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Abstract

We investigate the variational structure of a phenomenological model for the coupled thermomechanical behavior of shape-
memory polycrystalline materials. The nonisothermal evolution of the medium is reformulated as a generalized gradient flow of
the entropy with respect to an entropy-production potential. Based on this reformulation, a semi-implicit time-discretization of the
fully coupled thermomechanical problem is presented and proved to be unconditionally stable and convergent. The flexibility and
robustness of the numerical method is assessed via both uniaxial and multiaxial computational tests.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Shape-memory alloys (SMA) are active materials: considerably large deformations (up to 10%) can be activated
either by mechanical or thermal means. Such amazing material properties, combined with the typical resistance
and workability of metals, make SMAs attractive for innovative engineering applications in various industrial fields
including, e.g., automotive, robotics, civil, seismic, and biomedical [1]. The interest for this class of materials is
currently triggering intense research efforts toward the implementation of appropriate constitutive models capable of
efficiently and robustly reproduce the SMA behavior. The SMA response is a genuinely coupled thermomechanical
effect. As such, the accurate and efficient treatment of nonisothermal situations bears a crucial importance.

The present paper investigates the variational structure of the three-dimensional thermo-mechanical constitutive
model, firstly presented in [2], and then reformulated in [3] and [4]. Our interest in this model is motivated by
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its capability of qualitatively reproducing the macroscopic behavior of SMAs within a simple (in terms of number
of material parameters) variational frame: in the isothermal situation the evolution of the medium is driven by the
interplay of energy storage and dissipation mechanism within the frame of Generalized Standard Materials [5–7].
A second crucial advantage of this model in comparison with others is its amenability to a complete mathematical
and numerical discussion. The nonlinear constitutive material relations and the corresponding quasistatic evolution
systems can be rigorously proved to admit solutions, which are limits of stable space–time discretizations, see the
recent survey [8]. Moreover, the experimental validation of the model by comparison with test data on NiTi wires and
springs is also available in [9,10].

The aim of the this paper is to investigate further the structure of the model [2,3] by presenting a new variational
formulation of the full nonisothermal model. This consists in a generalized gradient flow of the total entropy y → S(y)
as a function of the state vector y, including temperature as well as mechanical and internal variables. In particular,
we shall be considering the following differential system

∂ẏ K(t, y; ẏ)− ∂S(y) ∋ 0, (1.1)

where K(t, y; ·) corresponds to the entropy-production potential. Here, the dot represents differentiation with respect
to time whereas ∂ stands for some suitable notion of gradient, to be detailed below. The symbol ∋ refers to the fact
that, in absence of smoothness, the left hand side terms in (1.1) can be sets. As K depends not only on the rate ẏ but
also on the state y, we refer to (1.1) as a generalized gradient flow.

The variational formulation (1.1) for nonisothermal evolution is unprecedented in the frame of the model in [2,3].
The interest in such perspective relies on the possibility of exploiting this variational structure both for the theoretical
and the numerical discussion of the model. Different choices for K will be presented, all satisfying the following
fundamental structural property

for all (t, y) the map ẏ → K(t, y; ẏ)

is convex, nonnegative, and K(t, y; 0) = 0. (1.2)

This structural property immediately entails the dissipativity of the evolution. By assuming sufficient smoothness, one
can multiply both sides of (1.1) by ẏ and obtain

d
dt

S(y) = ∂S(y) · ẏ = ∂ẏ K(t, y; ẏ) · ẏ ≥ K(t, y; ẏ) ≥ 0

where we have used the convexity of ẏ → K(t, y; ẏ) as well as the fact that K(t, y; 0) = 0 = min K(t, y; ·). In
particular, the entropy increases along all sufficiently smooth evolutions.

The phrasing of the full thermomechanical problem as (1.1) is inspired to the theory of General Equations for Non-
Equilibrium Reversible–Irreversible Coupling (GENERIC). Introduced by Grmela & Öttinger [11,12] and recently
reinterpreted by Mielke in a series of contributions [13,14], GENERIC provides a far-reaching variational paradigm
for reformulating in a thermodynamically consistent way a variety of physical systems. In particular, GENERIC is
tailored to the unified treatment of reversible and irreversible (or even hysteretic) dynamics. GENERIC has recently
attracted increasing attention and has been applied to a number of situations ranging from complex fluids, to dissipative
quantum mechanics [14], to thermomechanics [13], and to the Vlasov–Fokker–Planck equation [15].

The novelty of this paper is twofold. At the modeling level, we present a new variational formulation of the
thermomechanically coupled system. As already commented, this formulation directly entails the dissipativity of the
flow. In addition, we are able to include external actions in the picture. Let us mention that, up to now, the GENERIC
framework is restricted to the description of isolated systems [16]. At first, we systematically eliminate the mechanical
part from the problem by solving the quasistatic equilibrium system. This procedure allows us to consider body and
traction forces, see Section 3.1. Then, by specifically reducing to the space-homogeneous case, we allow equilibration
with a given external temperature, see Section 3.4.

A second novelty of the paper consists in presenting an unconditionally stable and convergent time-discrete scheme
for the fully coupled thermomechanical system. Up to now the only available results in the nonisothermal case were
restricted to the case of a given temperature [17,18], to viscous materials [19], or to one space dimension [20,21].
By making use of the new variational formulation (1.1) we are here able to tackle the three-dimensional case without
assuming viscosity, although for space-homogeneous temperatures. By discretizing the system at the level of driving
functionals, we directly obtain a numerical scheme reproducing the basic properties and, in particular, the dissipativity
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the model. As a by-product of the convergence proof, we also establish the existence of a strong solution to the system
in the continuous-time setting.

The prediction of the coupled thermomechanical response in polycrystalline SMA materials has attracted a
remarkable attention in the last decades and the corresponding literature is extensive. By restricting to the case of
macroscopic thermomechanically coupled systems, which are the most relevant for our purposes, we shall however
minimally mention the models in [22–31]. A comprehensive review is to be found in [27,32]. In comparison with other
available phenomenological models capable of reproducing thermomechanical couplings, see for instance the recent
[33–36], our modeling choice has the distinctive advantage of allowing a rigorous mathematical discussion: numerical
evidence is here supported by a complete theory. In addition, the variational formulation (1.1) paves the possibility of
extending the reach of the present analysis to the various extensions of the model [2,3] which have been progressively
proposed in order to deal with asymmetric behavior [37], magnetic effects [38–41], residual plasticity [42,43], and
finite strains [44,44,45]. A complete space–time scheme based on (1.1) along the lines of [46] is the subject of a
forthcoming paper.

We shall refer to Peigney & Seguin [47,48] for an alternative analysis towards a variational formulation of
nonisothermal evolution problems in Generalized Standard Materials. In particular, in [47,48] the authors focus
on the time incremental step and augment the time-discrete relations by means of additional terms in order to let
the corresponding nonlinear system be symmetric, hence the gradient of some potential energy. These additional
terms turn out to be consistent in case of continuous temperature evolution. The incremental step is then solved
by minimization. Our approach is completely different as we propose a variational frame making sense at both the
continuous and the discrete level simultaneously.

The paper is organized as follows: in Section 2 we present a detailed account of the model and prove its dissipative
character. The generalized-gradient-flow reformulation of the thermomechanical problem is presented in Section 3.
In particular, we specifically treat the general nonisothermal case as well as the case of space-homogeneous fields. A
semi-implicit, variationally informed time-discrete scheme for the thermo-mechanical space-homogeneous problem
is studied in Section 4. In particular, its unconditional stability and convergence are established. The corresponding
numerical implementation is reported in Section 5 together with a number of computational results assessing the
performance of the model. Eventually, conclusions are summarized in Section 6.

2. Model

The aim of this section is to recall the basic features and the notation of the thermomechanical model. This has been
introduced in the isothermal case in [2] and then combined with finite elements in [3,4,49] and analyzed in [50]. The
case of a given, nonconstant temperature has been discussed in [17,18] whereas the full thermomechanical coupling
is investigated in [20,21] in one space dimension. The reader is referred to the recent survey [8] for details on the
extension of the model to finite strains [44,45,51], residual plasticization [42,43,52,53], asymmetric behaviors [37],
magnetic effects [19,38–40,54], as well as for space discretization [46,55] and control [41,56,57].

2.1. Tensors

In the following, bold Latin letters stand for both vectors and 2-tensors, and double-capital letters are for 4-tensors,
all of which in R3. Given the 2-tensors α, β ∈ R3×3 and the 4-tensor A ∈ R3×3×3×3 we classically define α : β ∈ R
and Aβ ∈ R3×3 as (summation convention) α : β := αi jβi j and (Aβ)i j := Ai jℓkβℓk , respectively. The space
of symmetric 2-tensors is denoted by R3×3

sym and endowed with the natural scalar product α : β := tr(αβ), where
tr(α) := αi i , and the corresponding norm |α|

2
:= α : α. Moreover, R3×3

sym is orthogonally decomposed into R3×3
sym =

R3×3
dev ⊕ R 12, where R 12 is the subspace spanned by the identity 2-tensor 12 and R3×3

dev is the subspace of deviatoric
(trace-free) symmetric tensors. In particular, for all α ∈ R3×3

sym , we have the decomposition α = dev α + (tr α)12/3.

