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Abstract A phenomenological model for the coupled thermo-electro-magneto-mechanical and phase-
transformation behaviour of magnetic shape-memory alloys is advanced in small strains and eddy current
approximation. The corresponding system of strongly nonlinear relations is tackled via a suitable enthalpy-
like transformation. A fully implicit regularized time-discretization scheme is devised and proved to be stable
and convergent. In particular, the convergence proof for discrete solutions entails that a suitably weak, energy-
conserving solution to the continuous nonlinear system exists. Moreover, several particular models as e.g.
ferro/paramagnetic transformation in ferromagnetic materials, martensitic transformation in shape memory
allows, or just a simple thermistor problem are covered just as special cases.

Keywords Magnetic shape-memory alloys · Martensitic phase transformation · Ferro/paramagnetic phase
transformation · Eddy currents · Weak solutions · Existence · Time discretization
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1 Introduction

Shape-memory alloys (SMAs) are metallic alloys presenting an amazing thermomechanical behaviour: com-
parably large strains can be induced by either thermal or mechanical stimuli [38]. This is the macroscopic effect
of thermomechanically driven structural phase transitions in the material between different crystallographic
variants: the austenite (symmetric, stable at high temperatures) and different martensites (less symmetric, sta-
ble at low temperatures). At suitably high temperatures, SMAs can recover strains up to 8 % during loading
unloading cycles: this is the superelastic effect. At lower temperatures, deformations are permanent but can
be recovered via a thermal treatment: this is the shape memory effect, [38–40,48]. The superelastic and the

T. Roubíček
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shape memory effect are at the basis of an amazing variety of innovative applications ranging from sensors
and actuators to aerospace, biomedical, and seismic Engineering [30], just to mention some relevant examples
of application fields. Correspondingly, the interest in a reliable phenomenological modelling of the complex
thermomechanical SMA behaviour has nourished an intense research activity in the last decades [78]. Without
any claim of completeness, we shall minimally refer the reader to [6,36,38,44,45,56,57,73,75–77,79,89] for
reference SMA modelling results.

Some SMAs (including Ni2MnGa, NiMnInCo, NiFeGaCo, FePt, FePd, among others) have been recently
observed to show a remarkable magnetostrictive behaviour and are hence termed Magnetic SMAs (MSMAs).
Indeed, the martensitic phase in MSMAs presents the classical ferromagnetic texture of magnetic domains.
This mesostructure can be affected by a magnetic field and changes by magnetic domain wall motion, magne-
tization vector rotation, and magnetic-field-driven martensitic-variant reorientation. The first two effects above
are present in all ferromagnetic materials, whereas martensitic-variant reorientation is specific of MSMAs and
is usually referred to as the ferromagnetic shape memory effect. For instance, a Ni2MnGa single crystal can
develop up to a 10 % strain (at a 1–3 MPa activation stress under the effect of a 1 T magnetic field), whereas a
TerFeNOL-D polycrystal, one of the most performing giant magnetostrictive materials to date, shows a maxi-
mal 0.2 % strain (at 60 MPa stress and 0.2 T field). The reader shall be referred, with no claim of completeness,
to [29,48,49,58,66,90] as well as to the review in [50] for a minimal literature overview on MSMAs.

Our aim here is to present and analyse a phenomenological, internal-variable-type model for the cou-
pled thermo-electro-magneto-mechanical and phase-change behaviour of MSMAs single crystals. At first, we
introduce a thermodynamically consistent model of all the relevant phenomena by suitably coupling conser-
vation and constitutive laws with Maxwell’s relations. In particular, the model follows by specifying the free
energy density of the medium along with the dissipation encountered during evolution and imposing classical
constitutive choices (Section 2).

In this regard, the model may be considered as an extension of former ones in the direction of including
additional effects. In particular, the mechanical and phase-change part of the model (that is, the SMA part)
is directly constructed on the celebrated Souza-Auricchio modelling ansatz [8,84] which is, however, known
to be not directly fitted to include thermal effects [53,54]. Indeed, the thermal behaviour in this model is
somehow closer to the classical Frémond approach [38], extended here to a tensorial setting for the internal-
phase variables. The ferromagnetic behaviour of the medium is described following ideas from [15,16], which,
however, did not include the discussion of the Maxwell system but rather assumed the magnetic field as a datum.
It is important to point out that our model features a parabolic (viscous plus rate-independent and diffusive)
evolution of the internal-phase variable and of the magnetization.

