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The Armstrong–Frederick model for nonlinear kinematic hardening is regarded as a

benchmark model in contemporary elastoplasticity. This work presents an existence

result to an appropriately time-rescaled evolution for that model. To do so, we have to

resort to a regularization of the dependence of the convex of plasticity upon the back

stress. Such a regularization process seems to be the unfortunate price one has to pay

for a successful mathematical analysis.

1 Introduction

The modeling and prediction of plastic effects has a long history. The first attempts

are usually traced back to the observations by Tresca [61] on the occurrence of yield

stresses in metal solidification and to the introduction by St Venant [6] of constitu-

tive equations in plane stress for rigid perfect plasticity. In turn, Lévy [38], von Mises

[62] and, later, Prandtl [53] and Reuss [55] investigated the 3D setting. The variational

description of perfect rigid elasto-plasticity, as we understand it today, was settled by

von Mises [63] early on in 1928. A fundamental tenet of plasticity consists in assuming

the stress σ experienced by the body cannot exceed some given yield. Namely, one asks

that, throughout the evolution, σ ∈ K for some given elastic domain K, a convex subset

of M
n×n
sym (symmetric matrices).
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A first refinement of the model takes hardening effects into account. Hardening

modifies the mechanical response of materials by encoding the history of the plastic

deformation. It is commonly interpreted as the macroscopic manifestation of disloca-

tion migration. The earliest effort in that direction is attributed to Prandtl [54] although

the current formulation of elasto-plasticity with linear kinematic hardening was set-

tled at a later stage with the work of Melan [43] and Prager [52]. In a nutshell, the yield

criterion is modified and becomes σ − χ ∈ K. The additional stress χ is the so-called

back stress; in the linear case, it is assumed to be related to the plastic strain p of the

material by χ̇ = B ṗ where B is a given hardening tensor. From that point on, many mod-

els have been put forth with a view to a more intricate phenomenology: viscous and

thermal effects, solid–solid phase changes, etc. The reader is referred to the classical

monographs by Hill [31], Lemaitre and Chaboche [37], Lubliner [40], Maugin [42] among

others.

Linear kinematic hardening shifts the elastic domain K proportionally to the

back stress. In particular, it cannot capture the so-called Bauschinger effect, that is the

observation that the plastic history of a body determines the resistance of the mate-

rial to further plasticization. It is often the case that the elastic limit in compression

is lowered by a previous tensile loading and vice versa. The crucial relevance of this

effect in applications has triggered the interest for developing suitably nonlinear kine-

matic hardening models. Among these, we focus here on the classical contribution by

Armstrong and Frederick [2] where the idea is to add a nonlinear correction term to the

rate equation for the plastic strain rate rate. In particular, the flow rule driving the back

stress χ is augmented as χ̇ + | ṗ|Fχ = B ṗ where F is a given tensor. Such a modification

entails the boundedness of the back stress χ , a desirable feature in many applications.

But there is a drawback: the normality principle [31] driving the evolution turns out to

be state-dependent.

The mathematical analysis of plastic evolution problems originates in the 1970s.

Well-posedness, regularity, and approximation of the displacement, stress, and plastic

strain fields became the main focus. Early existence results in the viscous or hardening

cases can be found in the classical monograph by Duvaut and Lions [21] and by Moreau

[50]. The more difficult perfectly plastic case is then tackled in Suquet [58, 59] and John-

son [32, 35] (see also [36] and the monograph [60]). On the numerical side, finite element

approximations in plasticity were pioneered by Johnson [33, 34].

After a 20-year lull and inspired by the work of Ortiz and Repetto [51], the

interest of the mathematical community in plasticity was re-kindled in various works of

Mielke together with many collaborators, see, for example, [41] and references therein.
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As far as pure small strain elasto-plasticity is concerned, Dal Maso et al. [12]

revisited the results of Suquet and Johnson in the setting of energetic formulations of

rate-independent evolutions [27, 44]; see also a first attempt in [22]. That reformulation

underlines the relevance of energy conservation and stability and paves the way for a

direct use of variational—lower semicontinuity—techniques in this setting. In partic-

ular, plastic evolution is obtained as the limit of sequences of time-discretized plas-

tic flows, which in turn result from incremental minimization. In the specific context

of plasticity, the viewpoint espoused in [12] proved to be subsequently successful in

the investigation of pressure-sensitive materials [17], brittle materials [19] and, in the

setting of hardening, of shape memory alloys [3] and of softening [13, 14]. Moreover,

energetic formulations have been considered in the context of strain-gradient plastic-

ity [28, 29], heterogeneous materials [25, 26, 56, 57], homogenization [24, 26, 29, 30, 48],

dimensional reduction [20, 39], and also used to derive small-strain plasticity from a

model at finite strain in [47].

Absent a standard, state-independent, normality postulate, energetic formu-

lations are also relevant in spite of their variational bias. Dal Maso et al. [15, 16, 18]

investigate the energetic solvability of the so-called Cam-Clay model for plasticization

in soils. There, the model features an explicit dependence of the elastic domain upon

an adequate internal variable. More recently, Babadjian et al. [4] focus directly on

nonassociative models of Mohr–Coulomb or Drucker–Prager type. The first step of the

analysis consists in a reformulation of the original plastic model as a quasi-variational

evolution inequality [5]. We shall follow the same path below, see Section 2.

The available mathematical contributions to the Armstrong–Frederick nonlinear

kinematic hardening model are few. Brokate and Krejčı́ [8–10] consider the well-

posedness of the constitutive model. The ODE tensorial material relation is proved to

admit unique solutions both in the stress-controlled and the strain-controlled case.

These papers observe that the Armstrong–Frederick model—and, more generally, the

Mróz and the Chaboche models—can be reformulated as a system of an ODE, together

with a hysteretic relation. However, such a reformulation entails a coordinate change

which does not pair well with the equilibrium relation. The only available 3D result for

the Armstrong–Frederick model available so far is by Chełmiński [11]: well-posedness

of a suitable viscous regularization of the original problem is discussed. However, the

obtained a priori estimates are not sufficient to pass to the limit as the viscosity goes to

zero in the nonlinear setting of the original problem.

This paper considers the Armstrong–Frederick model in its full 3D setting.

The constitutive relation is coupled with the system resulting from quasi-static
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equilibrium. At first, we recast the model in an equivalent quasi-variational form

(Section 2). This results in a dissipation pseudo-potential that explicitly depends on

the back stress. Then, we operate a viscous regularization of the model (Section 3) in

the spirit of [11, 59]. The existence of the visco-plastic regularization, an interesting

result per se, is obtained through a stable and convergent time-discretization proce-

dure (cf. [11]). We then definitely depart from the approach of Chełminski [11] in passing

to the the nonviscous limit (Section 4). In particular, we establish the quasi-static limit

with respect to some properly rescaled time by following an approach first advocated

by Efendiev and Mielke [23], see also the recent literature [45, 46]. That rescaling has

already been applied in the plasticity context in [4, 15, 16].

Our result is the first existence result for a the quasi-static rate-independent

plastic evolution driven by an Armstrong–Frederick-type model with nonlinear kine-

matic hardening. Note however that passing to the 0-viscosity limit forces us to focus

on a mollification of the constitutive equation by means of a convolution kernel, see

Section 2. This modification is needed to secure the crucial lower-semicontinuity of

the dissipation pseudo-potential. The analysis of the de-mollified Armstrong–Frederick

model seems to be out of reach for now.

We stress that our regularization by convolution can be expected to have a mod-

erate impact on the effective material behavior as it acts in space only and may be

assumed to be very localized. As such, we claim that it is a worthy compromise toward

a better understanding of the Armstrong–Frederick model. We comment on this and

other regularizations in the short conclusion (Section 5).

2 Description of the model

This section is devoted to recall the basic features of the model, as well as to the neces-

sary background mathematical material.

2.1 Notation

We denote by M
n×n the space of 2-tensors in R

n (n= 1, 2, 3) and by M
n×n
sym and M

n×n
dev

the subspaces of symmetric and symmetric-deviatoric tensors. The space M
n×n
sym is

naturally endowed with the scalar product a : b= aijbij (summation convention) and

the corresponding norm |a|2 := a : a for all a, b∈M
n×n
sym. Moreover, M

n×n
sym is orthogonally

decomposed as M
n×n
sym =M

n×n
dev ⊕ R12 where R 12 is the subspace spanned by the identity

2-tensor. In particular, for all a∈M
n×n
sym, we let a= aD + tr(a)12/n. The symbols ⊗ and �
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stand for the tensor product and the symmetrized tensor product, respectively. Namely,

(u⊗ v)i j = uiv j and (u� v)i j = (uiv j+ujvi)/2 for all u, v ∈R
n.

Given a Banach space E and a convex functional ϕ : E → (∞,∞], we let

D(ϕ)= {x∈ E : ϕ(x) <∞} denote its effective domain and ∂ϕ : E → E∗ (dual) be its sub-

differential (possibly multivalued) defined as

y∈ ∂ϕ(x) ⇐⇒ x∈ D(ϕ) and 〈y,w−x〉 ≤ ϕ(w)− ϕ(x) ∀w ∈ E .

Here, the symbol 〈·, ·〉 corresponds to the duality pairing between E∗ and E . For instance,

given the nonempty, convex, and closed set K ⊂ E , its indicator function IK : E → [0,∞]

defined as

IK(x)=
⎧⎨
⎩0, x∈ K,

∞, else

is convex, proper, lower semicontinuous and its subdifferential is

y∈ ∂ IK(x) ⇐⇒ x∈ K and 〈y,w−x〉 ≤ 0 ∀w ∈ K.

In other words, ∂ IK = {0} in the interior of K, ∂ IK = {rλ} at ∂K where r ≥ 0 and λ is an

outward normal to ∂K (possibly one of the many, due to nonsmoothness), and ∂ IK =∅
outside K.

2.2 The original model revisited

The context is that of small strains. Let Ω ⊂R
n be a bounded open set occupied by a

homogeneous elasto-plastic material. We denote by u:Ω→R
n the displacement field

and by Eu:= (Du+ DuT )/2 the strain tensor. As is usual in small deformations plastic-

ity, the strain tensor is additively decomposed as

Eu= e+ p,

where e∈M
n×n
sym and p∈M

n×n
dev , respectively, stand for the elastic and plastic strains. This

is part of what will be referred to as kinematic compatibility. The constitutive equation

which relates the (Cauchy) stress tensor σ to the elastic part e of the linearized strain is

also assumed to be linear, that is,

σ = Ae

where A is the Hooke elasticity tensor. In the isotropic case, A= K(12 ⊗ 12)+ 2G

(14 − 12 ⊗ 12/n) where K, G > 0 are the bulk and the shear modulus and 1m is the iden-

tity m-tensor in R
n. At equilibrium, and if no volume forces are applied to the sample,
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the stress satisfies

divσ = 0 in Ω.

In the Armstrong–Frederick model, an additional kinematic hardening variable α ∈M
n×n
dev

is also introduced. The back stress χ ∈M
n×n
dev is then related to that variable and to the

plastic strain through

χ = B(p− α),

where B is a suitable positive-definite symmetric fourth-order tensor. We will call p− α
the back strain.

We then introduce the internal energy

W(e, p− α) := 1
2 Ae : e+ 1

2 B(p− α) : (p− α).

Viewing W as a function of Eu, p, and α it also reads as

Ŵ(Eu, p,α)= W(Eu− p, p− α).

The thermodynamic force − ∂Ŵ
∂p = σD − χ associated with p is constrained to

remain in a compact convex subset K of the set M
n×n
dev :

σD − χ ∈ K := {τ ∈M
n×n
dev : f(τ )≤ 0},

where f : M
n×n
dev →R is the yield function. We assume that

f is convex and Lipschitz,

− f0 := f(0) < 0 and f(0)= min{ f(τ ); τ ∈M
n×n
dev }, (2.1)

f̂ := f + f0 is positively 1-homogeneous.

In particular, 0 ∈ int K.

At each point τ on ∂K we define NK(τ ) to be the unit exterior normal cone to K

at that point, that is,

NK(τ ) := {ν ∈M
n×n
dev : |ν| = 1 and ν : (η − τ)≤ 0, ∀η ∈ K}. (2.2)

Now, the thermodynamic force associated with α is

−∂Ŵ

∂α
= χ .

The Armstrong–Frederick hardening model is characterized by the following

flow rule:

[ ṗ | α̇] ∈A(σD,χ),
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where

A(σD,χ) :=
{
λ

[
ν

∣∣∣∣ν : (σD − χ)
f0

B−1 Fχ
]

: ν ∈ NK(σD − χ) and λ≥ 0; λ= 0 if f(σD − χ) < 0
}

.

From here onward, the notation [α | β] stands for the generic 2-vector of tensors

in M
n×n
dev . The tensor F is an additional positive-definite fourth-order tensor which we

will consider to be equal to B in the remainder of the paper, and this without loss of

generality.

In all fairness, the classical Armstrong–Frederick model is usually restricted to

the Von Mises setting in which case f(τ )= |τ | − f0. The previous flow rule can then be

rephrased in the following form:

ṗ= | ṗ|∂ f

∂τ
(σD − χ),

χ̇ + | ṗ|Bχ = B ṗ,
(2.3)

which is that most often encountered in the literature.

Our goal is to obtain a quadruplet (u(x, t), e(x, t), p(x, t),α(x, t)) such that

Eu(x, t)= e(x, t)+ p(x, t) kinematic compatibility;

σ(x, t)= Ae(x, t), χ(x, t)= B(p(x, t)− α(x, t)) constitutive relations;

divσ(x, t)= 0 equilibrium;

σD(x, t)− χ(x, t) ∈ K stress constraint;

[ ṗ | α̇](x, t) ∈A(σD(x, t),χ(x, t)) flow rule;

together with the Dirichlet boundary condition u=w on ∂Ω. We know from prior works

on plasticity that the boundary condition will not always be satisfied because plastic

strains may develop at the boundary, so that, as seen later, we will have to replace that

condition by

p(x, t)= (w − u)(x, t)� ν on ∂Ω,

where ν stands for the unit normal to ∂Ω.

The resulting model has resisted any incorporation attempt within a standard

generalized thermodynamical framework. To our knowledge, there are no existence the-

orems for such an evolution. We propose to remedy this, albeit on a slightly regularized

form of the evolution.

