

.

We have obtained E > −β(n) which contradicts the fact that Cn is a ground state.

Step 4: Energy equality. In order to complete the induction proof we need to check that the
ground state Cn enjoys (19). Since we already know that E � −β(n) by proposition 4.3, what
we are left to prove is the opposite inequality, for square connected configurations only (in the
other cases Cn would fail to be a ground state by the previous steps).

As Cn is square and connected, in case it has a flag, by using induction and the fact that
a flag decreases the energy at most by 1, we have that E � −β(n−1) − 1. Then, the lower
bound E � −β(n) follows by lemma 4.1. If Cn has two subconfigurations of n and n − m

particles connected by a bridge, by induction we find E � −β(n−m) − β(m) − 1. Then, the
lower bound E � −β(n) follows by applying proposition 4.2. If Cn has a single connected
component, no flags and no bridges, by (7), induction, and lemma 3.1 we get that

E � −β(n−d) − 2d + 4 � −2n −
⌊
−2

√
n−d

⌋
+ 4. (26)

Next we argue as in the previous step: we observe that (25) holds and then from (6) we get
n − d � −2E − 3n + 4, which, together with (26), yields E � −2n + 2

√−2E−3n+4 + 4,
hence E � −2n + 2

√
n. But (6) holds with equality since Cn is square. In particular, E is an

integer, and so the assertion E � −β(n) follows. �

The exact quantification of the ground-state energy E(Cn) = −β(n) = −�2n − 2
√

n�
has a number of remarkable consequences which will be illustrated in all of the remainder of
the paper. It allows us not only to recover the thermodynamic limit

lim
n→∞

1

n
E(Cn) = −2

in the spirit of [5, 20] but also to precisely quantify boundary effects. We shall draw from
the knowledge of E(Cn) a detailed geometrical description of ground states. For instance, by
knowing E(Cn) and using proposition 4.2 we readily check the following.

Corollary 5.2. Ground states have no bridge.

As far as flags are concerned, we can prove the following.

Corollary 5.3. Let Cn be a ground state. If Cn has a flag then n = 1, 2, 3, n = m2 + 1, or
n = m2 + m + 1.

Proof. We can surely assume n � 4 as the other cases are easily checked. Let Cn contain
a flag. Then, there is a single bonded particle x, the bond being a flag, and we consider the
(n−1)-particle configuration Cn−1 := Cn \ {x}. We compute

−β(n−1) � E(Cn−1) = E(Cn) + 1 = −β(n) + 1.

Owing to proposition 4.1 we conclude that n = m2 + 1 or n = m2 + m + 1. �
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Figure 5. Nonisomorphic ground states for n = 17.

6. Uniqueness and defects

Ground states are generally not unique, see figure 5. Still, we have the following
characterization result for some specific values of n.

Theorem 6.1. Let Cn be a ground state for n � 4. If n = m2 then Cn is an m × m square. If
n = m2 + m then Cn is an m × (m+1) rectangle.

Proof. Let n = m2 or n = m2 + m. In this case, the (boundary polygon of the) ground state
Cn is necessarily convex. Indeed, if it was not convex it would present at least one reentrant
corner. This would lead to the possibility of activating at least two bonds by adding an extra
particle. Hence, one would have that β(n+1) � β(n) + 2, a possibility which is excluded by
proposition 4.1.

As Cn is convex it has to coincide with an a × b rectangle. In particular, the number
of bonds in Cn is (a−1)b + (b−1)a. By maximizing the latter over the integers under the
constraint ab = n we obtain the thesis. �

For all other values of n ground states are not unique. In particular, we have the following.

Corollary 6.2. Ground states are unique for n = 1, 2, n = m2, n = m2 + m, n = m2 − 1, or
n = m2 + m − 1 and are nonunique in all other cases.

Proof. The assertion is obvious for n = 1, 2. Uniqueness for n = m2 or n = m2 + m follows
from theorem 6.1. For n = m2 − 1 and n = m2 + m − 1 the ground states correspond to
an m × m square minus a two-bonded corner particle and to an n = m2 + m − 1 the ground
state corresponds to m × (m+1) rectangle minus a two-bonded corner particle, respectively.
As such, they are unique.