The main focus of the paper is to prove the existence of a suitably weak solution to the system (Section 3).
This is quite challenging as the resulting system of PDEs and evolutionary variational inequalities show strong
nonlinearities and couplings. Our analytic strategy is twofold. At first, we perform a specific enthalpy-like
change of variables in the heat transfer equation. This entails in particular a simplification of some terms in the
internal energy expression at the expense of the appearance of additional nonlinear terms (Section 3). Secondly,
we develop a time-discretization procedure. In particular, we consider a fully implicit time-discretization
scheme which we prove to be weakly solvable (Section 4), conditionally stable (Section 5), and convergent
(Section 6). The limit of time-discrete solutions is checked to be a weak solution of the original problem.
Additionally, the analysis of the time discretization may be of some use in the direction of validating and
applying the model.

To our knowledge, a macroscopic model encompassing the full variety of effects driving the evolution of
MSMAs is unprecedented both from the modelling and the analytic viewpoint. Indeed, on the phenomeno-
logical level, a wealth of contributions have been addressed to the modelling of specific submodels including
thermomechanics, SMAs (thermomechanics and phase-change), magneto-electro-mechanics, ferro-to-para-
magnetic transitions (thermomagnetism), ferromagnetism in MSMA (magnetomechanics and phase-change),
and so on. We shall review some of these, also with the aim of placing our contribution in a correct perspective,
in the forthcoming Sect. 2.10.

2 The model

2.1 Tensors

We will denote by R
3×3
sym the space of symmetric 3×3 tensors endowed with the natural scalar product a:b =

tr(ab) = ai j bi j (summation convention) and the corresponding norm |a|2 = a:a for all a, b ∈ R
3×3
sym . The
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space R
3×3
sym is orthogonally decomposed as R

3×3
sym = R

3×3
dev ⊕ R12, where R12 is the subspace spanned by the

identity 2-tensor 12, and R
3×3
dev is the subspace of deviatoric symmetric 3×3 tensors. For all u ∈ H1

loc(R
3; R

3),
we let ε(u) ∈ L2

loc(R
3; R

3×3
sym ) denote the standard symmetric gradient defined as ε(u) = (∇u+∇u�)/2.

2.2 Reference configuration

We shall assume the reference configuration Ω ⊂ R
3 of the body to be nonempty, bounded, connected, and

with Lipschitz continuous boundary Γ = ∂Ω . We moreover require Ω to be bounded and either convex or
smooth. The space dimension 3 plays essentially no role throughout the analysis and we would be in the
position of reformulating our results in R

d with no particular intricacy. We assume that the boundary Γ is
partitioned in two disjoint open sets ΓD and ΓN with ∂ΓD = ∂ΓN (in ∂Ω). We ask ΓD to be such that there exists
a positive constant cKorn depending on ΓD and Ω such that the Korn inequality

cKorn

∥
∥u
∥
∥2

H1(Ω;R3)
≤ ∥∥u

∥
∥2

L2(ΓD;R3)
+ ∥∥ε(u)∥∥2

L2(Ω;R3×3
sym )

, (2.1)

holds true for all u ∈ H1(Ω; R
3). It would indeed suffice to impose ΓD to have a positive surface measure

(see, e.g. [31, Thm. 3.1, p. 110]).

2.3 State variables

Moving within the small-strain realm, we shall specify the state variables of our model as θ, ε, m, b, e, and
z. Here, θ > 0 represents the absolute temperature of the medium, ε = ε(u) ∈ R

3×3
sym is the symmetrized strain

related to the displacement u : Ω → R
3, m ∈ R

3 is the magnetization, b ∈ R
3 is the magnetic induction,

and e ∈ R
3 is the electric field.

The state variable z ∈ R
N is the vectorial descriptor of the crystallographic phase distribution in the

material. We shall keep some generality here in order to possibly incorporate in our discussion different
modelling frames. However, let us mention that a reference choice for such an internal variable is

z = ( p, π) ∈ R
m× R. (2.2)

In the latter, p ∈ R
m describes the local proportion of each of the m martensitic variants, m ∈ N. As such,

it takes values in the simplex A = {pi ≥ 0, p1+ · · · +pm = 1}. We have specifically in mind the cases
m = 3 and m = 6 which correspond to cubic-to-tetragonal (3 variants) and cubic-to-orthorhombic (6 variants)
austenite–martensite systems, respectively. In particular, these are the active martensitic systems in the MSMAs
as Ni2MgGa, FePd, and FePt, among others. On the other hand, the scalar π ∈ [0, 1] represents the local
proportion of total martensitic phase. As our analysis does not directly rely on the choice (2.2), we keep
generality in the following.