Inspired by prior work on nonassociative elasto-plasticity [4], we propose to

rewrite the stress constraint and the flow rule in an “equivalent” way. This is done
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Fig. 1. The set K(χ) for f(τ )= |τ | − f0. The horizontal axis represents M
n×n
dev .

through the introduction, for any χ ∈M
n×n
dev , of the set

K(χ) := {[τ | η] ∈M
n×n
dev × M

n×n
dev : f(τ )+ 1

2η : η≤ 1
2χ : χ}; (2.4)

see Figure 1. In particular, recalling that we have set B = F for the sake of notational

symplicity, we have the following:

Lemma 2.1. The following holds true:

(a) σD − χ ∈ K ⇐⇒ [σD − χ | χ ] ∈ K(χ);

(b) σD − χ ∈ ∂K ⇐⇒ [σD − χ | χ ] ∈ ∂K(χ);

(c) [ ṗ | α̇] ∈A(σD,χ) ⇐⇒ [ ṗ | α̇] ∈ ∂ IK(χ)[σD − χ | χ ]. �

Proof. We have that σD − χ ∈ K iff f(σD − χ)≤ 0 iff f(σD − χ)+ χ2/2 ≤ 0 + χ2/2 ≤
χ2/2 iff [σD − χ | χ ] ∈ K(χ).

Similarly, we can prove that σD − χ ∈ ∂K iff f(σD − χ)= 0 iff f(σD − χ)+ χ2/2 =
χ2/2 iff [σD − χ | χ ] ∈ ∂K(χ).

The third equivalence is a bit less immediate. Note that K(χ) is equivalently

defined as

K(χ)= {[τ | η] ∈M
n×n
dev × M

n×n
dev : f̂(τ )+ 1

2η : η≤ 1
2χ : χ + f0}.

Then, [ ṗ | α̇] ∈ ∂ IK(χ)[σD − χ | χ ] iff

ṗ : (τ − (σD − χ))+ α̇ : (η − χ)≤ 0, ∀[τ | η] ∈ K(χ). (2.5)

In particular, taking successively τ = σD − χ and η= χ in (2.5), we get that ṗ= λν,

ν ∈ NK(σD − χ) and α̇ = λ′χ with λ, λ′ ≥ 0.
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Now, consider τ = (1 − s)(σD − χ)|s| � 1 and seek η such that [τ | η] ∈ ∂K(χ).

A simple computation that uses the one-homogeneous character of f̂ leads to η=√
1 + 2 s

χ :χ f0χ . Inserting that [τ | η] into (2.5) yields

s(−λν : (σD − χ)+ λ′ f0)+ o(s)≤ 0,

hence λ′ = λν:(σD−χ)
f0

. �

The transformation devised through Lemma 2.1 highlights the dependence of

the flow rule from the state variable χ , thus leading to a so-called quasi-variational

inequality.

Unfortunately, as will become clear later, this reformulation does not provide

a suitable functional framework for the analysis, most notably because the duality

product between the stresses and the plastic strains cannot be successfully defined

in the absence of an L∞-bound on σD. But such a bound seems unattainable, unless an

L∞-bound is derived for χ , in which case it becomes trivial since σ − χ ∈ K. We do not

know how to obtain such a bound when starting with the definition (2.4) of K(χ).

To achieve such a bound, we modify Definition 2.4 and incorporate an a priori

bound on χ in that definition. We set

KM(χ) := {[τ | η] ∈M
n×n
dev × M

n×n
dev : f(τ )+ 1

2 |η|2 ≤ 1
2 TM(|χ |2)}, (2.6)

where TM(r) :=min {|r|, M}. Of course, the previously noted equivalence between the

original formulation and the formulation with KM(χ) does not hold any longer, at least

when |χ |>√
M. We will demonstrate at the end of the paper that a proper choice of M

actually ensures that the constraint |χ | ≤ M is not saturated, at least for small times,

provided that the initial condition on χ is so (see Proposition 4.14).

Note that, in view of the last item in (2.1),

[τ | η] ∈ KM(χ)⇒|η| ≤
√

M − 2 f(0)=: M′. (2.7)

We next define the dissipation potential HM : (Mn×n
dev )

3 →R as the support func-

tion of KM(χ), that is,

HM(χ , [p | α])= max
[τ |η]∈KM(χ)

τ : p+ η : α,

which, for a fixed χ , is convex, sub-additive, and positively 1-homogeneous in (p,α).

Further,

[ ṗ | α̇] ∈ ∂ IKM(χ)([σD − χ | χ ]) is equivalent to [σD − χ | χ ] ∈ ∂HM(χ , [ ṗ | α̇]),
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where ∂HM(χ , [ ṗ | α̇]) denotes the subdifferential of HM(χ , [· | ·]) at [ ṗ | α̇]. We note that,

given the displacement t �→ u(t), the flow rule for the internal variables [p | α] can be

rewritten in the so-called Biot form as

∂[ ṗ,α̇] D([p | α], [ ṗ | α̇])+ ∂[p,α]Ŵ(Eu(t), [p | α]) � 0

where the state-dependent dissipation function D is defined as D([p | α], [ ṗ | α̇])=
HM(χ , [p | α])= HM(B(p−α), [ ṗ | α̇]). Eventually, we are led to investigating the following

problem:

Eu(x, t)= e(x, t)+ p(x, t),

p(x, t)= (w − u)(x, t)� ν(x) on ∂Ω,

σ(x, t)= Ae(x, t), χ(x, t)= B(p(x, t)− α(x, t)),

divσ(x, t)= 0,

[σD − χ | χ ](x, t) ∈ ∂HM(χ(x, t), [ ṗ(x, t) | α̇(x, t)]).

(2.8)

Note that, since ∂HM(χ , [ ṗ | α̇])⊂ KM(χ), the last inclusion in (2.8) above entails the stress

constraint [σD − χ | χ ] ∈ KM(χ) as well.

2.3 Properties of the dissipation potential

We now state and prove a few useful properties of the sets KM(χ) and of the dissipation

potential HM.

Lemma 2.2 (Growth properties of HM). There exist 0< κ < κ ′M <∞ with κ ′M that may

depend on M such that

B(Mn×n
dev )

2(0, κ)⊂ KM(χ)⊂ B(Mn×n
dev )

2(0, κ ′M) (2.9)

or, equivalently,

κ|[p | α]| ≤ HM(χ , [p | α])≤ κ ′M|[p | α]| (2.10)

for every (χ , p,α) ∈ (Mn×n
dev )

3. �

Proof. Since f(0) < 0, the continuity of f implies that f(τ )+ 1
2 |η|2 < 0< 1

2 TM(|χ |2), for

[τ | η] ∈ B(Mn×n
dev )

2(0, κ) for some small enough κ. Further, in view of the continuity of f and

of (2.7), the other inclusion is obvious. Relation (2.10) follows by convex duality. �

Lemma 2.3 (Continuity properties of HM). The map HM is continuous over

(Mn×n
dev )

3. �
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Proof. Let (χk, pk,αk)→ (χ , p,α). We start by proving upper semi-continuity. Since

KM(χk) is compact, for each k there exists [τk | ηk] ∈ KM(χk) such that HM(χk, [pk | αk])= τk :

pk + ηk : αk. By the upper inclusion in Lemma 2.2 above, we can extract a subsequence

of {[τk | ηk]} – still denoted {[τk | ηk]}—such that [τk | ηk] → [τ | η]. Since f(τk)+ 1
2 |ηk|2 ≤

1
2 TM(|χk|2), [τ | η] ∈ KM(χ) and we can pass to the limit in k obtaining

lim sup
k

HM(χk, [pk | αk])= lim sup
k

τk : pk + ηk : αk = τ : p+ η : α ≤ HM(χ , [p | α]).

We now show lower semi-continuity. We first observe that

HM(χ , [p | α]) := sup
[τ |η]∈int KM(χ)

τ : p+ η : α,

where int KM(χ) denotes the interior of KM(χ). Assume that [τ | η] ∈ int KM(χ), then

f(τ )+ 1
2 |η|2 < 1

2 TM(|χ |2), and thus f(τ )+ 1
2 |η|2 < 1

2 TM(|χk|2) for k large enough. Conse-

quently, [τ | η] ∈ KM(χk) for k large enough, hence

lim inf
k

HM(χk, [pk | αk])≥ lim inf
k

τ : pk + η : αk = τ : p+ η : α.

Taking the supremum over all [τ | η] ∈ int KM(χ) leads to

lim inf
k

HM(χk, [pk | αk])≥ HM(χ , [p | α]),

which completes the proof of the lemma. �

Finally, we show that H is Lipschitz continuous with respect to its first variable.

Lemma 2.4 (Lipschitz character of H ). There exists a constant C M > 0 depending on

M such that

|HM(χ1, [p | α])− HM(χ2, [p | α])| ≤ C M|[p | α]| |χ1 − χ2|

for any χ1,χ2, p,α ∈M
n×n
dev . �

Proof. Assume without loss of generality that |χ1| ≤ |χ2|, so that KM(χ1)⊂ KM(χ2). Since

KM(χ2) is compact, there exists [τ2 | η2] ∈ KM(χ2) such that HM(χ2, [p | α])= τ2 : p+ η2 : α.

We have that

dH (∂KM(χ1), ∂KM(χ2))≤ C M|χ1 − χ2|,

where dH stands for the Hausdorff distance, for some constant C M that we choose to be

greater than max{2, M} and that depends only on M.

If [τ2 | η2] is given as before, then there exists [τ1 | η1] ∈ KM(χ1) such that |[τ1 | η1] −
[τ2 | η2]| ≤ C M|χ1 − χ2|. Indeed, if [τ2 | η2] ∈ KM(χ1), then it suffices to take [τ1 | η1] = [τ2 | η2]
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and the property is trivial. On the other hand, if [τ2 | η2] ∈ KM(χ2) \ KM(χ1), take [τ1 | η1]

as the minimal-distance projection of [τ2 | η2] onto the convex set KM(χ1). It follows that

|[τ1 | η1] − [τ2 | η2]| ≤dH(∂KM(χ1), ∂KM(χ2))≤ C M|χ1 − χ2|. (2.11)

�

Remark 2.5. The sets KM(χ) have a very specific form: they can be obtained from

one another by rescaling components. In particular, let χ1 and χ2 be given. Defining

α = ((|TM(χ2)|2 + 2 f0)/(|TM(χ1)|2 + 2 f0))
1/2 and exploiting the 1-homogeneity of τ �→ f̂(τ ),

we have that [τ , η] ∈ KM(χ1) iff [α2τ ,αη] ∈ KM(χ2). This fact allows us to prove that, for all

χ1,χ2, τ , η ∈M
n×n
dev ,

|PKM(χ1)([τ | η])− PKM(χ2)([τ | η])| ≤ C M|χ1 − χ2|,

where PKM(χ) denotes the minimal-distance projection onto the convex set KM(χ) and C M

is a positive constant that may depend on M.

Indeed, let K ⊂R
m (m ∈N) be some convex and closed set containing 0 and let

α > 1. Then, Figure 2 demonstrates that, for all x∈R
m,

|PK(x)− PαK(x)| ≤ (α−1)diam K. (2.12)

Relation (2.12) can be generalized in order to allow different rescalings on different

axes. In particular, one can prove that the distance of the two projections PKM(χi)([τ , η])

for i = 1, 2 can be controlled by the quantity C (α2−1)|τ1| + C (α−1)|η1| where [τ1, η1] =
PKM(χ1)([τ , η]). The assertion follows upon noting that |τ1| ≤ C (|TM(χ1)|2 + 2 f0) and

Fig. 2. The projection PαK (x) belongs to the ball centered in PK (x) with radius |αPK (x)−PK (x)| =
(α−1)|PK (x)|.
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|η1|, |η2| ≤ (M2 + 2 f0)
1/2 while α ≤

√
(M2+2 f0)

2 f0
. Thus,

|PKM(χ1)([τ | η])− PKM(χ2)([τ | η])| ≤ C M(α
2 − 1)≤ C ′

M|χ1 − χ2|,

where C M and C ′
M are positive constants that only depend on M. �

We will be resorting to a visco-plastic regularization of the problem. To that

effect, we now introduce the perturbed dissipation potential H ε
M : (Mn×n

dev )
3 → [0,∞)

defined, for each ε > 0, as

H ε
M(χ , [p | α]) := HM(χ , [p | α])+ ε

2
|[p | α]|2. (2.13)

Its convex conjugate (H ε
M)

∗ : (Mn×n
dev )

3 → [0,∞) with respect to the second variable is

defined by

(H ε
M)

∗(χ , [τ | η]) := sup
[p|α]∈(Mn×n

dev )
2

{τ : p+ η : α − H ε
M(χ , [p | α])}.

Then,

(H ε
M)

∗(χ , [τ | η])= |[τ | η] − PKM(χ)([τ | η])|2
2ε

.

In particular, (H ε
M)

∗ is differentiable in the second variable, and its partial derivative is

given by

Nε
M(χ , [τ | η])= ∂(H ε

M)
∗(χ , [τ | η])= [τ | η] − PKM(χ)([τ | η])

ε
. (2.14)

Note that, since [0 | 0] ∈ KM(χ) (see (2.9)),

|Nε
M(χ , [τ | η])| ≤ 1

ε
|[τ | η]|, (2.15)

so that

|(H ε
M)

∗(χ , [τ1 | η1])− (H ε
M)

∗((χ , [τ2 | η2])| ≤ 1

ε
(|[τ1 | η1]| + |[τ2 | η2]|)|[τ1 | η1] − [τ2 | η2]|.

Actually, Nε
M is Lipschitz continuous as a result of the following Lemma.

Lemma 2.6 (Lipschitz property of the visco-plastic projection). Let C M be the con-

stant in Lemma 2.4, then

|Nε
M(χ1, [τ1 | η1])− Nε

M(χ2, [τ2 | η2]| ≤ C M

ε
(|χ1 − χ2| + |[τ1 | η1] − [τ2 | η2]|). �
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Proof. By definition of Nε
M and since the projection is 1-Lipschitz,

|Nε
M(χ1, [τ1 | η1])− Nε

M(χ1, [τ2 | η2]| ≤ 2

ε
|[τ1 | η1] − [τ2 | η2]|.

On the other hand, by Remark 2.5,

|Nε
M(χ1, [τ | η])− Nε

M(χ2, [τ | η])| ≤ C M

ε
|χ1 − χ2|.

But C M > 2 by construction, hence the result. �

As a final note, given χ ∈ L2(Ω; Mn×n
dev ), define the sets

K(resp. KM)(χ) := {[τ | η] ∈ L2(Ω; Mn×n
sym) : [τ | η](x) ∈ K(resp. KM)(χ(x)) for a.e. x∈Ω}.

