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Abstract

Fatigue and degradation in shape-memory alloy response is a crucial concern for a variety

of innovative applications. Under cyclic loadings, these materials generally experience

permanent inelastic deformations. The onset of plasticization is known to be very sensitive

to the microstructure of the polycrystalline specimen.

Moving from recent experimental findings [9, 11], we present a phenomenological model

for permanent inelastic effects in shape-memory alloys taking into account the polycrys-

talline microstructure. In particular, the mechanical response under cyclic loadings is

assumed to be dependent both on the degree of crystallization and the mean crystal grain

size. Formulated within the variational frame of Generalized Standard Materials, the

model consists in an extension of the model in [5] to the microstructure-dependent pa-

rameter case. The mathematical setting is discussed and numerical simulations showing

the capability of the model to reproduce experiments are presented.
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Figure 1: Cyclic loading response in NiTi [10].

1. Introduction

Shape Memory Alloys (SMAs) are usually referred to as active materials for consid-

erably large strains can be activated by either thermal, mechanical, or magnetic stimuli

[15, 23]. The functional properties of Shape Memory Alloys (SMAs) are at the basis of a

large range of innovative applications such as sensors, actuators, and MEMS in a number

of different fields from Biomechanics and Medical Engineering, to Seismic and Aerospace

Engineering [13]. Correspondingly, the experimental investigation and the constitutive

material modeling for SMAs has attracted a constantly increasing attention in the last

decades.

A emerging technological issue is that of tailoring the SMA manufacturing processes in

order to improve their functional properties. In particular, one is interested in predicting

and possibly controlling the accumulation of fatigue and degradation effects under cyclic

loading regimes [16, 29, 31]. Figure 1 reports the experimental stress-strain response of

a NiTi wire subject to a stress-driven uniaxial cyclic tension test. Pseudoelastic loops

show an increasing level of permanent inelasticity which eventually saturates. Due to its

applicative relevance, the effective modelization of permanent inelastic effects has recently
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attracted considerable attention [5, 8, 22, 28, 33, 34, 24, 20, 21, 35, 36].

The polycrystalline texture of the material has a strong influence on the onset of

plasticization [17, 30, 37]. In the recent series of papers [9, 10, 11, 12] the Authors

provide experimental evidence of the influence of the polycrystalline microstructure on the

functional behavior on fatigue and degradation in SMAs. A commercial NiTi wire is heat

treated by electric pulses in such a way to induce recrystallization from the amorphous

phase as well as crystal-grain coarsening. Then, the pseudoelastic response is tested and

the microstructure is analyzed by transmission electron microscopy. On the one hand, in

the completely recrystallized situation, it is observed that pseudoelastic effects are favored

under comparably large mean crystal-grain sizes. On the other hand, as grains grow larger

fatigue effects become apparent. As such, one is interested in identifying an optimal

microstructure which at the same time allows for a relevant martensitic reorientation

effect (in terms of the size of the corresponding transformation strain) while controlling

the accumulation of fatigue and degradation. For the specific experimental situation of

[10] such an optimal microstructure corresponds to a mean grain-size in the 20-50 nm

range.

The purpose of this work is to propose a phenomenological model capable of describ-

ing the observed fatigue and degradation effects under cyclic loadings in connection with

the polycrystalline microstructure of the material. Our starting point is a recent model

for the inelastic behavior of SMAs proposed in [5]. This model, which we refer to as the

ARS model throughout, is in turn built on the original framework by Souza, Mamiya,

and Zouain [32] and Auricchio and Petrini [2, 3, 4], see the recent review [18]. Formu-

lated within the classical frame of Generalized Standard Materials, the ARS model is

a phenomenological model featuring the rate-independent evolution of the inelastic and

plastic strains of the body as the relevant internal variables. Despite its relative simplicity

in terms of number of material parameters, the ARS model has proved very effective in

describing fatigue accumulation and degradation effects [5], while being robust with re-

spect to discretizations and approximations, and amenable to a satisfactory mathematical
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treatment [14].

Our strategy in order to extend the ARS model to microstructure dependencies is

that of including two additional internal variables, the proportion of crystallized material

and the mean crystal-grain radius. This will be done by choosing some specific form of

microstructural dependence of the original parameters in the ARS model.

The novelty of this paper is twofold. From the one hand, after recalling the basic

traits of the original ARS model (Section 2) we present its detailed analysis in the uniaxial

tension case. This allows us to clarify the role of the various material parameters in the

ARS model and to present a new effective strategy in order to calibrate these parameters

on the basis of experimental cyclic loading tests (Section 3).

Secondly, we employ the above-mentioned fitting procedure in order to propose the

new microstructure-dependent extension of the ARS model (Section 4). The model re-

sults from few simple assumptions on the scaling of free energy and dissipation in the

material. The extended model still enjoys the remarkable features of the original ARS

model. In particular, it can be quite effectively time-discretized in order to obtain numer-

ical simulations. These simulations are in good agreement with the experimental findings

of [9, 10, 11, 12].

Before moving on, let us mention some other recent contributions to the modeling

of permanent inelastic effects in the super-elastic regime of SMA. Macroscopic models

combining pseudoelasticity and thermal strain recovery with the onset of plastic [20] (or

viscoplastic [21]) strains have been reported by Hartl and Lagoudas. The proposal of Zaki

and Moumni [35, 36] can be counted in the same class of non-crystallographic macro-scale

description. Manchiraju and Anderson (2010) proposed a microstructure-based model [24]

aiming to describe the interaction between martensitic transformation and plasticity. A

micromechanical constitutive model based on crystal plasticity for cyclic deformations has

been recently proposed by Yu et al. [33, 34].

In a recent contribution by Barrera, Biscari and Urbano [7] where another modification

of the ARS model displaying an evolving elastic domain is considered. The idea here
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is to model degradation in thermoelastic cyclic experiments by letting the size of the

elastic domains depend on plasticization. Our perspective here is different as we focus on

isothermal mechanical cycles instead.

2. The ARS model for permanent inelastic effects

In order to set the stage for our microstructure dependent modelization, let us start

by recalling the basic features of the ARS model [5]. As already mentioned, this is

an extension of the Souza-Auricchio model [2, 18, 32] to the case of permanent plastic

effects. In particular, it is a macro-scale, small-strain model of internal-variable type for

polycrystalline specimens.

2.1. State variables

The basic kinematic variable is the linearized strain

ε(u) =
1

2
(∇u+∇uT ) ∈ R3×3

sym

where u denotes the displacement vector field and R3×3
sym stands for the space of symmetric

2-tensors in R3.