2.4 Free energy

The specific free energy ψ of the medium is additively decomposed as

ψ = ψ(ε, z, b,m,∇ z,∇m, θ) = ψTHERM(θ, z,m)+ ψMEC(ε, z)+ ψMAG(b,m)
+ψCOUP(m, z)+ ψNL(∇ z,∇m)+ ψCONST(z,m) (2.3)

where we choose

ψTHERM(θ, z,m) = α0(θ)+ α1(θ)γ (z)+ a0

2
(θ−θC)|m|2, (2.4a)

ψMEC(ε, z) = 1

2
C(ε−Etr(z)):(ε−Etr(z))+ 1

2
Hz·z, (2.4b)

ψMAG(b,m) = 1

2μ0
(b−μ0m)2, (2.4c)

ψCOUP(m, z) = ψC(m, z)+ a0

2
θC|m|2, (2.4d)
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ψNL(∇ z,∇m) = κ1

2
|∇ z|2 + κ2

2
|∇m|2, (2.4e)

ψCONST(z,m) = δK (z)+ δS(m). (2.4f)

The term ψTHERM(θ, z,m) encodes the thermal response of the medium. More precisely, the contribution
α0(θ) is purely caloric and represents the heat capacity of the body, α1(θ)γ (z) takes into account the latent
heat associated with the phase change, in particular α1 is the temperature-dependent latent heat density of
the medium. In the frame of our reference choice (2.2), we can choose γ (z) = π to represent the fact that
one can associate a latent heat to the martensitic–austenitic transition, whereas the latent heat corresponding
to martensitic reorientation can be assumed to be negligible. Note that, along with this choice, the function
γ turns out to be smooth (and actually linear). This contrasts with the original formulation of the Souza-
Auricchio model where a nonsmooth term arises causing indeed severe modelling inconsistencies and analytic
drawbacks, see [53,54]. The last term a0(θ−θC)|m|2 in ψTHERM represents the thermomagnetic coupling. In
particular, θC > 0 represents the Curie temperature and a0 is positive [74].

The first term in the mechanic energy termψMEC(ε, z) translates the assumption of linear material response.

In particular, C ∈ R
34

sym is the isotropic elasticity tensor (symmetric and positive definite) and the linear function

Etr : R
N → R

3×3
sym represents the stress-free symmetrized strain of the crystal, given its phase z. In relation to

position (2.2), a possible choice is

Etr(z) =
m
∑

i=1

Etr
i pi (2.5)

where Etr
i = εL(3εi⊗εi − 12)/

√
6 is the stress-free symmetrized strain corresponding to the pure i phase,

and the parameter εL > 0 measures the maximal strain obtainable by realignment of martensitic variants
(typically around 5 %). Moreover, H ∈ R

34

sym is a positive-definite and symmetric hardening tensor. Again in

the context of example (2.2), one could choose Hz = h1 Etr
�⊗Etr(z)+ h2π for some hardening parameters

h1, h2 > 0.
The term ψMAG(b,m) is the classical magnetic energy contribution, see below. In particular, the parameter

μ0 is the magnetic permeability of void. Some additional discussion on this term is in Sect. 2.8 below.
The coupling termψCOUP(m, z) is responsible for the coupling between magnetism, and phase. Our analysis

is independent of the explicit form of the coupling function ψC. Let us, however, mention that an example for
such a coupling could be given by

ψC(m, z) = b0

4
|m|4 − K |m·A(z))|2 (2.6)

where K > 0 measures the anisotropic magnetic response. The two positive parameters a0, b0 trigger
the ferromagnetic–paramagnetic transition. In particular, along with this choice, the coupling energy ψCOUP

switches from being nonconvex for ferromagnets below the Curie temperature θC to convex for paramagnets
above θC [74]. The last term in (2.6) is an anisotropic energy which favours the alignment of the magnetization
m with the easy axis of magnetization A(z) corresponding to the phase z [15]. The function A : R

N → R
3 can

be chosen to be linear. In particular, by assuming (2.2) for m = 3, one can take A(z) = p. As such, the material
parameter K > 0 modulates the magnetic anisotropy of the martensitic phase of the material. Note that we
are assuming here that the austenite is not ferromagnetic. This is indeed a simplification as for many MSMAs,
austenite is known to have a rather complex magnetic behaviour. We, however, believe that this simplification
does not jeopardize the performance of the model in the vast majority of applicative situations.

The gradient terms in ψNL encode the nonlocality of the behaviour of the internal variables m and z. As
such, they introduce length scales in the model (described by the coefficients κ1, κ2 > 0) which are to be fitted
with respect to the experimentally observable sizes of typical martensitic and ferromagnetic textures in the
specimens. In particular, the term in ∇m is the so-called exchange energy. From the mathematical viewpoint,
these terms clearly bear a crucial compactifying effect.

Finally, the term ψCONST constraints m and z to take value in some admissible set only. In particular, δ
stands for the indicator function of such a set. In view of the applications we have in mind, the sets K ⊂ R

N

and S ⊂ R
3 will be assumed to be convex, closed, and bounded. Typically, S is the ball of radius equal to the

so-called saturation magnetization at zero temperature. On the other hand, for the choice (2.2), the constraint
K reads as K = A×[0, 1].
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Note that the evolution of temperature, phase, and magnetization is fully coupled through the energy. The
termψTHERM takes into account temperature-phase and temperature-magnetization couplings whereas the term
ψCOUP describes the phase-magnetization coupling. Of course these energy contributions play a simultaneous
role in the description of the process. Still, we believe that this distinction clarifies the respective roles of these
different energetic sources.