Then, if χ ∈ L2(Ω; Mn×n
sym),

‖Nε
M(χ , [τ | η])‖2 = dist2([τ | η],KM(χ))

ε
, (2.16)

where, for any closed set C ⊂ L2(Ω; (Mn×n
dev )

2), dist2([τ | η], C) is the L2-distance from [τ | η]

to C.

2.4 Mathematical setting

Throughout the paper, Ω is a bounded connected open set in R
n with Lipschitz bound-

ary. The Lebesgue measure in R
n and the (n−1)-dimensional Hausdorff measure are,

respectively, denoted by Ln and Hn−1.

We use standard notation for Lebesgue and Sobolev spaces. In particular, for

1 ≤ p≤∞, the L p-norms of the various quantities are denoted by ‖ · ‖p. The space

M(Ω̄; Mn×n
dev ) is that of all M

n×n
sym-valued bounded Radon measures on Ω̄, and the norm

in that space is denoted by ‖ · ‖1. By the Riesz representation theorem, M(Ω̄; Mn×n
dev )

can be identified with the dual of C(Ω̄; M
n×n
dev ). Finally, BD(Ω) stands for the space

of functions with bounded deformations on Ω, that is, u∈BD(Ω) if u∈ L1(Ω; Rn) and

Eu∈M(Ω; Mn×n
sym). We refer to [60] for general properties of that space.

Let u∈BD(Ω), w ∈ H1(Ω; Rn), e∈ L2(Ω; Mn×n
sym), and p∈M(Ω̄; Mn×n

dev ) be such that

Eu= e+ p in Ω, p= (w − u)� νHn−1 on ∂Ω. (2.17)

If σD ∈ L∞(Ω; Mn×n
dev ) and divσ ∈ Ln(Ω; Rn), it is possible to define the “scalar product” of

σ and p as the distribution [σ : p] on R
n by setting

[σ : p](ϕ) :=−
∫
Ω

ϕ(u− w) · divσ dx −
∫
Ω

σ : (u− w)�∇ϕ dx −
∫
Ω

σ : ϕ(e− Ew)dx,
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for every ϕ ∈ C∞
c (R

n). Actually, [σ : p] is independent of u, w, and e, provided that kine-

matic compatibility with p is achieved. It defines a bounded Radon measure on Ω̄. We

also define the global duality pairing 〈σ , p〉 by setting

〈σ , p〉 := [σ : p](1)=
∫
Ω

(w − u) · divσ dx −
∫
Ω

σ : (e− Ew)dx. (2.18)

It can be proved (see [25, Section 6]) that

|〈σ , p〉| ≤ ‖σD‖∞‖p‖1.

Moreover, if σD further belongs to C(Ω̄; Mn×n
dev ), then

〈σ , p〉 =
∫
Ω̄

σD(x) :
dp

d|p| (x)d|p|(x) (2.19)

is the usual duality pairing between C(Ω̄; Mn×n
dev ) and M(Ω̄; Mn×n

dev ). In the previous for-

mula, we have denoted by |p| the variation measure of p.

If instead p further belongs to L2(Ω; Mn×n
sym), then the duality pairing 〈σ , p〉 coin-

cides with the standard product in L2.

The space L1(0, T ; C(Ω̄; Mn×n
sym)) is the space of all strongly measurable maps

t �→ f(t) ∈ C(Ω̄; Mn×n
sym) such that

∫ T

0
‖ f(t)‖∞ dt<∞.

Since C(Ω̄; Mn×n
sym) is separable, the dual of the space L1(0, T ; C(Ω̄; Mn×n

sym)) can be identified

to the space L∞
w (0, T ;M(Ω̄; Mn×n

dev )) of all weakly* measurable maps t �→ λ(t) ∈M(Ω̄; Mn×n
dev )

such that

ess sup
t∈[0,T ]

‖λ(t)‖1 <∞,

through the duality pairing

〈λ, f〉 =
∫ T

0
〈λ(t), f(t)〉M(Ω̄;Mn×n

dev ),C(Ω̄;Mn×n
sym)

dt.

Let A and B be two fourth-order tensors satisfying the usual symmetry proper-

ties Aijkh = Ajikh = Akhij (idem for B) for every i, j, k, h∈ {1, . . . , n}, and

γ |ξ |2 ≤ Aξ : ξ ≤ γ ′|ξ |2, γ |ξ |2 ≤ Bξ : ξ ≤ γ ′|ξ |2, (2.20)

for some 0< γ ≤ γ ′ <∞ and every ξ ∈M
n×n
sym. Then define, for any (e,β) ∈ L2(Ω; Mn×n

sym ×
M

n×n
dev ), the internal energy as

Q(e,β) := 1

2

∫
Ω

{Ae : e+ Bβ : β}dx.
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If χ ∈ L2(Ω; Mn×n
dev ) and [p | α] ∈ L2(Ω; (Mn×n

dev )
2), we define the functionals

HM(χ , p) :=
∫
Ω

HM(χ , [p | α])dx, Hε
M(χ , [p | α]) :=

∫
Ω

H ε
M(χ , [p | α])dx,

while, if χ ∈ C(Ω̄; Mn×n
dev ) and [p | α] ∈M(Ω̄; (Mn×n

dev )
2), the first functional is defined as

HM(χ , [p | α]) :=
∫
Ω̄

H
(
χ ,

d[p | α]

d|[p | α]|
)

d|[p | α]|.

Remark 2.7. The following (lower semi-)continuity results whose proof is identical to

[4, Remark 2.8] hold:

(1) If {χk}, {[pk | αk]} are L2-sequences , χk → χ strongly in L2(Ω; Mn×n
dev ), and [pk |

αk]⇀ [p | α] weakly in L2(Ω; (Mn×n
dev )

2), then

HM(χ , [p | α])≤ lim inf
k

HM(χk, [pk | αk]).

Moreover, if [pk | αk]→ [p | α] strongly in L2(Ω; (Mn×n
sym)

2), then

HM(χ , [p | α])= lim
k→∞

HM(χk, [pk | αk]).

(2) If {χk} ⊂ C(Ω̄; Mn×n
sym), {[pk | αk]} ⊂M(Ω̄; (Mn×n

dev )
2), χk → χ uniformly in Ω̄, and

[pk | αk]
∗
⇀[p | α] weakly* in M(Ω̄; (Mn×n

dev )
2), then

HM(χ , [p | α])≤ lim inf
k→∞

HM(χk, [pk | αk]). �

When dealing with the visco-plastic approximation of the elasto-plastic prob-

lem, we will obtain the first type of convergence on our approximating sequences, while,

when letting the viscosity parameter tend to 0, we will only obtain weak convergence in

L2 of the approximating σ -sequence, and convergence in the space of measures of the

approximating p-sequence.

Reshetnyak lower semi-continuity Theorem is false when H fails to be (lower

semi)-continuous, and this forces us to restrict our analysis to continuous back-

stresses; but continuity is not preserved under L2-weak convergence, which is the best

we can prove for the various sequences of stresses that will enter the formulation. Con-

sequently, the analysis will soon grind to a halt for lack of lower semi-continuity of H .

This is why we will propose, in the spirit of [15, 18], to introduce a regularization of χ

in the definition of KM(χ). This is achieved by introducing a convolution kernel ρ and

replacing KM(χ) by KM(χ ∗ ρ) defined below.
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We fix ρ ∈ C1
c (R

n) and set, for χ ∈ L2(Ω; Mn×n
dev ),

x∈ Ω̄ �→ χ ∗ ρ(x) :=
∫
Ω

ρ(x − y)χ(y)dy.

The convolution χ ∗ ρ defines an element in C1(Ω̄; Mn×n
dev ). By modifying KM(χ) as KM

(χ ∗ ρ) we are introducing a length scale in the model, namely, the size of the support of

the convolution kernel.

Note that, with our definition of the convolution, if χε ⇀χ weakly in L2(Ω; Mn×n
dev ),

then, in particular,

χε ∗ ρ→ χ ∗ ρ uniformly on Ω̄. (2.21)

Remark 2.8. Before closing this section, let us mention that restoring the lower

semicontinuity of H could be achieved by imparting additional compactness on χ . In

particular, one could introduce a compactifying term into the energy. As we need the

dependence of K(·) upon χ to be continuous, a possibility would be that of augmenting

the energy by a gradient term like κ|∇χ |r where r is bigger than the space dimension

n. Such a term would introduce a length scale in the model as well. We will not go

down that path which in our opinion strays much further away from the original model

and would result in one which is more along the lines of gradient-plasticity. Note that,

besides the dubious phenomenology that such a model would introduce because of the

dependence of the exponent upon the dimension, the introduction of such a gradient

term would require extra boundary conditions on the internal variable χ , an option

which is often disputed. �

For now, we address in the next section the visco-plastic regularization.

3 The visco-plastic model

Here, the existence of the solution to the visco-plastic regularization is established. The

viscosity parameter ε > 0 is fixed throughout this section.

Consider a boundary displacement ŵ ∈ H1(Ω; Rn). We set

Areg(ŵ) :={(v, η, q,β) ∈ H1(Ω; Rn)× L2(Ω; Mn×n
sym)× L2(Ω; Mn×n

dev )× L2(Ω; Mn×n
dev ) :

Ev = η + q a.e. in Ω, v= ŵ Hn−1-a.e. on ∂Ω}. (3.1)

The following existence result for the visco-plastic evolution holds true.
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Theorem 3.1 (Visco-plastic evolution). Consider w ∈ H1(0, T ; H1(Ω, Rn)) and a quadru-

plet (u0, e0, p0,α0) ∈ Areg(w(0)) such that divσ0 = 0 a.e. in Ω, where σ0 := Ae0. Then, there

exists a unique quadruplet

(uε(t), eε(t), pε(t),αε(t)) ∈ Areg(w(t)) ∀t∈ [0, T ]

with

uε ∈ H1(0, T ; H1(Ω; Rn)),

eε ∈ H1(0, T ; L2(Ω; Mn×n
sym)),

pε ∈ W1,∞(0, T ; L2(Ω; Mn×n
dev )),

αε ∈ W1,∞(0, T ; L2(Ω; Mn×n
dev )),

such that, setting σε(t) := Aeε(t) and χε := B(pε − αε)(t), the following items are

satisfied:

(1) Initial condition: (uε(0), eε(0), pε(0),αε(0))= (u0, e0, p0,α0);

(2) Kinematic compatibility: For every t≥ 0,

Euε(t)= eε(t)+ pε(t) a.e. in Ω,

uε(t)=w(t)Hn−1-a.e. on ∂Ω;

(3) Equilibrium condition: For every t≥ 0, div σε(t)= 0 a.e. in Ω;

(4) Regularized flow rule: For a.e. t∈ [0, T ],

[ ṗε(t) | α̇ε(t)]= Nε
M(χε(t), [((σε)D − χε)(t) | χε(t)]) for a.e. x∈Ω,

or, equivalently,

[((σε)D − χε − ε ṗε)(t) | χε(t)− εα̇ε(t)] ∈ ∂HM(χε(t), [ ṗε(t) | α̇ε(t)]) for a.e. x∈Ω.

In particular, ε‖[ ṗε(t) | α̇ε(t)]‖2 = dist2([((σε)D − χε)(t) | χε(t)],KM(χε(t)));

(5) Estimates: There exists a constant CT > 0 depending only on T such that, for

t∈ [0, T ],

‖eε(t)‖2, ‖(pε − αε)(t)‖2 ≤ CT ,∫ T

0
‖ ṗε(s)‖2

2 ds ≤ CT

ε
,

∫ T

0
‖α̇ε(s)‖2

2 ds ≤ CT

ε
.

We call such a quadruplet a visco-plastic solution. �
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Proof. The proof is very similar to that of a related result in nonassociative elasto-

plasticity; see [4, Theorem 3.1]. We provide a sketch below.

In a first step it is proved by an iteration argument that, if ŵ ∈ H1(Ω; Rn) and

[ p̂ | α̂] ∈ L2(Ω; (Mn×n
dev )

2) then, for δ > 0 small enough, there exists a quadruplet (u, e, p,α) ∈
Areg(ŵ) satisfying

Q(e, p− α)+HM(χ , [p− p̂ | α − α̂])+ ε

2δ
‖[p− p̂ | α − α̂]‖2

2,

≤Q(η, q − β)+HM(χ , [q − p̂ | β − α̂])+ ε

2δ
‖[q − p̂ | β − α̂]‖2

2 (3.2)

for any (v, η, q,β) ∈ Areg(ŵ), with χ := B(p− α).
To this effect, we take (u0, e0, p0,α0) := (ŵ, Eŵ, 0, 0), and for any k≥ 1, consider

the minimization problem

min
(v,η,q,β)∈Areg(ŵ)

{
Q(η, q − β)+HM(χk−1, [q − p̂ | β − α̂])+ ε

2δ
‖[q − p̂ | β − α̂]‖2

2

}
, (3.3)

where χk−1 := B(pk−1 − αk−1). Elementary convexity arguments yield the existence of a

unique minimizer (uk, ek, pk,αk) for any k≥ 1.

That minimizer is easily shown to satisfy

div σk = 0 a.e. in Ω,

as well as

[pk − p̂ | αk − α̂]= δNε
M(χk−1, [(σD)k − χk | χk]) a.e. in Ω,

or, still,

[ek | −αk]= [Euk − p̂ | −α̂] − δNε
M(χk−1, [(σD)k − χk | χk]) a.e. in Ω.

We now prove that {ek, pk,αk} is a Cauchy sequence in L2(Ω; Mn×n
sym × M

n×n
dev × M

n×n
dev ).

Indeed, from the two relations above, we get

[pk − pk−1 | αk − αk−1]= δ{Nε
M(χk−1, [(σD)k − χk | χk])− Nε

M(χk−2, [(σD)k−1 − χk−1 | χk−1])},

while

[ek − ek−1 | −(αk − αk−1)]= [Euk − Euk−1 | 0] − δ{Nε
M(χk−1, [(σD)k − χk | χk])

− Nε
M(χk−2, [(σD)k−1 − χk−1 | χk−1])}.