Let us now come to nonuniqueness. For n = 3 we have exactly two ground states
depending on the fact that the three particles form a π or a π/2 bond. For n � 5 one can
consider Dn to be constructed as in the proof of proposition 4.3. If n �= m2 or n �= m2 + m

then Dn is nonconvex. It is hence possible to remove a two-bonded corner particle and place
it in correspondence to the reentrant corner. This produces another configuration which is not
isomorphic to Dn if n �= m2 − 1. This entails nonuniqueness. �

Let us close this section with another observation on the geometry of ground states.

Proposition 6.3. Ground states are convex by rows and columns. Hence, defect-free.
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Cn C ′
n

Figure 6. Construction of C ′
n. One has E(Cn) = −17 whereas E(C ′

n) = −21.

Proof. Given the ground state Cn ⊂ Z
2, we consider the configuration

C ′
n = {(i, q) ∈ Z

2 | #Cn(·, q) �= 0 and i = 1, . . . , #Cn(·, q)}
which corresponds to move particles on each row in order to make it connected and aligned,
see figure 6. In case a row Cn(·, z) is not connected we have that E(C ′

n) < E(Cn) as this
rearrangement activated at least one new bond. This contradicts the fact that Cn is a ground
state. An analogous observation holds for columns. �

7. Ground states and discrete isoperimetric inequality

Let us consider the subproblem of minimizing E on square configurations only, that is, looking
for the square configurations with maximal number of bonds. Under the a priori assumption
that ground states are square (which is in turn something that we prove in theorem 5.1) energy
minimization turns out to be a classical problem in discrete mathematics. In particular, by
introducing the combinatorial notion of edge perimeter of a square configuration Cn as

Q(Cn) := 1

2
#

{
(x, y) ∈ Z

2×Z
2 | x ∈ Cn, y �∈ Cn, |x − y| = 1

}
, (27)

we immediately check that

− 2E(Cn) + Q(Cn) = 4n, (28)

since each particle in Z
2 has exactly four bonds. In particular, the square configuration that

maximizes the number of bonds (that is −E) is the one that minimizes the edge perimeter. This
corresponds to a suitable discrete isoperimetric inequality as argued in [10]. The reader is also
referred to [1,4] for extensions to higher dimensional square lattices, and to the monograph [12]
for an overview.

We shall revisit this fact in this section and sharpen the result by including an explicit
quantification of the involved isoperimetric constant.

In the following, we prefer to work with suitable geometric notions of area and perimeter
of a configuration instead of the combinatorial notion of edge perimeter. This change of
perspective is motivated in order to highlight the geometric nature of the argument, directly
relate to geometric approximations, and possibly allow extension to regular albeit nonsquare
configurations.

Let Cn be a regular configuration. We denote by F(Cn) ⊂ R
2 the closure of the union

of the regions enclosed by the elementary cycles of Cn that have only 4 bonds (no defects),
and by G(Cn) ⊂ R

2 the union of all bonds in the bond graph of Cn which are not included in
F(Cn). Then, we may define the area and the perimeter of Cn by

A(Cn) := L2(F (Cn)), P (Cn) := H1(∂F (Cn)) + 2H1(G(Cn)).
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In the above definitions, L2 is the two-dimensional Lebesgue measure, ∂F (Cn) is the
boundary of F(Cn) and H1 denotes the one-dimensional Hausdorff measure. Notice that
P(Cn) = d + f + 2g if Cn is defect-free with d boundary particles, f flags and g bridges,
since acyclic bonds are counted twice. In particular, recalling corollary 5.2 and corollary 5.3,
if Cn is a ground state and n � 4 we have that P(Cn) = d if it has no flags and P(Cn) = d + 1
otherwise (that is, if n = m2 +1 or n = m2 +m+1). Notice also that this definition of perimeter
is consistent with external approximations. Indeed one can prove that

P(Cn) = lim
ε↘0

H1
(
∂
(
∂F (Cn) ∪ G(Cn) + Bε

))
where Bε = {y ∈ R

2 | |y| � ε}. The energy of a square configuration Cn may now be rewritten
in terms of a linear combination of its area and its perimeter, as expected. Namely,

− E(Cn) = 2A(Cn) +
1

2
P(Cn), (29)

which corresponds to the equality case in (24) (that is, for connected defect-free square
configuration without flags and bridges, in such a case d is the perimeter).

