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Graphene samples are identified as minimizers of configurational energies featuring

both two- and three-body atomic-interaction terms. This variational viewpoint allows
for a detailed description of ground-state geometries as connected subsets of a regular

hexagonal lattice. We investigate here how these geometries evolve as the number n of
carbon atoms in the graphene sample increases. By means of an equivalent characteri-
zation of minimality via a discrete isoperimetric inequality, we prove that ground states
converge to the ideal hexagonal Wulff shape as n→∞. Precisely, ground states deviate

from such hexagonal Wulff shape by at most Kn3/4 + o(n3/4) atoms, where both the
constant K and the rate n3/4 are sharp.
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1. Introduction

The recent realization of high crystalline quality graphene samples at room tem-

perature can be regarded as a breakthrough in Materials Science and has led to

the attribution of the 2010 Nobel Prize in Physics to Geim and Novoselov. The

fascinating electronic and mechanical properties of single-atom-thick carbon sur-

faces are believed to offer unprecedented opportunities for innovative applications,

ranging from next-generation electronics to pharmacology, and including batteries

and solar cells. New findings are emerging at an always increasing pace and involve

thousands of researchers worldwide cutting across Materials Science, Physics, and

Chemistry, extending from fundamental science to novel applications.

The stand of the mathematical understanding of graphene is comparably less

developed. All available results are extremely recent and concern the modeling of

transport properties of electrons in graphene sheets, 3,6,13,16,25,34,35 homogeniza-

tion, 8,33 atomistic-to-continuum passage for nanotubes, 14 geometry of monolayers

under Gaussian perturbations, 11 external charges 27 or magnetic fields, 10 combi-

natorial description of graphene patches, 22 and numerical simulation of dynamics

via nonlocal elasticity theory. 44 Remarkably, the determination of the equilibrium

shapes and the Wulff shapes of graphene samples and graphene nanostructures is

still a challenging problem. 1,5,19

Graphene ideally corresponds to a regular, two-dimensional, hexagonal arrange-

ment of carbon atoms. In the bulk of a graphene sample each carbon atom is

covalently bonded to three neighbors. These covalent bonds are of sp2-hybridized

type and ideally form 2π/3 angles in a plane. In order to describe these bonds,

some phenomenological interaction energies, including two- and three-body inter-

action terms, have been presented and partially validated. 38,39 The arrangement

of carbon atoms in the two-dimensional crystal emerges then as the global effect

of the combination of local atomic interactions, and can be seen as the result of a

geometric optimization process: by identifying the configuration of n carbon atoms

with their positions {x1, . . . , xn} ⊂ R2, one minimizes a given configurational energy

E : R2n → R∪ {∞} and proves that the minimizers are indeed subsets of a regular

hexagonal lattice. The configurational energies for carbon feature a decomposition

E = E2 + E3 where E2 corresponds to an attractive-repulsive two-body interac-

tion, favouring some preferred spacing of the atoms, and E3 encodes three-body

interactions, expressing the specific geometry of sp2-covalent bonding in carbon.

The above variational viewpoint brings the study of graphene geometries into

the realm of the so-called crystallization problems. A first analysis in this direction is

in Ref. 12, where E2 is assumed to be of Lennard-Jones type and E3 favors 2π/3 and

4π/3 bond angles. The focus of Ref. 12 is on the thermodynamic limit: as n→∞ the

minimal energy density is proven to converge to a finite value, corresponding indeed

to the configuration in which the atoms arrange themselves in a suitably stretched



July 16, 2016 16:9 WSPC/INSTRUCTION FILE hexagonal˙160716

Wulff shape emergence in graphene 3

hexagonal lattice. Analogous thermodynamic-limit results are obtained in Ref. 15,

where nonetheless the term E2 favors π bond angles. The crystallization problem

for a finite number of carbon atoms is studied in Ref. 32 where the periodicity

of ground states as well as the exact quantification of the ground-state energy is

obtained, together with the discussion of carbon nanostructures such as fullerenes

and nanotubes, see also Refs. 28, 29, 32. The reader is referred to Refs. 20, 41,

42 for one-dimensional crystallization results, to Refs. 24, 36, 43 and Ref. 40 in

the two-dimensional case either in the finite and in the thermodynamic-limit case,

and to Refs. 30, 31 for crystallization in the square lattice. Results on the three-

dimensional thermodynamic limit are available in Refs. 17, 18, and a recent review

on the crystallization problem can be found in Ref. 4.

Our analysis moves from the consideration that, as the configurational energy

favors bonding, ground states are expected to have minimal perimeter, since bound-

ary atoms have necessarily less neighbors. These heuristics are here made precise

by providing a new characterization of ground states based on a crystalline isoperi-

metric inequality. Indeed, we prove in Proposition 3.4 below that ground states

correspond to isoperimetric extremizers and we determine the exact isoperimetric

constant. Analogous results are obtained in Refs. 30, 31 for the square lattice, and

in Ref. 9 for the triangular lattice.

The minimality of the ground-state perimeter gives rise to the emergence of large

polygonal clusters as the number of atoms n increases. Indeed, one is interested in

identifying a so-called Wulff shape to which all properly rescaled ground states

converge. This has been successfully obtained for both the triangular 2,9,37 and

the square lattice, 30,31 where ground states approach a hexagon and a square,

respectively, as n → ∞. Quite remarkably, in both the triangular and the square

case it has been proved that ground states differ from the Wulff shape by at most

O(n3/4) atoms, this bound being sharp. This is what it is usually referred to as the

n3/4-law.

The central aim of this paper is to establish the Wulff shape emergence for

graphene samples and to investigate the n3/4-law in this setting. Precisely, we pro-

vide sharp quantitative convergence results for ground states Gn to the correspond-

ingly rescaled Wulff shape, in terms both of the Hausdorff distance and of the flat

distance of the empirical measures µGn
, to the measure with density 4√

3
χW , i.e. the

rescaled characteristic function of the (rescaled) hexagonal Wulff shape.

With respect to previous contributions to this subject the novelty of our paper

is threefold. First, we provide a complete characterization of ground states, for all

numbers of atoms, as well as a detailed description of their geometry. In particular,

as a byproduct of our isoperimetric characterization we are able to investigate the

edge geometry of graphene patches. Graphene atoms tend to naturally arrange

themselves into hexagonal samples whose edges can have, roughly speaking, two

shapes: they can either form zigzag or armchair structures (see Refs. 5, 21, 26 and
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below)).

We prove here that hexagonal configurations having armchair edges do not sat-

isfy the isoperimetric equality, whereas those with zigzag edges do (see Definition

4.1). Namely, we have the following.

Theorem 1.1 (Zigzag-edge selectivity). Zigzag hexagons are ground states,

armchair hexagons are not.

This provides an analytical counterpart to the experimental results in Ref. 26,

confirming the zigzag-edge selectivity in the growth process of graphene samples.

The second main result of the paper is the discussion of the Wulff shape emer-

gence in the hexagonal system, which is not a simple Bravais lattice but rather a

so-called multilattice. We relate the Wulff shape emergence with the isoperimetric

nature of ground states. Our result reads as follows.

Theorem 1.2 (Emergence of the Wulff shape). Let Gn be a sequence of ground

states in the hexagonal lattice. Let Wn be the zigzag hexagon centered in the origin

and with side rn (see (1.6) below). Then, there exists a suitable translation G′n of

Gn such that

|G′n \Wn| ≤ Kn3/4 + o(n3/4), (1.1)

where | · | is the cardinality of the set, and

K :=
27/4

31/4
. (1.2)

In addition, there holds

dH(G′n,Wn) ≤ O(n1/4),

‖µG′n − µWn
‖ ≤ Kn−1/4 + o(n−1/4), (1.3)

‖µG′n − µWn‖F ≤ Kn−1/4 + o(n−1/4), (1.4)

µG′n ⇀
∗ 4√

3
χW weakly* in the sense of measures,

and
∥∥∥µG′n −

4√
3
χW

∥∥∥
F
≤ 2Kn−1/4 + o(n−1/4), (1.5)

where dH is the Hausdorff distance, ‖ · ‖ is the total variation, and ‖ · ‖F is the flat

norm (see (2.4)).

Our third main result concerns the sharpness of the n3/4-law (1.1). We show not

only the sharpness of the convergence ratio, but also of the constant K in front of

the leading term. We have the following.