Two additional kinematic strain-like variables, the transformation strain etr and the

plastic strain q, characterize the state of the system. The transformation strain etr is

defined as the inelastic part of the strain, that is, it fulfills the constitutive relation

ε(u) = εel + etr, (2.1)

where εel, the elastic strain, is a linear function of the stress σ. The transformation strain

etr is in turn decomposed as the sum of a martensitic strain em and a plastic strain q:

etr = em + q. (2.2)

The tensor etr corresponds to the inelastic strain associated to the martensitic transfor-

mation whereas q is interpreted as the fatigue-induced plasticization strain.
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The strains etr and q are considered as kinematically independent variables, while em

is defined via (2.2). Relation (2.1) is hence a constitutive relation between independent

variables. Both tensors etr and q are symmetric and deviatoric, reflecting the quasi-

isovolumetric character of both the martensitic phase transition and the plastic evolution.

In particular, we write

etr, q ∈ R3×3
dev := {a ∈ R3×3

sym | Tr a = 0}

where Tr a := I : a is the trace of the tensor a, I is the identity 2-tensor, and : denotes

the standard contraction product.

A basic assumption of the model is the constraint for the transformation strain

‖etr‖ := (etr : etr)1/2 ≤ εL (2.3)

where εL > 0 corresponds to the maximal uniaxial strain obtainable via martensitic

reorientation. Accordingly, one would be tempted to constrain ‖em‖ rather than ‖etr‖.

However, it is empirically seen that the maximum value of ‖etr‖ is very little dependent on

the experienced fatigue in comparison with the fatigue-induced residual strain [9, 10, 17].

One hence resorts in constraining the entire inelastic response of the material via (2.3),

see [5].

2.2. Energy

The material behavior falls in the class of rate-independent models for Generalized

Standard Materials [19]. The evolutive laws are characterized in terms of a (Gibbs) free

energy potential and a positively one-homogeneous dissipation (pseudo)potential. The

free-energy density is assumed to be

Φ(σ, etr, q) = −1

2
σ : C−1σ − σ : etr+

+ β0(T −Mf )
+‖etr − q‖+

h

2
‖etr‖2 − Aεtr : q +

H

2
‖q‖2 + IεL(etr). (2.4)

Here, C is the isotropic elasticity tensor

C−1σ =
1 + ν

E
s+

1− 2ν

3E
Tr(σ)I
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where s = σ − Tr(σ) I/3 is the deviatoric stress tensor, and ν and E are respectively

the Poisson ratio and the Young modulus. Note that the same elastic response is as-

sumed for both austenite and martensite for simplicity (see [6] for a generalization). The

thermomechanical coupling term features the occurrence of the quantity

β0(T −Mf )
+ = β((T −Mf ) ∨ 0)

(∨ denotes the maximum) where T denotes the absolute temperature, Mf is the so-called

martensitic finish temperature (below which the martensitic phase is stable at zero stress).

As we restrict here to the isothermal situation, we shall simplify the notation by using

systematically the symbol β as a place holder for β0(T −Mf )
+. The last term in the free

energy enforces the constraint on the transformation strain through the indicator function

IεL(etr) :=

 0 if ‖etr‖ < εL,

+∞ otherwise.

Finally, h,H,A are positive hardening-like parameters.

We shall assume form the very beginning the convexity condition

hH > A2. (2.5)

This condition entails that the Gibbs free energy density is uniformly convex in its vari-

ables (etr, q). Moreover, condition (2.5) entails the uniform convexity of the Helmholtz

free energy

Ψ(ε, etr, q) = sup
σ

(
Φ(σ, etr, q) + σ : ε

)
with respect to the variables (ε, etr, q).

The stress-strain constitutive equation (2.1) is classically obtained from the free energy

via the conjugacy relation

ε = −∂Φ

∂σ
= C−1σ + etr.

The thermodynamic forces conjugated to the strain-like variables etr and q are analogously
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defined as

X ∈ −∂etrΦ = s− β∂‖etr − q‖ − hetr + Aq − ∂IεL(etr), (2.6a)

Q ∈ −∂qΦ = β∂‖etr − q‖ −Hq + Aetr. (2.6b)

This inclusions feature the occurrence of subdifferentials in the sense of convex analysis.

Indeed, for all ψ : X → (−∞,∞] convex (possibly taking the value∞ out of some convex

constraining set) for some Hilbert space X (in particular X = R, R3×3
sym, (R3×3

sym)2 etc.), the

subdifferential ∂ψ is defined for all x ∈ X such that ψ(x) < ∞ as the (possibly empty)

set

∂ψ(x) = {y ∈ X∗(dual) | y : (w − x) ≤ ψ(w)− ψ(x) ∀w ∈ X}.

Note that if ψ is differentiable at x the subdifferential ∂ψ(x) coincides with the usual

gradient ∇ψ(x). The notion of subdifferential is particularly useful in non-smooth albeit

convex situations, as that of the free energy Φ(σ, ·, ·). Let us remark that we also use the

notion of partial subdifferential without introducing new notation.

Relations (2.6) can be equivalently restated in the complementary form

X = s− β etr − q
‖etr − q‖

− hetr + Aq − γ etr

‖etr‖
,

Q = β
etr − q
‖etr − q‖

−Hq + Aetr

where the scalar γ satisfies

γ ≥ 0 and γ = 0 whenever ‖εtr‖ < εL,

and we agree that (etr − q)/‖etr − q‖ stands for an element of the unitary ball {y ∈

R3×3
dev | ‖y‖ ≤ 1} if etr − q = 0.

2.3. Dissipation and constitutive relation

The dissipation (pseudo)potential is defined as the Fenchel-Legendre conjugate of the

indicator function IE of the elastic domain

E = {(X,Q) ∈ (R3×3
dev )2| F (X,Q) ≤ 0},
8



where F is the yield function

F (X,Q) = ‖X‖+ κ‖Q‖ −R.

Here, R > 0 is a material parameter corresponding to the transformation radius and

0 ≤ κ < 1 controls the activation of plastic effects. The dissipation potential is then given

by duality as

D(ėtr, q̇) = sup
F (X,Q)≤0

{X : ėtr +Q : q̇} = R
(
κ−1‖q̇‖ ∨ ‖ėtr‖

)
for κ > 0

and reduces to

D(ėtr, q̇) = R‖ėtr‖+ I{0}(q̇) for κ = 0

where I{0} is the indicator function of the singelton {0}. The constitutive relation of the

material can be expressed as

∂(ėtr,q̇)D(ėtr, q̇) + ∂(etr,q)Φ(σ, etr, q) 3 0 (2.7)

which corresponds to a balance between dissipative (∂(ėtr,q̇)D(ėtr, q̇)) and conservative

(∂(etr,q)Φ(σ, etr, q)) actions. This evolution is equivalent to the constrained maximum

problem

maximize {X : ėtr +Q : q̇} subject to F (X,Q) ≤ 0

which corresponds to the maximal dissipation postulate. In particular, the latter can be

equivalently expressed in complementarity form as

ėtr = ζ
X

‖X‖
, q̇ = κζ

Q

‖Q‖
, F ≤ 0, ζ ≥ 0, ζF = 0. (2.8)

In the limit case κ = 0, relations (2.8) ensure that the variable q does not evolve (q̇ = 0)

so that the model reduces to the standard Souza-Auricchio formulation without plas-

ticization. This reduction argument has been made rigorous in [14] by means of the

by-now classical evolutionary Γ-convergence approximation theory for energetic solutions

of rate-independent systems from [26].
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3. Analysis of the ARS model in one dimension

The aim of this section is to provide a detailed discussion of the ARS model in the

uniaxial case. The interest in such an investigation is twofold. On the one hand, we

complement the original analysis of [5] by illustrating the role of the different material

parameters, discussing their effect on the evolution, and proposing an efficient fitting pro-

cedure from simple cyclic-traction experiments. These issues where largely not discussed

in [5] and are of a clear relevance with respect to model validation. On the other hand,

this analysis serves as a basis for the subsequent discussion of microstructure-dependence

of materials parameters of Section 4, i.e. our novel modeling proposition.