Taking the L2-scalar product of the first relation with [pk − pk−1 | αk − αk−1] and of the

second with [σk − σk−1 | −(αk − αk−1)] and using the fact that, by Lemma 2.6, Nε
M is

Lipschitz continuous (with a Lipschitz constant of order 1/ε), we deduce from the first
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relation that

‖[pk − pk−1 | αk − αk−1]‖2
2 ≤

C Mδ

ε
(‖(σD)k − (σD)k−1‖2

2 + ‖χk − χk−1‖2
2 + ‖χk−1 − χk−2‖2

2),

while (2.20) and the second relation yields

γ ‖[ek − ek−1 | αk − αk−1]‖2
2 ≤

∫
Ω

(σk − σk−1) : (Euk − Euk−1)dx

+ C Mδ

ε
‖[σk − σk−1 | −(αk − αk−1)]‖2(‖(σD)k − (σD)k−1‖2

+ ‖χk − χk−1‖2 + ‖χk−1 − χk−2‖2).

But since div σk = div σk−1 = 0 a.e. in Ω and uk − uk−1 ∈ H1
0 (Ω; Rn), the integral on the

right-hand side of the inequality above vanishes, hence, adding the two inequalities

above, using the other inequality in (2.20), and setting

Ik := ‖ek − ek−1‖2
2 + ‖pk − pk−1‖2

2 + ‖αk − αk−1‖2
2,

we obtain

Ik ≤ C ′
Mγ

′δ
εγ

(Ik + Ik−1),

for some constant C ′
M depending only on M. Hence, if δ is small enough, say

δ <
εγ

3C ′
Mγ

′ , (3.4)

then

Ik ≤ 1

2
Ik−1,

which shows that {ek, pk,αk} is a Cauchy sequence in L2(Ω; Mn×n
sym × M

n×n
dev × M

n×n
dev ). Since

uk = ŵ on ∂Ω, Poincaré–Korn’s inequality then implies that uk is a Cauchy sequence in

H1(Ω; Rn).

The remainder of the proof of (3.2) is straightforward upon application of the

first item in Remark 2.7.

We now introduce an incremental problem. Consider a sequence of nested sub-

divisions (ti
k)0≤i≤N(k) of the time interval [0, T ] with the following properties:

δk ↘ 0 as k↗∞, N(k)δk = T , ti
k := iδk for i = 1, . . . , N(k),

{ti
k : i = 1, . . . , N(k)} ⊂ {ti

l : i = 1, . . . , N(l)}, k≤ l.

We first set (u0
k, e0

k, p0
k,α0

k) := (u0, e0, p0,α0) which belongs by assumption to

Areg(w(0)).
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Assume now that k is large enough for δk to satisfy (3.4). Then, for i ∈ {1, . . . , N(k)},
we define by induction (ui

k, ei
k, pi

k,αi
k) to be minimizers of (3.2) with ŵ=wi

k :=w(ti
k),

p̂= pi−1
k , α̂ = αi−1

k , that is

Q(ei
k, pi

k − αi
k)+HM(χ

i
k, [pi

k − pi−1
k | αi

k − αi−1
k ])+ ε

2δk
‖[pi

k − pi−1
k | αi

k − αi−1
k ]‖2

2

≤Q(η, q − β)+HM(χ
i
k, [q − pi−1

k | α − αi−1
k ])+ ε

2δk
‖[q − pi−1

k | β − αi−1
k ]‖2

2, (3.5)

for any (v, η, q,β) ∈ Areg(w
i
k), where χ i

k = B(pi
k − αi

k).

It is easily checked that, if σ i
k := Aei

k, then

div σ i
k = 0 a.e. in Ω (3.6)[

(σD)
i
k − χ i

k −
ε

δk
(pi

k − pi−1
k )

∣∣∣∣χ i
k −

ε

δk
(αi

k − αi−1
k )

]
∈ ∂H(χ i

k, [pi
k − pi−1

k | αi
k − αi−1

k ]). (3.7)

Now, by (2.13) and the homogeneity of degree 0 of ∂HM(·, ·) in its second entry, (3.7) also

reads as

[(σD)
i
k − χ i

k | χ i
k] ∈ ∂Hε

M

(
χ i

k,

[
pi

k − pi−1
k

δk

∣∣∣∣∣α
i
k − αi−1

k

δk

])
,

which, by convex duality and (2.14), is equivalent to

[
pi

k − pi−1
k

δk

∣∣∣∣∣α
i
k − αi−1

k

δk

]
= Nε

M(χ
i
k, [(σD)

i
k − χ i

k | χ i
k]) a.e. in Ω. (3.8)

Define, for t∈ [ti
k, ti+1

k ), the right-continuous piecewise constant interpolations

uk(t) :=ui
k, ek(t) := ei

k, σk(t) := Aei
k, pk(t) := pi

k, αk(t) := αi
k, wk(t) :=wi

k,

and the piecewise affine interpolations

êk(t) := ei
k +

t − ti
k

δk
(ei+1

k − ei
k), p̂k(t) := pi

k +
t − ti

k

δk
(pi+1

k − pi
k),

α̂k(t) := αi
k +

t − ti
k

δk
(αi+1

k − αi
k), σ̂k(t) := Aêk(t), χ̂k(t) := B( p̂k(t)− α̂k(t)).

Take now (ui−1
k + wi

k − wi−1
k , ei−1

k + Ewi
k − Ewi−1

k , pi−1
k ,αi−1

k ) ∈ Areg(w
i
k) as a competitor in

(3.5). Then

Q(ei
k, pi

k − αi
k)+HM(χ

i
k, [pi

k − pi−1
k | αi

k − αi−1
k ])+ ε

2δk
‖[pi

k − pi−1
k | αi

k − αi−1
k ]‖2

2

≤Q(ei−1
k + Ewi

k − Ewi−1
k , pi−1

k − αi−1
k )
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=Q(ei−1
k , pi−1

k − αi−1
k )+ 1

2

∫
Ω

A(Ewi
k − Ewi−1

k ) : (Ewi
k − Ewi−1

k )dx

+
∫
Ω

σ i−1
k : (Ewi

k − Ewi−1
k )dx. (3.9)

Since Ew is absolutely continuous in time with values in L2(Ω; Mn×n
sym), then

Ewi
k − Ewi−1

k =
∫ ti

k

ti−1
k

Eẇ(s)ds.

By (2.20),

1

2

∫
Ω

A(Ewi
k − Ewi−1

k ) : (Ewi
k − Ewi−1

k )dx≤ γ ′

2

∥∥∥∥∥
∫ ti

k

ti−1
k

Eẇ(s)ds

∥∥∥∥∥
2

2

≤ γ ′

2

(∫ ti
k

ti−1
k

‖Eẇ(s)‖2 ds

)2

≤ γ ′

2
ω(δk)

∫ ti
k

ti−1
k

‖Eẇ(s)‖2 ds, (3.10)

where ω : [0,∞)→ [0,∞) is an infinitesimal function in 0. In view of (3.9) and (3.10),

Q(ei
k, pi

k − αi
k)+HM(χ

i
k, [pi

k − pi−1
k | αi

k − αi−1
k ])+ ε

2δk
‖[pi

k − pi−1
k | αi

k − αi−1
k ]‖2

2

≤Q(ei−1
k , pi−1

k − αi−1
k )+ γ ′

2
ω(δk)

∫ ti
k

ti−1
k

‖Eẇ(s)‖2 ds +
∫ ti

k

ti−1
k

∫
Ω

σk(s) : Eẇ(s)dx ds.

Let 0≤ t1 ≤ t2 ≤ T , and consider the unique j1, j2 ∈ {1, . . . , N(k)} such that t1 ∈ [t j1
k , t j1+1

k )

and t2 ∈ [t j2
k , t j2+1

k ). Summing up for i = j1 + 1 to j2, and using the 1-homogeneity of H in

its second variable, we get

Q(ek(t2), pk(t2)− αk(t2))+
j2∑

i= j1+1

δkHM

(
χ i

k,

[
pi

k − pi−1
k

δk

∣∣∣∣∣α
i
k − αi−1

k

δk

])

+ ε

2

j2∑
i= j1+1

δk

∥∥∥∥∥
[

pi
k − pi−1

k

δk

∣∣∣∣∣α
i
k − αi−1

k

δk

]∥∥∥∥∥
2

2

≤Q(ek(t1), pk(t1)− αk(t1))+ γ ′

2
ω(δk)

∫ T

0
‖Eẇ(s)‖2 ds

+
∫ t

j2
k

t
j1

k

∫
Ω

σk(s) : Eẇ(s)dx ds.
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Thus, for every 0 ≤ t1 ≤ t2 ≤ T with t1 ∈ [t j1
k , t j1+1

k ) and t2 ∈ [t j2
k , t j2+1

k ),

Q(ek(t2), pk(t2)− αk(t2))+
∫ t

j2
k

t
j1

k

HM(σk(s), [ ˙̂pk(s) | ˙̂αk(s)])ds + ε

2

∫ t
j2

k

t
j1

k

‖[ ˙̂pk(s) | ˙̂αk(s)]‖2
2 ds

≤Q(ek(t1), pk(t1)− αk(t1))+
∫ t

j2
k

t
j1

k

∫
Ω

σk(s) : Eẇ(s)dx ds + ωk. (3.11)

with ωk := γ ′
2 ω(δk)

∫ T
0 ‖Eẇ(s)‖2 ds.

Inequality (3.11) with t1 = 0, t2 = t immediately implies the bounds of the fifth

item in the statement of the theorem.

From there onward, the proof is exactly that in [4, Sections 3.2, 3.3], using a tech-

nique identical to that employed above to establish that {ek(t), pk(t),αk(t)} is a Cauchy

sequence in L2(Ω; Mn×n
sym × M

n×n
dev × M

n×n
dev ), hence, by Poincaré–Korn’s inequality, that {uk}

is then a Cauchy sequence in L∞(0, T ; H1(Ω; Rn)). �

Remark 3.2. The existence result of Theorem 3.1 holds with Nε
M(χε(t), ·) replaced by

Nε
M(χε(t) ∗ ρ, ·) (and, correspondingly, ∂HM(χε(t), ·) replaced by ∂HM(χε(t) ∗ ρ, ·)). We then

call a solution quadruplet a ρ-visco-plastic solution. In that case,

ε‖[ ṗε(t) | αε(t)]‖2 = dist2((σε)D(t)− χε(t),KM(χε(t) ∗ ρ)).

Remark 3.4 also applies to that case. �

Remark 3.3. Note that, in lieu of the constant CT , the bounds in item 5 of Theorem 3.1

can be restated in terms of an expression of the form a(
∫ T

0 ‖Eẇ(s)‖2 ds), with a≥ 0 con-

tinuous and nondecreasing. This also applies to the ρ-visco-plastic evolution. �

Remark 3.4 (Visco-plastic energy balance). Finally remark that, as in [15, 45, 46], the

visco-plastic flow rule in Theorem 3.1 can be equivalently replaced by

(1) Modified Stress Constraint: [(σε)D(t)− χε(t)− ε ṗε(t) | χε(t)− εα̇ε(t)] ∈KM(χε(t))

for a.e. t∈ [0, T ], or equivalently, since convex analysis implies that KM(χ)=
∂HM(χ , [0 | 0]),

[(σε)D(t)− χε(t)− ε ṗε(t) | χε(t)− εα̇ε(t)] ∈ ∂HM(χε(t), [0 | 0])

for a.e. t∈ [0, T ];
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(2) Energy equality: (uε(t), eε(t), pε(t),αε(t)) satisfies the following energy equal-

ity, for every t∈ [0, T ]:

Q(eε(t), pε(t)− αε(t))+
∫ t

0
HM(χε(s), [ ṗε(s) | α̇ε(s)])ds + ε

∫ t

0
‖[ ṗε(s) | α̇ε(s)]‖2

2 ds

=Q(e0, p0 − α0)+
∫ t

0

∫
Ω

σε(s) : Eẇ(s)dx ds,

or still

Q(eε(t), pε(t)− αε(t))+
∫ t

0
HM(χε(s), [ ṗε(s) | α̇ε(s)])ds +

∫ t

0
‖[ ṗε(s) | α̇ε(s)]‖2

× dist2([(σε)D(s)− χε(s) | χε(s)],KM(χε(s)))ds

=Q(e0, p0 − α0)+
∫ t

0

∫
Ω

σε(s) : Eẇ(s)dx ds.

The same applies to the nonassociative ρ-visco-plastic evolution defined in Remark 3.2.

In turn, in view of Remark 3.3, together with (2.10), this implies the following

bound: ∫ T

0
‖[ ṗε(s) | α̇ε(s)]‖1 ds ≤ b

(∫ T

0
‖Eẇ(s)‖2 ds

)
, (3.12)

with b≥ 0 continuous and non decreasing. �

4 Time rescaling

As in [4, 15, 23, 45, 46], we propose a rescaling of time which will permit one to pass

to the vanishing viscosity limit in the ρ-visco-plastic evolution. Under that rescaling

jumps in the original time correspond to intervals where the mapping from the rescaled

time to the original one remains constant.

Given the bounds in the fifth item of Theorem 3.1, we are not able to infer the

L2-regularity of the fields Eu and p when passing to the 0-viscosity limit ε→ 0 and we

thus have to redefine the set of admissible evolutions as Areg(ŵ) from (3.1) as

A(ŵ) :={(v, η, q,β) ∈ BD(Ω)× L2(Ω; Mn×n
sym)×M(Ω̄; Mn×n

dev )×M(Ω̄; Mn×n
dev ) :

Ev = η + q in Ω, q = (ŵ − v)� νHn−1 on ∂Ω; q − β ∈ L2(Ω; Mn×n
dev )}

with ŵ ∈ H1(Ω; Rn). Without loss of generality, we extend w ∈ H1(0, T ; H1(Ω, Rn)) by w(T)

for t≥ T .

Remark 4.1. In the spirit of [4, Remark 4.13], it can be easily established, through

an adequate regularization of any pair [τ | η] in L2(Ω; Mn×n
sym × M

n×n
dev ) with τD, η in
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L∞(Ω; Mn×n
dev ) and div τD in Ln(Ω; Rn) that, for any (u, e, p,α) ∈ A(ŵ) (see definition above),

H(χ ∗ ρ, [p | α])≥ 〈τD, p〉 −
∫
Ω

η : (p− α)dx. �

The main result of the paper is the following existence result for a rescaled

quasistatic evolution model for the Armstrong–Frederick plasticity model of nonlinear

kinematic hardening.