Theorem 1.3 (Sharpness of the n3/4-law). There exists a sequence of integers
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nj such that for every sequence of ground states {Gnj
} properties (1.1), (1.3), and

(1.4) hold with equalities.

Our proof strategy differs from that of Refs. 30, 37, as it is not based on config-

uration rearrangements. The argument here moves from the control of the radius

rGn of the maximal hexagon HGn contained in a ground state Gn with n atoms. In

particular, we define

rn := min{rGn
: Gn is a ground state with n atoms}, (1.6)

and we show that every ground state (up to translation) consists of the n-Wulff

shape Wn with comparably few extra atoms, see Section 6. Precisely, we prove

a delicate estimate of the form rn ∼ n1/2 which entails that the atoms of Gn
which do not belong to Wn are at most O(n3/4). An outcome of our proof is that

the convergence rates and the constants above are sharp. Indeed, we explicitly

construct a sequence of integers such that every corresponding sequence of ground

states attains the right-hand sides of (1.1), (1.3), and (1.4).

In the triangular lattice, the existence of a sequence of ground states whose

deviation from the Wulff shape is exactly of order n3/4 was exhibited in Ref. 37 with

no specific control on the convergence constants. With a different implementation

of the method discussed here, we revisited the triangular-lattice case in Ref. 9,

obtaining explicit, sharp convergence constants.

The paper is organized as follows. In Section 2 we introduce some notation and a

few definitions. In Section 3 we highlight the isoperimetric nature of ground states.

Section 4 contains a discussion of the equilibrium shapes of graphene samples, and

a proof of the fact that armchair hexagons are not ground states. In particular we

prove there Theorem 1.1. In Section 5 we provide delicate lower and upper bounds

for rn. Section 6 is eventually devoted to the proofs of Theorems 1.2 and 1.3.

2. Notation and Setting of the problem

Let the hexagonal lattice be given by

L := {mt1 + nt2 + cw : m,n ∈ Z, c ∈ {0, 1}},

with

t1 :=

(√
3

0

)
, t2 :=

(√
3/2

3/2

)
, and w :=

(
0

1

)
.

Note that the minimal distance between points in L is 1.

We denote a configuration of n atoms by Cn := {x1, . . . , xn} ∈ R2n, the distance

between two atoms, xi and xj , by `ij , and the counterclockwise-oriented angle
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Fig. 1. An example of a subset of L.

between the two segments xi−xj and xk−xj by θijk. The energy of a configuration

Cn is defined as

E(Cn) := E2(Cn) + E3(Cn) =
1

2

∑

i6=j

v2(`ij) +
∑

(i,j,k)∈A

v3(θijk) (2.1)

where v2 : [0,∞) → [−1,∞] and v3 : [0, 2π] → [0,∞) are the two-body and the

three-body interaction potentials. We notice that the energy is invariant under

rotations and translations. Two atoms xi and xj are said to be bonded, or there

is an (active) bond between xi and xj , if 1 ≤ `ij <
√

2. The index set A in (2.1)

is defined as the set of all triples (i, j, k) for which the angle θijk separates two

active bonds. We will always assume that v2(1) = −1 and that v2(`) vanishes for

` ≥
√

2 (see below). We work under the assumption that v3 reaches its minimum

value only at the angles π/3 and 2π/3, and that ground states are subsets of the

hexagonal lattice. We use the standard notation for the right- and left-continuous

integer-parts: bxc :=max{z ∈ Z : z≤x} and dxe :=min{z ∈ Z : x≤z}, respectively.

Under suitable assumptions on the potentials v2 and v3, it was established in

Ref. 32 that all ground-state configurations are (isometric to) subsets of the hexag-

onal lattice L and that the value of the energy for every ground state with n atoms

is given by

en := −
⌊3n

2
−
√

3n

2

⌋
. (2.2)

From this point on all configurations are hence seen as subsets of L.

The bond graph of a configuration Cn is the graph consisting of all its vertices

and active bonds. For every atom xi ∈ Cn, we indicate by b(xi) the number of

active bonds of Cn with an endpoint in xi. Denoting by B(Cn) the total number of

bonds in Cn, there holds

B(Cn) =
1

2

n∑

i=1

b(xi).

A configuration Cn is said to be connected if for every two atoms y1, y2 ∈ Cn
there exists a collection of atoms x1, . . . , xi ∈ Cn such that y1 is bonded to x1, xi is

bonded to y2, and every atom xj , with 2 ≤ j ≤ i− 1 is bonded both to xj−1 and to
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xj+1. We call minimal simple cycles of a configuration all the simple cycles in the

graph that are hexagons of side 1.

The area A(Cn) of a configuration Cn is given by the number of minimal simple

cycles of Cn. Denoting by F (Cn) ⊂ R2 the closure of the union of the regions

enclosed by the minimal simple cycles of Cn, and by G(Cn) ⊂ R2 the union of all

bonds which are not included in F (Cn), the perimeter P of a configuration Cn is

defined as

P (Cn) := H1(∂F (Cn)) + 2H1(G(Cn)) ,

where H1 is the one-dimensional Hausdorff measure. As already observed in Ref. 30,

there holds

P (Cn) = lim
ε↘0
H1
(
∂
(
∂F (Cn) ∪G(Cn) +Bε

))

where Bε = {y ∈ R2 | |y| ≤ ε}.

With a slight abuse of notation, the symbol | · | will denote, according to the

context, both the absolute value of a real number and the cardinality of a set.

We will often use the notion of edge boundary Θ of a configuration with respect

to a reference lattice: this is the union of unit segments in the reference lattice that

are not included in the graph of Cn but share one and only one endpoint with Cn,

Θ(Cn) :=
{

(x, y) ∈ (L)2 : x ∈ Cn, y /∈ Cn
}
.

The edge perimeter of a configuration Cn will be defined as the number of segments

belonging to its edge boundary.

For every configuration Cn := {x1, . . . , xn} in L, we denote by µCn the empirical

measure associated to the rescaled configuration {x1/
√
n, . . . , xn/

√
n}, that is,

µCn
:=

1

n

∑

i

δxi/
√
n. (2.3)

Given a Lebesgue measurable set A ⊂ R2, we will designate by L2(A) its two-

dimensional Lebesgue measure. For any bounded Radon measure µ, the symbol ‖µ‖
will represent its total variation in R2, whereas ‖µ‖F will be the flat norm of µ,

defined as

‖µ‖F := sup

{∫

R2

ϕdµ : ϕ is Lipschitz with ‖ϕ‖W 1,∞(R2) ≤ 1

}
. (2.4)

The set of bounded Radon measures on R2 will be denoted by Mb(R2).
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3. Discrete isoperimetric inequality

In this section we prove that connected configurations satisfy a discrete isoperi-

metric inequality, and we characterize ground states as configurations realizing the

isoperimetric equality. We first deduce some preliminary relations between the area,

the perimeter, the edge perimeter, and the energy of configurations. Let Cn be a

configuration. Then

E(Cn) = −B(Cn) = −1

2

n∑

i=1

b(xi).

Since every atom in L has exactly 3 bonds, we have

|Θ(Cn)| =
n∑

i=1

(3− b(xi)) , (3.1)

and the energy and the edge perimeter of configurations are related by

E(Cn) = −3

2
n+

1

2
|Θ(Cn)|. (3.2)

Recalling that every minimal simple cycle of Cn consists of 6 bonds, we have

6A(Cn) = 2B(Cn ∩ F (Cn))−B(Cn ∩ ∂F (Cn))

= −2E(Cn ∩ F (Cn))−H1(∂F (Cn)).

On the other hand,

H1(G(Cn)) = B(Cn ∩G(Cn)) = −E(Cn ∩G(Cn)).

Hence, we obtain

P (Cn) = H1(∂F (Cn)) + 2H1(G(Cn))

= −2E(Cn ∩ F (Cn))− 6A(Cn)− 2E(Cn ∩G(Cn))

= −2E(Cn)− 6A(Cn),

that is

E(Cn) = −3A(Cn)− 1

2
P (Cn). (3.3)

In conclusion, we can express the energy of a hexagonal configuration Cn as a

linear combination of its area and its perimeter. Likewise, in view of (3.2), the edge

perimeter satisfies

|Θ(Cn)| = 3n− 6A(Cn)− P (Cn) .