2.2. State variables

Let u : Ω → R3 be the displacement from the reference configuration Ω ⊂ R3 of the body. Moving within the
small-deformation regime, we additively decompose the linearized strain ε = ε(u) = (∇u + ∇u⊤)/2 as

ε = εel
+ etr.
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Here, εel
= C−1σ ⊂ R3×3

sym corresponds to the elastic part of the strain, C is the isotropic elasticity tensor, and σ is the

stress. The tensor etr
∈ R3×3

dev is the inelastic strain originating from the martensitic transformation and reorientation.
In particular, etr is assumed to be trace-free, as experiments suggest that martensitic transformations are approximately
isochoric. The quantity |etr

| serves as a measure of the martensitic content of the specimen and fulfills |etr
| ≤ ϵL where

ϵL is the maximal strain which is obtainable by martensitic reorientation. On the other hand, etr/|etr
| is an indicator of

the local orientation of martensites. We shall indicate the absolute temperature of the medium by θ .

2.3. Free energy

The equilibrium of the medium is described by the free-energy density

ψ(ε, etr, θ) := cθ(1 − log θ)+
1
2
(ε − etr) : C(ε − etr)+

H

2
|etr

|
2
+ f (θ)|etr

| + I (etr).

The parameter c > 0 stands for heat capacity density and scales the purely caloric part of the free energy. The quadratic
terms in ψ correspond to the free-energy of linearized elastoplasticity with linear kinematic hardening. In particular,
H is a hardening parameter and we are making the simplifying assumption that austenite and martensite present the
same elastic response. The last two terms in ψ are instead specific of the SMA model. The value f (θ) corresponds
to the martensite-to-austenite equilibrium stress at temperature θ . A specific form for the function f is introduced in
Section 2.5. Let us remark that the only term responsible for the thermomechanical coupling is f (θ)|etr

|. In particular,
we are neglecting here thermal expansion as this appears often to be small in applications. Finally, I : R3×3

dev → [0,∞]

is the indicator function of the set {|etr
| ≤ ϵL} that is I (etr) = 0 if |etr

| ≤ ϵL and I (etr) = ∞ otherwise. In particular,
the constraint |etr

| ≤ ϵL is enforced at all finite energies.
As the transformation strain etr is deviatoric, it is convenient to express the free energy in terms of the

decomposition ε = (v/3)12 + e where v = tr ε is the volumetric strain and e = dev ε is the deviatoric strain,
respectively. In particular, we have

ψ = ψ(v, e, etr, θ) = cθ(1 − log θ)+
K

2
v2

+ G|e − etr
|
2
+

H

2
|etr

|
2
+ f (θ)|etr

| + I (etr)

where K ,G > 0 are here the bulk and the shear modulus, respectively.

2.4. Constitutive relations

We classically obtain the constitutive relations from the variations of the free energy with respect to its variables.
In particular, we have that the pressure p, the deviatoric stress s (so that, in particular, we can compute the Cauchy
stress as: σ = p12 + s), the entropy density s, and the thermodynamic variable X associated to the internal variable
etr read

p = ∂θψ = Kv, (2.1)

s = ∂eψ = 2G(e − etr), (2.2)

s = −∂θψ = − f ′(θ)|etr
| + c log θ − c, (2.3)

X = −∂etrψ = s − Hetr
− f (θ)∂|etr

| − ∂ I (etr). (2.4)

Here and in the following we use the symbol ∂ either to indicate classical partial differentiation (in the smooth case)
or subdifferentiation in the sense of convex analysis (in the nonsmooth but convex case). In particular, we explicitly
record that

∂|etr
| =


etr

|etr|
if etr

≠ 0,

{|etr
| ≤ 1} if etr

= 0,

∂ I (etr) =


0 if |etr

| < ϵL ,

ξ
etr

|etr|
, ξ ≥ 0 if |etr

| = ϵL ,

∅ if |etr
| > ϵL .

Moreover, we will also use the convention ∂S = −∂(−S) for a concave S .
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The internal energy density u can be classically computed as

u = u(ε, etr, θ) = ψ + θs

= cθ +
K

2
v2

+ G|e − etr
|
2
+ ( f (θ)− θ f ′(θ))|etr

| +
H

2
|etr

|
2
+ I (etr). (2.5)

2.5. Choice of f

As mentioned above, the value f (θ) indicates the martensite–austenite transformation stress at temperature θ . In
particular, f = 0 for low temperatures and f ′

= β > 0 for large temperatures. The transition between these two
regimes takes place in a neighborhood of the martensite-to-austenite transition temperature at zero stress θtr. For the
sake of definiteness, in the following we specifically choose the function

f (θ) =


0 for θ < θtr − ρ
β

4ρ
(θ − (θtr − ρ))2 for |θ − θtr| ≤ ρ

β(θ − θtr) for θ > θtr + ρ

being however intended that other choices would be possible.
Note that f is bounded, together with its first two derivatives. In particular, the upper bound of the second derivative

is strictly needed for the thermodynamic consistency of the model. This forces the parameter ρ > 0 to be not too small,
see below. Indeed, for ρ → 0 one has that f (θ) → β(θ − θtr)

+ uniformly, which is not differentiable. Following the
discussion in [21], we shall tacitly assume in all of the following the consistency condition

c − θ f ′′(θ)|etr
| > 0. (2.6)

This condition amounts to ensure that ∂θ s = − f ′′(θ)|etr
| + c/θ > 0 so that the effective heat capacity of the medium

is positive.
Let us anticipate that, along the analysis, the introduction of a smooth truncation of f will be needed and additional

constraints on the material parameters will be introduced, namely (4.6), (4.10), and (4.20). These constrains are aimed
at ensuring the dissipativity of the system and are to be compared with analogous conditions from [20,21]. Let us
explicitly stress that these requirements are compatible with the experimentally observed material parameters, see
Table 8.

2.6. Dissipation and flow rule

In order to describe the evolution of the medium we shall prescribe a (pseudo-)potential of dissipation D :

R+ × R3×3
dev → [0,∞) of Von-Mises type, namely

D(θ; ėtr) :=
R

θ
|ėtr

|

where R > 0 is an activation radius, measured in MPaK. The flow rule consists in the classical normality principle

∂ėtr D(θ; ėtr) ∋
X
θ
. (2.7)

Note that relation (2.7) can be equivalently expressed in the complementary form

F(θ; X) ≤ 0, ξ̇ ≥ 0, F(θ,X)ξ̇ = 0, ėtr
= ξ̇

∂X F(θ; X)
|∂X F(θ; X)|

where the yield function F is defined as

F(θ; X) := |X| −
R

θ
.

In particular, F is related to D via the duality formula

D(θ; ėtr) = sup{X : ėtr
| F(θ; X) ≤ 0}.
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By combining (2.4) with (2.7) we obtain the constitutive material relation equation

∂ėtr D(θ; ėtr)+ ∂etrψ(ε, etr, θ) ∋ 0. (2.8)

2.7. Momentum balance and energy conservation

Assume that the reference configuration of the body Ω ⊂ R3 is nonempty, open, connected, and has a Lipschitz
continuous boundary Γ . We decompose the latter as Γ = Γ D

∩Γ N
∩∂Γ where Γ D and Γ N are disjoint and relatively

open in Γ , ∂Γ is the boundary of both Γ D and Γ N , and Γ D has positive surface measure. Given some final reference
time T > 0, we shall be considering the quasistatic momentum balance

∇ · σ + f = 0 in Ω × (0, T ) (2.9)

to be combined with the boundary conditions

σn = g on Γ N
× (0, T ), u = h on Γ D

× (0, T ). (2.10)

Here, n denotes the outward unit normal to Γ N and f : Ω × (0, T ) → R3 and g : Γ N
× (0, T ) → R3 are a body force

and a surface traction, respectively, while h : Γ D
× (0, T ) → R3 is a prescribed displacement.

The conservation of energy reads

u̇ + ∇ · q = σ : ε̇ in Ω × (0, T ) (2.11)

where q represents the heat flux. We shall complement the latter with the homogeneous Neumann boundary conditions

q · n = 0 on Γ × (0, T ).

Let us however anticipate that different boundary conditions of Robin type will be allowed in the space-homogeneous
situation of Section 3.4.

2.8. Full system

The thermomechanical evolution of the medium is described by the system of quasistatic equilibrium (2.9), energy
conservation (2.11), and the constitutive material relation (2.8). Along with the current choices for the free energy ψ
and the dissipation D, the form of the resulting differential system in terms of the variables (u, θ, etr) reads

∇ · C(ε(u)− etr)+ f = 0, (2.12)
c − θ f ′′ (θ) |etr

|

θ̇ + ∇ · q = R|ėtr

| + θ f ′ (θ) |etr
|
·, (2.13)

R∂|ėtr
| + Hetr

+ f (θ)∂|etr
| + ∂ I (etr) ∋ 2G(e(u)− etr), (2.14)

where we recall that e(u) := dev ε(u). The thermomechanical coupling depends on the total martensitic content
|etr

|. This reflects that the transformation from austenite to martensite is a second-order phase transition whereas the
reorientation of martensitic variants is not associated with latent heat production.