Let σ and ε denote uniaxial stress and strain, respectively. The free energy in one

dimension reads

Φ(σ, εtr, q) = − 1

2E
σ2 − σεtr + β|εtr − q|+ h

2
(εtr)

2 − Aεtrq +
H

2
q2 + IεL(εtr),

(where now IεL is the indicator function of the interval [−εL, εL]) yielding the stress-strain

constitutive relation

ε = −∂Φ

∂σ
=
σ

E
+ εtr

and the thermodynamic forces

X = σ − β̃ − hεtr + Aq − γ ∈ −∂εtrΦ, (3.1)

Q = β̃ −Hq + Aεtr ∈ −∂qΦ (3.2)

The values γ and β̃ above are selection of the corresponding subdifferentials. In particular,

β̃ ∈ β εtr − q
|εtr − q|

=

 β(εtr − q)/|εtr − q| for εtr 6= q

[−β, β] for εtr = q
(3.3)

and

γ ∈ ∂IεL(εtr).

Finally, the yield function reads

F = |X|+ κ|Q| −R,
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so that the flow rule is

˙εtr = ζ
∂F

∂X
= ζ

X

|X|
, q̇ = ζ

∂F

∂Q
= κζ

Q

|Q|
, ζ ≥ 0, F ≤ 0, ζF = 0. (3.4)

In order to analyze the behavior of the model, we argue on trajectories in the (εtr, q)-

plane. Note that the sign of X is driven by the stress σ, whereas the sign of Q depends

only on the internal variables (εtr, q). It is hence useful to identify the regions of the

(εtr, q)-plane which correspond to positive or negative values of Q. We shall concentrate

from the very beginning on the case 0 ≤ q ≤ εtr (implying εm ≥ 0),corresponding indeed

to tension experiments. From relation (3.2) we get that

Q ≥ 0 ⇐⇒ q ≤ q∗(ε
tr) :=

A

H
εtr +

β

H
.

The situation is illustrated in Figure 2, referring to the case of practical interest q∗(εL) ≤

εL.

Q < 0

Q > 0

q = q∗(ε
tr)

β/H

q

εL

εLεtr0

Figure 2: The thermodynamic force

Q changes sign across the line q =

q∗(ε
tr).

σA

σB

σC

σD

εR εtr

Figure 3: Threshold stresses and

residual strain for a loading-

unloading cycle.

Let us introduce the threshold stresses σA (martensite-start threshold), σB (martensite-

finish), σC (austenite-start), σD (austenite-finish) and the residual strain εR as illustrated

in Figure 3. As these quantities change during the successive cycles, we indicate the

successive cycles with additional indexes and the limit cycle by the index ∞.

11



3.1. Martensite-start stress σA

Starting from the initial conditions εtr0 = q0 =: ε0 ≥ 0 at zero stress (note that εtr = q

for, σ = 0, as results from the analysis of the unloading phase, Subsection 3.5), the

activation condition upon loading

|σA − β̃ + (A− h)ε0|+ κ|β̃ + (A−H)ε0| = R

holds for β̃ = β and σA − β + (A− h)ε0 > 0. In particular, at activation one has that

σA = R + β + (h− A)ε0 − κ|β + (A−H)ε0| (3.5)

Namely, the activation stress σA0 in the first loading cycle (that is for ε0 = 0) is given by

σA0 = R + (1− κ)β.

3.2. Loading phase

We shall consider now the activated loading case σ̇ > 0 and ε̇tr = ζ > 0. If Q(0) ≥ 0

then Q ≥ 0 during the whole loading phase (see Figure 5, trajectories a1 and a2). In fact,

we have that

Q < 0 =⇒ q̇ ≤ 0 =⇒ Q̇ = Aε̇tr −Hq̇ ≥ 0.

Since X(t) ≥ 0 in the activated loading phase, we have

F (t) = X(t) + κQ(t)−R ≡ 0

Let us concentrate here on the case Q > 0 and discuss the situation Q = 0 in Subsection

3.3 below. If Q > 0 then q̇ = κζ = κε̇tr and

0 = Ḟ = σ̇ + (2κA− h− κ2H)ε̇tr. (3.6)

Relation (3.6) entails in particular that by assuming

h+ κ2H > 2κA,
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σ̇ and ε̇tr have the same sign, see Subsection 3.4. We hence refer to this condition as the

nonsoftening constraint.

The material parameters have indeed to fulfill the further constraint

κβ ≤ R (3.7)

which we refer to as the continuity constraint as it turns out to be necessary for the

continuity of the evolution. In order to see this, consider a loading process starting from

q0 = εtr0 = 0 with Q0 = β̃ for some β ∈ [−β, β]. After activation we have that εtr− q > 0,

so that β̃ = β. If εtr = 0+ and q = 0+ in a right neighborhood of the activation time one

necessarily has that 0 = F ≥ κβ − R, that is (3.7) . Let us mention that condition (3.7)

appears to be little restrictive with respect to applications, as β and R are comparable in

size, whereas (see Section 4) κ is typically few percentage points.

3.3. The case Q ≡ 0

In the parameter range A ≤ κH it is possible to have Q ≡ 0 during the loading

process. In fact, by letting Q̇ = 0, hence q̇ = (A/H)ε̇tr, one has that the flow rule (3.4) is

satisfied. The consistency condition Ḟ = 0 then yields

0 = Ḟ = σ̇ − (A2/H − h)ε̇tr,

to be compared with (3.6) for the case Q > 0. This entails in particular that the slope

dσ/dεtr changes when Q vanishes:

dσ

dεtr
=

 h+ κ2H − 2κA if Q > 0,

h− A2/H if Q = 0.

Note that both slopes are positive due to the convexity condition (2.5). During the first

loading cycle, condition Q > 0 holds during the whole loading phase iff

κεL ≤ q∗(εL).

Otherwise, the slope dσ/dεtr changes during loading, see Figure. 4. This effect was

originally not observed in [5].
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Figure 4: Loading-unloading cycle for εL = 4%, β = 150 MPa, R = 50 MPa, κ = 0.1,

H = 105 MPa, h = A = 103 MPa. In particular, one has that κεL = 4 · 10−3 > q∗(ε
tr) =

1.9 · 10−3. The hardening curve exhibits a change in slope under loading.