The following result is a direct corollary of Theorem 7.3 (page 142) in Ref. 23.

Proposition 3.1. There exists a total order τ : N → L such that for all n ∈ N
the configuration Dn defined by Dn := {xτ(1), . . . , xτ(n)} (which we call daisy)

minimizes E over all configurations with n atoms, i.e.

E(Dn) = min
Cn⊂L

E(Cn) = en, (3.4)
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where en is the quantity defined in (2.2).

The total order in Proposition 3.1 is nonunique. For the sake of definiteness we

fix here our attention on a specific order τ , as described in Ref. 32. For n = 6k2,

k ∈ N, the sequence {D6k2} is defined inductively as follows: D6 is a minimal simple

cycle in L, and D24 is obtained by externally attaching to all bonds of D6 another

hexagon. D6k2 is then defined recursively.

1 2

3

45

6

1 2

3

45

6

7

8 9

10
11

Fig. 2. The daisies D6 and D24 and the total order τ .

For k,m ∈ N, and 0 < m < 12k(k+ 1), D6k2+m is constructed as in the proof of

Proposition 5.1 (Step 1) in Ref. 32. In view of Proposition 3.1, it is always possible

to add one atom to a daisy Dn so that the new configuration with n + 1 points is

still a ground state.

To every configuration Cn ⊂ L, we associate a weight function

∆Cn : Cn → {0, 1, 2},

defined as

∆Cn(x) := |{y ∈ Cn : (x, y) ∈ Cn × Cn, y <τ x}|,

for every x ∈ Cn, and we rewrite Cn as the union

Cn =

2⋃

k=0

Ckn

where

Ckn := {x ∈ Cn : ∆Cn
(x) = k}
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for k = 0, . . . , 2. In particular, |C0
n| corresponds to the number of connected compo-

nents of Cn.

The next proposition allows us to express the energy, the perimeter, the edge

perimeter, and the area of a configuration Cn as a function of the cardinality of the

sets Ckn.

Proposition 3.2. Let Cn be a configuration in L. Then,

E(Cn) = −|C1
n| − 2|C2

n|, (3.5)

A(Cn) = |C2
n|, (3.6)

P (Cn) = 2|C1
n| − 2|C2

n|, (3.7)

|Θ(Cn)| = 3|C0
n|+ |C1

n| − |C2
n|, (3.8)

for every n > 1. Moreover,

E(Cn) = −3A(Cn)− |Θ(Cn)|+ 3|C0
n|. (3.9)

Proof. We first observe that

E(Cn) = −
n∑

i=1

∆Cn(xi).

For i = 0, . . . , n−1, let Ci be the subset of Cn containing its first i points according

to the total order τ . If xτ(i) ∈ C0
n, then

A(Ci)−A(Ci−1) = 0, P (Ci)− P (Ci−1) = 0, |Θ(Ci)| − |Θ(Ci−1)| = 3; (3.10)

if xτ(i) ∈ C1
n, then

A(Ci)−A(Ci−1) = 0, P (Ci)− P (Ci−1) = 2, |Θ(Ci)| − |Θ(Ci−1)| = 1; (3.11)

whereas, if xτ(i) ∈ C2
n, we have

A(Ci)−A(Ci−1) = 1, P (Ci)−P (Ci−1) = −2, |Θ(Ci)|−|Θ(Ci−1)| = −1. (3.12)

Properties (3.5)–(3.8) follow from (3.10)–(3.12). Claim (3.9) is a direct conse-

quence of (3.3), (3.7), and (3.8).

In view of Proposition 3.2 we obtain the following.

Proposition 3.3. The following assertions are equivalent and hold true for every

connected hexagonal configuration Cn:

(i) |Θ(Dn)| ≤ |Θ(Cn)|;
(ii) P (Dn) ≤ P (Cn);

(iii) A(Dn) ≥ A(Cn).
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Proof. The first assertion is a direct consequence of (3.2) and (3.4), and is equiva-

lent to (ii) by (3.7) and (3.8). The equivalence between (ii) and (iii) follows by (3.3)

and (3.4).

We are now in a position to characterize connected ground states as extremizers

of a discrete isoperimetric problem.

Proposition 3.4. Every connected configuration Cn satisfies
√
A(Cn) ≤ knP (Cn), (3.13)

where

kn :=

√
b(αn)2 − αnc − n+ 1

4(αn)2 − 4b(αn)2 − αnc − 6
, (3.14)

and αn :=
√

3n/2.

Moreover, connected ground states correspond to those configurations for which

(3.13) holds with equality, and, equivalently, to those configurations that attain the

maximum area

an := −n+ b(αn)2 − αnc+ 1,

and the minimum perimeter

pn := 4(αn)2 − 4b(αn)2 − αnc − 6.

Proof. We claim that
√
A(Dn) = knP (Dn). (3.15)

In fact, in view of (3.5) and Theorem 3.1, there holds

en = E(Dn) = −|D1
n| − 2|D2

n|,

whereas by (3.2) and (3.8),

3n+ 2en = |Θ(Dn)| = 3 + |D1
n| − |D2

n|,

where en is the ground state energy defined in (2.2). Solving the previous system

of equations we deduce

|D1
n| = 2n+ en − 2, (3.16)

and

|D2
n| = −n− en + 1. (3.17)

Claim (3.15) follows from (3.6), (3.7), (3.16), and (3.17), by observing that
√
A(Dn) =

√
|D2

n| =
√
−n− en + 1
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= kn(6n+ 4en − 6) = kn(2|D1
n| − 2|D2

n|) = knP (Dn).

Inequality (3.13) is a direct consequence of (3.15) and Proposition 3.3. By Propo-

sition 3.3 and (3.2), connected ground states Gn satisfy

|Θ(Gn)| = en +
3

2
n

and attain the maximum area and the minimum perimeter. The values of an and

pn follow from (3.8), (3.7), and (3.9).

4. Equilibrium shapes of graphene samples

In this section we characterize the edge geometry of graphene samples. We first

introduce a few definitions.

Definition 4.1. For every s ∈ N we define the set HZs of zigzag hexagons of side s

as

HZs := {D6s2 + q : q ∈ L}

(for all s ∈ N, the configuration D6s2 is a complete hexagon of hexagons). For s ∈ N,

s ≥ 3, the set HAs of armchair hexagons of side s is defined as

HAs := {As + q : q ∈ L}.

In the expression above, A3 is given by the union of D24 with 6 extra minimal

simple cycles, glued externally to the center of each side of D24 (see Figure 3). For

s > 3, As is defined recursively by adding an extra armchair layer of minimal simple

cycles to As−1. We point out that the construction is different for s even and s odd

(see Figure 3).

4.1. Proof of Theorem 1.1

The optimality of zigzag hexagons follows in view of Definition 4.1 and Proposition

3.1.

We claim that for every s ∈ N, s ≥ 3, there holds

P (As) > p|As|. (4.1)

Indeed, by the definition of As we have |A3| = 42, and for s > 3

|As| = |As−1|+

{
6(2s− 1) if s is even,

6s if s is odd,
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A5

A4A3

Fig. 3. The armchair hexagons A3, A4 and A5. Each armchair hexagon As for s > 3 is obtained
by adding a layer of extra minimal simple cycles (in blue) to the corresponding armchair hexagon

As−1 (in yellow). Notice the different structure for s even and for s odd.

that is

|As| =
9

2
s2 +





3s if s is even,
3

2
if s is odd.

On the other hand, the perimeter of each armchair hexagon As is given by

P (As) = 12s− 6. (4.2)

For s odd, we have

α|As| =

√
3|As|

2
=

3

2
s

√
3 +

1

s2
.

Hence,

α2
|As| =

9

4
(3s2 + 1) ∈ N,
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and

α2
|As| − bα

2
|As| − α|As|c =

⌈
3

2
s

√
3 +

1

s2

⌉
.

In view of Proposition 3.4 there holds

p|As| = 4α2
|As| − 4bα2

|As| − α|As|c − 6

≤ 4
(3

2
s

√
3 +

1

s2

)
− 2

= 6
√

3s+
6

s
(√

3 +
√

3 + 1
s2

) − 2

< 6
√

3s+

√
3

s
− 2 < 12s− 6 (4.3)

for s ≥ 3.