2.9. Dissipativity

Let us explicitly comment on the thermodynamic consistency of the model by evaluating the entropy-release-rate
density

r := ṡ + ∇ · Q

where Q := q/θ is the entropy flux. Note preliminarily that energy conservation (2.11) can be equivalently rewritten
as

θ ṡ + ∇ · q = X : ėtr. (2.15)
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Then, we use (2.15) and (2.7) in order to compute

r
(2.15)
=

1
θ

X : ėtr
+ ∇ ·

q
θ


−

1
θ
∇ · q =

1
θ

X : ėtr
+ q · ∇


1
θ


(2.7)
= ∂ėtr D(θ; ėtr) : ėtr

+ q · ∇


1
θ


= D(θ; ėtr)+ q · ∇


1
θ


≥ 0

where the inequality follows from the fact that D > 0 whenever q = α(1/∇θ) with α monotone and α(0) = 0. For
the sake of definiteness we shall let q = κ∇(1/θ) for some conductivity κ ≥ 0, this choice being particularly adapted
to the present nonisothermal situation, see below. It is however intended that our discussion can be reproduced in
greater generality. In particular, the classical Fourier law q = −κ∇θ (which actually corresponds to a linearization of
q = κ∇(1/θ) around some reference temperature) can also be accommodated.

3. Gradient structures

We are now in the position of introducing the generalized-gradient-flow reformulation of the full thermomechanical
evolution system presented in the previous section. This corresponds to relation (1.1) along with the choice y = (etr, θ)

and the definition of the total entropy

S(y) =


Ω

s(y)dx =


Ω
(− f ′(θ)|etr

| + c log θ − c)dx

so that one has

∂S(y) =


− f ′(θ)∂|etr

|

(c − θ f ′′(θ)|etr|)/θ


.

To obtain this variational formulation, we start by eliminating the mechanical variable u by solving the equilibrium,
for given transformation strain etr and time t , see Section 3.1. This preliminary step is unavoidable as mechanical
equilibrium follows from energy stationarity rather than from entropic effects. The gradient reformulation of resulting
thermomechanical problem (2.12) + (2.14) then follows from the choice of the entropy-dissipation potential K(t, y; ·)

fulfilling the structural assumption (1.2). By dualizing K(t, y; ·) with respect to the rates, one can equivalently express
relation (1.1) as

ẏ ∈ ∂ξ K∗(t, y; ∂S(y)) (3.1)

where the dual-entropy-dissipation potential K∗(t, y; ·) is a function of the thermodynamic force ξ = ∂S(y).
We start by presenting a reformulation for the isothermal problem in Section 3.2. Then, we consider the general

nonisothermal situation in Section 3.3. Finally, in Section 3.4 we tackle the special case of space-homogeneous fields
as this is both often close to real applications and a clear benchmark for implementation.

3.1. Resolution of the quasistatic equilibrium

The first step in the direction of a variational reformulation of the system (2.12)–(2.14) consists in expressing
u in terms of etr and external actions by solving the quasistatic mechanical equilibrium system. Indeed, for all
etr

∈ L2(Ω; R3×3
dev ), f (t) ∈ L2(Ω; R3), and g(t) ∈ L2(Γ tr

; R3) one can find a unique u ∈ U := H1(Ω; R3) solving
(2.9)–(2.10). We shall indicate such u asu(t, etr). Given (f , g) ∈ C([0, T ], L2(Ω; R3) × L2(Γ tr

; R3)), the solution
operator u : [0, T ] × L2(Ω; R3×3

sym ) → U is hence well-defined, linear in etr, and continuous in (t, etr), although
nonlocal in space. The latter solution operatoru will be systematically employed in the remainder of the paper.

Note that by assumingu to be independent of time (that is, f , g, and h to be independent of time) we deduce that
ε(u(etr)) coincides with etr up to a linear shift. In this case (which, strictly speaking, is the only one covered by the
original GENERIC theory, which presently does not allow external actions) the evolution of the material is driven
solely by temperature relaxation.
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3.2. Gradient structure of the isothermal problem

Let us firstly concentrate on the isothermal problem (2.12) + (2.14). This can be written in the general form (1.1)
by defining y = etr and

K∗(t, y; ξ) :=


Ω

IR/θ (ξ − b(t, y))dx

where IR/θ is the indicator function of the convex set {a ∈ R3×3
dev : |a| ≤ R/θ} and we used the short-hand notation

b(t, y) ∈
1
θ


−2G(e(u(t, etr))− etr)+ Hetr

+ ( f (θ)− θ f ′(θ))∂|etr
| + ∂ I (etr)


for the purely state-dependent nonlinear operator b, which is continuous in time. The above-defined dual-entropy
production potential ξ → K∗(t, y; ξ) is clearly convex. By computing its dual we get

K(t, y; ẏ) =


Ω

R

θ
|ėtr

|dx +


Ω

b(t, y) : ėtrdx

which obviously fulfills the convexity assumption (1.2).
The above choices for S and K entail a reformulation of the isothermal evolution in terms of (1.1). Note nonetheless

that the isothermal case can be also classically formulated as the gradient flow in the variables (u, etr) of the
complementary energy

Ψ(t; u, etr) :=


Ω


1
2
(ε(u)− etr) : C(ε(u)− etr)+

H

2
|etr

|
2
+ f (θ)|etr

| + I (etr)


dx

−


Ω

f (t) · udx −


Γ tr

g(t) · udΓ

subject to the Von Mises dissipative potential

D(u̇, ėtr) := R|ėtr
|.

Indeed, the system (2.12) + (2.14) (along with boundary conditions) corresponds to the relation

∂D(u̇, ėtr)+ ∂Ψ(t; u, etr) ∋ 0

which is indeed formally close to (1.1). By solving for u =u(t, etr) one can additionally reformulate the latter in the
sole variable etr (and time) as

∂R|ėtr
| + ∂etrΨ(t;u(t, etr), etr) ∋ 0.

Note that the latter equation, although local in space and time, features the nonlocal-in-space operatoru.

3.3. Gradient structure in the general case

In the general nonisothermal case we can follow [16, Sec. 3.4] and recast the evolution problem in the form of (3.1)
by letting the dual entropy-production potential be defined by

K∗(t, y; ξ) =


Ω

IR/θ (ξ1 − a(t, y)ξ2)dx +


Ω

κ

2

 ∇ξ2

γ (y)

2 dx (3.2)

for ξ = (ξ1, ξ2) ∈ L2(Ω; R3×3
sym )× L2(Ω) where we have denoted by

γ (y) := c − θ f ′′(θ)|etr
|

a(t, y) ∈
1
γ (y)

(−2G(e(u(t, etr))− etr)+ Hetr
+ ( f (θ)− θ f ′(θ))∂|etr

| + ∂ I (etr)).
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In this case, we can compute

∂ξ K∗(t, y; ξ) ⊃


∂ IR/θ (ξ1 − a(t, y)ξ2)

−∂ IR/θ (ξ1 − a(t, y)ξ2) : a(t, y)−
κ

(γ (y))2
∆ξ2


so that, by substituting

ξ ∈ ∂S(y) =


− f ′(θ)∂|etr

|

γ (y)
θ


one gets

∂ξ K∗(t, y; ∂S(y)) ⊃

 ∂ IR/θ


− f ′(θ)∂|etr

| − a(t, y)
γ (y)
θ


−∂ IR/θ


− f ′(θ)∂|etr

| − a(t, y)
γ (y)
θ


: a(t, y)−

κ

γ (y)
1


1
θ


 .

By using the above-introduced expressions for a and γ one obtains that the argument of the subdifferential ∂ IR/θ is
nothing but −X/θ so that (3.1) reads

ėtr

θ̇


∈

 ∂ IR/θ (X/θ)

−∂ IR/θ (X/θ) : a(t, y)−
κ

γ (y)
1


1
θ


corresponding indeed to relations (2.13)–(2.14).

By computing the dual of K∗(t, y; ·) one obtains the entropy-production potential

K(t, y; ẏ) =


Ω

R

θ
|ėtr

|dx +
1

2κ
∥γ (y)(θ̇ + a(t, y) : ėtr)∥2

H−1
av

(3.3)

featuring the norm

∥v∥2
H−1

av
:=


Ω

|∇(−∆−1v)|2dx =


Ω

|∇w|
2dx .

Here, w is the unique solution in

H1
av :=


w ∈ H1(Ω) :


Ω
w dx = 0


of −1w = v for

v ∈ H−1
av :=


v ∈ H−1(Ω) : ⟨v, 1⟩ = 0


where ⟨·, ·⟩ stands for the duality pairing between H−1(Ω) and H1(Ω). Note that K(t, y, ·) fulfills the general
structural assumption (1.2).