2.5 Dissipation

In order to describe the evolution of the system, for all given components of the state (z, θ), we define the
dissipation (pseudo-)potential φ(z, θ; ·) as

φ(z, θ; .z, .
m,∇θ, e) = δ∗Z (

.
z)+ 1

2
D
.
z·.z + δ∗M (

.
m)+ α

2
| .m|2

+1

2
K(z, θ)∇θ ·∇θ + 1

2
S(z, θ)e·e. (2.7)

Here, Z ⊂ R
N and M ⊂ R

3 are nonempty, convex, and closed sets containing a neighbourhood of 0, and
δ∗Z and δ∗M denote the conjugate functions to the indicator functions δZ and δM , respectively. These terms
are positively 1-homogeneous and hence encode rate-independent dissipation effects. On the other hand,
the viscous behaviour of the model is described by the viscosity matrix coefficient D > 0 and by α > 0.
Finally, the smooth functions K and S are assumed to take values on positive-definite tensors. In particular,
K and S correspond to the thermal and electric conductivity, respectively. This combination of viscous and
rate-independent dissipation for SMA has already been considered e.g. in [85, Fig.1].

In view of the applicability of the model, let us stress that the actual values of the above-mentioned material
parameters may be obtained from the literature, see e.g. [49,51,58,91]. In particular, the thermomechanical
response of the material (that is, parameters and functions C, α0, α1, H, K, the two sets M and Z , and
the viscosity coefficients D and α) can be fitted from a suite of ordinary loading experiments at different
temperatures and frequencies. The conductivity S and the Curie temperature θC are also easily accessible to
experiments, whereas a0 and b0 should be fitted on the actual ferromagnetic–paramagnetic behaviour of the
material under thermal treatments. Finally, the two scale parameters κ1, κ2 are phenomenological and have to
be tailored in order to reflect the relevant dimensions of the polycrystalline aggregate (κ1) and its magnetic
domain distribution (κ2). These features are in principle accessible to transmission electron microscopy, see
for instance [28].

We shall once again remark that the model takes anisotropic effects into account as for the magnetization-
phase coupling (throught the function A) and martensitic reorientation (through Etr , respectively). Some other
possible source of anisotropy could be the different thermomechanical or electrical behaviour of distinguished
martensitic variants. These are at present not directly considered in the model. Their inclusion would call
for additional dependencies of parameters on the phase. We expect this modification to be mathematically
amenable, although at the expense of an even heavier notation.

2.6 Constitutive relations and flow rules

Give the free energy ψ , we classically define the entropy η, the stress σ the magnetic field h, and the internal
energy e, as

η = −∂θψ = −α′
0(θ)− α′

1(θ)γ (z)− a0

2
|m|2, (2.8a)

σ = ∂εψ = C(ε−Etr(z)), (2.8b)

h = ∂bψ = 1

μ0
b − m, (2.8c)

e = ψ + θη = ψMEC(ε, z)+ ψMAG(b,m)+ ψC(m, z)+ ψNL(∇ z,∇m)
+α0(θ)− θα′

0(θ)+ (α1(θ)− θα′
1(θ))γ (z). (2.8d)

Note that b is given in terms of m and h only. As such, it will often be eliminated from the following being
replaced by μ0(h+m); in particular, ψMAG(b,m) = 1

2μ0|h|2. The heat flux and electric current are given in
terms of the dissipation potential as

(−q, j) = ∂(∇θ,e)φ (2.9)
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which, in view of (2.7), gives the Fourier and the Ohm laws q = −K(z, θ)∇θ and j = S(z, θ)e, respectively.
In particular, note that we are neglecting the thermoelectric Seebeck and Peltier cross effects.
The evolution of the medium is described by the coupling of the entropy equation with the mechanical

equilibrium for u and Biot-type flow relations for the internal variables (z,m). As for the electromagnetic
fields (e, h), we assume that the alloy is highly electrically conductive so that we can neglect the so-called
displacement current; in other word, we neglect the contribution of the electrical energy 1

2ε0|e|2 to the overall
energy balance with ε0 being the vacuum permittivity. This leads to the consideration of the so-called eddy
current approximation of the Maxwell’s system. In conclusion, we aim at analysing the following system of
relations:

Entropy equation:

θ
.
η + div q = ζ(z, θ; .z, .

m, e) := ∂
(
.
z,

.
m,e)φ·(.z, .

m, e), (2.10a)

Quasistatic mechanical equilibrium:

div ∂εψ = 0, (2.10b)

Biot-type flow rules for the internal variables:

∂
(
.
z,

.
m)φ + ∂(z,m)ψ � 0, (2.10c)

Eddy-current Maxwell’s system:
.
b + curl e = 0 and curl h = j (2.10d)

with q and j from (2.9). In the entropy equation (2.10a), the right-hand side ζ represents the entropy dissipation
rate. The differential inclusion (2.10c) corresponds to a system of relations in R

3×R
N ×R

3. Note that we are
not including here any body force for the sake of notational simplicity. The inclusion of a nonzero body force
would, however, be straightforward.