By combining (4.2) and (4.3) we obtain claim (4.1) for s odd. The result for s

even, s ≥ 4 follows via analogous computations. In view of Proposition 3.4 and (4.1)

armchair hexagons are not extremizers of the isoperimetric inequality, and hence

are not ground states. �

5. The radius of the n-Wulff shape

For simplicity in what follows we will refer to the elements of HZs as hexagons of

side s, omitting the word zigzag . We first introduce the notion of maximal hexagon

associated to a ground state.

Let Gn be a ground state in the hexagonal lattice L. Let

rGn := max
{
s ∈ N : there exists a point q ∈ L such that D6s2 + q ⊆ Gn

}
.

For every q ∈ L such that D6r2
Gn

+ q ⊂ Gn, we will refer to the set

HGn
:= D6r2

Gn
+ q,

as a maximal hexagon associated to Gn. We recall that

Gn =

2⋃

k=0

Gkn,

where

Gkn := {x ∈ Gn : ∆Gn
(x) = k}.

Let us preliminary check that maximal hexagons are non-degenerate for n > 6. We

recall that the n-Wulff shape Wn is the zigzag hexagon centered in the origin with

side rn (see (1.6)), i.e.,

Wn := D6r2
n
.
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Proposition 5.1. The radius rn of the n-Wulff shape Wn (see (1.6) and Theorem

1.2) with n > 6, satisfies rn ≥ 1.

Proof.

Let n ∈ N be such that there exists a ground state Gn with rGn
= 0. Then Gn

does not contain any set of the form D6 + q with q ∈ L, that is, for every x ∈ Gn,

there holds (see (3.12))

x /∈ G2
n. (5.1)

By (3.11) and (3.12), property (5.1) is equivalent to the claim that every element

of Gn \G0
n contributes to the overall perimeter of Gn, and the contribution of each

element is exactly 2. Since we are assuming that Gn is connected (i.e. |G0
n| = 1),

this implies that

P (Gn) ≥ 2(n− 1).

By Proposition 3.4 it follows that

4(αn)2 − 4b(αn)2 − αnc − 6 = P (Dn) = pn ≥ 2(n− 1),

which in turn implies

n− 1 ≥ b(αn)2 − αnc ≥ (αn)2 − αn,

and finally yields n−
√

6n ≤ 0, that is 0 ≤ n ≤ 6.

Fix n ∈ N and let Gn be a connected ground state. We aim at proving an

estimate from below on the radius rGn
of HGn

in terms of the number n of atoms.

We first introduce some definitions.

Definition 5.1 (zigzag path). Let ` be a line orthogonal to one of the three

diameters of a minimal simple cycle of the lattice and intersecting L. The zigzag

path identified by ` is the union of points p ∈ L such that either p ∈ ` or there

exists a minimal simple cycle H of L such that p belongs to H, and the two atoms

in H bonded to P are in `. Note that each point of a zigzag path divides it into two

half zigzag paths (see Figure 5).

Let P1, . . . , P4 ∈ L ∩ ∂F (Cn) be such that P1 is bonded to P2, and for i = 2, 3

the point Pi is bonded both to Pi−1 and Pi+1. If there exists a unique zigzag path

passing through all the points P1, . . . , P4 we will say that this zigzag path is a side

of Cn. If two different (non parallel) zigzag path intersect in the unitary segment

joining P2 and P3 we will refer to this segment as a corner edge of Cn (see Figure

4).
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Cn Cn

P1

P2

P3
P4

P1

P2

P3

P4

Fig. 4. On the left, the points P1, . . . , P4 belong to a side of Cn, on the right the segment joining

P2 and P3 is a corner edge of Cn.

We will say that Cn has an angle α in a corner edge v (or in a point P ) if the

two lines `1α and `2α, identifying the sides of Cn and passing through v (respectively,

P ), intersect forming an angle of width α. The choice of α or 2π − α will be clear

from the context. Alternatively, we will say that the zigzag paths associated to `1α
and `2α form an angle α with (or in) v (respectively, P ).

Finally, if S ⊂ L is such that ∂(F (S)) ∩ L (see Section 2) is the union of two

zigzag paths forming an angle α, we will call S an angular sector of width α, see

Figure 5.

By Proposition 5.1 we can assume that rGn
≥ 1. Let v0, . . . , v5 be the cor-

ner edges of HGn
, where v0 is assumed to be lying on the x-axis (without loss

of generality), and v1, . . . , v5 are numbered counterclockwise starting from v0. For

k = 0, . . . , 4, let sk be the zigzag path joining vk and vk+1, and let s5 be the zigzag

path joining v5 and v0. Let lk be the line identifying the path sk, and denote by νk
the unit normal to lk pointing toward the exterior of HGn

. We define

λk := max{j ∈ N : sjk ∩Gn 6= 0}, (5.2)

where

sjk := sk + jνk

for j ∈ N. Let also πk be the subset of L such that ∂F (πk) = sk and F̊ (πk)∩HGn
=

∅.
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P

Q

`

s`

v
{

σ1

σ2

S

`1

`2

) 2π3

Fig. 5. On the left, the zigzag path s` originated by the line `. On the right, the two zigzag paths

σ1 and σ2 intersect in the corner edge v, forming an angle 2π/3. The associated angular sector S
is marked in yellow.

We show now that ground states satisfy a connectedness property with respect

to zigzag paths.

Definition 5.2 (hex-connectedness). Let S be a subset of L and let P ∈ L. We

say that P disconnects a zigzag path in S if P /∈ S and there exist Pa, Pb ∈ S such

that Pa and Pb are joined by a zigzag path passing through P .

Let S be a subset of L. We say that S is hex-connected if every P ∈ L disconnects

at most one zigzag path in S.

Notice that from every point P ∈ L there are exactly three nonparallel lines

which depart from P and identify a zigzag path (see Definition 5.1).

Proposition 5.2. Ground states are hex-connected.

Proof. For the sake of contradiction assume that there exists a ground state Gn
which is not hex-connected. Then there exists a point P ∈ L which disconnects two

zigzag paths in Gn. In particular, there exists a line `0 orthogonal to one of the

diameters of a minimal simple cycle of the lattice, and intersecting L, such that the

two half zigzag paths starting from P and identified by `0 are both intersecting Gn.

Let `1, . . . , `m be the lines parallel to `0, intersecting Gn, and such that for every

i = 1, . . . ,m, the distance between `i and `0 is given by 3ni/2, where ni ∈ N. For

i = 0, . . . ,m, let ci be the number of points of Gn contained in the zigzag path

identified by `i.

We first rearrange the set {ci} in a decreasing order, constructing another set
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{di} with the property that d0 ≥ d1 ≥ · · · ≥ dm. Then, we separate the elements

of {di} having odd indexes from those having even indexes and we consider a new

family {fi} obtained by first taking into account the elements of {di} with even

indexes, in decreasing order with respect to their indexes, and then the elements

of {di} having odd indexes, with increasing order with respect to their indexes. In

particular we define

fi :=




dm−2i i = 0, . . . ,

m

2
d2i−m−1 i =

m

2
+ 1, . . . ,m

if m is even, and

fi :=




dm−1−2i i = 0, . . . ,

(m− 1)

2

d2i−m i =
(m+ 1)

2
, . . . ,m

if m is odd.

The set {fi} constructed above has the property that its central elements have

the maximum value, and the values of the elements decrease in an alternated way

by moving from the center of {fi} toward i = 0 and i = m. Let ī and ī+ 1 be the

indexes corresponding to the two central elements of the set {fi}, if m is odd, and

to the central element of {fi} and the maximum between its two neighbors, if m is

even. As an example, if we start with a set {ci} = {3, 4, 7, 8, 2, 2, 8}, the family {di}
is given by {8, 8, 7, 4, 3, 2, 2} and the set {fi} by {2, 3, 7, 8, 8, 4, 2}. Here ī = 4.

Fix two points Pī, Pī+1 ∈ Lh such that the segment PīPī+1 has length one and

is orthogonal to `0. Let σ1 and σ2 be two half-zigzag paths, starting from Pī and

Pī+1, respectively, forming an angle 2π/3 with PīPī+1, and such that there exists a

convex region S of the plane whose boundary is given by σ1, σ2, and PīPī+1.