We hence compute

∂ẏ K(t, y; ẏ) ⊃

 R

θ
∂|ėtr

| +
γ (y)
κ
(−∆−1)(γ (y)(θ̇ + a(t, y) : ėtr))a(t, y)

γ (y)
κ
(−∆−1)(γ (y)(θ̇ + a(t, y) : ėtr))

 .
By substituting ∂S(y) into (1.1) we obtain R

θ
∂|ėtr

| +
γ (y)
κ
(−∆−1)(γ (y)(θ̇ + a(t, y) : ėtr))a(t, y)

γ (y)
κ
(−∆−1)(γ (y)(θ̇ + a(t, y) : ėtr))

−


− f ′(θ)∂|etr

|

γ (y)
θ


∋


0
0
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and relations (2.13)–(2.14) follow from the actual choices of a and γ . Note that the argument of the H−1-norm above
is required to have zero mean. Given the equation for θ , this amounts to say that q = κ∇(1/θ) has no flux through the
boundary Γ . Namely, the body is assumed to be thermally insulated from the exterior.

3.4. Gradient structures for space-homogeneous fields

We shall be here concerned with some specific degenerate case in which the energy conservation equation (2.13)
can be actually reduced to an ordinary differential relation. In particular, we assume that the temperature is constant
in space. This can be regarded as a sensible approximation in many applicative instances, especially in connection
with relatively thin structures activated at low frequencies. The advantage of this approximation is that the energy
conservation equation (2.13) is pointwise in space and time. In particular, by dropping the differential term in (2.13)
one gets

c − θ f ′′ (θ) |etr
|

θ̇ = R|ėtr

| + θ f ′ (θ) |etr
|
· (3.4)

which can be seen as the entropy gradient flow driven by the entropy-production potential

K(t, y; ẏ) =



Ω

R

θ
|ėtr

|dx if γ (y)(θ̇ + a(t, y) : ėtr) = 0,

∞ otherwise.

Note that this choice of K formally corresponds to the limit as κ → 0 in (3.3). In particular, it translates at the
variational level the situation where the term κ1(1/θ) in (2.13) is dropped by letting κ → 0. The reduced energy-
conservation relation (2.13) reads in this case

γ (y)(θ̇ + a(t, y) : ėtr) = 0

and is directly enforced as a constraint in the definition of K.
One can extend the above discussion by including a relaxation dynamics for the temperature. Indeed, by replacing

κ1(1/θ) by −λ/θ in (2.13) one gets
c − θ f ′′ (θ) |etr

|

θ̇ −

λ

θ
= R|ėtr

| + θ f ′ (θ) |etr
|
· (3.5)

corresponding indeed to a viscous flow. Note that this approximation can be made rigorous by assuming all fields to
be space-homogeneous and integrating (2.13) in space with the aid of the Robin-type boundary condition

q · n = −

λ
θ

whereλ = λ|Ω |/|Γ |, being |Γ | and |Ω | the measures of Γ and Ω , respectively. This case corresponds to the gradient
flow of the entropy driven by the dual-entropy-production potential (compare with (3.2))

K∗(t, y; ξ) =


Ω

IR/θ (ξ1 − a(t, y)ξ2)dx +


Ω

λ

2

 ξ2

γ (y)

2 dx (3.6)

and, correspondingly, the entropy-production potential

K(t, y; ẏ) =


Ω

R

θ
|ėtr

|dx +


Ω

1
2λ

|γ (y)(θ̇ + a(t, y) : ėtr)|2dx . (3.7)

Note that the above entropy potential features no differentiation terms with respect to space and fulfills the structural
assumption (1.2).

We are in the position of generalizing the choice of the boundary condition even further and let the system adapt
to some given external temperature. In particular, this amounts in asking for

q · n =λ 1
θe(t)

−
1
θ
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for some possibly time-dependent external temperature t → θe(t) > 0. By assuming space-homogeneity, one replaces
(2.13) with the ordinary differential equation

c − θ f ′′ (θ) |etr
|

θ̇ + λ


1

θe(t)
−

1
θ


= R|ėtr

| + θ f ′ (θ) |etr
|
·. (3.8)

Then, the system (2.14) + (3.8) corresponds to the choice

K∗(t, y; ξ) = IR/θ (ξ1 − aξ2)+

λ
2

 ξ2

γ (y)
−

1
θe(t)

2 +
1

θe(t)


ξ2

γ (y)
−

1
θe(t)


.

By duality we obtain the time-dependent entropy-production potential

K(t, y, ẏ) =
R

θ
|ėtr

| +
1

2λ |γ (y)(θ̇ + a(t, y) : ėtr)|2 +
γ (y)
θe(t)

(θ̇ + a(t, y) : ėtr)

which again fulfills the basic assumption (1.2). By computing (1.1) in this case one obtains in particular (3.8). One
has to mention that the corresponding system cannot be regarded to be closed, as the external temperature θe provides
an entropic source.

4. Semi-implicit scheme for the space-homogeneous case

The gradient flow structure of the model may be used to derive and analyze some dissipative numerical scheme.
We shall detail this possibility by focusing here on the space-homogeneous case of relations (3.8) + (2.14), which
equivalently read

γ (y)

θ̇ + a(t, y) : ėtr

+ λ


1

θext(t)
−

1
θ


= 0, (4.1)

R

θ
∂|ėtr

| +
γ (y)
θ

a(t, y)+ f ′(θ)∂|etr
| ∋ 0 (4.2)

where we recall that

γ (y) = c − θ f ′′(θ)|etr
|

a(t, y) ∈
1
γ (y)


−2G(e(u(t, etr))− etr)+ Hetr

+ ( f (θ)− θ f ′(θ))∂|etr
| + ∂ I (etr)


.

This approximation of the original system, indeed justified for space-homogeneous fields, bears a particular interest
as it is space-localized and even rate-independent, for λ = 0. We hence believe this to be a relevant test case. PDE
couplings will be investigated in a forthcoming paper.

We are interested in a semi-implicit time-discretization scheme. Let a time-partition {0 = t0 < t1 < · · · < tN = T }

be given and define the possibly variable time step τi = ti − ti−1. We focus here on the strain- and external-
temperature-driven setting. In particular, we assume to be given t ∈ [0, T ] → e(t) := dev ε(u(t)) ∈ R3×3

dev and
t ∈ [0, T ] → θe(t) > 0 and a suitable initial conditions on etr

0 ∈ R3×3
dev and θ0 > 0, and we are interested in the

time-discrete scheme

γη(yi−1)


θi − θi−1

τi
+ aη(ti , yi ) :

etr
i − etr

i−1

τi


+ τiλ


1

θe(ti )
−

1
θi


= 0, (4.3)

R

θi
∂|etr

i − etr
i−1| +

γη(yi−1)

θi
aη(ti , yi )+ f ′

∗(θi )∂|etr
i |η ∋ 0, (4.4)

where the state dependence is explicit in γ and implicit everywhere else. The variational structure of (4.1)–(4.2)
is indeed reflected in this choice, as all occurrences of γ are likewise discretized. Additionally, for the purpose
of presenting a complete theoretical analysis of the scheme, we are forced to perform a regularization of the
thermomechanical coupling term f (θ)|etr

| by f∗(θ)|etr
|η. Here,

|etr
|η := min


|etr

|
2

2η
+
η

2
, |etr

|
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where η > 0 is a small used-defined parameter (the modification f ∗ of f is described below). By reflecting the
variational structure of the problem, this regularization entails modifications on the terms γ and a as follows

γη(y) := c − θ f ′′
∗ (θ)|e

tr
|η

aη(t, y) ∈
1
γ (y)

(−2G(e(t)− etr)+ Hetr
+ ( f∗(θ)− θ f ′

∗(θ))∂|e
tr
|η + ∂ I (etr)).

The purpose of the regularization is to ensure that

∂|etr
|η = (η12 + ∂ I )−1(etr) (4.5)

is Lipschitz continuous of constant 1/η, which turns out crucial for proving the convergence of the numerical scheme.
Note that |∂|etr

|η| ≤ 1 for all etr
∈ R3×3

dev . On the other hand, let us mention that the modification is performed at
the functional level, namely without perturbing the variational structure of the problem. We shall also mention that
analogous regularizations have been already considered for this problem [17,18,50] and proved to be consistent with
their limit η → 0 and that the numerical scheme performs well in the case η = 0, despite the absence of a complete
analysis. We collect some comment in this direction in Section 5.

As for the modified function f∗ we simply prescribe a monotone smooth truncation so that f∗ ≡ f for θ ≤ θ∗−2ρ,
f ′
∗ = 0 for θ ≥ θ∗, and ∥ f ′

∗∥L∞ := supθ>0 | f ′
∗(θ)| ≤ β, and ∥ f ′′

∗ ∥L∞ ≤ β/(2ρ) so that (4.6) holds. In particular,
θ∗ > 0 is some prescribed maximal temperature. This modification with respect to the original f is essentially
immaterial with respect to applications, for it suffices to choose θ∗ larger than the experimentally observed and
computationally simulated temperatures. The temperature upper bound, combined with a compatibility assumption
on the parameter, see (4.20), ensures that the overall behavior of the system remains dissipative under cyclic testing.
In the context of the Souza–Auricchio model a similar although weaker assumption has been advanced in [21]. The
situation was there simpler as the constitutive relation of the material was taken to be scalar and an order method could
be used.