In order to deal with the isoperimetric inequality, we introduce a discrete monotone
rearrangement procedure, that we call rectangularization, similar to the reordering of [4,10,12].

Definition 7.1. We say that a square configuration Cn is quasirectangular, or a quasirectangle,
if it is connected, convex by rows and columns, and there exists a triplet (r, c, e) in

Tn := {(r, c, e) ∈ N
3 | rc + e = n, 1 � e � max{r, c}}

such that the particles of Cn are all arranged in r rows with c particles each plus an extra
connected line consisting of e particles, each bonded to one and only one particle of Cn outside
of such line and such that the boundary polygon has at most one reentrant corner. We will use
the notation Rr,c,e

n for a quasirectangle with n particles organized in r rows, c columns, and in
one extra line with e particles.

Examples of quasirectangles are all the configurations of section 4, see figure 4, as well as
the first and the last two configurations in figure 5. Note that, since in the definition of Tn

we excluded triples (r, c, e) with e = 0, the m×m- square is interpreted as a quasirectangle
with (r, c, e) = (m−1, m, m) or (r, c, e) = (m, m−1, m). This choice will simplify notation
later on.

Definition 7.2. Letting Cn be a square configuration. We define its rectangularization R(Cn)

as the quasirectangle resulting from rearranging the particles of Cn according to the following
three steps.

(1) Rearrange Cn in C ′
n by letting

C ′
n := {(i, q) ∈ Z

2 | #Cn(·, q) �= 0 and i = 1, . . . , #Cn(·, q)}.
(2) Rearrange C ′

n in C ′′
n by letting

C ′′
n := {(p, j) ∈ Z

2 | #Cn(p, ·) �= 0 and j = 1, . . . , #Cn(p, ·)}.
(3) Define R(Cn) as the configuration obtained from C ′′

n by performing for p = 2, 3, . . .

the following iterative procedure: if #C ′′
n(·, p) < #C ′′

n(·, p−1) then move the rightmost
among the uppermost particles of C ′′

n to the (empty) location (#C ′′
n(·, p)+1, p).

It is immediately realized that R(Cn) is a quasirectangle, hence in particular it is convex
by rows and columns. The following result shows how the rectangularization interacts with
energy, area, and perimeter.
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Lemma 7.3. For any connected square configuration Cn we have

(i) E(R(Cn)) � E(Cn);
(ii) P(R(Cn)) � P(Cn);

(iii) A(R(Cn)) � A(Cn).

Proof. We begin by observing that, in view of the equality (29), assertion (iii) is a consequence
of (i) and (ii). Thus, it suffices to prove (i) and (ii).

Assertion (i) follows from the fact that the number of bonds does not decrease in the
rectangularization of Cn. In fact, first in passing from Cn to C ′′

n it is clear that no bonds are
lost, whereas it is possible that new bonds are activated. Finally, we observe that every time
it is necessary to move a particle to pass from C ′′

n to R(Cn), we move a one or two-bonded
particle to a two-bonded particle. Thus, also in this last process the total number of bonds does
not decrease.

We now establish (ii). To this end, we define e1 := (1, 0) and e2 := (0, 1) and, for
i = 1, 2, we denote by Pi(Cn) the perimeter of the part of the boundary of Cn in the direction
ei . Furthermore, we observe that the projection of the bond graph of Cn onto the ei-axis is an
interval, and we denote its length by �i(Cn). From the definition of perimeter it easily follows
that

P1(Cn) � 2�1(Cn) and P2(Cn) � 2�2(Cn) (30)

and that we have two equalities in (30) if and only if Cn is also convex by rows and columns.
Indeed, in the latter case the perimeter of Cn is the perimeter of the smallest closed rectangle,
with edges in the directions of e1, e2, which contains Cn. Furthermore, by definition 7.2 we
observe that