Consider the points P0, . . . , Pī−1 ∈ σ1, defined as

|Pī − Pj | = (̄i− j)
√

3, j = 0, . . . , ī− 1.

Analogously, consider the points Pī+2, . . . , Pm ∈ σ2, satisfying

|Pī+1 − Pj | = (j − ī)
√

3, j = ī+ 2, . . . ,m.

For j = 0, . . . ,m, let ˜̀
j be the line parallel to `0 and passing through Pj . To

construct the set G̃n we consider fj consecutive points in S on the zigzag path

identified by each line ˜̀
j , starting from Pj (see figure 5). The set G̃n is clearly hex-

connected, the number of bonds in the zigzag paths identified by the lines parallel

to `0 has increased, and the number of bonds between parallel zigzag paths has not

decreased. Hence

E(G̃n) < E(Gn),

providing a contradiction to the optimality of the ground state Gn.

As a corollary of Proposition 5.2 it follows that ground states have no vacancies.
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P

`0`1`2 `3 P1

P2

Fig. 6. A configuration Cn before (in black) and after (in red) the rearrangement described in

Proposition 5.2

.

Proposition 5.3. Let Gn be a ground state. Then F (Gn) is simply connected.

Proof. By contradiction, if F (Gn) is not simply connected then there exists a point

in L that disconnects three zigzag paths in Gn. Therefore Gn is not hex-connected.

We conclude this overview on connectedness properties of ground states with

the following proposition.

Proposition 5.4. Ground states are connected.

We omit the proof of this result as it follows by adapting the proof of Proposi-

tion 5.2.

In view of Propositions 5.2–5.4, the quantity λk defined in (5.2) provides the

number of nonempty parallel zigzag paths of atoms in Gn ∩πk. By the definition of

τ , each partially full level of atoms around HGn
is characterized by the fact that the

difference between the number of points on the level having weight one and those

having weight two is strictly positive. To be precise,

5∑

k=0

λk ≤ |G1
n \HGn

| − |G2
n \HGn

|.

On the other hand, by (3.11) and (3.12),

|G1
n \HGn

| − |G2
n \HGn

| = P (Gn)− P (HGn)

2
=
pn
2
− 6rGn

+ 3,
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thus yielding

5∑

k=0

λk ≤
pn
2
− 6rGn

+ 3. (5.3)

Given a ground state Gn and its maximal hexagon HGn := D6r2
Gn

+ q, denote

by H+
Gn

and H++
Gn

the sets H+
Gn

:= D6(rGn+1)2 + q, and H++
Gn

:= D6(rGn+2)2 + q,

respectively. Denote by v′i and v′′i , i = 0, . . . , 5, the corner edges of H+
Gn

and H++
Gn

,

respectively, with the convention that both v′i and v′′i are parallel to vi. For i =

0, . . . , 5, let V 1
i and V 2

i be the two extrema of vi, numbered counterclockwise. Let

(V ′i )1, (V ′i )2, (V ′′i )1, (V ′′i )2, s′i, and s′′i be defined accordingly.

In the remaining part of this subsection we provide a characterization of the

geometry of Gn \ H+
Gn

, by subdividing this set into good polygons Pk and bad

polygons Tk, and by showing that the cardinality of Gn \H+
Gn

is, roughly speaking,

the same as the one of the union of good polygons.

We first prove that, by the optimality of HGn
, there exists a corner edge of H++

Gn

which does not intersect Gn.

Proposition 5.5. Let Gn be a ground state, and HGn
be its maximal hexagon.

Then there exists a corner edge v′′j of H++
Gn

, j = 0, · · · , 5, which does not intersect

Gn.

Proof. By the maximality of HGn , there exists a point P ∈ ∂F (H+
Gn

) such that

P /∈ Gn.

If P does not disconnect s′i then either v′i or v′i+1 do not intersect Gn. By the

hex-connectedness of Gn (see Proposition 5.2) then also the corresponding corner

edge of H++
Gn

does not intersect Gn, and we obtain the thesis.

Assume now that P disconnects s′i. Since Gn is hex-connected, the point P does

not disconnect any other zigzag path. Therefore there exists an angular sector S

centered in P and of width π/3 such that

S ∩Gn = ∅. (5.4)

Assume by contradiction that all corner edges of H++
Gn

intersect Gn. In view of (5.4),

the set (Gn\HGn
)∩πi is subdivided into two components. Denoting them by Γ1 and

Γ2, we have that Γj ∩s1
i 6= ∅ and Γj ∩s2

i 6= ∅, for j = 1, 2. Without loss of generality

we can assume that Γ1 ∩ sλi
i 6= ∅. Consider now the set M := Γ1 ∩ (sλi

i ∪ s
λi−1
i ). We

claim that we can construct a new set G̃n, by rearranging the atoms of M and by

leaving the other elements of Gn fixed, such that

E(G̃n) < E(Gn). (5.5)

There are three possible scenarios.
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Case 1: Γ1 contains at least two points Pa and Pb with the property that for

each of them there is no minimal cycle passing through it and entirely contained in

Gn. We proceed by moving the two points to s1
i ∩ (L \Gn) in such a way that Pa

is bonded to Γ2. If possible, we move also Pb to s1
i ∩ (L\Gn) so that Pa and Pb are

bonded. If this is not possible because si∩ (L\Gn) contains only one element, then

we already created an extra bond. With this procedure we loose two bonds when

removing Pa and Pb from Γ1, but we gain at least three bonds when we attach them

to Γ2, therefore the total energy strictly decreases.

Case 2: in Γ1 there exists exactly one point Pa with the property that there is

no minimal cycle containing it and entirely contained in Gn. We argue moving this

single point to s1
i ∩ (L \Gn) in such a way that Pa is bonded to Γ2. Afterward, we

move iteratively all the (remaining) points in sλi
i ∩Γ1 to s1

i ∩ (L\Gn) (in the same

way as described in Case 1 for Pb). If after moving Pa there are no remaining points

in sλi
i ∩Γ1, we apply the same rearrangement to sλi−1

i ∩Γ1 (note that λi ≥ 2 because

all corner edges of H++
Gn

intersect Gn). As a result of the procedure described above,

the energy is strictly decreased. If at any moment during the process of attaching

points to Γ2 we create a bond between Γ1 and Γ2, we stop the rearrangement as

the number of bonds has strictly increased.

Case 3: every point of Γ1 belongs to a minimal cycle entirely contained in Gn.

In this case we first move all points in sλi
i ∩Γ1 but one, in the same way as described

in Cases 1 and 2. As a result of this procedure, either we already created an extra

bond (and hence there is nothing left to prove) or we are now in the same situation

described in Case 2. The thesis follows then arguing exactly as in Case 2.

We proceed by showing that for every hexagon of side rGn + 2 there exists an

angular sector of width π/3, and centered in one of its corner edges, which does not

intersect Gn.

Proposition 5.6. Let Gn be a ground state, and HGn
be its maximal hexagon.

Then

(i) There exists a corner edge v′′i of H++
Gn

, i = 0, . . . , 5, and an angular sector S of

width π/3, centered in (V ′′i )1 or (V ′′i )2, and such that S ∩Gn = ∅.
(ii) Every hexagon in L with side rGn

+ 2 has a corner edge and a corresponding

angular sector of width π/3 which do not intersect Gn.

Proof. By Proposition 5.5 we can assume that v′′0 does not intersect Gn. Assume

first that both (V ′′0 )1 and (V ′′0 )2 do not disconnect any zigzag path. Consider the two

half zigzag paths in which v′′0 divides s′′0 . Then at least one of them does not intersect

Gn. Analogously, at least one of the two half zigzag paths in which v′0 divides s′5
does not intersect Gn. Finally, the two half zigzag paths, departing from (V ′0)1 and
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(V ′0)2, not parallel to s0 and s5, and in the opposite direction with respect to the

center of HGn
, do not intersect Gn. According to the geometric position of the four

half-zigzag paths identified beforehand, and using again the hex-connectedness of

Gn we obtain (i), the sector S being of width 2π/3. The case in which at least one

between (V ′′0 )1 and (V ′′0 )2 disconnects one zigzag path (see Proposition 5.2) follows

accordingly, yielding a sector S of width π/3. The proof of (ii) is an adaptation of

the proof of (i).