3.4. Saturation (εtr = εL)

Define Q0 = β + (A − H)ε0 to be the value of Q at the beginning of a the loading

cycle (i.e. at zero stress). As εtr obviously saturates at εL, we are left with analyzing

the saturation value qL for q. In Figure 5 the trajectories t 7→ (εtr(t), q(t)) for different

starting points εtr0 = q0 =: ε0 are illustrated. The trajectories depend on the initial value

Q0 and the relative size of κ and A/H. Let us divide the explanation in the two cases

Q0 ≥ 0 (corresponding to trajectories a) and Q0 < 0 (trajectories b, respectively) in

Figure 5.

• Let Q0 ≥ 0. In case Q(t) > 0 during the whole loading process (i.e. for any t < tL,

tL being the saturation time), then q̇ = κε̇tr, so that the limit qL is given by

qL = ε0 + κ(εL − ε0).

This corresponds to trajectory a1 in Figure 5. Otherwise, if Q(t) vanishes at some
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t0 < tL, then the limit qL is obtained as follows

QL := Q(tL) = β −HqL + AεL = 0 =⇒ qL = q∗(εL).

This is trajectory a2 in Fig. 5). We can summarize these two cases with the formula

qL = (ε0 + κ(εL − ε0)) ∧ q∗(εL).

In particular, the saturation value qL0 at the first cycle (ε0 = 0) is

qL0 = κεL ∧ q∗(εL).

• Let Q0 < 0. The trajectory t 7→ (εtr(t), q(t)) descends with slope κ until it crosses

the line q = q∗(ε). If the trajectory crosses this line at ε = ε∗ < εL, then it starts

rising with slope κ ∧ A/H, so that

qL = (q∗(ε∗) + κ(εL − ε∗)) ∧ q∗(εL).

The intersection point (ε∗, q∗(ε∗)) is obtained as

ε0 − κ(ε∗ − ε0) = q∗(ε∗) =⇒ ε∗ =
ε0(1 + κ)− β/H

A/H + κ
.

These corresponds to the trajectories b1 (for κ ≥ A/H) and b2 (κ < A/H, respec-

tively) in Figure 5. If (εtr(t), q(t) never crosses q = q∗(ε), then qL = ε0 − κ(εL − ε0)

(trajectory b3 in Figure 5). This case is less relevant, as it is not reachable under

cyclic loading starting from εtr0 = 0 (see Figure 7).

Since in all cases of practical interest one has XL := X(tL) ≥ 0 and QL ≥ 0, the

saturation stress σB is obtained from the condition XL + κQL = R as

σB = R + β(1− κ) + (h− κA)εL − (A− κH)qL.

In particular, starting from ε0 = 0 one has

σB0 = R + β(1− κ) + (h− κA)εL + (κH − A) (κεL ∧ q∗(εL)) .

The value of σB changes during the different loading cycles as an effect of the change of

qL. In particular, one has that

∆σB = (κH − A)∆qL.
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Q < 0

Q > 0

q∗(ε
tr)

β/H

εL

q

εtr εL

a1
a2

b3

b1

b2
b1& a2

b2

Figure 5: Saturation value of q for different starting points ε0 = q0 and different values of

κ (greater than A/H in cases a2 and b1, smaller than A/H in case b2).

3.5. Unloading phase

At saturation we have X = XL ≥ 0, Q = QL ≥ 0 and XL+κQL = R. Upon unloading

from saturation the strains q and εtr remain constant until transformation starts. As Q

does not depend on σ, the threshold stress σC can be computed as

σC − β − hεL + AqL = −(σB − β − hεL + AqL).

By using the already obtained expression of σB we have that

σC = 2β − σA0 + (h+ κH)εL − (κH + A)qL.

The change in σC during the successive cycles is

∆σC = −(κH + A)∆qL.
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The threshold stresses are usually observed to decrease in successive cycles, i.e., ∆σB < 0

and ∆σC < 0. This corresponds to the following relations

(κH − A)∆qL < 0, −(κH + A)∆qL < 0.

In order to ensure the above mentioned progressive degradation of the mechanical response

of the material under cyclic loading we may hence assume

A > κH. (3.8)

We refer to the latter as the degradation condition in the following.

3.6. First residual strain εR0

We now investigate the residual strain after the first cycle, i.e starting from the initial

state εtr0 = q0 = 0. All possible trajectories in the (εtr, q)-plane are plotted in Figure 6.

Strain recovery ends at εtr = q. At that point, the final value of X belongs to the set

q

εtr

a

b

c a-c

a-b-c

a

b

c

b

Figure 6: First cycle residual strain. For fixed κ, the possible end points a, b and c, after

a complete loading-unloading cycle starting from q = εtr = 0 (dotted lines), are shown

for three different choices of q∗(ε
tr) (dashed lines).

σ − hεtr + Aq + [−β, β]. We distinguish three cases:
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a) Q > 0 in the whole loading and unloading phase. Then q̇ = κ|ε̇tr| and the residual

strain is

εR0 =
2κ

1 + κ
εL.

This particularly simple case follows when εR0 ≤ q∗(εR0), that is when

2κ

1 + κ
(H − A) ≤ β

εL
. (3.9)

We shall refer specifically to condition (3.9) for the fitting of the materials parame-

ters in Subsection 3.12 below.

b) Q ≤ 0 during the unloading phase and the degradation condition (3.8) holds, i.e.,

2κ

1 + κ
(H − A) ≥ β

εL
and κ >

A

H
.

Then, the residual strain εR0 can be computed as the intersection of the line q =

q∗(ε
tr) with the diagonal, namely

εR0 =
β

H − A
.

c) Q ≤ 0 during the unloading phase and the degradation condition (3.8) does not

hold, i.e.,
2κ

1 + κ
(H − A) ≥ β

εL
and κ <

A

H
.

Then, one has that

εR0 =
2κ

1− κ
β + (A− κH)εL

A+ κH
.

It is easily seen that all three cases above can be summarized by

εR0 =
2κ

1− κ
β + (A− κH)εL

A+ κH
∧ β

H − A
∧ 2κ

1 + κ
εL.

The activation stress σA1 after the first cycle, with residual strain εR0, is

σA1 = R + β + (h− A)εR − κ|β + (A−H)εR0|.
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In case a), where Q > 0,

σA1 = σA0 + εR0[h− κA− (A− κH)]. (3.10)

Let us comment that in order to have σA1 ≤ σA0 it is necessary that

(1 + κ)A ≥ h+ κH.

The latter is in the same spirit of (3.8), although not equivalent.

3.7. Limit residual strain εR∞

We shall now discuss the behavior of the limit strain residual strain εR∞ = lim εRk.