We shall prove that the system (4.3)–(4.4) admits a solution for all i . This will be done in Section 4.3 by means
of a fixed point argument based on the iterative solution of (4.3) and (4.4). In order to prepare for this, we discuss
separately the mechanical and the thermal subproblems in Sections 4.1 and 4.2, respectively. As mentioned in the
Introduction, some first requirement for this to hold is that the effective heat capacity of the system is positive. This
amounts to ask for

0 < γ0 := inf
θ>0


c − θ f ′′

∗ (θ)


(4.6)

which indeed follows with our actual choice of parameters, see Table 8.

4.1. Mechanical subproblem

Relation (4.4) can be rewritten as

R∂|etr
i − etr

i−1| + (H + 2G)etr
i + f∗(θi )∂|etr

i |η + ∂ I (etr
i ) ∋ 2Gei . (4.7)

For all given etr
i−1 ∈ R3×3

dev , θi > 0, and ei := e(ti ), relation (4.7) admits a unique solution etr
i ∈ R3×3

dev . Indeed, etr
i is

the unique minimizer of the uniformly convex functional

etr
→ R|etr

− etr
i−1| +

1
2
(H + 2G)|etr

|
2
+ f∗(θi )|etr

|η + I (etr)− 2Gei : etr.

Take now two different pairs of data (e1
i , θ

1
i ) and (e2

i , θ
2
i ) and let etr,1

i and etr,2
i be the corresponding solutions to (4.7).

By taking the difference of the respective equations, testing on etr,1
i −etr,2

i , and exploiting monotonicity we obtain that

(H + 2G)|etr,1
i − etr,2

i |
2

≤ 2G(e1
i − e2

i ) : (etr,1
i − etr,2

i )+ ( f∗(θ1)− f∗(θ2))∂|etr,2
|η : (etr,1

i − etr,2
i )

≤


2G|e1

i − e2
i | + β|θ1 − θ2|


|etr,1

i − etr,2
i |.
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Hence, we have checked the Lipschitz continuity

|etr,1
i − etr,2

i | ≤
2G

H + 2G
|e1

i − e2
i | +

β

H + 2G
|θ1 − θ2|. (4.8)

Note that the well-posedness of (4.7) is indeed independent of the regularization η as well as of the truncation f∗ and
would hold also in absence of such modifications.

4.2. Thermal subproblem

Assume now to be given θi−1 > 0, θe
i := θe(ti ) > 0, and etr

i ∈ R3×3
dev . Eq. (4.3) can be equivalently rewritten as

γη(yi−1)θi −
τiλ

θi
= −

τiλ

θe
i

+ γη(yi−1)θi−1 + R|etr
i − etr

i−1| + θi f ′
∗(θi )∂|etr

i |η : (etr
i − etr

i−1). (4.9)

As the map θ ∈ R+ → γη(yi−1)θ − λ/θ is injective and onto R, for all θ̃ we can find a unique solution θi > 0 to
the above equation where the term θi f ′

∗(θi ) on the right-hand side is replaced by θ̃ f ′
∗(θ̃). This defines a map θ̃ → θi

which can be proved to be a contraction under the condition

φ0 := sup
θ

| f ′
∗(θ)− θ f ′′

∗ (θ)| <
γ0

2ϵL
. (4.10)

Indeed, assume to be given θ̃1 and θ̃2 and the corresponding solutions θ1
i and θ2

i . Take the difference between equation
(4.9) written for θ1

i and the same equation for θ2
i and test it on θ1

i − θ2
i in order to get that

γη(yi−1)|θ
1
i − θ2

i |
2

≤ |θ̃1 f ′
∗(θ̃

1)− θ̃2 f ′
∗(θ̃

2)| |etr
i − etr

i−1| |θ
1
i − θ2

i |

≤ 2ϵL sup
θ


f ′
∗(θ)− θ f ′′

∗ (θ)

|θ̃1

− θ̃2
| |θ1

i − θ2
i |.

Also by using (4.6), we deduce the Lipschitz continuity bound

|θ1
i − θ2

i | ≤
2ϵLφ0

γ0
|θ̃1

− θ̃2
| (4.11)

for the map θ̃ → θ . Under condition (4.10), this map is hence a contraction and relation (4.9) has a unique solution.
We can directly check that indeed the solution θi is bounded from below, depending on data. To this aim, choose

θmin = min{θi−1, θ
e
i , θtr − 2ρ} > 0

and multiply (4.9) by −(θi − θmin)
−

= min{θi − θmin, 0} < 0 getting

γη(yi−1)|(θi − θmin)
−
|
2

= γη(yi−1)(θmin − θi−1)(θi − θmin)
−

− λτi


1
θi

−
1
θe

i


(θi − θmin)

−

− R|etr
i − etr

i−1|(θi − θmin)
−

− θi f ′
∗(θi )∂|etr

i |η : (etr
i − etr

i−1)(θi − θmin)
−. (4.12)

The four terms on the above right-hand side are nonpositive. Indeed, the term γη(yi−1)(θmin − θi−1)(θi − θmin)
− is

nonpositive by (4.6) as θmin ≤ θi−1. Moreover, we have that

−λτi


1
θi

−
1
θe

i


(θi − θmin)

−
= −λτi

θe
i − θi

θiθ
e
i
(θi − θmin)

−
≤ 0

as 0 < θi ≤ θmin ≤ θe
i whenever (θi − θmin)

−
≠ 0. The nonpositivity of the term −R|etr

i − etr
i−1|(θi − θmin)

− is clear.
As f∗(θ) vanishes for θ < θtr − 2ρ we finally have that

(θi − θmin)
−

≠ 0 ⇒ θi f ′
∗(θi )∂|etr

i |η : (etr
i − etr

i−1) = 0.

Owing to the nonpositivity of the right-hand side of (4.12) and to (4.6) we have proved that (θi − θmin)
−

= 0 hence

θ ≥ θmin > 0. (4.13)
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Let us now consider θ1
i and θ2

i to be the unique solutions of (4.9) with etr
i = etr,1

i and etr
i = etr,2

i , respectively. By
arguing as above we readily obtain that

γ0|θ
1
i − θ2

i |
2

≤ R|etr,1
i − etr,2

i | |θ1
i − θ2

i |

+


θ1 f ′

∗(θ
1)∂|etr,1

|η : (etr,1
− etr

i−1)− θ2 f ′
∗(θ

2)∂|etr,2
|η : (etr,2

− etr
i−1)


(θ1

i − θ2
i ). (4.14)

In the following, we will consider the case of temperature bounded from above by θ∗ > 0. By exploiting the Lipschitz
continuity of ∂| · |η and assuming θ1

i , θ
2
i ≤ θ∗ one deduces that

γ0|θ
1
i − θ2

i | ≤ R|etr,1
i − etr,2

i | + 2ϵLφ0|θ
1
i − θ2

i | +
2ϵLβθ∗

η
|etr,1

− etr,2
| + βθ∗|etr,1

− etr,2
|. (4.15)

4.3. Existence for the discrete problem

Let us now check that the discrete system (4.3)–(4.4) can be solved for all given θi−1 > 0, etr
i−1 ∈ R3×3

dev , θe
i > 0,

and ei ∈ R3×3
dev . The strategy here is to consider an iterative procedure, solving indeed the mechanical and the thermal

problems sequentially.
For some trial

ẽtr
i ∈ B := {etr

∈ R3×3
dev : |etr

| ≤ ϵL},

we find the unique solution θ̃ = S1(ẽtr
i ) of (4.9) with etr

i = ẽtr
i . Note that the map S1 is Lipschitz continuous by

(4.15). Then, we uniquely solve (4.7) with θi = θ̃ for etr
i = S2(θ̃). Recall from (4.8) that the solution operator S2 is

Lipschitz continuous as well. In conclusion, we have defined a Lipschitz continuous map S = S2
◦ S1 from the ball B

to itself. Hence, S has a fixed point etr by the classical Browder Theorem, and the pair (θ, etr) = (S1(etr), etr) solves
(4.7) + (4.9).

Before closing this section let us remark that the above existence proof is nonconstructive. In particular, we are not
in the position of proving that the iterative procedure actually converges, but rather that some subsequence of such
iterations converges. Our numerical evidence shows however that this issue is not jeopardizing the performance of the
algorithm. Namely, the numerical procedure always detects a fixed point.

4.4. Unconditional stability

In order to possibly check the unconditional stability of the scheme, as well as its convergence, let us introduce
some assumptions on the data. In what follows we shall ask for

θe
∈ W 1,1(0, T ), θe

≥ θe
min > 0, e ∈ W 1,∞(0, T ; R3×3

dev ),

θ0 > 0, etr
0 ∈ B, ∃etr

−1 ∈ R3×3
dev such that

R∂|etr
0 − etr

−1| + (H + 2G)etr
0 + f (θ0)|etr

0 |η ∋ 2Ge(0). (4.16)

Moreover, let us introduce the short-hand notation for incremental quotients

δθi =
θi − θi−1

τi
, δetr

i =
etr

i − etr
i−1

τi
,

and so on. In the following, the symbol C stands for any constant depending on data but not on the partition, and
possibly varying from line to line.