Without loss of generality, in view of Proposition 5.6 we can assume that v′′0 *
Gn. For k = 2, 3, 4, 5, let π′k be the subset of L such that





π′k = F (π′k) ∩ L,
∂F (π′k) ∩ L = sλk

k ,

HGn
⊂ π′k.

Consider the set R :=
(
∩5
k=0 π

′
k

)
\H+

Gn
.

By construction, Gn ⊂ H+
Gn
∪ R, and for every x ∈ R and k = 0, . . . , 5 there

exists

jk ∈
[
− λ( k+3

6 −b
k+3

6 c
) − 2rGn

− 2, λk

]

such that x ∈ sjkk . In particular, every x ∈ R is uniquely determined by a pair of

indexes (jk, jk′), with k′ 6= k + 3 in Z6.

We subdivide the region R into disjoint polygons as

R =
(
∪5
j=0 Pj

)
∪
(
∪5
j=0 Tj

)
. (5.6)

For a ∈ [−2(rGn
+ 1), 2(rGn

+ 1)], denote by P 1
k (a) the subset of L enclosed by s2

k,

sak, s1
k+1, s

−rGn

k+1 ; and by P 2
k (a) the set delimited by sak, sλk

k , s
λk−1−rGn

k−1 , s
λk−1

k−1 . For

k = 0, . . . , 5, the sets Pk in (5.6) are defined as follows:

Pk :=

{
P 1
k (λk) ∩R if λk ≤ λk−1 + 1,

(P 1
k (λk − λk−1 + 1) ∩R) ∪ P 2

k (λk − λk−1 + 1) if λk > λk−1 + 1,

with the convention that λ−1 := λ5. Note that |Pk| = 2(rGn
+ 1)(λk − 1) for every

k = 0, . . . , 5.

The sets Tk are given, roughly speaking, by the “portions of L” between Pk−1

and Pk. To be precise,

Tk :=
{
x ∈ R : x ∈ sjk−1

k−1 ∩ s
jk
k , with 2 ≤ jk−1 ≤ λk−1, 2 ≤ jk ≤ λk, jk−1 ≥ jk

and, if λk−1 > λk−2 + 1, jk−1 ≤ jk + λk−1 − λk−2

}
, (5.7)

see Figure 7.
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T2 P1

P0

H+
Gn

P2

P5

T5

T1

P4T4

P3

T3

T0

Fig. 7. The structure of a ground state Gn. In the figure above, rGn = 3, λ0 = 6, λ1 = 6, λ2 = 4,
λ3 = 7, λ4 = 6, and λ5 = 5. The blue shape outlined in black, the yellow shapes outlined in black,

and the green shapes outlined in black correspond to the closed subsets of the plane associated to
H+
Gn

, to the parallelograms Pj , and to the triangles Tj , respectively.

We have that

n ≤ |H+
Gn
|+ |R| − |R \Gn|,

where |H+
Gn
| = 6(rGn

+ 1)
2
. We observe that

|R| =
5∑

j=0

|Pj |+
5∑

j=0

|Tj | = 2(rGn + 1)

5∑

j=0

(λj − 1) +

5∑

j=0

|Tj | − 1.
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We proceed now in counting the points in R which do not belong to the ground

state Gn. In particular, we prove a lower bound for such number in terms of the

cardinality of

H := {H ⊂ L ∩ (H+
Gn
∪R) : H is a hexagon of side rGn

+ 2}.

Proposition 5.7.

|R \Gn| ≥ 2|H|.

Proof. Set M := |H|. We show by induction on m = 1, . . . ,M that for every

family Hm ⊂ H with |Hm| = m, there exists a collection of pairs of bonded atoms

VHm
⊂ R \ Gn with |VHm

| = m satisfying the following property: identifying each

segment with its extrema, the correspondence associating to each pair (ν1, ν2) ∈
VHm

a hexagon H ∈ Hm having a corner edge in (ν1, ν2) is a bijection.

We remark that the thesis will follow once we prove the assertion for m = M .

For m = 1 the claim holds by Proposition 5.6. Assume now that the claim is satis-

fied for m = m̄. Consider a family Hm̄+1 = {H1, . . . ,Hm̄+1} ⊂ H, and the polygon

Pm̄+1 := ∪m̄+1
i=1 Hi ⊂ R. We subdivide the remaining part of the proof into 4 steps.

Step 1 : there exists a corner edge (ν̃1, ν̃2) of Pm̄+1 such that ν̃i ∈ Pm̄+1 \Gn for

i = 1, 2.

Indeed, assume by contradiction that every corner edge of Pm̄+1 belongs to Gn.

Then every corner edge ofHm̄+1 in F̊ (Pm̄+1) would belong toGn by Proposition 5.3.

Thus all corner edges of Hm̄+1 would belong to Gn, contradicting Proposition 5.5.

Step 2 : by Proposition 5.6 (ii) there exists an angular sector S of width at least

π/3, centered in ν̃1, ν̃2, or in (ν̃1, ν̃2), and such that S̄ ∩Gn = ∅. Denote by σ1 and

σ2 the two zigzag paths forming its boundary.

Step 3 : We claim that there exists a corner edge (ν1, ν2) of Pm̄+1 such that

(ν1, ν2) ⊂ Pm̄+1 \Gn, and (ν1, ν2) is associated to an angle 2π/3 of Pm̄+1.

Observe that Pm̄+1 can have corner edges with angles 2π/3, 4π/3, or 5π/3. If

the corner edge (ν̃1, ν̃2) found in Step 2 is associated to an angle 2π/3, there is

nothing to prove. If (ν̃1, ν̃2) corresponds to an angle 4π/3, or 5π/3, then there are

two possible cases:

Case 1: ˚F (S) ∩ Pm̄+1 = ∅. Then, for every j = 1, 2, there exists ν̂j ∈ σj such

that ν̂j is one of the two extrema of a corner edge of Pm̄+1 entirely contained in
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S, and at least one among the zigzag paths from ν̂1 to ν̃1 and from ν̂2 to ν̃2 is

contained in ∂F (Pm̄+1). In addition, the corner edge associated to such ν̃j does not

intersect Gn (because it is a subset of S), and is associated to an angle 2π/3 (since
˚F (S) ∩ Pm̄+1 = ∅). The proof follows by considering the corner edge associated to

ν̂j .

Case 2: ˚F (S)∩Pm̄+1 6= ∅. Let `1 and `2 be the lines generating σ1 and σ2, and

let n1 and n2 be the unit normal vectors to `1 and `2, respectively, pointing outside

S. Define

σk1 := σ1 −
3

2
kn1 and σk2 := σ2 −

3

2
kn2.

for k ∈ N. Since Pm̄+1 ∩ S is bounded, we can find

k1 := max{k ∈ N : σk1 ∩ Pm̄+1 ∩ S 6= ∅}

and

k2 := max{k ∈ N : σk2 ∩ Pm̄+1 ∩ S 6= ∅}.

For j = 1, 2, the intersection σ
kj
j ∩ ∂F (Pm̄+1) ∩ S is either a corner edge of Pm̄+1

associated to an angle 2π/3, or a zigzag path forming an angle 2π/3 with a corner

edge of Pm̄+1.

Step 4 : Let (ν1, ν2) be the corner edge provided by Step 3. Then, there exists

a unique Hj̄ ∈ Hm̄+1 having a corner edge identified by (ν1, ν2). Thus, by the

induction hypothesis on {H1, . . . ,Hm̄+1} \ {Hj̄}, there exists a family of corner

edges

{(νj1 , ν
j
2)}j=1,...,m̄+1, j 6=j̄ ⊂ R \Gn

such that, for every j, (νj1 , ν
j
2) is a corner edge of Hj , and for every i 6= j (νj1 , ν

j
2) is

not a corner edge of Hi. The thesis follows by setting (ν j̄1 , ν
j̄
2) = (ν1, ν2), and taking

VHm̄+1
= {(ν1

1 , ν
1
2), . . . , (νm̄+1

1 , νm̄+1
2 )}.

The next step consists in estimating |H| from below, in terms of the cardinality

of the sets Tj and the number of levels λj .

Proposition 5.8.

2|H| ≥
5∑

j=0

|Tj | − 2λ1 − 4λ2 − 4λ3 − 4λ4 − 2λ5 + 18.