If the degradation condition (3.8) does not hold and Q(0) ≥ 0, then Q ≥ 0 for all

times. In fact,

Q̇ = H

(
A

H
ε̇tr − q̇

)
and |q̇| = κ|ε̇tr|. Then, q is always increasing and does not cross the line q = q∗(ε

tr). The

saturation value of εtr is obtained from the intersection of the line q = q∗(ε
tr) and the

diagonal q = εtr in case such an intersection point exists with εtr < εL. Otherwise one

has εR∞ = εL. Namely,

κ ≥ A/H =⇒ εR∞ =
β

H − A
∧ εL.

The limit value of qL is simply

qL∞ = q∗(εR∞).

Assume now that the degradation condition (3.8) holds. The typical situation is repre-

sented in Figure 7. In order to be cycle-invariant, the limit cycle has to be a parallelogram.

One of its diagonals belongs to the line q = q∗(ε
tr). The other two vertices are on the

diagonal q = εtr and on the limit line εtr = εL, respectively. The sides of the parallelogram

are q−descending above the line q∗(ε
tr) and ascending below. These conditions uniquely

identify the parallelogram. One obtains the limit value εR∞ (which correspond to the

abscissa of the left corner of the limit parallelogram) as

εR∞ =
2Aβ + (A2 − κ2H2)εL
2AH − (A2 + κ2H2)

∧ εL.
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The ordinate of the left corner gives qL∞, namely

qL∞ = εR∞ +
κ2H

A
(εL − εR∞).

We can summarize the above discussion the following formula comprehensive of both

cases

εR∞ =
2Aβ + (A2 − κ2H2)+εL

2A(H − A) + (A2 − κ2H2)+
∧ εL. (3.11)

q

εtr

q∗(ε
tr)

Figure 7: Limit cycle for k < A/H

3.8. Summary

As already commented, the above analysis allows us to express the relevant physical

quantities obtained from the experimental data in terms of material parameters. We
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summarize these findings in the following list of relations

σA0 = R + β(1− κ), (3.12a)

qL0 = κεL ∧ (β + AεL) /H, (3.12b)

σB0 − σA0 = (h− κA)εL + (κH − A)qL0, (3.12c)

σA∞ − σA0 = 2κβ + εR∞((h+ κA)− (A+ κH)), (3.12d)

σB0 + σC0 = 2 (β + hεL − AqL0) , (3.12e)

σA1 − σA0 = εR(h− κA− (A− κH)), (3.12f)

∆σB = −(A− κH)∆qL, (3.12g)

∆σC = −(A+ κH)∆qL, (3.12h)

εR0 =
2κ

1− κ
β + (A− κH)εL

A+ κH
∧ β

H − A
∧ 2κ

1 + κ
εL, (3.12i)

εR∞ =
2Aβ + (A2 − κ2H2)+εL

2A(H − A) + (A2 − κ2H2)+
∧ εL. (3.12j)

Note that relation (3.12d) follows from (3.5) by observing that Q ≤ 0 at the beginning of

the limit cycle.

3.9. Constraints on the parameters

The above discussion lead to the introduction of constraints on the possible choice of

material parameters. For the reader’s convenience we summarize them here

Convexity: hH > A2 (3.13a)

Nonsoftening: h+ κ2H > 2κA (3.13b)

Continuity: κβ ≤ R (3.13c)

These conditions are assumed throughout the analysis. Additionally, we have identified

condition

Degradation: A ≥ κH (3.14)
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which entails mechanical degradation and condition

2κ

1 + κ
(H − A) ≤ β

εL
(3.15)

under which we develop the fitting procedure in Subsection 3.12. Let us mention that all

these conditions appear to be compatible with experiments [11, 12], see Section 4.

3.10. Limit case κ→ 0

In the limit κ→ 0, we formally have qL0 = 0 and

σA0 = R0 + β0, σB0 − σA0 = h0εL, (3.16a)

σA∞ − σA0 = εR∞(h0 − A0), εR0 = 0, (3.16b)

σA0 + σC0

2
= β0 + εL

h0
2
, εR∞ =

β0 + εLA0/2

H0 − A0/2
. (3.16c)

The latter correspond to the original Souza-Auricchio model [32], except for the occurrence

of the value εR∞ > 0 (note however that in this limiting case saturation is obtained after

an infinite number of cycles only). By inverting (3.16), one can obtain the free-energy

parameters

β0 = σA0 −
σB0 − σC0

2
, h0 =

σB0 − σA0
εL

, A0 = h0 +
σA∞ − σA0

εR∞
,

R0 = σA0 − β0, H0 =
β0
εR∞

+ (1 + λ)A0

where we have used he short-hand notation λ = (εL − εR∞)/(2εR∞). These expressions

turn out to be useful in order to evaluate the size of the free-energy parameters as a

function of the empirically measurable threshold stresses and remanent strain for small κ.

At the same time, they allow to check the fulfillment of the convexity constraint h0H0 −

A2
0 > 0. In general, for increasing values of σA∞− σA0, the minimum value of h0 ensuring

convexity increases as well. This corresponds to the hardening case (σB0 − σA0)/εL > 0.

A first order approximation with respect to κ is easily obtained. By letting

h = h0 + κh1, β = β0 + κβ1, A = A0 + κA1, H = H0 + κH1,
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one gets

h1 = 2A0 + O(κ), A1 =
β0
εR∞

+ (2− λ)A0 + O(κ),

β1 = −εLA0 + O(κ), H1 =
β1
εR∞

+ (1 + λ)A1 + O(κ).

3.11. The case A = 0.

In this case we have that

εR0 =
β

H
∧ 2κ

1 + κ
εL, εR∞ =

β

H
∧ εL.

Hence, by assuming εL > εR∞ > εR, we obtain β/H = εR∞. In particular, we can

explicitly deduce the materials parameters in terms of observable quantities as follows

κ =
εR0

2εL − εR0

, h+ κH =
σA∞ − σA0

εR∞
, h+ κ2H =

σB0 − σA0
εL

β = εR∞H, R = σA0 − β(1− κ).

3.12. The general case κ 6= 0 and A 6= 0.

Beside the elastic parameters and the empirically measurable εL, all material param-

eters (R, β, κ, h,H,A) have to be fitted with respect to experiments. We present here a

procedure in order to determine them in terms of experimentally the observable quantities

(εL, σA0, σB0, σC0, σA∞, εR0, εR∞).