�1(Cn) � �1(C
′
n) = �1(C

′′
n) and �2(Cn) = �2(C

′′
n). (31)

Thus, by (30) and (31) we obtain

P(Cn) = P1(Cn) + P2(Cn) � 2�1(C
′′
n) + 2�2(C

′′
n) = P1(C

′′
n) + P2(C

′′
n) = P(C ′′

n) (32)

where we used that C ′′
n is convex by rows and columns. Finally, when we need to move a

two-bonded particle in passing from C ′′
n to R(Cn) the perimeter does not change while when

we need to move a flag into a two-bonded particle the perimeter strictly decreases by two.
Therefore we obtain P(C ′′

n) � P(R(Cn)), which together with (32) concludes the proof of
assertion (ii). �

A consequence of the above construction is the following.

Corollary 7.4. Let Cn be a connected square configuration. The following assertions are
equivalent:

(a) Cn is a ground state,
(b) Cn minimizes perimeter over connected square configurations of n-particles,
(c) Cn maximizes area over connected square configurations of n-particles.

Proof. If (a) ⇔ (b) holds, then (b) ⇔ (c) follows immediately from equality (29). Thus, we
are reduced to establish the equivalence between (a) and (b). From the proof of proposition 7.3,
we see that if (b) holds, Cn is necessarily convex by rows and columns (otherwise we would
get a strict inequality in (30) and then we would find P(R(Cn)) < P (Cn) against (b)). As a
consequence, P(Cn) is the perimeter of the rectangle with edges �1(Cn), �2(Cn), the notation
being still the one of (30). Since Cn is convex by rows and columns, it is also clear that
Q(Cn) = P(Cn) + 4. By this relation, with (28) and proposition 6.3 we see that Cn minimizes
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the edge perimeter (whose minimality also implies convexity by rows and columns) and we
infer that Cn is a ground state. On the other hand, if (a) holds, by proposition 6.3 Cn is convex
by rows and columns, then similarly we conclude that Cn is a minimizer for both Q and P . �

From the previous corollary it follows in particular that on ground states the quantitiesE, P ,
and A are invariant by R. More precisely, we are provided with the possibility of characterizing
all ground states for those n for which nonuniqueness occurs, see section 6. Indeed every
ground state corresponds to a quasirectangle and we can list all the quasirectangular ground
states. In particular, all ground states can be obtained by transforming quasirectangle ground
states and thus can, at least in principle, be enumerated and described.

We are ready for the isoperimetric characterization of ground states. In the following, we
let �·� denote the left-continuous upper integer-part function �x� = min{z ∈ Z : x � z}.
Theorem 7.5. Let Cn be a connected square configuration, n > 1. Then,√

A(Cn) � knP (Cn) (33)

where the isoperimetric constant kn is given by

kn =
√

n − �2
√

n−1�
2�2

√
n−1� − 2

. (34)

Moreover, equality corresponds to ground states.

Proof.
Step 1. Let us start by checking the inequality (33). In view of lemma 7.3 it suffices to establish
inequality (33) for quasirectangles. Thus, let us define kn by

kn := max
(r,c,e)∈Tn

√
A

(
R

r,c,e
n

)
P

(
R

r,c,e
n

) (35)

where we recall that Rr,c,e
n denotes the quasirectangle with n particles organized in r rows, c

columns and in one extra line with e = n − rc particles (definition 7.1). It is immediate to
check that the area and the perimeter of a quasirectangle Rr,c,e

n are respectively given by

A(Rr,c,e
n ) = (r−1)(c−1) + e − 1 = n − (r + c),

P (Rr,c,e
n ) = 2(r−1) + 2(c−1) + 2 = 2(r + c) − 2.

(36)

Hence, (35) is equivalent to

kn = max

{√
n − (r+c)

2(r+c) − 2

∣∣∣∣∣ r, c ∈ N and n − max{r, c} � rc < n

}
.