We are assuming here no external magnetic field contribution (again nonzero external contribution can be
treated with no difficulties). Indeed, h corresponds here solely to the self-induced magnetization field. In order
to avoid additional technical difficulties, which, however, would not alter the tenet of our analysis, we restrict
ourselves to the consideration of fields in Ω only. We neglect the contribution to h given by the region which
is external to Ω and prescribe suitable boundary conditions at Γ instead, see (2.12c) below.

2.7 PDE system

Let us now write system (2.10) in terms of the choices (2.3)–(2.4) and (2.7) and the constitutive relations
(2.8)–(2.9) as

Heat-transfer equation:
(

c0(θ)+c1(θ)γ (z)
).
θ − div

(

K(z, θ)∇θ) = δ∗Z (
.
z)+ D

.
z·.z + δ∗M (

.
m)

+ α| .m|2 + S(z, θ)e·e + θα′
1(θ)γ

′(z).z + a0θm· .m, (2.11a)

Mechanical quasistatic equilibrium:

div
(

C
(

ε(u)− Etr(z)
)) = 0, (2.11b)

Biot-type flow rules for the internal variables:

∂δ∗Z (
.
z)+ D

.
z + E�

tr C(Etr(z)−ε(u))+ Hz + ∂zψC(m, z)

− κ1�z + NK (z) � −α1(θ)γ
′(z), (2.11c)

∂δ∗M (
.
m)+ α

.
m + ∂mψC(m, z)− κ2�m + NS(m) � μ0h − a0θm, (2.11d)

Eddy-current Maxwell’s system:

μ0(
.
h+ .

m)+ curl e = 0, (2.11e)

curl h = S(z, θ)e. (2.11f)

Here, we have used the notation c0(θ) = −θα′′
0 (θ) and c1(θ) = −θα′′

1 (θ) and we have indicated with NK (z)
and NS(m) the normal cones to K and S at z and m, respectively. In particular, ξ ∈ NK (z) if and only if z ∈ K
and ξ ·(z− z̃) ≥ 0 for all z̃ ∈ K . Analogously for NS .
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2.8 Boundary and initial conditions

We complete system (2.11) by prescribing initial and boundary conditions. In particular, we ask for

θ(·, 0) = θ0, z(·, 0) = z0, m(·, 0) = m0, h(·, 0) = h0 in Ω, (2.12a)

u = 0 on ΓD, σν = 0 on ΓN, and (2.12b)

∂ z
∂ν

= 0,
∂m
∂ν

= 0, K(z, θ)∇θ ·ν = fb, ν×h = jb on Γ (2.12c)

with ν denoting the unit outward normal to Γ . Here, fb is a prescribed heat flux and jb is some prescribed
electric current as the boundary, assumed to be tangent to the boundary at all times. In order to better understand
the role of the boundary condition on h, one can compute, for all smooth tests v,

∫

Γ

( j ·ν)v dS =
∫

Γ

(curl h·ν)v dS =
∫

Ω

curl h·∇v dx +
∫

Ω

(div curl h)v dx

=
∫

Γ

(ν×h)·∇v dS =
∫

Γ

jb·∇v dS = −
∫

Γ

divS jb v dS.

In particular, by the arbitrariness of v one has that j ·ν = −divS jb (surface divergence) so that one can pump
electric current in the conducting medium by merely specifying jb; cf. also [83]. It should be realized that the
boundary conditions for the electromagnetic fields (e, h) neglect the electromagnetic field outside the body
Ω . This is a legitimate simplification in a lot of applications and facilitates the analysis because otherwise
the parabolic nonlinear system on Ω would be coupled with the hyperbolic system outside Ω where the eddy
current approximation could not be used. This altogether would effectively yield a nonlinear hyperbolic system.