Theorem 4.2 (Rescaled Armstrong–Frederick evolution). Let w ∈ H1(0, T ; H1(Ω; Rn));

let (u0, e0, p0,α0) ∈ A(w(0)) be such that

divσ0 = 0 a.e. in Ω and [σ0 − χ0 | χ0] ∈K(χ0 ∗ ρ),

where σ0 := Ae0 and χ0 := B(p0 − α0). Then, there exist T̄ > 0 and a mapping [0, T̄ ] � s �→
(u◦(s), e◦(s), p◦(s),α◦(s), t◦(s)) such that

u◦ : [0, T̄ ]→BD(Ω) is strongly continuous and a.e. weakly* differentiable;{
e◦ : [0, T̄ ]→ L2(Ω; Mn×n

sym)

p◦ − α◦ : [0, T̄ ]→ L2(Ω; Mn×n
dev )

are strongly continuous and a.e. differentiable;

p◦,α◦ : [0, T̄ ]→M(Ω̄; Mn×n
dev ) are 1-Lipschitz;

t◦ : [0, T̄ ]→ [0,∞) is nondecreasing and 1-Lipschitz, with t◦(T̄)≥ T .

Further, setting σ ◦ := Ae◦, χ◦ := B(p◦ − α◦), the following properties are satisfied:

(1) Initial condition: (u◦(0), e◦(0), p◦(0),α◦(0), t◦(0))= (u0, e0, p0,α0, 0);

(2) Kinematic compatibility: For every s ∈ [0, T̄ ], (u◦(s), e◦(s), p◦(s),α◦(s)) ∈
A(w(t◦(s));

(3) Equilibrium condition: For every s ∈ [0, T̄ ],

divσ ◦(s)= 0 a.e. in Ω;

(4) Partial stress constraint: For every s ∈ [0, T̄ ] \ U ◦,

[σ ◦
D − χ◦ | χ◦](s) ∈K(χ◦(s) ∗ ρ),

where U ◦ := {s ∈ (0, T̄ ] : t◦ is constant in a neighborhood of s};
(5) L2-plastic strain for viscous times: For a.e. s ∈ [0, T̄ ] with [σ ◦

D − χ◦ | χ◦](s) /∈
K(χ◦(s) ∗ ρ), ṗ◦(s) ∈ L2(Ω; Mn×n

dev );
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(6) Maximum plastic work: For a.e. s ∈ [0, T̄ ],

〈[σ ◦
D(s)− χ◦(s) | χ◦(s)] − PK(χ◦(s)∗ρ)([σ ◦

D(s)− χ◦(s) | χ◦(s)]), [ ṗ◦(s) | α̇◦(s)]〉

+HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])= 〈σ ◦

D(s), ṗ◦(s)〉 −
∫
Ω

χ◦(s) : ( ṗ◦(s)− α̇◦(s))dx.

Further, for a.e. s ∈ [0, T̄ ] with [σ ◦
D − χ◦ | χ◦](s) /∈K(χ◦(s) ∗ ρ),

[σ ◦
D(s)− χ◦(s) | χ◦(s)] − PK(χ◦(s)∗ρ)([σ ◦

D(s)− χ◦(s) | χ◦(s)])

is parallel to [ ṗ◦(s) | α̇◦(s)] a.e. in Ω. �

Note that the equality in Item 6 above coincides with the actual version of the

classical Hill principle [31] whenever the partial stress constraint (Item 4) is fulfilled.

This motivates our reference to Item 6 as of maximum plastic work principle.

As regards the regularity of solutions, one should mention that there exist rate-

independent evolution in which better bounds can be derived. The reader is referred,

for instance, to [49] where higher-order estimates are obtained by considering the time

derivative of the flow rule. These techniques are particularly tailored to the case of a

translation-invariant dissipation function. The extension of such results in the present

setting would require the extra difficulty of allowing for a state-dependent dissipation

function instead.

The proof of Theorem 4.2 is given in Sections 4.1–4.4.

4.1 The rescaled visco-plastic evolution

First, we note that, by an argument identical to that in [4, Proposition 4.3],

∃(u0, e0, p0,α0) ∈ A(w(0)) with divσ0 = 0 a.e. in Ω and [σ0 − χ0 | χ0] ∈KM(χ0 ∗ ρ), (4.1)

where σ0 := Ae0 and χ0 := B(p0 − α0). Using, for example, [15, Lemma 5.1], we can

construct a sequence {uε0} ⊂ H1(Ω; Rn) such that uε0 =w(0) Hn−1-a.e. on ∂Ω, uε0 → u0

strongly in L1(Ω; Rn), and Euε0 ⇀ Eu0 weakly* in M(Ω̄; Mn×n
dev ). Setting pε0 := Euε0 − e0 and

αε0 := α0 − p0 + pε0, we get that (uε0, e0, pε0,αε0) ∈ Areg(w(0)) satisfies

uε0 ⇀u0 weakly* in BD(Ω),

pε0 ⇀ p0 weakly* in M(Ω̄; Mn×n
dev ),

αε0 ⇀α0 weakly* in M(Ω̄; Mn×n
dev ).

(4.2)
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Theorem 3.1 and Remark 3.2 then provide, for every ε > 0, a unique ρ-visco-plastic

(or visco-plastic) solution (uε(t), eε(t), pε(t),αε(t)), for t∈ [0, T ] (any T <∞ will do), with

(uε0, e0, pε0,αε0) as the initial condition.

We rescale time as follows:

s◦ε (t) :=
∫ t

0
(‖ ṗε(s)‖1 + ‖α̇ε(s)‖1 + ‖Eẇ(s)‖2 + 1)ds,

so that s �→ t◦ε (s) := (s◦ε )−1(s) are strictly monotonically increasing and 1-Lipschitz on

[0,∞), that is,

|t◦ε (s1)− t◦ε (s2)| ≤ |s1 − s2|

for every s1 and s2 ≥ 0. Note that t◦ε (0)= 0 and that, by virtue of (3.12),

T̄ := 2b
(∫ T

0
‖Eẇ(s)‖2 ds

)
+
∫ T

0
‖Eẇ(s)‖2 ds + T ≥ s◦ε (T),

so that t◦ε (T̄)≥ T , for each ε > 0.

Define, on [0, T̄ ],

w◦
ε (s) :=w(t◦ε (s)), u◦

ε(s) :=uε(t
◦
ε (s)), e◦ε (s) := eε(t

◦
ε (s)), σ ◦

ε (s) := σε(t◦ε (s)),
p◦
ε (s) := pε(t

◦
ε (s)), α◦ε (s) := αε(t◦ε (s)), χ◦

ε (s) := χε(t◦ε (s)).

Remark that p◦
ε and α◦ε are 1-Lipschitz on [0, T̄ ], as well as t◦ε . Then, since,

by (4.2), both s �→ p◦
ε (s) and s �→ α◦ε (s) are uniformly bounded in L∞(0, T ;M(Ω̄; Mn×n

dev )),

Ascoli’s theorem—bounded sets in M(Ω̄; Mn×n
dev ) are relatively compact and metrizable

for the weak* topology—implies the existence of a Lipschitz and nondecreasing function

t◦ : [0, T̄ ]→ [0,∞) and of p◦,α◦ in Lip([0, T̄ ];M(Ω̄; Mn×n
dev )) such that, for some subsequence

of ε, still labeled ε,

t◦ε (s)→ t◦(s),

p◦
ε (s)⇀ p◦(s) weakly* in M(Ω̄; Mn×n

dev ),

α◦ε (s)⇀ α◦(s) weakly* in M(Ω̄; Mn×n
dev ),

(4.3)

uniformly on [0, T̄ ]. Further, in view of (3.12),

ṗ◦
ε ⇀ ṗ◦ weakly* in M([0, T ] × Ω̄)) and in L∞

w (0, T̄ ;M(Ω̄; Mn×n
dev )),

α̇◦ε ⇀ α̇◦ weakly* in M([0, T ] × Ω̄)) and in L∞
w (0, T̄ ;M(Ω̄; Mn×n

dev )).
(4.4)

Clearly, w0
ε (s)→w0(s) strongly in H1(Rn; Rn), uniformly on [0, T̄ ]. Then, a proof

identical to that leading to [4, Lemma 3.4] would establish the following.
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Lemma 4.3. For every s ∈ [0, T̄ ], there exists a quadruplet

(u◦(s), e◦(s), p◦(s),α◦(s)) ∈ A(w◦(s))

such that, with σ ◦(s) := Ae◦(s) and χ◦(s) := B(p◦(s)− α◦(s)),

div σ ◦(s)= 0 a.e. in Ω,

and, for any sequence sε → s,

u◦
ε(sε)⇀u◦(s) weakly* in BD(Ω),

e◦ε (sε)⇀ e◦(s) weakly in L2(Ω; Mn×n
sym),

p◦
ε (sε)− α◦ε (sε)⇀ p◦(s)− α◦(s) weakly in L2(Ω; Mn×n

dev ), (4.5)

σ ◦
ε (sε)⇀ σ ◦(s) weakly in L2(Ω; Mn×n

sym),

χ◦
ε (sε)⇀ χ◦(s) weakly in L2(Ω; Mn×n

dev ).

Moreover, (u◦(0), e◦(0), p◦(0),α◦(0))= (u0, e0, p0,α0), s �→ u◦(s) is weakly* continuous in

BD(Ω), s �→ e◦(s), s �→ σ ◦(s) are weakly continuous in L2(Ω; Mn×n
sym), and s �→ p◦(s)− α◦(s),

s �→ χ◦(s) are weakly continuous in L2(Ω; Mn×n
dev ). �

Remark 4.4. Note that the previous result implies in particular that s �→ e◦(s) and s �→
σ ◦(s) are weakly measurable (with values in L2(Ω; Mn×n

sym)), hence strongly measurable, so

that, in view of the fifth item in Theorem 3.1, e◦, σ ◦ both belong to L∞(0, T̄ ; L2(Ω; Mn×n
sym)),

while p◦ − α◦,χ◦ both belong to L∞(0, T̄ ; L2(Ω; Mn×n
dev )). �

4.2 Stress constraint

Passing to the 0-viscosity limit in the rescaled modified stress constraint—see

Remark 3.4—is not convenient because the chain rule introduces a term of the form

ε ṗ◦
ε/ṫ

◦
ε which we do not control.

We introduce the left-continuous (resp. right-continuous) inverse of t◦ defined

by s◦−(t) := sup{s : t◦(s) < t} (resp. s◦+(t) := inf{s : t◦(s) > t}) and S◦ := {t∈ (0, T) : s◦−(t) < s◦+(t)}.
Here, we use the convention sup ∅= 0, so that s◦−(0)= 0. Observe that t◦(s◦−(t))=
t◦(s◦+(t))= t and that the set S◦ is at most countable. By [15, Lemma 5.2], we know that

for each t  ∈ S◦, s◦ε (t)→ s◦−(t)= s◦+(t). Hence, in view of convergences (4.3), (4.5) and since

p◦
ε and α◦ε are 1-Lipschitz, we have that, for all t  ∈ S◦,

uε(t)⇀u◦(s◦−(t)) weakly* in BD(Ω),

eε(t)⇀ e◦(s◦−(t)) weakly in L2(Ω; Mn×n
sym),
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(pε − αε)(t)⇀ (p◦ − α◦)(s◦−(t)) weakly in L2(Ω; Mn×n
dev ),

σε(t)⇀ σ ◦(s◦−(t)) weakly in L2(Ω; Mn×n
sym), (4.6)

χε(t)⇀χ◦(s◦−(t)) weakly in L2(Ω; Mn×n
dev ),

pε(t)⇀ p◦(s◦−(t)) weakly* in M(Ω̄; Mn×n
dev ),

αε(t)⇀ α◦(s◦−(t)) weakly* in M(Ω̄; Mn×n
dev ).

Recall that

U ◦ = {s ∈ (0, T̄ ] : t◦ is constant in a neighborhood of s},

and note that U ◦ =⋃t∈S◦(s◦−(t), s◦+(t)), hence that it is open.

Then, the following partial stress constraint property holds:

Lemma 4.5 (Partial stress constraint). For every s  ∈U ◦, one has

[(σ ◦
D)(s)− χ◦(s) | χ◦(s)] ∈KM(χ

◦(s) ∗ ρ). (4.7)

�

Proof. Thanks to the energy equality in the second item of Remark 3.4 and to the fifth

item in Theorem 3.1,

ε[ ṗε(t) | α̇ε(t)]→ 0 strongly in L2(0, T ; L2(Ω; Mn×n
sym × M

n×n
dev )), (4.8)

and also a.e. in Ω × (0, T). Recall the modified stress constraint from that same remark,

namely

[(σε)D(t)− χε(t)− ε ṗε(t) | χε(t)− εα̇ε(t)] ∈ ∂HM(χε(t) ∗ ρ, [0 | 0])

for a.e. t∈ [0, T ]. Then, for any [q | β] ∈ (Mn×n
dev )

2 and for a.e. (x, t) ∈Ω × [0, T ],

HM((χε(t) ∗ ρ)(x), [q | β])≥ ((σε)D(t)− χε(t)− ε ṗε(t)) : q + (χε(t)− εα̇ε(t)) : β.

Because of the fifth convergence in (4.6) and of the bound on pε − αε in item 5. of

Theorem 3.1, one has that χε(t) ∗ ρ→ χ◦(s◦−(t)) ∗ ρ a.e. in Ω and in L p(Ω; Mn×n
sym), p<∞.

Consider a measurable subset E ⊂Ω. Integrating the relation above over E , recalling

Lemma 2.4 and convergence (4.8), we may pass to the limit in the latter inequality and

obtain, for a.e. t∈ [0, T ],

HM((χ
◦(s◦−(t)) ∗ ρ)(x), [q | β])≥ (σ ◦

D(s
◦
−(t), x)− χ◦(s◦−(t), x)) : q + χ◦(s◦−(t), x) : β

for a.e. x∈Ω,
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or, equivalently,

[σ ◦
D(s

◦
−(t))− χ◦(s◦−(t), x) | χ◦(s◦−(t), x)] ∈KM(χ

◦(s◦−(t), x) ∗ ρ).

By the left continuity of s◦− and the weak continuity in L2(Ω; Mn×n
sym) of σ ◦ and χ◦, we

conclude that the previous relation actually holds for every t∈ [0, T ]. A similar argument

would lead to

[σ ◦
D(s

◦
+(t))− χ◦(s◦+(t), x) | χ◦(s◦+(t), x)] ∈KM(χ

◦(s◦+(t), x) ∗ ρ)).

Since s◦−(t) < s◦+(t) if and only if t◦(s) is constant over the interval [s−0 (t), s+0 (t)], we finally

obtain (4.7). �

Let us now introduce the following sets:

A◦ := {s ∈ [0, T̄ ] : dist2([σ
◦
D(s)− χ◦(s) | χ◦(s)],KM(χ

◦(s) ∗ ρ)) > 0, B◦ := [0, T̄ ] \ A◦.