As the function under maximization in the previous formula decreases with respect to r + c,
kn is realized at the minimum admissible value of r + c, i.e.,

k∗ := min{r + c | r, c ∈ N and n − max{r, c} � rc < n}.
We claim that

k∗ = �2
√

n − 1� (37)

To prove the claim, we first remove the constraint that restricts r and c to be integers. In fact,
it is easy to verify that

k := min{r + c | n − max{r, c} � rc < n}
is equal to 2

√
n − 1. As k∗ = �k�, we obtain (37). Consequently, we can compute kn and see

that it is given by (34).
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Step 2. We now show that every ground state Cn satisfies (33) with the equality. We begin by
observing that if Dn is the configuration constructed in proposition 4.3, then√

A(Dn) = knP (Dn). (38)

In fact, this is an easy consequence of

2�√n� = �2
√

n − 1� for 1 � n − (�√n�)2 � �√n�
and of

2�√n + 1� = �2
√

n − 1� for �√n� � n − (�√n�)2 � n − 1.

Since Dn is a ground state by proposition 4.3 and theorem 5.1, we may apply corollary 7.4
to both the ground states Dn and Cn and obtain that P(Cn) = P(Dn) and A(Cn) = A(Dn).

Therefore, from (38) it follows that
√

A(Cn) = knP (Cn).

Step 3. In this last step we consider a connected square configuration Cn such that√
A(Cn) = knP (Cn), (39)

and we prove that Cn is a ground state. Denote again by Dn the ground state provided
by proposition 4.3 and note that Dn minimizes perimeter over among square n-particles
configurations by corollary 7.4. Then, we get

E(Dn) � E(Cn) = −2A(Cn) − 1

2
P(Cn) = −2k2

nP
2(Cn) − 1

2
P(Cn)

� −2k2
nP

2(Dn) − 1

2
P(Dn) = E(Dn),

where we used (29), (39) and (38). This shows that E(Cn) = E(Dn) and concludes the proof.
�

In view of theorem 7.5 we are able deduce explicit formulas for area and perimeter of
ground states. In particular, we have this further characterization of ground states.

Corollary 7.6. Let Cn be a connected square configuration. The following assertions are
equivalent:

(a) Cn is a ground state,
(b) A(Cn) = n − �2

√
n − 1�,

(c) P(Cn) = 2�2
√

n − 1� − 2.

Proof. By corollary 7.4 ground states minimize the perimeter and maximize the area among
square n-particles configurations. Moreover there are quasirectangular ground states, see
proposition 4.3 Hence, the assertion follows from (36) and (37). �

Notice that the above characterizations of area and perimeter are consistent with (19) via
equality (29). Indeed, by corollary 7.6 we have that Cn is a ground state if and only if

− E(Cn) = 2A(Cn) +
1

2
P(Cn) = 2(n − �2

√
n − 1�) +

1

2
(2�2

√
n − 1� − 2)

= 2n − �2
√

n − 1� − 1 = β(n).
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8. Ground states converge to squares as n → ∞

Theorem 6.1 provides a complete geometric characterization of ground states for specific values
of n. For all other values, nonuniqueness occurs. Note that, even by restricting this to the
class of quasirectangles, no uniqueness holds. Indeed, it suffices to consider the quasirectangles
identified by the triples (9, 9, 7) and (10, 8, 8) which are both ground states but not isomorphic.

The aim of this last section is to provide some precise description of the aspect ratio of
ground states in case of nonuniqueness. We show that ground states approach a square as
the number of particles n gets large. We give a quantitative description of this phenomenon
in the following theorem 8.1 where we state that the Hausdorff distance between a ground
state Cn and the square of side �√n� is of order n1/4. In particular, suitably rescaled
ground states converge to the square. More precisely, by letting Cn be a ground state and
Gn = Cn/

√
n := {x/

√
n | x ∈ Cn}, we prove that Gn → [0, 1]2 (up to isometries) with

respect to the Hausdorff topology.
In this respect, let us mention the analysis by Yeung et al [24] where an analogous

observation was made for the triangular-lattice case. In that paper, the description of the limiting
geometry and the emergence of a hexagonal macroscopic Wulff shape was investigated by �-
convergence. See also in this context Alicandro et al [2]. Our approach is quite different as we
concentrate on minimizers instead (rather than on energies) and provide a sharp quantitative
estimate in terms of Hausdorff topology for all n. We have the following.