By induction on i , the lower bound (4.13) entails the following uniform lower bound

θi ≥ min{θ0, θ
e
min, θtr − 2ρ} =: θmin > 0. (4.17)

For the sake of later purposes, let us assume to have chosen θ0, θe, and θtr in such a way that θmin > 250 K.
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We start by testing the temperature equation (4.9) by τiδθi getting

γ0τi |δθi |
2
− λ(log θi − log θi−1) ≤

λτi

θe
i
δθi + τi R|δetr

i |δθi + θi f ′
∗(θi )∂|etr

i |η : δetr
i δθi . (4.18)

Let us now take the difference between (4.7) written at level i and the same relation at level i = 1. By making use
of etr

−1 from (4.16) this can be accomplished for all i = 1, . . . ,m ≤ N . We test this difference by δetr
i and exploit the

fact that ξi ∈ ∂R|etr
i − etr

i−1| iff etr
i − etr

i−1 ∈ ∂ IR(ξi ) in order to deduce that

τi (H + 2G)|δetr
i |

2
≤ τi 2Gδei : δetr

i − τiδ f (θi )∂|etr
i |η : δetr

i .

Let us now multiply the latter by θi > 0 and add it to (4.18) getting

γ0τi |δθi |
2
− λ(log θi − log θi−1)+ τiθi (H + 2G)|δetr

i |
2

≤
λτi

θe
i
δθi + τi R|δetr

i |δθi + τiθi ( f ′
∗(θi )δθi − δ f (θi ))∂|etr

i |η : δetr
i + τi 2Gθiδei : δetr

i

=
λτi

θe
i
δθi + τi R|δetr

i |δθi + τ 2
i θi

f ′′
∗ (θ̃)

2
|∂θi |

2∂|etr
i |η : δetr

i + τi 2Gθiδei : δetr
i

≤ τi C |δθi | + τi R|δetr
i | |δθi | + τi

ϵLβθ∗

2ρ
|δθi |

2
+ τi C |θi | |δetr

i |

where θ̃ is an intermediate value between θi and θi−1. By taking the sum of the latter inequality for i = 1, . . . ,m ≤ N
we deduce

γ0 −
ϵLβθ∗

2ρ

 m
i−1

τi |δθi |
2
− λ log θm +


τiθi (H + 2G)|δetr

i |
2

≤ C + C
m

i−1

τi |δθi | + R
m

i−1

τi |δetr
i | |δθi | + C

m
i−1

τi |θi | |δetr
i |. (4.19)

Under the compatibility conditions

γ0 −
ϵLβθ∗

2ρ
> 0 and R2 < θminγ0(H + 2G), (4.20)

which are satisfied by our data set (see Table 8) by letting, for instance, θ∗ = 450 K and ρ = 30 K and recalling that
θmin > 250 K, one has that

N
i=1

τi (|δθi |
2
+ |δetr

i |
2) ≤ C. (4.21)

4.5. Convergence

Let us consider a sequence of partitions {ti } so that the corresponding maximal time step τ = maxi (ti − ti−1)

converges to 0. We shall index these partitions by their diameter τ . Letting {ui }
N
i=0 be a vector, we denote by uτ , uτ ,

uτ three functions of the time interval [0, T ] which interpolate the values of the generic vector {ui } on the partition
with size τ . In particular, for all t ∈ (ti−1, ti ], i = 1, . . . , N ,

uτ (0) := u0, uτ (t) := αi (t)ui +

1 − αi (t)


ui−1,

uτ (0) := u0, uτ (t) := ui ,

uτ (0) := u0, uτ (t) = ui−1

where

αi (t) := (t − ti−1)/τi .
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Owing to these notations we can rewrite the discrete system (4.3)–(4.4) in the compact form

γη(yτ )θ̇τ −
λ

θ τ
= −

λ

θ
e
τ

+ R|ėtr
τ | + θ τ f ′

∗(θ τ )∂|e
tr
τ |η : ėtr

τ , (4.22)

ητ + (H + 2G)etr
τ + f∗(θ τ )∂|etr

τ |η + ξ τ = 2Geτ , (4.23)

ητ ∈ R∂|ėtr
τ |, ξ τ ∈ ∂ I (etr

τ ) (4.24)

for almost all t ∈ (0, T ). In particular, by the boundedness of ∂| · | and ∂| · |η one obtains from the bound (4.21) and
by comparison in (4.23) that the norms

∥θτ∥H1 , ∥etr
τ ∥H1 , ∥ητ∥L∞ , ∥ξ τ∥L∞ are bounded, independently of τ .

Hence, we can extract not relabeled subsequences such that

θτ → θ strongly in C[0, T ] and weakly in H1(0, T ), (4.25)

θ τ , θ τ → θ strongly in L∞(0, T ), (4.26)

etr
τ → etr strongly in C([0, T ]; R3×3

dev ) and weakly in H1(0, T ; R3×3
dev ), (4.27)

etr
τ , etr

τ → etr strongly in L∞(0, T ; R3×3
dev ), (4.28)

ητ → η weakly star in L∞(0, T ; R3×3
dev ), (4.29)

ξ τ → ξ weakly star in L∞(0, T ; R3×3
dev ), (4.30)

We shall now pass to the limit in relations (4.22)–(4.24). By using also the uniform positivity of θ τ from (4.17) we
have that γη(yτ ) → γη(y) strongly in L∞(0, T ) so that convergence (4.25) entails that γη(yτ )θ̇τ → γη(y)θ̇ weakly

in L2(0, T ). The convergence of the terms −λ/θ τ → −λ/θ and −λ/θ
e
τ → −λ/θe in L∞(0, T ) follows by the strict

bound (4.17), convergence (4.26), and the fact that θ
e
τ → θe in C[0, T ]. Moreover, we readily check that

θ τ f ′
∗(θ τ )∂|e

tr
τ |η : ėtr

τ → θ f ′
∗(θ)∂|e

tr
|η : ėtr weakly in L2(0, T ; R3×3

dev )

where we have in particular used the Lipschitz continuity of ∂| · |η. We can pass to the limit in each term in (4.23)
getting

η + (H + 2G)etr
+ f∗(θ)∂|etr

|η + ξ = 2Ge. (4.31)

In addition, by the classical strong-weak closure of subdifferentials we get that ξ ∈ ∂ I (etr) almost everywhere in time.
In order to identify η we proceed by lower semicontinuity by computing

lim sup
τ→0

 T

0
ητ : ėtr

τ dt


≤ lim sup

τ→0


−

H + 2G

2
(|etr

τ (T )|
2
− |etr

0 |
2)− I (etr

τ (T ))+ I (etr
0 )

−

 T

0
f∗(θ τ )∂|etr

τ |η : ėtr
τ dt +

 T

0
2Geτ : ėtr

τ dt


≤ −

H + 2G

2
(|etr(T )|2 − |etr

0 |
2)− I (etr(T ))+ I (etr

0 )−

 T

0
f∗(θ)∂|etr

|η : ėtr dt

−

 T

0
2Ge : ėtr dt =

 T

0
η : ėtr dt.

In particular, by the classical result [58, Prop. 2.5, p. 27] we obtain that η ∈ R∂|ėtr
| almost everywhere and T

0
R|ėtr

τ | dt =

 T

0
ητ : ėtr

τ dt →

 T

0
η : ėtr dt =

 T

0
R|ėtr

| dt.

The above estimate can be also localized to subsets [s, t] ⊂ [0, T ] so that it indeed entails the convergence
R|ėtr

τ | → R|ėtr
| in L1(0, T ). This concludes the convergence proof.
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5. Numerical results

The aim of this section is to illustrate the performance of the proposed semi-implicit scheme. We shall implement
the discretization procedure described in Section 4.3. Given a time partition {ti }, initial data (θ0, etr

0 ), and possibly
time-dependent external data i → (θe

i , ei ), we solve the system (4.3)–(4.4) for i = 1, . . . , N by iterating, at each time
step, the solution of the mechanical and thermal subproblems until convergence. As the computationally observed
temperatures do not exceed the threshold θ∗ −2ρ, no actual truncation of f is needed in the algorithm. We shall hence
keep the notation f in the remainder of the section.

From the algorithmical viewpoint, the solution of the iteration in the (scalar) thermal subproblem is straightforward.
On the other hand, the discussion of the mechanical subproblem, namely relation (4.7), is more delicate so that we
shall concentrate on the latter. Indeed, the interplay of the three nonlinear terms of relation (4.7) is at the same time
a distinctive feature of the model and a criticality, in term of the use of generalized Newton methods. The introduced
regularization | · |η of a norm in (4.7) is clearly beneficial from the algorithmical viewpoint. This approximation is
widely used in this context [17–19,49] and has been proved to converge to the nonregularized situation for η → 0 in
a number of relevant cases [50]. Still, this regularization is to a large extent not needed here, as we comment in the
following subsection.

5.1. Nonregularized case in (4.7)

We shall collect here some discussion on the possibility of considering directly the nonregularized case η = 0
in relation (4.7). Although not accessible to a complete theoretical analysis, the nonregularized case corresponds to
the original formulation of the material relation. As such, we believe it to be of interest from both the modeling and
numerical viewpoint.