2.9 Energy balance

In order to illustrate the variational structure of the model, we shall now rewrite the energy balance for system
(2.11) along with the boundary conditions (2.12b)–(2.12c). To this aim, let us define hb = −ν× jb on Γ and
extend it arbitrarily in Ω . By testing the Maxwell system (2.11e)–(2.11f) by (h,−e) we find that

∫

Ω

(
d

dt

μ0

2
|h|2 + μ0

.
m·h

)

dx +
∫

Ω

S(z, θ)e·e dx =
∫

Ω

(

curl h·e − curl e·h)dx

=
∫

Ω

(

curl hb·e − curl e·hb
)

dx =
∫

Γ

jb·e dS. (2.13)

Let us now formally test the momentum equation (2.11b) by
.
u, the flow rule (2.11c) by

.
z, and the flow rule

(2.11d) by
.
m, and add the resulting relations getting
∫

Ω

(

∂
(
.
z,

.
m)φ·(.z, .

m)+α1(θ)γ
′(z).z+a0θm· .m)dx

+
∫

Ω

(

∂εψ :ε(.u)+∂(z,m)ψ ·(.z, .
m)+∂(∇ z,∇m)ψ ·(∇ .

z,∇ .
m)
)

dx = μ0

∫

Ω

h· .m dx (2.14)

Finally, we integrate the heat transfer equation (2.11a) on Ω (that is, we test it by 1) and use the boundary
conditions in order to obtain that

∫

Ω

d

dt
e dx =

∫

Γ

fbdS +
∫

Ω

(

ζ(z, θ; .z, .
m, e)+α1(θ)γ

′(z).z+a0θm· .m)dx

+
∫

Ω

(

∂εψ :ε(.u)+∂(z,m)ψ ·(.z, .
m)+∂(∇ z,∇m)ψ ·(∇ .

z,∇ .
m)
)

dx +
∫

Ω

d

dt

μ0

2
|h|2dx (2.15)
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with e from (2.8d). Eventually, by summing up relations (2.13)–(2.15), we get the energy balance

d

dt

∫

Ω

e dx =
∫

Γ

(

jb·e + fb
)

dS (2.16)

where ζ is from (2.10a) and where the two terms on the right-hand side clearly corresponds to the contributed
energy to the system in terms of heat and current flux supplied through the boundary Γ .

2.10 Relation with other models

We shall collect here some comments on the relations between our model and previous contributions. Let
us start by describing how the present model builds upon and extends previous ones. As already mentioned
in the Introduction, the purely SMA part of the model (mechanics and phase-change) corresponds to the
celebrated Souza-Auricchio model, although in a single-crystal setting. The reader is referred to [8–10,84] for
some basic information and comment on its validity and robustness, especially regarding approximations. The
Souza-Auricchio model presents a sound variational formulation, and it is hence particularly amenable to be
extended in order to encompass to additional effects. In particular, it has been formulated in the finite strain
regime [34,35,41] and extended to nonsymmetric material behaviours [13] and to the description of residual
plasticity [11–13,32], see also [43,55]. The Souza-Auricchio model has been investigated from the analytical
viewpoint [7] and combined with space discretization in [62,63].

The reader is referred to [33,53,54,61,64] for the delicate extension of the Souza-Auricchio model in
the direction of thermal effects. Indeed, the original Souza-Auricchio model suffers from not making a clear
distinction between martensite fraction and martensite orientation: the whole inelastic effects are encoded
into a single tensorial variable. Here, in the spirit of the decomposition (2.2), we are rather distinguishing
these two concepts, with the aim of relating a latent heat production to the martensite–austenite transition
only. This in turn allows to consider the thermal contributions of the energy to be smoothly depending on the
internal variable z. The issue whether martensitic transformation is or not a rate-independent phenomenon is
disputed. On the one hand, a number of contributions focus on rate-independent flow rules, see for instance
all the above-mentioned contributions on the Souza-Auricchio model. On the other hand, modelling featuring
viscous evolutions are also available, see [85] and all the analyses on the Frémond model. Here, we rather
follow this second line but augment our dissipation by rate-independent terms for completeness.

By postponing the discussion on the magnetoelectric behaviour, we have to mention that thermomechanics
in SMAs is a quite investigated topic. A widely studied SMA model is due to Frémond [38,39], see [18,23,24,
87] for results and references, cf. also [78] for a survey. The main difference between our model and Frémond’s
relies in the description of the martensitic structure. Indeed, the Frémond model is grounded on a mixing ansatz
on free energies. Although basically available for an arbitrary number of martensitic variants, the analysis of
the Frémond model has been restricted to the consideration of two variants only. In particular, this entails the
possibility of performing a suitable variable change and make the thermomechanical coupling term in the free
energy bilinear. On the other hand, the phase descriptor is a scalar and this prevents the model from describing
efficiently reorientation of martensites. The present model instead features a possibly tensorial descriptor of
the solid phase. At the same time, the interpretation of the mixing of energy is still available. Indeed, assume
that the mechanical energy density results from the mixture

∑

i pi
1
2 Ci (ε−Etr

i ):(ε−Etr
i ) with p = (pi )i

ranging over the Gibbs simplex. Up to a constant, for Ci ≡ C this results to 1
2 C(ε−Etr( p)):(ε−Etr( p)) with

Etr = ∑

i Etr
i pi , namely the first term in ψMEC under assumption (2.2). By considering the thermal term

in the i-phase to be given by ciθ(1− ln θ) for some heat capacity ci , the coupling term between phase and
temperature reads

∑

i ci piθ(1− ln θ). This correspond to the second term in ψTHERM in (2.3) upon choosing
α1(θ) = θ(1− ln θ) and γ (z) =∑i ci pi , cf. also [78, Rem. 4.4].