Proof. For k = 2, 3, 4, 5, let Uk be the region of L containing H+
Gn

and delimited

by the zigzag paths s1
k+1, s1

k+2, and s1
k+3 (with s1

6 := s1
0, s1

7 := s1
1, and s1

8 := s1
2).

Let Hk := {H ∈ H : H ⊂ Uk and has a vertex in Tk}, k = 2, 3, 4, 5.
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We claim that

|Hk| ≥
|Tk| − 2(λk + λk−1 − 3)

2
. (5.8)

Indeed, let (x̃, x̂) ∈ Tk and consider (j̃k, j̃k−1, j̃k−2) such that x̃ ∈ sj̃kk ∩ s
j̃k−1

k−1 ∩
s
j̃k−2

k−2 and x̂ ∈ sj̃kk ∩ s
j̃k−1

k−1 ∩ s
j̃k−2−1
k−2 . We identify x̃ and x̂ with the triple of indexes

(j̃k, j̃k−1, j̃k−2) and (j̃k, j̃k−1, j̃k−2 − 1), and we write x̃ = (j̃k, j̃k−1, j̃k−2) and x̂ =

(j̃k, j̃k−1, j̃k−2 − 1). Let Hx̃,x̂ be the hexagon with corner edges identified by the

pairs (x̃, x̂), and the pairs

w1 := [(j̃k−(rGn
+2), j̃k−1, j̃k−2+(rGn

+1)), (j̃k−(rGn
+1), j̃k−1, j̃k−2+(rGn

+1))]

w2 := [(j̃k−(2rGn
+3), j̃k−1−(rGn

+2), j̃k−2+(rGn
+1)),

(j̃k−(2rGn+3), j̃k−1−(rGn+1), j̃k−2+(rGn+1))],

w3 := [(j̃k−(2rGn
+3), j̃k−1−(2rGn

+3), j̃k−2−1),

(j̃k−(2rGn
+3), j̃k−1−(2rGn

+3), j̃k−2)],

w4 := [(j̃k−(rGn
+1), j̃k−1−(2rGn

+3), j̃k−2−(rGn
+2)),

(j̃k−(rGn+2), j̃k−1−(2rGn+3), j̃k−2−(rGn+2))],

w5 := [(j̃k, j̃k−1−(rGn
+2), j̃k−2−(rGn

+2)), (j̃k, j̃k−1−(rGn
+1), j̃k−2−(rGn

+2))].

We observe that Hx̃,x̂ is contained in Uk and has a corner edge in Tk if the following

inequalities are satisfied

j̃k − (2rGn
+ 3) ≥ −2rGn

− 1, j̃k ≤ λk,
j̃k−1 − (2rGn + 3) ≥ −2rGn − 1, j̃k−1 ≤ λk−1,

j̃k−2 − (rGn + 2) ≥ −2rGn − 1, j̃k−2 + rGn
+ 1 ≤ λk−2.

Hence, if (j̃k, j̃k−1, j̃k−2) is such that

2 ≤ j̃k ≤ λk,
2 ≤ j̃k−1 ≤ λk−1,

−rGn
+ 1 ≤ j̃k−2 ≤ λk−2 − rGn

− 1,

then Hx̃,x̂ ⊂ Uk and has a corner edge in Tk. By the definition of the sets Tk
(see (5.7)), the previous properties are fulfilled by every x ∈ Tk, apart from those

points belonging to the portion of ∂F (Tk) which is adjacent either to Pk−1 or to

Pk. Denoting by T̃k this latter set, claim (5.8) follows once we observe that

|T̃k| =
|Tk| − 2(λk + λk−1 − 3)

2
.

Combining Propositions 5.7 and 5.8 we estimate from above and from below the

radius rGn of the maximal hexagon HGn .

Proposition 5.9.

ρn ≤ rn ≤ Rn ≤ ρn +
2

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2 + 39,
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where

rn is the quantity defined in (1.6), Rn := max{rGn
: Gn is a ground state with n atoms},

and

ρn :=
(αn)2

3
− b(αn)2 − αnc

3
−3− 1

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2 + 39, (5.9)

with αn =
√

3n/2.

Proof. By Propositions 5.7 and 5.8 we have

|R \Gn| ≥
5∑

j=0

|Tj | − 2λ1 − 4λ2 − 4λ3 − 4λ4 − 2λ5 + 18.

Therefore, by (5.3) we obtain

n ≤ |H+
Gn
|+ |R| − |R \Gn|

≤ 6(rGn + 1)2 +

5∑

j=0

|Pj |+
5∑

j=0

|Tj | −
5∑

j=0

|Tj |+ 2λ1 + 4λ2 + 4λ3 + 4λ4 + 2λ5 − 18

≤ 6(rGn
+ 1)2 + (2rGn

+ 6)
( 5∑

k=0

λk − 1
)

+ 2

= 6(rGn + 1)2 + (rGn + 3)(pn − 12rGn − 6) + 2

= −6(rGn + 1)2 + (pn − 18)(rGn + 1) + 2pn + 14.

The thesis follows by solving the inequality with respect to rGn + 1 and using the

definitions of rn, pn and αn (see Proposition 3.4).

We conclude this section with a refinement of the estimate from above on rn.

Proposition 5.10.

rn ≤ ρn + O(1).

Proof. For every n ∈ N, n > 6, let

ρ̃n :=
⌈ (αn)2

3
− b(αn)2 − αnc

3
− 1

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2

⌉
. (5.10)

Let Hρ̃n := D6ρ̃2
n
, and

hn :=
pn − P (Hρ̃n)

4
=
pn − 6(2ρ̃n − 1)

4
=
pn
4
− 3ρ̃n +

3

2
.

Consider the hexagonal configurations Cc given by the union of the hexagons Hρ̃n

with the “parallelograms” of height hn constructed on two consecutive sides of Hρ̃n .
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To be precise, denoting by sn0 , . . . , s
n
5 the zigzag paths passing through the sides of

Hρ̃n , and setting

sn,jk := snk + jek, k = 0, . . . , 5,

for every n ∈ N, define the set Cc to be the portion of L enclosed by the zigzag

paths sn0 , s
n,hn

1 , sn,hn

2 , sn3 , s
n
4 , s

n
5 .

By construction, the perimeter of Cc satisfies

P (Cc) = pn.

We claim that for n big enough there exists a ground state Gn such that Hρ̃n ⊆
Gn ⊆ Cc, and |Cc \Gn| ≤ 2ρ̃n − 1. Indeed,

Hrn

hn

Fig. 8. In the figure above, n = 120, ρ̃n = 4 and hn = 2. The configuration Cc is defined as the
union of Hρ̃n with the two yellow parallelograms of height hn, constructed on the sides of Hρ̃n .

The ground state Gn (given by the collection of the blue atoms) satisfies Hρ̃n ⊆ Gn ⊆ Cc, and

|Cc \Gn| ≤ 2ρ̃n − 1.

|Cc| = |Hρ̃n |+ 4ρ̃nhn = 6ρ̃2
n + ρ̃n[pn − 6(2ρ̃n − 1)] (5.11)

= −6ρ̃2
n + (pn + 6)ρ̃n.

A direct computation shows that

6s2 − (pn + 6)s+ n ≤ 0

for every s satisfying

s ∈

[
(αn)2

3
− b(αn)2 − αnc

3
− 1

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2,
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(αn)2

3
− b(αn)2 − αnc

3
+

1

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2

]
, (5.12)

whereas

6s2 − (4 + pn)s+ n− 1 ≥ 0

for every s ∈ R such that

s ≤ −1

6
+

(αn)2

3
− b(αn)2 − αnc

3

− 1

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2 − 1

4
− pn

or

s ≥ −1

6
+

(αn)2

3
− b(αn)2 − αnc

3

+
1

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2 − 1

4
− pn. (5.13)

In particular, (5.12) and (5.13) hold for s = ρ̃n, yielding

0 ≤ |Cc| − n ≤ 2ρ̃n − 1. (5.14)

The claim follows by (5.14), and by observing that by the definition of Cc it is possi-

ble to remove up to 2ρ̃n−1 points from Cc \Hρ̃n without changing the perimeter of

the configuration. In particular, HGn = Hρ̃n . The thesis is thus a direct consequence

of (1.6), (5.9), and (5.10).