By Lemma 4.5, the inclusion A◦ ⊂U ◦ holds and, in view of the right inclusion in (2.9),

one has that (σ ◦
D(s),χ

◦(s)) ∈ L∞(Ω; (Mn×n
dev )

2) for all s ∈ B◦. The function σ ◦
D(s) may fail to

belong to L∞(Ω; Mn×n
sym) for s ∈ A◦ but this will be compensated by a higher regularity on

the plastic strain.

The following lemma, whose proof is identical to that of [4, Lemmata 3.7, 3.8]

holds.

Lemma 4.6 (Lower semi-continuity of the viscous dissipation). The set A◦ is

relatively open in [0, T̄ ], and, for every S∈ [0, T̄ ],∫
A◦∩[0,S]

‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ
◦
D(s)− χ◦(s) | χ◦(s)],KM(χ

◦(s) ∗ ρ))ds

≤ lim inf
ε→0

∫
A◦∩[0,S]

‖[ ṗ◦
ε (s) | α◦ε (s)]‖2 dist2([(σ

◦
ε )D(s)− χ◦

ε (s) | χ◦
ε (s)],KM(χ

◦
ε (s) ∗ ρ))ds. (4.9)

Moreover, [p◦ | α◦] ∈ W1,1
loc (A

◦; (L2(Ω; Mn×n
dev ))

2), while e◦ ∈ W1,1
loc (A

◦; L2(Ω; Mn×n
dev )) and u◦ ∈

W1,1
loc (A

◦; H1(Ω; Rn)). �

Remark 4.7. If (a, b) is any connected component of A◦, then u◦(s1)− u◦(s2) ∈ H1
0 (Ω; Rn)

for any a< s1 ≤ s2 < b. �

Remark 4.8. Since A◦ � s �→ (u◦(s), e◦(s), p◦(s),α◦(s)) is absolutely continuous with val-

ues in (the reflexive space) H1(Ω; Rn)× L2(Ω; Mn×n
sym)× L2(Ω; Mn×n

dev )× L2(Ω; Mn×n
dev ) we

deduce, from [7, Appendix], that the derivative (u̇◦(s), ė◦(s), ṗ◦(s), α̇◦(s)) exists for a.e.
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s ∈ A◦ for the strong topology of H1(Ω; Rn)× L2(Ω; Mn×n
sym)× L2(Ω; Mn×n

dev )× L2(Ω; Mn×n
dev ).

Moreover, for a.e. s ∈ A◦, that derivative belongs to A(0) since s �→w◦(s) is constant in

each connected components of A◦. Finally, div σ̇ ◦(s)= 0 a.e. in Ω. ¶ �

The dissipated energy is lower semicontinuous.

Lemma 4.9 (Lower semi-continuity of the dissipated energy). For every S∈ [0, T̄ ], we

have

lim inf
ε→0

∫ S

0
HM(χ

◦
ε (s) ∗ ρ, [ ṗ◦

ε (s) | α̇◦ε (s)])ds ≥
∫ S

0
HM(χ

◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])ds. �

Proof. According to (4.3) and (4.4), for any ϕ ∈ C (Ω̄; Mn×n
dev ), ψ ∈ C ([0, T̄ ]),

∫
[0,T̄ ]×Ω̄

ϕ(x)ψ(s)d[ ṗ◦ | α̇◦]=
∫ T̄

0
ψ(s)

∫
Ω̄

ϕ(x)d[ ṗ◦(s) | α̇◦(s)] ds,

so that, by virtue of (4.4), the measure [ ṗ◦ | α̇◦] disintegrates with respect to the 1D

Lebesgue measure L1
s as

[ ṗ◦ | α̇◦]= |[ ṗ◦(s) | α̇◦(s)]|(Ω)L1
s

gen
⊗ [ ṗ◦(s) | α̇◦(s)]

|[ ṗ◦(s) | α̇◦(s)]|(Ω) , (4.10)

where
gen
⊗ stands for the generalized product (see [1, Section 2.5])

Appealing to Lemma 2.4, and since p◦
ε ,α

◦
ε are equi-Lipschitz on [0, T̄ ], for a.e.

s ∈ [0, T̄ ],

|HM(χ
◦
ε (s) ∗ ρ, [ ṗ◦

ε (s) | α̇◦ε (s)])−HM(χ
◦(s) ∗ ρ, [ ṗ◦

ε (s) | α̇◦ε (s)])|
≤ C M‖(χ◦

ε (s)− χ◦(s)) ∗ ρ‖∞‖[ ṗ◦
ε (s) | α̇◦ε (s)]‖1

≤ C M‖(χ◦
ε (s)− χ◦(s)) ∗ ρ‖∞,

while, by (4.5) and (2.21), χ◦
ε (s) ∗ ρ→ χ◦(s) ∗ ρ uniformly on Ω̄. Dominated convergence

yields

lim inf
ε→0

∫ S

0
HM(χ

◦
ε (s) ∗ ρ, [ ṗ◦

ε (s) | α̇◦ε (s)])ds = lim inf
ε→0

∫ S

0
HM(χ

◦(s) ∗ ρ, [ ṗ◦
ε (s) | α̇◦ε (s)])ds.

But the weak L2-continuity in time of s �→ χ◦(s) established in Lemma 4.3 implies

that χ◦ ∗ ρ ∈ C([0, T̄ ] × Ω̄; Mn×n
sym), so that HM([σ ◦(s) ∗ ρ](x), ξ) is continuous in (x, s, ξ)

and convex, one-homogeneous in ξ . In view of (4.4), Reshetnyak’s theorem (see, e.g.,
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[1, Theorem 2.38]) yields

lim inf
ε→0

∫ S

0
HM(χ

◦(s) ∗ ρ, [ ṗ◦
ε (s) | α̇◦ε (s)])ds

≥
∫

[0,S]×Ω̄
HM

(
[χ◦(s) ∗ ρ](x),

d[ ṗ◦ | α̇◦]
d|[ ṗ◦ | α̇◦]| (s, x)

)
d|[ ṗ◦ | α̇◦]|(s, x).

But [1, Corollary 2.29] applied to (4.10) yields

|[ ṗ◦ | α̇◦]| = |[ ṗ◦(s) | α̇◦(s)]|(Ω)L1
s

gen
⊗ |[ ṗ◦(s) | α̇◦(s)]|

|[ ṗ◦(s) | α̇◦(s)]|(Ω) .

An application of [1, Theorem 2.28] implies that

s �→
∫
Ω̄

H
(

[χ◦(s) ∗ ρ](x),
d[ ṗ◦ | α̇◦]

d|[ ṗ◦ | α̇◦]| (s, x)
)

1

|[ ṗ◦(s) | α̇◦(s)]|(Ω) d|[ ṗ◦(s) | α̇◦(s)]|(x)

∈ L1(0, S; |[ ṗ◦(s) | α̇◦(s)]|(Ω)L1
s ),

that is that s �→HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)]) is L1

s -measurable and that∫
[0,S]×Ω̄

HM

(
[χ◦(s) ∗ ρ](x),

d[ ṗ◦ | α̇◦]
d|[ ṗ◦ | α̇◦]| (s, x)

)
d|[ ṗ◦ | α̇◦]|(s, x)

=
∫ S

0
HM(χ

◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])ds,

which completes the proof of the lemma. �

4.3 Rescaled principle of maximum plastic work

It is common mechanical knowledge that, in classical elasto-plasticity, the flow rule is

equivalent to what is usually referred to as Hill’s principle of maximum plastic work.

The equivalent statement in our (rescaled) context is that

〈τD, ṗ◦(s)〉 −
∫
Ω

χ : ( ṗ◦(s)− α̇◦(s))dx≤ 〈σ ◦
D(s), ṗ◦(s)〉 −

∫
Ω

χ◦(s) : ( ṗ◦(s)− α̇◦(s))dx

for a.e. s ∈ (0, T̄), and every [τ | χ ] ∈ L2(Ω; Mn×n
sym × M

n×n
dev )

with divτ = 0 and (τD − χ)(x) ∈ KM([χ
◦(s) ∗ ρ](x)) for a.e. x∈Ω.

Further, since H is a support function, this is also formally equivalent to

HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])=〈σ ◦

D(s), ṗ◦(s)〉−
∫
Ω

χ◦(s) : ( ṗ◦(s)− α̇◦(s))dx for a.e. s ∈ (0, T̄).

(4.11)

The maximum plastic work identity (the sixth item of Theorem 4.2) can be viewed as a

variant of the previous equality, accounting for the fact that the stress constraint could

not be met at all times, but only in B0.
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Of course, the relations above are only meaningful if, on the one hand, the

duality 〈·, ·〉 is meaningful for the quantities involved (see (2.18)), that is here if ṗ◦(s) ∈
M(Ω̄; Mn×n

dev ) can be associated to a pair (u̇◦(s), ė◦(s)) so that the kinematic compatibility

(2.17) is satisfied, and, on the other hand, if the integrals are well defined, that is, if

ṗ◦(s)− α̇◦(s) ∈ L2(Ω; Mn×n
dev ).

The proof of the sixth item of Theorem 4.2 (the remaining item in that theorem

that needs proof) will be the object of Theorem 4.13, the proof of which is in turn is

based on the following derivability result.

Theorem 4.10 (Derivability of the strain and back strain). The maps

s �→ e◦(s) and s �→ p◦(s)− α◦(s)

are differentiable for a.e. s ∈ [0, T̄ ] for the strong L2(Ω; Mn×n
sym)-topology. Moreover, for

every 0 ≤ s1 ≤ s2 ≤ T̄ ,

Q(e◦(s2), p◦(s2)− α◦(s2))−Q(e◦(s1), p◦(s1)− α◦(s1))

=
∫ s2

s1

∫
Ω

{σ ◦(s, x) : ė◦(s, x)+ χ◦(s) : ( ṗ◦(s)− α̇◦(s))}dx ds. (4.12)

Finally, the map s �→ (u◦(s), e◦(s), p◦(s)− α◦(s)) is strongly continuous in BD(Ω)×
L2(Ω; Mn×n

sym)× L2(Ω; Mn×n
dev ). �

Remark 4.11. In view of the Lipschitz character of p◦(s), of Theorem 4.10, and upon

appealing to Poincaré–Korn’s inequality in BD(Ω), we conclude that the map s �→
u◦(s) is weakly* differentiable in BD(Ω) for a.e. s ∈ (0, T̄), and that the quadruplet

(u̇◦(s), ė◦(s), ṗ◦(s), α̇◦(s)) belongs to A(ẇ◦(s)) for those s’s. ¶ �

Proof. The proof of Theorem 4.10 is based on the following energy equality:

Proposition 4.12 (Energy equality in rescaled times). For every S∈ [0, T̄ ],

Q(e◦(S), p◦(S)− α◦(S))+
∫ S

0
HM(χ

◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])ds

+
∫ S

0
‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ

◦
D(s)− χ◦(s) | χ◦(s)],KM(χ

◦(s) ∗ ρ)ds

=Q(e◦(0), p◦(0)− α◦(0))+
∫ S

0

∫
Ω

σ ◦(s) : Eẇ◦(s)dx ds. (4.13)

�
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We will not provide the proof of Proposition 4.12 since it is a verbatim adapta-

tion of that of [4, Propositions 3.15, 3.18]. Note however that the proofs in [4] in turn

closely follow that of [15, Equation (8.2)] (the difficult point is to show the ≥ in the

equality of Proposition 4.12).

In particular, from the above proposition we deduce that, for every 0 ≤ s1 ≤
s2 ≤ T̄ ,

Q(e◦(s2), p◦(s2)− α◦(s2))+
∫ s2

s1

HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])ds

≤Q(e◦(s1), p◦(s1)− α◦(s1))+
∫ s2

s1

∫
Ω

σ ◦(s) : Eẇ◦(s)dx ds. (4.14)

Thanks to this relation, we are now in a position to assert the a.e. differentiability in

time of s �→ e◦(s) and of s �→ p◦(s)− α◦(s) (see below).

Finally, the energy equality immediately implies that

Q(e◦(s), p◦(s)− α◦(s)) ∈ W1,1(0, T̄). (4.15)

According to Remark 4.8, we already know that s �→ e◦(s) and of s �→ p◦(s)− α◦(s)
are absolutely continuous in A◦ with values in the reflexive space L2(Ω; Mn×n

sym) (or

L2(Ω; Mn×n
dev )). Hence, from [7, Appendix] we conclude that those are differentiable almost

everywhere in A◦ for the strong L2(Ω; Mn×n
sym), respectively, L2(Ω; Mn×n

dev ), topology. It suf-

fices to prove the a.e. differentiability of e◦ and of p◦ − α◦ in B◦.

Let 0 ≤ s1 ≤ s2 ≤ T̄ , and assume that s1 ∈ B◦. Thanks to the Lipschitz continuity of

H in its first variable (see Lemma 2.4) and to the Lipschitz character of p◦,α◦, for a.e.

s ∈ (s1, s2),

HM(χ
◦(s1) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])

≤HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])+ C M‖[ ṗ◦(s) | α̇◦(s)]‖1 ‖(χ◦(s)− χ◦(s1)) ∗ ρ‖∞

≤HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])+ C‖(p◦ − α◦)(s)− (p◦ − α◦)(s1)‖2,

for some constant C > 0 independent of s and s1. Next, using (4.14) between s1 and s2, we

infer that

Q(e◦(s2), p◦(s2)− α◦(s2))+
∫ s2

s1

HM(χ
◦(s1) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])ds

≤Q(e◦(s1), p◦(s1)− α◦(s1))+
∫ s2

s1

∫
Ω

σ ◦(s) : Eẇ◦(s)dx ds

+ C
∫ s2

s1

‖(p◦ − α◦)(s)− (p◦ − α◦)(s1)‖2 ds. (4.16)
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Since χ◦(s1) ∗ ρ is continuous, it is uniformly continuous on Ω̄. Thus, for each ε >

0, there exists δ > 0 such that if x and y∈ Ω̄ are such that |x − y|< δ, then |[χ◦(s1) ∗ ρ](x)−
[χ◦(s1) ∗ ρ](y)|< ε. Let us split Ω̄ into a finite family of pairwise disjoint sets {Qi}1≤i≤mε

such that

Ω̄ =
mε⋃
i=1

Q̄i, diam(Qi) < δ,

∫ s2

s1

|[ ṗ◦ | α̇◦](s)|(Ω ∩ ∂Qi)ds = |[p◦ | α◦](s2)− [p◦ | α◦](s1)|(Ω ∩ ∂Qi)= 0

for all i ∈ {1, . . . , mε}. Fix a point xi ∈ Qi. Then, appealing to Lemma 2.4, for a.e. s ∈ (s1, s2),∫
Q̄i

∣∣∣∣HM

(
[χ◦(s1) ∗ ρ](x),

d[ ṗ◦ | α̇◦](s)
d|[ ṗ◦ | α̇◦](s)| (x)

)

− HM

(
[χ◦(s1) ∗ ρ](xi),

d[ ṗ◦ | α̇◦](s)
d|[ ṗ◦ | α̇◦](s)| (x)

)∣∣∣∣d|[ ṗ◦ | α̇◦](s)|(x)

≤ C Mε|[ ṗ◦ | α̇◦]|(Qi).