Given data θi > 0 and etr
i−1, ei ∈ R3×3

dev , the idea is to perform some a priori tests in order to check if the solution
etr

i of relation (4.7) is

neither {etr
i−1} nor {0},

which exactly correspond to the singular sets of the nonlinearities ∂|etr
− etr

i−1| and ∂|etr
| (that is ∂|etr

|η for η = 0)
in (4.7), respectively (the treatment of the constraint ∂ I (etr

i ) follows ex post, see below). We shall proceed by
distinguishing mutual cases.

Case (1): etr
i = etr

i−1 = 0. In this case relation (4.7) corresponds to

(R + f (θi ))B ∋ 2Gei

where B = {|etr
| ≤ 1} is the unit ball. This can be achieved iff

2G|ei | ≤ R + f (θi ). (5.1)

Case (2): etr
i−1 ≠ etr

i = 0. Here, relation (4.7) reads

R
etr

i−1

|etr
i−1|

+ f (θi )B ∋ 2Gei

which can be fulfilled iff2Gei − R
etr

i−1

|etr
i−1|

 ≤ f (θi ). (5.2)

Case (3): etr
i = etr

i−1 ≠ 0 and |etr
i | < ϵL . We can rewrite relation (4.7) as

RB + (H + 2G)
etr

i−1

|etr
i−1|

+ f (θi )
etr

i−1

|etr
i−1|

∋ 2Gei
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which holds iff2Gei − (H + 2G)etr
i−1 − f (θi )

etr
i−1

|etr
i−1|

 ≤ R. (5.3)

Case (4): etr
i = etr

i−1 and |etr
i | = ϵL . In this situation relation (4.7) reads

RB + (H + 2G)
etr

i−1

|etr
i−1|

+ f (θi )
etr

i−1

|etr
i−1|

+ ℓ
etr

i−1

|etr
i−1|

∋ 2Gei

where ℓ ≥ 0 is the (norm of the) Lagrange multiplier corresponding to the constraint |etr
i | ≤ ϵL . The inclusion holds

iff, by letting

d :=
etr

i−1

|etr
i−1|

, w := 2Gei − (H + 2G)etr
i−1 − f (θi )

etr
i−1

|etr
i−1|

,

one has that

w ∈ [0,∞)d + RB.

This is equivalent to ask for ℓ ≥ 0 and |x| ≤ R such that w = ℓd + x. Given w and d, this condition can be readily
checked to hold iff

(w : d ≤ 0 and |w| ≤ R) or (w : d > 0 and |w − (w : d)d| ≤ R). (5.4)

By performing the checks (5.1)–(5.4) we can identify the singular situations etr
i = etr

i−1 or etr
i = 0 completely. In

case etr
i ≠ etr

i−1 and etr
i ≠ 0, we may proceed in solving relation

R∂|etr
i − etr

i−1| + (H + 2G)etr
i + f (θi )∂|etr

i | ∋ 2Gei , (5.5)

which is nothing but (4.7) where the constraint ∂ I (etr
i ) has been removed. Relation (5.5) also admits a unique solution

ẽtr
i , which we have already checked to be different from etr

i−1 and 0. In particular, we can avoid regularizing the norms
in (5.5) as long as we remain in a neighborhood of the solution ẽtr

i .
Eventually, if |ẽtr

i | ≤ ϵL then etr
i = ẽtr

i is the unique solution of (4.7). On the contrary, one has to treat directly (4.7),
where now η = 0 is allowed. On the other hand, the constraining term ∂ I (etr

i ) could be regularized by penalization as

∂ Iζ (etr
i ) =

1
ζ
((|etr

i | − ϵL)
+)2

etr
i

|etr
i |

where ζ > 0 is a user-defined parameter. For all positive ζ the regularized term is Lipschitz continuous and it can be
checked that the ζ -regularized solution to (4.7) converges as ζ → 0 to the solution of the nonregularized equation [50].

5.2. Implementation

The strain- and external-temperature-driven constitutive-model driver has been implemented in the Mathematica
(Wolfram) environment and has been tested under different conditions.

The algorithm solves the time-discrete scheme from Section 4, along with the provisions of Section 5.1. At each
time ti , the values ei ∈ R3×3

dev , θ
e
i > 0 are given as well as the previous states θi−1 > 0 and etr

i−1 ∈ R3×3
dev . The algorithm

computes the actual values θi > 0 and etr
i ∈ R3×3

dev . The procedure is iterative and it is summarized in Table 1 and in
the related sub-cycles.

In particular, the thermal subproblem is also solved iteratively. At each step one solves a scalar nonlinear equation.
This iteration is actually a contraction, so that geometric convergence can be guaranteed.

On the contrary, the mechanical subproblem is solved directly. Firstly, one analyzes the four cases presented in
Section 5.1. If all the corresponding checks fail, the solution of the mechanical subproblem is obtained by directly
solving the nonlinear system. The (failure of the) preliminary checks ensure that the equation is smooth at the solution.
In particular, a Newton–Raphson solution procedure, possibly in combination with a constraint, can be used.
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Table 1
Implementation algorithm for the strain- and external-temperature-driven driver (see Tables 2 and 3).

Table 2
Algorithm for the thermal subproblem.

Table 3
Algorithm for the mechanical subproblem (see Tables 4–7).
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Table 4
Test for Case (1).

Table 5
Test for Case (2).

Table 6
Test for Case (3).

Table 7
Test for Case (4).

5.3. Material parameters

The parameters used in the simulations are taken from [59] and are listed in Table 8. It can be verified that the
adopted parameters satisfy conditions (4.6) and (4.20).

5.4. Proportional tests

In the following, numerical results corresponding to different proportional tests are displayed. The imposed
proportional strain is of the form

t → ε(t) = e(t) = εV (t)




2
3

0 0

0 −
1

√
6

0

0 0 −
1

√
6


where the time-dependent function t → εV (t) ∈ R is given.
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Table 8
Material and numerical parameters.

Symbol Value Unit Description

E 45 000 MPa Young’s modulus
ν 0.3 – Poisson’s coefficient
K 37 500 MPa Bulk modulus
G 17 308 MPa Shear modulus
R 110 MPa Critical stress
β 4.49 MPa/K Coefficient of function f
H 1000 MPa Hardening constant
θtr 343 K Martensite finish temperature
ϵL 0.049 – Saturation strain limit
θ0 300 K Initial temperature
θe 390 K External temperature
c 3.22 MPa/K Specific heat
λ 2 × 103 (MPa K)/s Heat exchange coefficient
ρ 31 K Parameter in the definition of f
tol 10−6 – Tolerance

Fig. 1. First strain history: trend of the variable εV .

A first choice for εV is illustrated in Fig. 1. A single tension–compression cycle is performed. In order to clarify
the material mechanisms, the first simulation is performed in pure martensitic conditions, with θe

= θ0
= 300 K, and

the second one is performed in purely superelastic conditions, with θe
= θ0

= 380 K.
The response of the first test is reported in Fig. 2. Under the temperature transformation region, the only possible

transformations regard the martensite reorientation: such mechanism provides a heat release, as it is clearly visible in
the right plot of Fig. 2. Indeed, the temperature of the material increases during the martensite detwinning, despite the
heat absorption by the external environment. In the elastic regions, the temperature change is only due to the exchange
with the external environment.

The response of the second test is reported in Fig. 3. As before, we have heat release during the forward austenite-
to-martensite transformation. In this case, since the material is in the superelastic region, heat absorption occurs during
reverse martensite-to-austenite transformation. Again, in the elastic region the temperature only depends on the heat
exchange with the external environment.

The third proportional test is performed using the parameters in Table 8. The corresponding mechanical and thermal
response curves are displayed in Fig. 4. It can be clearly noted that the forward transformation produces a temperature
increase, which in turn pulls the strain–stress curve towards higher-stress-level zones. Until time 70, the material stays
under the transformation temperature. Therefore, the temperature can only increase, because of both the forward phase
transformation, and the heat exchange with the external environment (indeed, the external temperature is here fixed to
be θe

= 390 K). Below the transformation temperature, only martensitic reorientation takes place and releases heat.
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a b

Fig. 2. First strain history, martensitic conditions case: strain 11 versus stress 11 plot (a) and temperature plot (b).

a b

Fig. 3. First strain history, superelastic conditions case: strain 11 versus stress 11 plot (a) and temperature plot (b).

a b

Fig. 4. First strain history, with initial and external temperatures defined in Table 8: strain 11 versus stress 11 plot (a) and temperature plot (b).