Theorem 8.1. The ground state Cn approaches the square Sn of side �√n� as n gets large.
Precisely, we have that

d(Cn, S
′
n) � 1

2
n1/4 + 1

where d is the Hausdorff distance and S ′
n = Sn + a for some a ∈ R

2.

Proof. Let Cn be a ground state and �1, �2 ∈ N be the number of particles of the minimal
�1 × �2 rectangular configuration including Cn. Recall that ground states are convex by rows
and columns and so we have two equalities in (30), thus �1 = �1(Cn) + 1, �2 = �2(Cn) + 1.
Assume with no loss of generality that �1 � �2. Then, by corollary 7.6 (c) we have that

P(Cn) = 2�2
√

n−1� − 2 = 2((�2−1) + (�1−1))

so that, in particular, �1 + �2 = k∗ + 1, where k∗ is given by relation (37). We shall hence
consider the maximization problem

max{�1 − �2 : �1, �2 ∈ N, n � �1�2, �1 + �2 = k∗ + 1}
which can be solved analytically. We can compute the optimal pair (�∗

1, k∗+1−�∗
1) which

corresponds to

�∗
1 =

⌊
(k∗+1) +

√
(k∗+1)2−4n

2

⌋
=

⌊
�2

√
n� +

√
(�2

√
n�)2−4n

2

⌋
.

In particular, the maximal value of �1 − �2 reads

�1 − �2 = 2�∗
1 − k∗ − 1 = 2

⌊
�2

√
n� +

√
(�2

√
n�)2−4n

2

⌋
− �2

√
n−1� − 1

� 2

⌊√
(�2

√
n�)2−4n

2

⌋
�

√
(�2

√
n�)2−4n �

√
(2

√
n+1)2−4n

=
√

4
√

n + 1 � 2n1/4 + 1.
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�
√

n�

√
n

√
n+n1/4+1

�2

�1

S′

Cn

Figure 7. Construction for the proof of theorem 8.1. Note that the depicted configuration
Cn is chosen for illustrative purposes only. In particular, it is not a ground state.

As we have that �2 = �2
√

n� − �1, from �2 � �1 � �2 + 2n1/4 + 1 we deduce that
1

2
�2

√
n� � �1 � 1

2
�2

√
n� + n1/4 +

1

2
.

By using the elementary inequalities x � �x� � x + 1 we obtain√
n � �1 �

√
n + n1/4 + 1.

Correspondingly, we also have that
√

n − n1/4 − 1 � �2 � √
n. In particular, by referring to

the notation of figure 7, one can check that d(Cn, S
′) � n1/4 + 2 so that the assertion follows

by translating S ′ (to the right). �
For the sake of completeness and of comparison with [24], we conclude this section by

restating the above aspect-ratio result in terms of weak∗-convergence of empirical measures.
Indeed, assume Cn = {x1, . . . , xn} to be a ground state and let µn be the probability measure
in R

2 given by

µn = 1

n

∑
i

δxi/
√

n.

Then, theorem 8.1 entails in particular that, up to isometries, µn → µ in the weak∗ sense where
µ is the Lebesgue measure restricted to the square [0, 1]2. The latter observation corresponds
to the square-lattice version of the former [24, theorem 1.2]. In particular, given two ground
states Cn, Gn ⊂ Z

2 we have that

d(Cn, G
′
n) � n1/4 + 3

where G′
n = Gn + a for some a ∈ Z

2. As the diameter of a ground state is controlled by√
2n + O(n1/4), we readily conclude that

#(Cn�G′
n) �

√
2n3/4 + O(n1/2).

That is, two n-particles ground states differ at most by O(n3/4) particles.
This same conclusion has recently been obtained by Schmidt [19] in the frame of the so-

called Heitmann–Radin sticky potentials. These correspond to choose v = 0 in (2) and E3 = 0
entailing finite crystallization on the triangular lattice [13]. Also in this case, ground states
deviate at most by O(n3/4) particles from the ideal (hexagonal) Wulff shape configuration.
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