Parameter R can be obtained in terms of σA0, κ, and β as

R = σA0 − (1− κ)β. (3.17)

For the sake of simplicity, we shall present here a fitting procedure under the ad-

ditional assumption (3.15) as this greatly reduces technicalities being at the same time

well-adapted to experimental situations. By using this condition we have that (see Sub-

section 3.7) εR0 = 2κεL/(1 + κ) which immediately entails

κ =
εR0

2εL − εR0

. (3.18)
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Moreover, we also have that qL0 = κεL, so the parameter qL0 can be explicitly written in

terms of measurable quantities. Note that condition (3.15) leads to the case a of Figure

6. In particular, the limit cycle is not reached at the first few cycles (see Figure 7).

Four conditions are needed in order to determine the parameters β, h,A, and H. By

combining equations (3.12c) and (3.12e), with qL0 = κεL, we may impose

2β + εL(h− κ2H) = σA0 + σC0 (3.19)

which calls for both the activation and the deactivation stresses σA0 and σC0 at the first

loading cycle. Secondly, we impose condition (3.12d)

2κβ + εR∞(h− (1− κ)A− κH) = σA∞ − σA0 (3.20)

which takes directly into account the decreasing of the activation stress, a distinctive

fatigue effect. Third, equation (3.12j) for εR∞ gives

(εL + εR∞)A2 − 2(εR∞H − β)A− κ2(εL − εR∞)H2 = 0. (3.21)

This condition features the saturation residual strain, one of the most important value

to be incorporated in the model. A fourth equation being needed, one can for instance

resort on that ruling the slope of the activated loading line, namely

(h− κA)− κ(A− κH) = (σB0 − σA0)/εL. (3.22)

The parameters β, h,A, and H are then obtained by solving the systems (3.19)-(3.22)

and by checking that indeed these solutions fulfill (3.13) as well as (3.15). Among the

conditions (3.13), for realistic experimental data, only the condition (3.13a) is some-

times disobeyed. In this case, the procedure we have followed is to impose the condition

hH − A2 = C with C > 0 as small as possible (while retaining the stability of the algo-

rithm) and to remove from the system one of the equations (3.19)-(3.22), in particular

(3.20). Finally, R is obtained from the formerly calculated parameters κ, β through (3.17).
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4. Microstructure-dependent model extension

As mentioned in the Introduction, the polycrystalline microstructure of the SMA

specimen has been proved to affect the emergence of the pseudoelastic behavior and the

occurrence of fatigue [30]. The experimental investigations in [9, 10, 11, 12] clearly indi-

cate the proportion of recrystallized material and the mean crystal-grain size as relevant

quantities in connection with the functional properties of the material. The proportion

of crystallized material is particularly relevant in connection with cold-worked specimens,

where the material is usually a mixture of austenite, martensite and amorphous phase due

to the severe plastic deformations of the working process. The material recrystallizes due

to heat treatment. As soon as the material is fully recrystallized the relevant microstruc-

tural feature turns out to be the mean crystal-grain size [37]. Indeed, heat treatment

favors crystal-grain coarsening that is the growth of the mean crystal-grains radius. More

refined descriptions would include the size distribution of the grains and their texture of

crystallographic orientation [17].

Our aim is that of proposing a phenomenological model of the isothermal mechanical

behavior of SMAs taking into account the different functional regimes as presented in

[9, 11]. To this end we include the crystalized proportion φ ∈ [0, 1] and the mean crystal-

grain size r > 0 as additional parameters in the model. In particular, we extend the ARS

model (see Section 2) by letting the material parameters depend additionally on φ and r.

The focus will be on choosing such microstructure-dependence of the parameters in order

to fit the experimental evidence from [9, 11]. The result of such a fitting is illustrated in

Figure 9 where experiments (left) and numerical simulation (right) are compared.

4.1. Crystallized proportion dependence

The mechanical response of the amorphous phase φ = 0 can be assumed to be elastic.

We proceed by simply letting the inelastic behavior of the material scale linearly with

the crystallized proportion φ. By denoting by εtr the transformation strain of the fully-

crystallized material, we assume that the transformation strain εtr of the φ-crystallized
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specimen satisfies

εtr = φεtr.

This corresponds to consider the material as a simple mixture of an elastic and an inelastic

component. In particular, by denoting by Φinel the inelastic part to the free energy

Φinel(σ, e
tr, q) := Φ(σ, etr, q) +

1

2
σ : C−1σ.

We are indeed assuming that the free energy of the φ-crystallized body takes the form

Φ(σ, etr, q;φ) = −1

2
σ : C−1σ + φΦinel(σ, e

tr, q). (4.1)

By working out the explicit dependence of Φinel on these parameters from (2.4), we obtain

that

φΦinel(σ, e
tr, q; β,H,A, h, εL) = Φinel

(
σ, φetr, φq; β, φ−1H,φ−1A, φ−1h, φεL

)
.

Then, position (4.1) is equivalent to assuming the following scalings on φ for the material

parameters

β(φ) = β, H(φ) = φ−1H, A(φ) = φ−1A; h(φ) = φ−1h, εL(φ) = φεL

where, again, bars correspond to the fully-crystallized situation. Note that the case φ = 0

will be amenable as well due to a cancellation in the energy, see (4.2) below. By following

the same linear scaling assumption for the dissipation potential we impose D(φ) = φD,

which corresponds to

κ(φ) = κ, R(φ) = φR.

Let us now consider the above scaling assumptions in light of the limit formulas (3.16).

In particular, for small κ one has that

σA0 ' β + φR,

(σB0 − σA0)/εL ∝ 1/φ,

(σA0 + σC0)/2 = const,

εR∞/εL = const,

σA0 − σA∞ = const.
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These entail that the stress threshold σA0 linearly increases and the hardening slope

decreases (with constant σB0 − σA0) with the crystallized proportion φ. On the other

hand, the mid-loop stress (σA0+σC0)/2, the ratio εR∞/εL, and σA0−σA∞ are independent

of φ (to first order). An illustration of the corresponding material behavior for different

values of the crystallization proportion is presented in Figure 8.

4.2. Mean crystal-grain size dependence.

The dependence on the mean crystal-grain radius r is included in the model by allowing

a r-dependence of the parameters (β,H,A, h, εL, κ, R). In particular, the free energy and

the dissipation potential of the model in the present microstructure-dependent setting

read, respectively

Φ(σ, etr, q;φ, r) = −1

2
σ : C−1σ − σ : etr+

+ φβ(r)‖etr − q‖+
h(r)

2
‖etr‖2 − A(r)εtr : q

+
H(r)

2
‖q‖2 + IφεL(r)(e

tr), (4.2)

D(ėtr, q̇;φ, r) = φR(r)
(
κ−1(r)‖q̇‖ ∨ ‖ėtr‖

)
for κ(r) > 0. (4.3)

Correspondingly, the yield function reads

F (X,Q;φ, r) = ‖X‖+ κ(r)‖Q‖+ φR(r).

The constitutive relations are obtained as in Section 2. The evolution of the material is

driven by the inclusion

∂(ėtr,q̇)D(ėtr, q̇;φ, r) + ∂(etr,q)Φ(σ, etr, q;φ, r) 3 0. (4.4)

We shall remark that no dynamics is presently associated to the parameters φ and r.

These are here assumed as known, possibly being not constant. We plan to tackle the

coupled evolution of φ and r elsewhere.
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The explicit dependence of the parameters (β,H,A, h, εL, κ, R) on r is phenomeno-

logical and is fitted on the observed mechanical behaviors in [11, 12]. We establish the

crystal-grain size dependence of the parameters by enforcing equations (3.17) to (3.22)

(or, whenever needed, (3.13a)). In particular, the threshold stresses σX and the residual

strains εR0, εR∞ are available for different values of the mean crystal-grain radius r.