We shall mention here the model [5,85,86] featuring a mechanical free energy term of the type

1

2
C(ε(u)−πe):(ε(u)−πe).

The tensor πe corresponds to the inelastic strain induced by the phase transition where the scalar π represents
the size of the inelastic strain (or the proportion of martensites) and the tensor e ∈ R

3×3
sym with |e| = 1 corresponds



Magnetic shape-memory alloys 791

to its direction. This setting can be included in our frame by choosing z = (π , e) and Etr((z)) = πe. Note
that, in contrast to [85], plasticity is here neglected.

Thermoviscoelasticity in SMAs has been considered in a series of papers. In [72,92], the possibility of
reproducing the shape memory behaviour is interpreted as a specific thermoelastic behaviour and no descrip-
tion of the solid phase is considered. This follows the tenet of the Falk [36] and Falk-Konopka [37] models
where the complex SMA behaviour is described as an effect of the nonconvexity of the mechanical energy
landscape. In this direction see also [14,27,71,93]. The situation is fairly different here. The mechanical part
of the energy is indeed convex and the SMA behaviour stems from the interaction of energy and dissipation
instead. This amounts to an enhanced robustness of the modelling with respect to approximations, see [7]. In
[67–70], the thermomechanical coupling term in the free energy is assumed to be linear in the temperature
θ . This results in the uncoupling of thermal and mechanical variables in the internal energy, a circumstance
which appears to be not so well tailored for SMAs. Additionally, the model features viscous elastic terms
which enhance the compactness frame and renders a Schauder-fixed-point analysis amenable. We have to
mention that the consideration of viscoelasticity for SMA, albeit disputable form the modelling viewpoint, is
widely considered in the SMA literature for three-dimensional problems, we refer without claiming complete-
ness to [1,2,22,23,47] for a collection of classical existence results. Here, we do not assume viscoelasticity
instead.

Magnetostriction and MSMAs have been discussed in [29,60] as well as in [25,26,48–51,59,86,90]. In
particular, the Souza-Auricchio model has been extended to MSMA in [3,4,15,16,88]. The present modelling
moves exactly in the direction of the latter by including also the thermal and the electric evolution. Other
MSMA phenomenological models of internal variable type are those by Hirsinger & Lexcellent [46] and
Kiefer & Lagoudas [52], later reconsidered by Wang & Steinmann [91]. These two models, albeit basically
informed by our same principles, differ from ours in the choice of Gibbs energy, which is comparably more
complex. In particular, anisotropy is directly built in by means of the choice of specific anisotropic energy
contributions. Moreover, no thermal and electric behaviour is considered. By neglecting the phase transition
descriptor z, our model corresponds to the magnetostrictive model from [83] under the assumption of a convex
underlying free energy containing no strain gradients if magnetization forcing in (2.11b) and velocity influence
in (2.11e) and gyromagnetic effects in (2.11d) are neglected; in addition, our notion of solution here is stronger
than the one in [83].

As for the ferro/paramagnetic transition, our model has to be compared with the analysis in [81,82].
In the latter, no quasistatic approximation is considered and the evolution of the magnetization is driven by
the Landau–Lifshitz–Gilbert equation. Moreover, a specific right-hand side in the Faraday-Maxwell relation
(2.11e) arises in connection with the fact that magnetization is to be measured in the deformed configuration.
We neglect this last aspect here by assuming small deformations. In turn, the analysis in [81,82] exploits the
compactifying effect of the extra viscoelastic term in the momentum equation (and in the heat equation as a
source term) and does not include the description of the phase evolution.

Our model covers also a number of simplified situations. By considering only the variables θ, e, and h,
the corresponding reduced system (2.11a,e,f) describes a thermistor with eddy currents, cf. [80, Sect.12.7]. By

further neglecting μ0
.
h in (2.11e), one has e = ∇φel for an electrostatic potential φel. This allows to replace

(2.11e,f) by a single equation div(S(θ)∇φel) = 0.

3 Weak formulation, data qualification, and main result

The aim of this section is to introduce a suitably weak notion of solution to system (2.11) and present the
existence results to be proved in Sects. 4–6.