6. Sharp convergence to the Wulff shape

In this section we prove that as the number n of atoms tends to infinity, ground

states differ from a hexagonal Wulff shape by at most O(n3/4) points and we show

that this estimate is sharp. The proof strategy consists in exploiting Proposition

5.9 to deduce an upper bound on the number of points belonging to Gn but not to

the n-Wulff shape Wn.

Let W be the regular hexagon defined as the convex hull of the vectors

{
± 1√

6
t1, ±

1√
6
t2, ±

1√
6

(t2 − t1)
}
,

and let χW be its characteristic function. Denote by µ the measure

µ :=
4√
3
χW .
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6.1. Proof of Theorem 1.2

We subdivide the proof into two steps.

Step 1 : Let Gn be a ground state. Without loss of generality, assume that n > 6,

and hence, by Proposition 5.1, that the maximal hexagon HGn
is not degenerate

and rn ≥ 1. Let qn ∈ L be such that HGn
= D6r2

Gn
+ qn. We claim that

dH(G′n,Wn) ≤ O(n1/4), (6.1)

and

|G′n \Wn| = Knn
3/4 + o(n3/4), (6.2)

where

G′n := Gn − qn,

and

Kn :=
4αn

3n3/4

√(
(αn)2 − b(αn)2 − αnc

)2 − (αn)2, (6.3)

with αn =
√

3n/2.

Indeed, we first observe that

dH(Gn, HGn
) ≤ max

i=0,...,5
λi.

In view of (5.3) and of Proposition 5.9, we obtain the upper bounds

dH(Gn, HGn
) ≤ 2(α2

n)− 2b(αn)2 − αnc − 6ρn

≤ 18 + 2
√

[(αn)2 − b(αn)2 − αnc]2 − (αn)2 + 39,

and

dH(HG′n ,Wn) ≤ rGn − rn ≤
2

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2 + 39.

On the other hand, Propositions 5.9 and 5.10 yield the equality

|G′n \Wn| = n− 6r2
n

= n− 6ρ2
n − 6(rn + ρn)(rn − ρn)

= n− 6ρ2
n + O(n1/2)

= n− 6
(αn

3
+

(αn)2 − αn
3

− b(αn)2 − αnc
3

− 3

− 1

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2 + 39

)2

+ o(n3/4)

= n− 6
( (αn)2

9
− 2αn

9

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2 + 39

)
+ o(n3/4)

=
4αn

3

√
[(αn)2 − b(αn)2 − αnc]2 − (αn)2 + o(n3/4). (6.4)
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Claims (6.1) and (6.2) follow now by the definition of αn and by the observation

that
√

[(αn)2 − b(αn)2 − αnc]2 − (αn)2 =
√

2ηnαn + η2
n ≤ 1 +

√
αn = O(n1/4),

where ηn := (αn)2 − αn − b(αn)2 − αnc.

Step 2 : Step 1 yields the equality

‖µG′n − µWn
‖ =
|G′n4Wn|

n
= Knn

−1/4 + o(n−1/4), (6.5)

where µG′n and µWn are the empirical measures associated to G′n and Wn, respec-

tively (see (2.3)). Let µn := µWn
.

For every xi ∈ Wn, denote by Ωi its Voronoi cell in L, that is the equilateral

triangle centered in xi, of side
√

3 and with edges orthogonal to the three lattice

directions. Finally, define Ωni as the set

Ωni := {x/
√
n : x ∈ Ωi}.

Let ϕ ∈W 1,∞(R2). We observe that

∥∥∥ xi√
n
− x
∥∥∥
L∞(Ωn

i )
≤
√

3

n
,

and by (6.4),

L2
(

(∪6r2
n

i=1Ωni )∆W
)

=
∣∣∣3
√

3

2

(√3rn√
n

)2

− 3
√

3

4

∣∣∣ =
3
√

3

4

∣∣∣6r
2
n

n
− 1
∣∣∣

=
3
√

3

4

∣∣∣n−Knn
3/4

n
− 1
∣∣∣ =

3
√

3

4
Knn

−1/4.

Thus, we obtain

∣∣∣
∫

R2

ϕdµn −
∫

R2

ϕdµ
∣∣∣ =

∣∣∣ 1
n

6r2
n∑

i=1

ϕ
( xi√

n

)
− 4

3
√

3

∫

W

ϕdx
∣∣∣ (6.6)

=
4

3
√

3

∣∣∣
6r2

n∑

i=1

ϕ
( xi√

n

)
L2(Ωni )−

∫

W

ϕdx
∣∣∣

≤ 4

3
√

3

∣∣∣
6r2

n∑

i=1

∫

Ωn
i

(
ϕ
( xi√

n

)
− ϕ(x)

)
dx
∣∣∣+

4

3
√

3
‖ϕ‖L∞(R2)L2

(
(∪6r2

n
i=1Ωni )∆W

)

≤ 4

3
√

3
‖∇ϕ‖L∞(R2;R2)

6r2
n∑

i=1

∫

Ωn
i

∣∣∣ xi√
n
− x
∣∣∣ dx+

4

3
√

3
‖ϕ‖L∞(R2)L2

(
(∪6r2

n
i=1Ωni )∆W

)

≤ 4

3
√
n
‖∇ϕ‖L∞(R2;R2)L2

(
∪6r2

n
i=1 Ωni

)
+

4

3
√

3
‖ϕ‖L∞(R2)L2

(
(∪6r2

n
i=1Ωni )∆W

)

= ‖ϕ‖W 1,∞(R2)o(n−1/4)+‖ϕ‖L∞(R2)Knn
−1/4.
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Denoting by G′n the set G′n := Gn−qn, and by µG′n its associated empirical measure,

inequalities (6.5) and (6.6) yield

µ(Gn)′ ⇀
∗ µ, weakly* in Mb(R2), (6.7)

and

‖µ(Gn)′ − µ‖F ≤ 2Knn
−1/4 + o(n−1/4). (6.8)

We notice that Kn = 0 for every n ∈ N such that n = 6k2 for some k ∈ N. This

reflects the fact that for those n the daisy Dn is the unique ground state, whose

maximal hexagon is the daisy itself.

In view of the definition of αn, a direct computation shows that

Kn =
27/4

31/4

√
(3n

2
−
√

3n

2

)
−
(⌊3n

2
−
√

3n

2

)⌋
+ o(1).

Hence, in particular,

lim sup
n→+∞

Kn ≤
27/4

31/4
= K.

This completes the proof of Theorem 1.2. �

6.2. Proof of Theorem 1.3

The proof consists in finding a sequence {ni}, i ∈ N, such that

Kni
→ K (6.9)

as i→ +∞. Indeed, in view of (6.2), (6.5), (6.8), (6.9), for every {ni} verifying (6.9),

and for every sequence of ground states {Gni
}, there exist suitable translations

{G′ni
} such that

|G′ni
\Wni

| = Kn
3/4
i + o(n

3/4
i ),

‖µG′ni
− µWni

‖ = Kn
−1/4
i + o(n

−1/4
i ),

and

‖µG′ni
− µWni

‖F = Kn
−1/4
i + o(n

−1/4
i ).

A possible choice is to consider

ni := 2 + 6i2.
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In fact we have

3ni
2
−
√

3ni
2

= 9i2 + 3−
√

9i2 + 3 = 9i2 + 3− 3i− 1

i
(

1 +

√
1 +

1

3i2

) ,

and hence

(3ni
2
−
√

3ni
2

)
−
⌊(3ni

2
−
√

3ni
2

)⌋
= 1− 1

i
(

1 +

√
1 +

1

3i2

) → 1

as i→ +∞, which in turn yields (6.9). This completes the proof of Theorem 1.3. �

Before closing this section let us comment on the fact that, as a byproduct of our

construction, we also obtain sharp estimates on the distance of any sequence {Gn}
of (translated) ground states from the n-Wulff shape, in terms of the constant Kn

defined in (6.3) (see (6.2), (6.5), and (6.8)). Let us finally stress the nonuniqueness

of the n-dimentional Wulff shape Wn: any zigzag hexagon D6r̃2
n
, with radius r̃n =

rn + O(1) (e.g. r̃n = ρ̃n) would infact lead to the same sharp results.
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