In order to perform the fitting, some functional dependence form on r for the param-

eters has to be assumed. As for the stress thresholds σX we employ with the classical

Hall-Petch law, which is commonly applied to yield stresses in the plasticity context. In

particular, we let

σX = σ0
X +

kX√
r

Moreover, the following fitting are used for the maximal transformation strain and the

plastic residual strains:

εL(r) = εL(1− a exp(−b
√
r)),

εR∞(r) = εL(r)(ε0 + c−(
√
r0 −

√
r)+ + c+(

√
r −√r0)), εR0(r) = d · εR∞(r)

In [11, 12] it is observed that the maximal transformation stress is εL ' 7.5% and that

there is an optimal grain radius r0 = 50 nm at which the plastic residual strains are

minimal. The fitting constants are in particular determined as

ε̄L = 7.5%,

a = 8.5, b = 0.72 nm−1/2, ε0 = 0.03, c− = 0.044 nm−1/2, c+ = 0.035, d = 0.2,

kA0 = 2 · 103 MPa · nm1/2, σ0
A0 = 0.42 · 103 MPa,

kB0 = 3.7 · 103 MPa · nm1/2, (σ0
B0 ≡ σ0

A0),

kC0 = 5.8 · 103 MPa · nm1/2, σ0
C0 ' 0 MPa,

kA∞ = 0.8 · 103 MPa · nm1/2, σ0
A∞ = 0.43 · 103 MPa

and are then kept fixed for all simulations.

4.3. Time discretization

We are interested in finding solutions of the evolution problem (4.4) along with

initial conditions (etr0 , q0) and for a given stress and microstructure-parameter history
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t ∈ [0, t] 7→ (σ(t), φ(t), r(t)) ∈ R3×3
sym × [0, 1] × (0,∞). This corresponds to the stress-

controlled evolution at the material point along with an evolving microstructure. We

proceed by time discretization: let us introduce a partition 0 = t0 < t1, . . . , < tN = t and

sequentially find the solutions (etrn+1, qn+1) of the minimization problems

min
etr,q

{
D(etr − etrn , q − qn;φn+1, rn+1) + Φ(σn+1, e

tr, q;φn+1, rn+1)
}

(4.5)

for n = 0, . . . , N−1, where the values σn+1 = σ(tn+1), φn+1 = φ(tn+1), and rn+1 = r(tn+1)

are known. The reader is referred to [5, 14] for the analogous treatment of the ARS model.

The above minimum problem corresponds to the system

∂(ėtr,q̇)D(etr − etrn , q − qn;φn+1, rn+1) + ∂(etr,q)Φ(σn+1, e
tr, q;φn+1, rn+1) 3 0 (4.6)

which in turn is the implicit Euler time discretization of the continuous constitutive

equation (4.4).

Let us assume that the convexity condition (3.13a) holds for the r-dependent param-

eters h, H, A along all the evolution. Then, problems (4.5) reduce to uniform convex

minimizations. As such, they admit a unique solution {(etr, q)}Nn=0.

For the sake of simplicity, the actual computation of solution to (4.5) is performed on

a suitably regularized version of the problem. Indeed, as both D and Φ are nonsmooth

at the origin, one resorts in a regularization of some occurrences of the norms by means

of a small regularization parameter δ > 0 as ‖y‖δ :=
√
‖y‖2 + δ2− δ. This regularization

is clearly beneficial for the stability of the underlying numerical algorithm. On the other

hand it is essentially inconsequential with respect to the predicted mechanical behavior. In

particular, it does not alter the uniform convexity of the energy and it can be checked that

solutions to the regularized system converge uniformly to solution of the nonregularized

one for δ → 0 by adapting the similar argument in [1].

For the sake of definiteness, let us restate here the nonlinear system (4.6) in comple-
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mentary form as

X = s− φn+1β(rn+1)
etr − q

‖etr − q‖δ + δ
− h(rn+1)e

tr + A(rn+1)q − γ
etr

‖etr‖
, (4.7a)

Q = φn+1β(rn+1)
etr − q

‖etr − q‖δ + δ
−H(rn+1)q + A(rn+1)e

tr, (4.7b)

etr = etrn + z
X

‖X‖
, (4.7c)

q = qn + z
Q

‖Q‖δ + δ
, (4.7d)

F = ‖X‖+ κ(rn+1)‖Q‖δ + φn+1R(rn+1), (4.7e)

γ ≥ 0, ‖etr‖ ≤ φn+1εL(rn+1), (4.7f)

z ≥ 0, F ≤ 0, zF = 0. (4.7g)

From the algorithmical viewpoint one proceeds as follows. At time tn+1 the yield func-

tion F is evaluated at the strains etrn , qn and current (given) stress σn+1 and microstruc-

ture parameters (φn+1, rn+1). If F (σn+1, e
tr
n , qn;φn+1, rn+1) ≤ 0, then one chooses z = 0,

which implies etr = etrn and q = qn. If on the contrary, F (σn+1, e
tr
n , qn;φn+1, rn+1) > 0

then evolution of (etr, q) occurs and one solves (4.7a)-(4.7d) together with F = 0 (see

(4.7e) and (4.7g)). The nonnegativity of z in (4.7g) is not directly enforced and serves

as a consistency test instead. The constraint (4.7f) is initially ignored (along with the

γ-term in (4.7a)) and the system is solved via fsolve in MATLAB R©. Then, the constraint

‖etr‖ ≤ φn+1εL(rn+1) is checked. If this test fails, the system is augmented by the equation

‖etr‖ = φn+1εL(rn+1) and the unknown γ in (4.7a) and solved.

Alternatively to the a posteriori check of the constraint, one can introduce a penaliza-

tion by replacing the indicator function Iφn+1εL(rn+1) via

Vδ(e
tr) =

1

2δ
((‖etr‖ − φn+1εL(rn+1))

+)2,

which provides the additional Lipschitz continuous contribution

−1

δ
(‖etr‖ − φn+1εL(rn+1))

+ etr

‖etr‖
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to the generalized thermodynamic force X. This penalization is once again justified by

the fact that for δ → 0 one can rigorously prove that the original constraint is recovered,

see again [1].

Under suitable smoothness and compatibility assumptions on data and parameters,

the continuous problem (4.4) can be proved to admit an energetic solution in the sense of

[25, 27]. In particular, one can prove that as the diameter of the time-partition goes to zero

(a suitable right-continuous interpolant of) the discrete solution {(etr, q)}Nn=0 pointwise

converges to a limiting trajectory t ∈ [0, t] 7→ (etr(t), q(t)) fulfilling the initial condition

as well as the global stability condition

Φ̂(t) := Φ(σ(t), etr(t), q(t);φ(t), r(t))

≤ Φ(σ(t), êtr−etretr, q̂;φ(t), r(t)) +D(êtr−etr(t), q̂−q(t);φ(t), r(t))

∀(êtr, q̂) ∈ R3×3
dev × R3×3

dev , t ∈ [0, T ], (4.8)

and the energy conservation

Φ̂(t) + Diss(etr, q; [0, t]) = Φ̂(0) +

∫ t

0

P (s)ds. (4.9)

In the latter, the term Diss(etr, q; [0, t]) corresponds to the dissipated energy over [0, t]

and reads

Diss(etr, q; [0, t]) = sup

{
N−1∑
i=0

D(etr(tn+1)−etr(tn), q(tn+1)−q(tn);φ(tn+1), r(tn+1))

}
,

the supremum being taken over all partitions of [0, t]. The term P is instead the power

of external actions. In particular,

P (t) =
(
∂σΦ:σ̇ + ∂φΦφ̇+ ∂rΦṙ

)
(σ(t), etr(t), q(t);φ(t), r(t)).