Hence,∫ s2

s1

HM(χ
◦(s1) ∗ ρ, [ ṗ◦ | α̇◦](s))ds

≥
m∑

i=1

∫ s2

s1

∫
Q̄i

H
(

[χ◦(s1) ∗ ρ](xi),
d[ ṗ◦ | α̇◦](s)

d|[ ṗ◦ | α̇◦](s)| (x)
)

d|[ ṗ◦ | α̇◦](s)|(x)ds − C Mε(s2 − s1).

(4.17)

By virtue of [12, Theorem 7.1] applied to HM([χ◦(s1) ∗ ρ](xi), ·), we get, for each i ∈
{1, . . . , mε},∫ s2

s1

H
(

[χ◦(s1) ∗ ρ](xi),
d[ ṗ◦ | α̇◦](s)

d|[ ṗ◦ | α̇◦](s)| (x)
)

d|[ ṗ◦ | α̇◦](s)|(x)ds

≥
∫

Q̄i

H
(

[χ◦(s1) ∗ ρ](xi),
d[[p◦ | α◦](s2)− [p◦ | α◦](s1)]

d|[p◦ | α◦](s2)− [p◦ | α◦](s1)| (x)
)

d|[p◦ | α◦](s2)− [p◦ | α◦](s1)|(x)

≥
∫

Q̄i

H
(

[χ◦(s1) ∗ ρ](x),
d[[p◦ | α◦](s2)− [p◦ | α◦](s1)]

d|[p◦ | α◦](s2)− [p◦ | α◦](s1)| (x)
)

d|[p◦ | α◦](s2)− [p◦ | α◦](s1)|(x)

− C Mε|[p◦ | α◦](s2)− [p◦ | α◦](s1)|(Qi),

where we used Lemma 2.4 once again. Using the Lipschitz character of p◦,α◦ once again,

we conclude from (4.17) that∫ s2

s1

HM(χ
◦(s1) ∗ ρ, [ ṗ◦ | α̇◦](s))ds ≥H (χ◦(s1) ∗ ρ, [p◦ | α◦](s2)− [p◦ | α◦](s1))− 2C Mε(s2 − s1),
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and letting, ε↘ 0, that∫ s2

s1

HM(χ
◦(s1) ∗ ρ, [ ṗ◦ | α̇◦](s))ds ≥H(χ◦(s1) ∗ ρ, [p◦ | α◦](s2)− [p◦ | α◦](s1)).

Thus, (4.16) yields

Q(e◦(s2), p◦(s2)− α◦(s2))+H(χ◦(s1) ∗ ρ, [p◦ | α◦](s2)− [p◦ | α◦](s1))

≤Q(e◦(s1), p◦(s1)− α◦(s1))+
∫ s2

s1

∫
Ω

σ ◦(s) : Eẇ◦(s)dx ds

+ C
∫ s2

s1

‖(p◦ − α◦)(s)− (p◦ − α◦)(s1)‖2 ds.

Since s1 ∈ B◦, [σ ◦ − χ◦ | χ◦](s1) ∈KM(χ
◦(s1) ∗ ρ) and thus, by virtue of Remark 4.1,

〈σ ◦
D(s1), p◦(s2)− p◦(s1)〉 −

∫
Ω

χ◦(s1) : [(p◦ − α◦)(s2)− (p◦ − α◦)(s1)] dx

≤H(χ◦(s1) ∗ ρ, [p◦ | α◦](s2)− [p◦ | α◦](s1)).

Hence,

Q(e◦(s2), p◦(s2)− α◦(s2))+ 〈σ ◦
D(s1), p◦(s2)− p◦(s1)〉

−
∫
Ω

χ◦(s1) : [(p◦ − α◦)(s2)− (p◦ − α◦)(s1)]dx

≤Q(e◦(s1), p◦(s1)− α◦(s1))+
∫ s2

s1

∫
Ω

σ ◦(s) : Eẇ◦(s)dx ds

+ C
∫ s2

s1

‖(p◦ − α◦)(s)− (p◦ − α◦)(s1)‖2 ds.

Since

Q(e◦(s2), p◦(s2)− α◦(s2))−Q(e◦(s1), p◦(s1)− α◦(s1))

=Q(e◦(s2)− e◦(s1), (p
◦(s2)− α◦(s2))− (p◦(s1)− α◦(s1)))+

∫
Ω

{σ ◦(s1) : (e◦(s2)− e◦(s1))

+ χ◦(s1) : [(p◦ − α◦)(s2)− (p◦ − α◦)(s1)]}dx,

we obtain

Q(e◦(s2)− e◦(s1), (p
◦(s2)− α◦(s2))− (p◦(s1)− α◦(s1)))

≤
∫ s2

s1

∫
Ω

(σ ◦(s)− σ ◦(s1)) : Eẇ◦(s)dx ds + C
∫ s2

s1

‖(p◦ − α◦)(s)− (p◦ − α◦)(s1)‖2 ds.

In deriving the inequality above, we have also made use of kinematic compatibility, and

of the duality (2.18), together with the fact that σ ◦(s1) is divergence free.
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In view of the coercivity (2.20) of Q, Cauchy–Schwartz inequality and the fact

that ‖Eẇ◦(s)‖2 ≤ 1 for a.e. s, we obtain that

‖e◦(s2)− e◦(s1)‖2
2 + ‖(p◦(s2)− α◦(s2))− (p◦(s1)− α◦(s1))‖2

2

≤ C
∫ s2

s1

‖(p◦(s)− α◦(s))− (p◦(s1)− α◦(s1))‖2 ds,

for some constant C > 0 independent of s1 and s2. Hence a form of Gronwall Lemma

implies that

‖e◦(s2)− e◦(s1)‖2 + ‖(p◦(s2)− α◦(s2))− (p◦(s1)− α◦(s1))‖2 ≤ L(s2 − s1), (4.18)

for some constant L > 0 (independent of s1 and s2) for every 0 ≤ s1 ≤ s2 ≤ T̄ with s1 ∈ B◦.

Thus, by [16, Theorem 3.1], s �→ e◦(s) and s �→ p◦(s)− α◦(s) are differentiable a.e. in B◦ for

the strong L2(Ω; Mn×n
sym) topology.

Then, we deduce that

d

ds
Q(e◦(s), p◦(s)− α◦(s))=

∫
Ω

{σ ◦(s) : ė◦(s)dx + χ◦(s) : ( ṗ◦(s)− α̇◦(s))}dx

for a.e. s ∈ [0, T̄ ], and thus relation (4.12) follows, since, thanks to (4.15), the right-hand

side of the previous equality is in L1(0, T̄).

By Remark 4.8 together with (4.18), we conclude that s �→ (e◦(s), p◦(s)− α◦(s)) is

actually strongly continuous into L2(Ω; Mn×n
sym)× L2(Ω; Mn×n

dev ), and recalling that p◦(s) is

Lipschitz into M(Ω̄; Mn×n
dev ), together with Poincaré–Korn’s inequality and the H1-regul-

arity of w◦, that s �→ u◦(s) is strongly continuous into BD(Ω). �

We now establish the maximum plastic work identity for the vanishing viscosity

limit.

Theorem 4.13 (Maximum plastic work). For a.e. s ∈ A◦, one has∫
Ω

([(σ ◦)D − χ◦) | χ◦](s)− PKM(χ◦(s)∗ρ)([σ ◦
D − χ◦) | χ◦](s))) · [ ṗ◦ | α̇◦](s)dx

+HM(χ
◦(s) ∗ ρ, [ ṗ◦ | α̇◦](s))=

∫
Ω

{σ ◦(s) : ṗ◦(s)− χ◦(s) : ( ṗ◦ − α̇◦)(s)}dx, (4.19)

and for a.e. s ∈ B◦,

HM(χ
◦(s) ∗ ρ, [ ṗ◦ | α̇◦](s))= 〈σ ◦

D(s), ṗ◦(s)〉 −
∫
Ω

χ◦(s) : ( ṗ◦(s)− α̇◦(s))dx. (4.20)
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Further,

[σ ◦
D(s)− χ◦(s) | χ◦(s)] − PKM(χ◦(s)∗ρ)([σ ◦

D(s)− χ◦(s) | χ◦(s)])

is parallel to [ ṗ◦(s) | α̇◦(s)] a.e. in Ω. (4.21)

�

Proof. For a null test function, the flow rule in the fourth item of Theorem 3.1, once

integrated over Ω × (0, t◦ε (S)), S∈ [0, T̄ ] yields

∫ t◦ε (S)

0

∫
Ω

[(σD)ε(s)− χε(s)− ε ṗε(s) | χε(s)− εα̇ε(s)] · [ ṗε(s) | α̇ε(s)] dx ds

≥
∫ t◦ε (S)

0
HM(χε(s) ∗ ρ, [ ṗε(s) | α̇ε(s)])ds.

Rescaling time with the map t◦ε , the above implies, thanks to the chain rule, to the fourth

item in Theorem 3.1, and to the 1-homogeneous character of [p | α] �→ HM(χ , [p | α]),

lim inf
ε→0

{∫ S

0
HM(χε(s) ∗ ρ, [ ṗ◦

ε (s) | α̇◦ε (s)])ds

+
∫ S

0
‖[ ṗ◦

ε (s) | α̇◦ε (s)]‖2 dist2([(σ
◦
ε )D(s)− χ◦

ε (s) | χ◦
ε (s)],KM(χ

◦
ε (s) ∗ ρ))ds

}

≤ lim sup
ε→0

∫ S

0

∫
Ω

{σ ◦
ε (s) : ṗ◦

ε (s)− χ◦
ε (s) : ( ṗ◦

ε (s)− α̇◦ε (s))}dx ds.

Then, according to Lemmas 4.6 and 4.9, we get in particular that

∫ S

0
HM(χ

◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])ds

+
∫ S

0
‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ

◦(s)− χ◦(s) | χ◦(s)],KM(χ
◦(s) ∗ ρ))ds

≤ lim sup
ε→0

∫ S

0

∫
Ω

{σ ◦
ε (s) : ṗ◦

ε (s)− χ◦
ε (s) : ( ṗ◦

ε (s)− α̇◦ε (s))}dx ds. (4.22)

Kinematic compatibility implies that

∫ S

0

∫
Ω

σ ◦
ε (s) : ṗ◦

ε (s)dx ds =
∫ S

0

∫
Ω

σ ◦
ε (s) : Eu̇◦

ε(s)dx ds −
∫ S

0

∫
Ω

Ae◦ε (s) : ė◦ε (s)dx ds
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and, since div σ ◦
ε (s)= 0 a.e. in Ω and u◦

ε(s)=w◦
ε (s) Hn−1-a.e. on ∂Ω, then this yields in

turn ∫ S

0

∫
Ω

σ ◦
ε (s) : ṗ◦

ε (s)dx ds

=
∫ S

0

∫
Ω

σ ◦
ε (s) : Eẇ◦

ε (s)dx ds −
∫ S

0

∫
Ω

Ae◦ε (s) : ė◦ε (s)dx ds

=
∫ S

0

∫
Ω

σ ◦
ε (s) : Eẇ◦

ε (s)dx ds − 1

2

∫
Ω

Ae◦ε (S) : e◦ε (S)dx + 1

2

∫
Ω

Ae0 : e0 dx.

But the first integral in the last term in the string of equalities above also reads as∫ t◦ε (S)

0

∫
Ω

σε(t) : Eẇ(t)dx dt,

and, thanks to the fourth convergence in (4.6), to the uniform convergence of t◦ε to t◦, to

the fifth item in Theorem 3.1 and to the dominated convergence theorem, it converges to∫ t◦(S)

0

∫
Ω

σ ◦(s−0 (t)) : Eẇ(t)dx dt=
∫ S

0

∫
Ω

σ ◦(s−0 (t
◦(s))) : Eẇ◦(s)dx ds,

where we used the change of variable t= t◦(s). But since Eẇ◦(s)= 0 for all s ∈U ◦ and

s−0 (t
◦(s))= s for a.e. s  ∈U ◦, we get that∫ S

0

∫
Ω

σ ◦
ε (s) : Eẇ◦

ε (s)dx ds →
∫ S

0

∫
Ω

σ ◦(s) : Eẇ◦(s)dx ds.

Now, ∫ S

0

∫
Ω

χ◦
ε (s) : ( ṗ◦

ε (s)− α̇◦ε (s))dx ds =
∫ S

0

∫
Ω

B(p◦
ε (s)− α◦ε (s)) : ( ṗ◦

ε (s)− α̇◦ε (s))dx ds

= 1

2

∫
Ω

B(p◦
ε (S)− α◦ε (S)) : (p◦

ε (S)− α◦ε (S))dx

− 1

2

∫
Ω

B(p0 − α0) : (p0 − α0)dx,

so inequality (4.22) reads as∫ S

0
HM(χ

◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])ds

+
∫ S

0
‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ

◦(s)− χ◦(s) | χ◦(s)],KM(χ
◦(s) ∗ ρ))ds

≤
∫ S

0

∫
Ω

σ ◦(s) : Eẇ◦(s)dx ds − lim inf
ε→0

Q(e◦ε (S), p◦
ε (S)− α◦ε (S))+Q(e0, p0 − α0). (4.23)

But, in view of convergences (4.5), weak lower semi-continuity immediately implies that

lim inf
ε→0

Q(e◦ε (S), p◦
ε (S)− α◦ε (S))≥Q(e◦(s), p◦(s)− α◦(s)),
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thus, by Theorem 4.10 and since, in view of Remark 4.11, the quadruplet

(u̇◦(s), ė◦(s), ṗ◦(s), α̇◦(s)) belongs to A(ẇ◦(s)) and div σ̇ ◦(s)= 0 a.e. in Ω for a.e. s ∈ [0, T̄ ],

we can apply the duality formula (2.18). We deduce that (4.23) reads as∫ S

0
HM(χ

◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])ds

+
∫ S

0
‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ

◦
D(s)− χ◦(s) | χ◦(s)],KM(χ

◦(s) ∗ ρ))ds

≤
∫ S

0

∫
Ω

σ ◦(s) : Eẇ◦(s)dx ds −
∫ S

0

∫
Ω

{σ ◦(s) : ė◦(s)− χ◦(s) : ( ṗ◦(s)− α̇◦(s))}dx ds

=
∫ S

0

{
〈σ ◦

D(s), ṗ◦(s)〉 −
∫
Ω

χ◦(s) : ( ṗ◦(s)− α̇◦(s))dx
}

ds. (4.24)

Recalling Remark 4.1, we obtain, for a.e. s ∈ B◦,

HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])≥ 〈σ ◦

D(s), ṗ◦(s)〉 −
∫
Ω

χ◦(s) : ( ṗ◦(s)− α̇◦(s))dx.