At time 70, the material enters the transition zone, individuated by [θ − ρ; θ + ρ], so that during the forward trans-
formation the heat release is even higher than the heat amount released at lower temperatures. At time 81, the reverse
transformation takes place, absorbing heat. From time 123, a new forward transformation generated by compression
occurs, so that we have heat release again. At time 125, the transformation temperature (i.e. the center of the trans-
formation range) is reached. After entering the superelastic region, it is clearly visible that the temperature increases
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a b

Fig. 5. First strain history: comparison of the strain 11 versus stress 11 plots (a) and of the temperature trends (b) in the two cases heat exchange
(blue) versus adiabatic (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

a b

Fig. 6. First strain history: comparison of the strain 11 versus stress 11 plots (a) and of the temperature trends (b) in the two cases τ = 1 s (blue)
versus τ = 5 s (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a b

Fig. 7. First strain history: comparison of the strain 11 versus stress 11 plots (a) and of the temperature trends (b) for changing rate and heat
exchange coefficient. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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a

b

c

Fig. 8. Second strain history: trend of the variable εV (a), strain 11 versus stress 11 plot (b) and temperature trend plot (c). Each
traction–compression cycle is highlighted with a different color. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

with the increase of the transformation strain during forward phase transformations, and afterwards the temperature
decreases (despite the always present environmental heat exchange) during the transformation strain recovery. During
the elastic ranges, the temperature changes are only driven by the exchange with the external environment.

In Fig. 5 we compare the above-described response with the case of no heat exchange with the external environment
(λ = 0). In the adiabatic case, the material does not reach the transformation temperature, so there is no temperature
decrease due to recovery. The absence of heat exchange is particularly visible during the elastic steps, when the
temperature curve in the adiabatic case is flat, while in the former case it relaxes towards the external temperature.
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a b

dc

Fig. 9. First hourglass strain history: trend of the strain 11 and strain 22 components (a), strain 11 versus strain 22 plot (b), stress 11 versus stress
22 plot (c) and temperature trend plot (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

A second comparison is made between the situation of Fig. 4 and a case where the strain–load εV is modified
in rate as t → εV (t/5). In Fig. 6 the response of the two cases is compared. The influence of the change in rate is
clearly visible. Indeed, the exchange of heat with the environment makes the model rate-dependent. In order to clarify
this concept, a further simulation has been performed to compare different loading rates, in both heat exchange and
adiabatic cases. An initial temperature equal to 325 K has been chosen in this case. The results of such a comparison
are highlighted in Fig. 7, where it is easy to see that in the adiabatic case the variation of the loading rate does not
affect the response, i.e., the adiabatic case is rate-independent: indeed, the curves related to the adiabatic situations
exactly overlap.

A second choice for t → εV (t) is a multi-cycle test, displayed in Fig. 8(a). Each cycle is highlighted with a
different color, for better readability. The corresponding material response is reported in Fig. 8(b)–(c). Also here, it is
apparent that during the forward transformation the temperature increases with the increasing transformation strain,
while on the contrary, during the reverse transformation the temperature decreases with the decreasing transformation
strain, a behavior proved by several experimental evidences [60,61] and correctly reproduced by the present model.

5.5. Non-proportional tests

We present here also the material response for non-proportional biaxial tests. We perform two hourglass tests as
well as a square test. The first hourglass test and the square test present the following strain tensor form

t → ε(t) =

ε11(t) 0 0
0 ε22(t) 0
0 0 0
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a b

c d

Fig. 10. Second hourglass strain history: trend of the strain 11 and strain 12 components (a), strain 11 versus strain 12 plot (b), stress 11 versus
stress 12 plot (c) and temperature trend plot (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

where the two components t → ε11(t) and t → ε22(t) are given. The strain tensor of the second hourglass test is
instead

t → ε(t) =

ε11(t) ε12(t) 0
ε12(t) 0 0

0 0 0


with t → ε11(t) and t → ε12(t) given.

In Figs. 9–11 the imposed strain and the response in terms of stress/strain and temperature plots are presented. The
results show that the model is capable of describing the coupled thermomechanical effects also in non-proportional
tests.

5.6. Thermal tests

A set of thermal tests are presented, where a constant strain, with the same tensor form of the proportional tests
and εV = 0.044, is imposed and the external temperature is cycled between 300 and 500 K. Such test setting aims at
reproducing material activation in a constraining environment. Different heating/cooling rates have been imposed in
order to compare the time-dependent results. The curves are displayed in Fig. 12: the model can properly reproduce a
shape-memory actuator response. It can be noted from the results reported in Fig. 12 that as the heating/cooling rate
gets lower (i.e. the time step τ gets higher) the material temperature curve gets more and more similar to the external
temperature curve, because the heat exchanged with the environment during each time step increases. Accordingly, the
difference between maximum and minimum stress is higher, resulting in an enhanced actuation. It can be highlighted
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a b

c d

Fig. 11. Square strain history: trend of the strain 11 and strain 22 components (a), strain 11 versus strain 22 plot (b), stress 11 versus stress 22 plot
(c) and temperature trend plot (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

a b

Fig. 12. Thermal tests: comparison of the temperature plots (a) and of the temperature versus stress 11 plots (b) for changing heating/cooling rate.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

that for τ = 1 s, i.e. for the highest heating/cooling rate of the three, the actuation cycle is not even completed, since
the material temperature does not have enough time to decrease under the transformation temperature.
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6. Conclusions

Inspired by the GENERIC variational framework, we have presented a reformulation of a thermomechanically
coupled model for SMA in terms of a generalized gradient flow of thermal and mechanical variables. This
reformulation has been then specialized to the case of space-homogeneous fields, where it is coordinated with heat
exchange with the external environment, here responsible for the rate-dependence in the model.

Based on this reformulation, a semi-implicit time-discrete scheme for the thermomechanically coupled system in
the space-homogeneous setting has been presented. The scheme is proved to be unconditionally stable and convergent.
In particular, the corresponding continuous counterpart admits a solution.

The performance of the time discretization has been assessed through a number uniaxial and biaxial numerical
tests. At the algorithmical level, the nonlinear character of the constitutive model is resolved by a dedicated testing
procedure, combined with the solution of a smooth differential system. The computational results prove that the model
properly and robustly reproduces the thermomechanical behavior of the material with respect to different loading and
environmental regimes.
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[21] P. Krejčı́, U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires, Math.
Mech. Solids 16 (2011) 349–365.

[22] F. Auricchio, E. Bonetti, A new “flexible” 3D macroscopic model for shape memory alloys, Discrete Contin. Dyn. Syst. Ser. S 6 (2) (2013)
277–291.

[23] F. Auricchio, J. Lubliner, A uniaxial model for shape-memory alloys, In. J. Solids Struct. 34 (1997) 3601–3618.
[24] S. Govindjee, C. Miehe, A multi-variant martensitic phase transformation model: Formulatin and numerical implementation, Comput.

Methods Appl. Mech. Engrg. 191 (2001) 215–238.
[25] D. Helm, P. Haupt, Shape memory behaviour: modelling within continuum thermomechanics, Int. J. Solids Struct. 40 (2003) 827–849.
[26] V.I. Levitas, Thermomechanical theory of martensitic phase transformations in inelastic materials, Intern. J. Solids Struct. 35 (1998) 889–940.
[27] B. Peultier, T. Ben Zineb, E. Patoor, Macroscopic constitutive law for SMA: Application to structure analysis by FEM, Mater. Sci. Eng. A

438–440 (2006) 454–458.
[28] P. Popov, D.C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-

accommodated martensite, Int. J. Plast. 23 (2007) 1679–1720.
[29] B. Raniecki, Ch. Lexcellent, RL models of pseudoelasticity and their specification for some shape-memory solids, Eur. J. Mech. A Solids 13

(1994) 21–50.
[30] S. Reese, D. Christ, Finite deformation pseudo-elasticity of shape memory alloys — constitutive modelling and finite element implementation,

Int. J. Plasticity 24 (2008) 455–482.
[31] P. Thamburaja, L. Anand, Polycrystalline shape-memory materials: effect of crystallographic texture, J. Mech. Phys. Solids 49 (2001)

709–737.
[32] D.C. Lagoudas, P.B. Entchev, P. Popov, E. Patoor, L.C. Brinson, X. Gao, Shape memory alloys, Part II: Modeling of polycrystals, Mech.

Mater. 38 (2006) 391–429.
[33] D. Lagoudas, S. Hartl, Y. Cheminsky, L. Machado, P. Popov, Constitutive model for the numerical analysis of phase transformation in

polycrystalline shape memory alloys, Int. J. Plasticity 32–33 (2012) 155–183.
[34] R. Mirzaeifar, R. DesRoches, A. Yavari, Analysis of the rate-dependent coupled thermo-mechanical response of shape memory aloys bars

and wires in tension, Contin. Mech. Thermodyn. 23 (2011) 363–385.
[35] R. Mirzaeifar, R. DesRoches, A. Yavari, K. Gall, Coupled thermo-mechanical analysis of shape memory alloy circular bars in pure tension,

Int. J. Nonlinear. Mech. 47 (2012) 118–128.
[36] C. Morin, Z. Moumni, W. Zaki, A constitutive model for shape memory accounting for thermomechanical coupling, Int. J. Plasticity 27 (2011)

748–767.
[37] F. Auricchio, A. Reali, U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-

dependent elastic properties, Comput. Methods Appl. Mech. Eng. 198 (2009) 1631–1637.
[38] F. Auricchio, A.-L. Bessoud, A. Reali, U. Stefanelli, A phenomenological model for the magneto-mechanical response of single-crystal

magnetic shape memory alloys, Eur. J. Mech. A Solids 52 (2015) 1–11.
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