Whenever the r-dependence of the parameters β,A,H, h, εL, R, and κ is such that the

energy Φ(σ, ·, ·;φ, r) and the dissipation potential D(·, ·;φ, r) remain uniformly coercive

and smooth one can follow the general theory of energetic solvability [25] and obtain the

existence of a trajectory solving (4.8)-(4.9). This particularly applies to all computations
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of Subsections 4.4 and 4.5 where the microstructure parameters φ and r are assumed to

be constant, for simplicity. In this special situation, the mentioned convergence result for

time-discrete solutions can be directly inferred from the analysis of the ARS, see [14].

4.4. Uniaxial tests

We shall provide here some illustration of the model capability of reproducing the uni-

axial experimental results of [11, 12]. Some biaxial computation is reported in Subsection

4.5 below. The computations are obtained by means of the time-discretization method of

Subsection 4.3.

At first, we illustrate in Figure 8 the effect of different crystallized proportions on a

cyclic tensile loading test with the choices κ = 0.02, εL = 2%, R = 120 MPa, β = 500

MPa, h = 4 · 103 MPa, A = 104 MPa, H = 105 MPa (no dependence of the parameters

on the mean crystal-grain radius is assumed, for simplicity). The assumption of a rather

small transformation strain (2%) is consistent with a fine microstructure in the crystal-

ized regions (10-20 nm) which can coexist with amorphous regions. For small φ, the

nonlinear behavior of the material gets closer to be elastic. On the contrary, the maximal

reorientation strain |εtr| = εL = 2% is obtained for the completely crystallized material

φ = 1.

We consider now the case where the material is nearly fully crystallized (φ ' 1)

and the mean grain-size is changing. We collect in Figure 9 the experimental results

(left column) and the numerical simulations (middle and right columns) of the cyclic

loading regime for five microstructural situations corrisponding to mean crystal radii

r = 30, 50, 100, 350, 1000 nm. The numerical results in the central column are obtained

through a fitting on the basis of Subsection 3.8 of the material parameters (εL, κ, R, h,H,A)

on the experimental data (threshold stresses and residual strains) pertaining each exper-

imental situation. The right column records the results obtained by a single fit on the

five experimental situations along the procedure described in Subsection 4.2. A good

agreement between the experiments and the simulations is obtained. In particular, the
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Figure 8: Cycles at varying φ.

emergence of permanent inelastic effects as well as the degradation of the material for

large crystal grains is reproduced.

One has however to mention two undesirable features of the present approach. At first,

in contrast with experiments the fatigue-induced stress drop ∆σB in the upper plateau is

smaller than the drop ∆σC in the lower one. Secondly, the convexity requirement for the

free energy leads to stronger hardening.

4.5. Biaxial tests

In order to illustrate the three-dimensional response of the model, we report here two

examples of biaxial tests. Computations are performed along the same lines of Subsection

4.3 by using the fitted parameters from Subsection 4.2.

We will consider non-proportional hourglass-shaped tests in the plane-stress setting,
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in which σ11 and σ12 are driven (in absolute value) to a maximum value σM greater

than austenite-start stress σA. The stress history is here symmetric with respect to sign

reversal of the stress components (note on the contrary that we considered only tension

in the uniaxial case). In the biaxial test of Figure 10 the model parameters

εL = 7 · 10−2, κ = 0.087, R = 200 MPa, β = 300 MPa,

h = 370 MPa, A = 1.6 · 103 MPa, H = 7.3 · 103 MPa (4.10)

are used, the same of the uniaxial test in Fig. 9, middle column, 5th row. The strain

response during the first cycle is shown on the right. The circles mark the time discrete

steps, corresponding to fixed stress increments. The rapidly changing strain dynamics

indicates the transformation. The strain evolution for the first half-cycle (in which σ12

varies from 0 to σM and then again to 0) corresponds to the upper part of the diagram.

The emergence of a residual strain ε12 = γ12/2 > 0 can be detected, whereas the residual

strain ε11 is approximately vanishing. At the end of the entire first cycle, two (small)

residual strain components ε12 < 0, ε11 > 0 can be observed.

The strain dynamics for similar non-proportional hourglass-shaped tests are shown in

Figure 11 for the two different parameter set, namely the choice (4.10) and the second set

εL = 6 · 10−2, κ = 3.7 · 10−3, R = 240 MPa, β = 410 MPa,

h = 3 · 103 MPa A = 5 · 104 MPa H = 9.5 · 105 MPa. (4.11)

which corresponds to the 2nd row of Fig. 9. On the left of Figure 10 parameters are fitted

with respect to the case of relatively large crystal grains as in the last experiment on the

left of in Figure 9. The parameter set (4.11) corresponds to the second experiment on

the left of in Figure 9, that is the one that corresponds to the optimal microstructure.

As expected, the fatigue effects are evident in the first case while they are essentially

negligible in the second one.
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5. Conclusions

We have presented an extension of the model in [5] in the direction of describing the

microstructure-dependent permanent inelastic effects in mechanical tests induced by cy-

cling fatigue. The detailed analysis of the uniaxial tension case has been devised in order

to relate the model parameters with the observable mechanical effects. On the base of

this analysis, an effective calibration strategy for material parameters from experimental

cyclic tests has been presented. Moving from recent experimental evidence [9, 11], degra-

dation effects relating fatigue and microstructural features, such as crystalized fraction

and mean grain size, have been examined. The new modeling proposition results from

simple and experimentally accessible assumptions on the microstructural dependence of

material parameters. The mathematical setting as well as its numerical simulation is

discussed. In particular, numerical tests in both the uniaxial and the biaxial case are

performed and the experimental behavior is compared with the numerical outcomes.
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Figure 9: Comparison between experiments (left) and computations (middle and right)

for mean crystal-grain radii r = 30, 50, 100, 350. 1000 nm (from top). The middle column

corresponds to five separate fits, one for each experiment, whereas the right column arises

from an overall fitting procedure.
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Figure 10: Biaxial non-proportional hourglass-shaped stress history (left) and first cycle

strain output (right).
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Figure 11: Biaxial non-proportional hourglass-shaped tests with material parameters sets

(4.10) (left) and (4.11) (right). The evolution of the material response is displayed through

twenty cycles.
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