On the other hand, since ṗ◦(s) ∈ L2(Ω; M
n×n
dev ) for a.e. s ∈ A◦, the duality pairing

〈σ ◦(s), ṗ◦(s)〉 coincides with the L2 product for a.e. s ∈ A◦, so that

HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])≥

∫
Ω

PKM(χ◦(s)∗ρ)
(
[(σ ◦

D − χ◦)(s) | χ◦(s)]
) · [ ṗ◦(s) | α̇◦(s)] dx.

Consequently, since, by Cauchy–Schwarz inequality,

‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ
◦(s)− χ◦(s) | χ◦(s)],KM(χ

◦(s) ∗ ρ))

≥
∫
Ω

([(σ ◦
D − χ◦)(s) | χ◦(s)] − PKM(χ◦(s)∗ρ)([(σ ◦

D − χ◦)(s) | χ◦(s)])) · [ ṗ◦(s) | α̇◦(s)] dx,

we get

HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])+ ‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ

◦(s)− χ◦(s) | χ◦(s)],KM(χ
◦(s) ∗ ρ))

≥HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])

+
∫
Ω

([(σ ◦
D − χ◦)(s) | χ◦(s)] − PKM(χ◦(s)∗ρ)([(σ ◦

D − χ◦)(s) | χ◦(s)])) · [ ṗ◦(s) | α̇◦(s)] dx

≥
∫
Ω

[(σ ◦
D − χ◦)(s) | χ◦(s)] · [ ṗ◦(s) | α̇◦(s)] dx

for a.e. s ∈ A◦.

In conclusion, for a.e. s ∈ [0, T̄ ],

HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])+ ‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ

◦(s)− χ◦(s) | χ◦(s)],KM(χ
◦(s) ∗ ρ))

≥ 〈σ ◦
D(s), ṗ◦(s)〉 −

∫
Ω

χ◦(s) : ( ṗ◦(s)− α̇◦(s))dx,
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and, with (4.24), we obtain that, for a.e. s ∈ [0, T̄ ],

HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])+ ‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ

◦
D(s)− χ◦(s) | χ◦(s)],KM(χ

◦(s) ∗ ρ))

=HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])+

∫
Ω

([(σ ◦
D − χ◦)(s) | χ◦(s)]

− PKM(χ◦(s)∗ρ)([(σ ◦
D − χ◦)(s) | χ◦(s)])) · [ ṗ◦(s) | α̇◦(s)] dx

= 〈σ ◦
D(s), ṗ◦(s)〉 −

∫
Ω

χ◦(s) : ( ṗ◦(s)− α̇◦(s)dx.

The proof of (4.19), (4.20), and (4.21) is complete. �

4.4 Removal of the cap

We propose in this short section to derive a classical partial flow rule, at least for a.e.

s ∈ B0. We will then show that we can actually get rid of the artificial bound M on the

back stress in the definition of K and still keep the stress constraint and the flow rule.

Of course the set of points B0 may a priori depend on M, so that we have not completely

removed the impact of the presence of that cut-off on the evolution. Also, in all fairness,

we do not even know how to establish the existence of a strictly positive s1 such that

[0, s1]⊂ B0. In other words, the set of points A0 where we do not know whether the

(rescaled) stress constraint is met might contain s = 0 in its closure, in which case our

result is truly useless.

The following proposition holds.

Proposition 4.14 (Partial flow rule). For a.e. x∈Ω and a.e. s ∈ B0,

ṗ◦(s, x)− α̇◦(s, x) ∈ ∂ IK̂M,χ (s,x,σ ◦
D(s,x))(χ

◦(s, x))

where, for every π ∈M
n×n
dev and for all (x, s) ∈Ω × [0, S̄],

K̂M,χ◦(s, x,π) := {η ∈M
n×n
dev : [π − η | η] ∈ K((χ◦(s) ∗ ρ)(x))}.

Further, define s1 := max{s : [0, s] ∈ B0}. We can choose α0 in (4.1) and M large

enough, so that, for every s ∈ [0, s1],

[σ ◦
D(s)− χ◦(s) | χ◦(s)] ∈K(χ◦(s) ∗ ρ),

and the flow rule in the sixth item of Theorem 4.2 is satisfied with H in lieu of HM. �
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Proof. Recall Remark 4.1. For every τ , η ∈ L2(Ω; Mn×n
dev ) such that div τ = 0, [τD − η | η] ∈

K(χ◦(s) ∗ ρ),

HM(χ
◦(s) ∗ ρ, [ ṗ◦(s) | α̇◦(s)])≥ 〈τD, ṗ◦(s)〉 −

∫
Ω

η : ( ṗ◦(s)− α̇◦(s))dx.

Now, with the result of Theorem 4.13, this implies that

‖[ ṗ◦(s) | α̇◦(s)]‖2 dist2([σ
◦
D(s)− χ◦(s) | χ◦(s)],K(χ◦(s) ∗ ρ))

− 〈(τD − σ ◦
D(s)), ṗ◦(s)〉 −

∫
Ω

(η − χ◦(s)) : ( ṗ◦ − α̇◦)(s)dx≤ 0,

hence, a fortiori,

− 〈(τD − σ ◦
D(s)), ṗ◦(s)〉 −

∫
Ω

(η − χ◦(s)) : ( ṗ◦ − α̇◦)(s)dx≤ 0. (4.25)

Note that, for all s ∈ B0, χ◦(s, x) ∈ K̂M,χ◦(s, x, σ ◦
D(s, x)) a.e. in Ω. Thus, for such s’s,

(4.25) (with τ = σ ◦(s)) implies that

−
∫
Ω

(η − χ◦(s)) : ( ṗ◦ − α̇◦)(s)dx≤ 0,

which, by convex analysis arguments, is equivalent to

−( ṗ◦(s, x)− α̇◦(s, x)) ∈ ∂ IK̂M,χ◦ (s,x,σ ◦
D(s,x))(χ

◦(x)) for a.e. x∈Ω,

or, still, in view of the Lipschitz character of f , to the existence of λs,x ≥ 0 such that

ṗ◦(s, x)− α̇◦(s, x)= λs,x

(
∂ f

∂σ
(σ ◦

D(s, x)− χ◦(s, x))− χ◦(s, x)
)

, (4.26)

since, by (2.6), ∂ K̂M,χ◦(s, x,π) := {η ∈M
n×n
dev : f(π − η)+ |η|2/2 = 1

2 TM(|(χ◦(s) ∗ ρ)(x)|2)}.
Set

F :=max{(∂ f/∂σ)(π) : π ∈ ∂BM
n×n
dev
(0, 1)},

and take M to be > γ ′F /γ with γ , γ ′ the coercivity and boundedness constants in (2.20).

Then, define β := p◦ − α◦, multiply (4.26) by 1{x∈Ω:|β(s,x)|>F/γ }(x)β(s, x) and integrate the

resulting expression over Ω. We get∫
Ω

1{x∈Ω:|β(s,x)|>F/γ }(x)β(s, x) : β̇(s, x)dx

=
∫
Ω

λs,x 1{x∈Ω:|β(s,x)|>F/γ }(x)
(
β(s, x) :

∂ f

∂σ
(σ ◦

D(s, x)− χ◦(s, x))− Bβ(s, x) : β(s, x)
)

dx

≤
∫
Ω

λs,x 1{x∈Ω:|β(s,x)|>F/γ }(x)|β(s, x)|(F − γ |β(s, x)|)dx≤ 0.
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But the left-hand side of the previous inequality is the time derivative of

1

2

∫
Ω

(
|β(s, x)|2 − F 2

γ 2

)+
dx

which is thus a decreasing function over any closed interval [a, b] included in B0. Thus,

if |χ◦(a, x)| ≤ γ ′F/γ < M, then

|χ◦(s, x)| ≤ M, s ∈ [a, b],

so that both the stress constraint and the flow rule in Theorem 4.2 do not activate the

bound M. In other words, KM can be replaced by K (resp. HM by H ) for those times.

Remark that the last part of this proof follows closely that of [11, Lemma 1]. �

Remark 4.15. If s1 > 0, then the previous proposition actually demonstrates that, for

reasonable initial data, Theorem 4.2 holds for K in lieu of KM on [0, T̄ ] in which case

we can immediately recover the corresponding evolution in un-rescaled time over [0, T ].

Unfortunately, we do not know how to prove that the L∞-bound on χ is preserved when

crossing intervals in A0. �

5 Concluding remarks

In guise of conclusion, we discuss below the impact of the regularization of the stress

constraint via the kernel ρ.

The regularized stress constraint a priori reads as

[σD − χ | χ ](x) ∈ K((χ ∗ ρ)(x)) ⇐⇒ f(σD(x)− χ(x))+ 1
2 |χ2(x)|

≤ 1
2 TM(|(χ ∗ ρ)(x)|2) a.e. in Ω.

By letting ‖ρ‖L1 ≤ 1, we clearly have that

1

2

∫
Ω

TM(|(χ ∗ ρ)(x)|2)dx≤ 1

2

∫
Ω

|χ ∗ ρ|2 dx≤ 1

2

∫
Ω

|χ |2 dx.

Hence, we conclude that

[σD − χ | χ ](x) ∈ K((χ ∗ ρ)(x)) a.e. in Ω "⇒
∫
Ω

f(σD − χ)dx≤ 0.

In other words, the regularized stress constraint entails the fulfillment of the origi-

nal stress constraint f(σD − χ)≤ 0 in some integrated (weaker) form. This shows that

the regularized flow is not activated at the boundary σD(x)− χ(x) ∈ ∂K, that is [σD − χ |
χ ](x) ∈ ∂K(χ(x)), but rather at [σD − χ | χ ](x) ∈ ∂K((χ ∗ ρ)(x)). Correspondingly, the flow
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rule of the regularized model [ ṗ | α̇] ∈ ∂ IK(χ∗ρ)(σD − χ ,χ) (see again Theorem 4.2) differs

from that of the original Armstrong–Frederick model, namely [ ṗ | α̇] ∈ ∂ IK(χ)(σD − χ ,χ).

Note however that, by choosing the support of ρ to be contained in a suitably small

interval centered at 0, the dynamics of the regularized model can be made arbitrarily

close to that of Armstrong–Frederick, at least formally.

Before closing this section, we mention an alternative regularization approach

to the Armstrong–Frederick model. This corresponds to a mollification of the original

Armstrong–Frederick relation (2.3), the new relation being

χ̇ + | ṗ|F (χ ∗ ρ)= B ṗ,

or, equivalently,

[ ṗ | α̇](x, t) ∈A(σD(x, t), (χ ∗ ρ)(x, t)). (5.1)

It is thus assumed here that the nonlinear hardening term arises in a nonlo-

cal fashion via space-averaging. This modification of the original Armstrong–Frederick

model seems new. It has the effect of taming the quadratic (nonlinear) term in the orig-

inal Armstrong–Frederick flow rule.

Note that, in the notation of Section 2, for x∈Ω and t given,

• the stress constraint is satisfied iff [(σD − χ) | (χ ∗ ρ)](x, t) ∈ K((χ ∗ ρ)(x, t));

• (σ − χ)(x, t) ∈ ∂K iff [(σD − χ) | (χ ∗ ρ)](x, t) ∈ ∂K((χ ∗ ρ)(x, t));

• the flow rule (5.1) is satisfied iff [ ṗ | α̇](x, t) ∈ ∂ IK((χ∗ρ)(x,t))[σD − χ | (χ ∗ ρ)](x, t).

The alternative regularized model has the advantage that it preserves the original non-

regularized stress constraint, although it does modify the flow rule.

An existence result for quasi-static evolution driven by (5.1) can then be obtained

by faithfully reproducing the analysis presented in this paper.
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[10] Brokate, M. and P. Krejci. “Wellposedness of kinematic hardening models in elastoplasticity.”
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[46] Mielke, A., R. Rossi, and G. Savaré. “BV solutions and viscosity approximations of rate-

independent systems.” ESAIM Control, Optimisation and Calculus of Variations 18 (2012):

36–80.

[47] Mielke, A. and U. Stefanelli. “Linearized plasticity is the evolutionary Γ -limit of finite plas-

ticity.” Journal of European Mathematical Society (2012), to appear.

[48] Mielke, A. and A. Timofte. “Two-scale homogenization for evolutionary variational inequali-

ties via the energetic formulation.” SIAM Journal on Mathematical Analysis 39, no. 2 (2007):

642–68.

[49] Mielke, A. and S. Zelik. “On the vanishing viscosity limit in parabolic systems with rate-

independent dissipation terms.” Annali della Scuola Normale Superiore di Pisa Classe di

Scienze (5) (2012), to appear. WIAS preprint 1500.

[50] Moreau, J.-J. “Application of convex analysis to the treatment of elastoplastic systems.”

In Application of Methods of Functional Analysis to Problems in Mechanics, edited by

P. Germain and B. Nayroles. Berlin: Springer, 1976.

[51] Ortiz, M. and E. Repetto. “Nonconvex energy minimization and dislocation structures in

ductile single crystals.” Journal of the Mechanics and Physics of Solids 47, no. 2 (1999):

397–462.



344 G. A. Francfort and U. Stefanelli

[52] Prager, W. “Recent developments in the mathematical theory of plasticity.” Journal of

Applied Physics 20 (1949): 235–41.

[53] Prandtl, L. T. “Spannungverteilung in plastischen Körpern.” In Proc. 1st International Condr.

Mechanics, Delft, 43–54 (1924).

[54] Prandtl, L. T. “Ein Gedankenmodell zur kinetischen Theorie der festen Körper.” Zeitschrift

für Angewandte Mathematik und Physik 8 (1928): 85–106.
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