We abbreviate I = (0, T ), Q = I×Ω , and � = I×Γ . In the following, we shall use some classical
notation for function spaces, namely the Lebesgue spaces L p, the Sobolev spaces W k,p and, in particular,
Hk = W k,2, and vector-valued functions. In particular, we will use the Hilbert spaces

H1
ΓD
(Ω; R

3) = {u ∈ H1(Ω; R
3) : u = 0 on ΓD

}

,

H2
N (Ω; R

m) = {g ∈ H2(Ω; R
m) : ∂ g/∂ν = 0 on Γ

}

for m = N , 3,

L2
curl (Ω; R

3) = {h ∈ L2(Ω; R
3) : curl h ∈ L2(Ω; R

3)
}

,

L2
curl ,0(Ω; R

3) = {h ∈ L2
curl (Ω; R

3) : h × ν|Γ = 0
}

.
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3.1 Weak formulation

A specific challenge for the treatment of the problem is that the time derivative
.
θ in (2.11a) does not seem to

allow for a priori estimation. The weak formulation should naturally reflect this difficulty and will, beside θ , use
also a renormalized temperature which enjoys and a priori bound on its time derivative. In the simple case when
γ is constant, this substitution is usually referred to as enthalpy transformation in the mathematical literature,
and the renormalized temperature is then called, perhaps disputably from the physical viewpoint, enthalpy.
We will devise this transformation even for γ nonconstant and refer to it as an enthalpy-like transformation.

Let us firstly compute

(

c0(θ)+c1(θ)γ (z)
).
θ = ∂

∂t

(

ĉ0(θ)+ĉ1(θ)γ (z)
)− ĉ1(θ)γ

′(z)·.z,

where ĉi denotes a primitive function of ci , i = 0, 1. We introduce the enthalpy-like variable

w = ω(z, θ) := ĉ0(θ)+ĉ1(θ)γ (z) with ĉi (θ) :=
θ∫

0

ci (ϑ) dϑ, i = 0, 1. (3.1)

Introducing the abbreviation

A(z, θ) = θα′
1(θ)γ

′(z)+ ĉ1(θ)γ
′(z),

we can rewrite the heat equation (2.11a) into the form

.
w − div

(

K(z, θ)∇θ) = δ∗Z (
.
z)+ D

.
z·.z + δ∗M (

.
m)+ α| .m|2 + S(z, θ)e·e

+A(z, θ)
.
z + a0θm· .m. (3.2)

Note that, due to the natural assumption about positive heat capacity (3.5i) below, ω(z, ·) is invertible and we
can express θ in terms of w and z, thus eliminating it like in [83]. Here, however, e.g. in [19], we keep both
variables w and θ in the formulation and mostly in the analysis of the problem. This turns out to simplify
the formulation, the assumptions, and some arguments. By applying Green’s formula, the curl-formula, and
by-part integration in time, we obtain the following definition.

Definition 1 (Weak solution) We say that (θ, z,m, u, h, e) is a weak solution to the initial boundary value prob-
lem for system (2.11) with the initial and boundary conditions (2.12), along with the selections (η1, η2, ξ1, ξ2),
if

θ ∈ L1(I ; W 1,1(Ω)) ∩ C( Ī ; L1(Ω)), (3.3a)

z ∈ H1(I ; L2(Ω; R
N )) ∩ L∞(I ; H1(Ω; R

N )) ∩ L2(I ; H2
N (Ω; R

N )), z ∈ K a.e. in Q, (3.3b)

m∈ H1(I ; L2(Ω; R
3)) ∩ L∞(I ; H1(Ω; R

3)) ∩ L2(I ; H2
N (Ω; R

3)), m∈ S a.e. in Q, (3.3c)

u∈ H1(I ; H1
ΓD
(Ω; R

3)), (3.3d)

h ∈ L∞(I ; L2
curl (Ω; R

3)) and h−hb ∈ L2(I ; L2
curl ,0(Ω; R

3)), (3.3e)

e ∈ L2(Q; R
3), (3.3f)

η1 ∈ L∞(Q; R
N ), η1 ∈ ∂δ∗Z (

.
z) a.e. in Q, (3.3g)

η2 ∈ L∞(Q; R
3), η2 ∈ ∂δ∗M (

.
m) a.e. in Q, (3.3h)

ξ1 ∈ L2(Q; R
N ), ξ1 ∈ NK (z) a.e. in Q, (3.3i)

ξ2 ∈ L2(Q; R
3), ξ2 ∈ NS(m) a.e. in Q, (3.3j)

and, for ω from (3.1),

ω(z, θ) ∈ L∞(I ; L1(Ω)) ∩ Lr (I ; W 1,r (Ω)) for some 1 ≤ r < 5/4, (3.3k)
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and, with w0 = ω(z0, θ0), the following hold
∫

Q

(

K(z, θ)∇θ ·∇w̃ − w
.̃
w
)

dxdt =
∫

Q

(

δ∗Z (
.
z)+D

.
z·.z+δ∗M (

.
m)+ α| .m|2 + S(z, θ)e·e + A(z, θ)

.
z

+ a0θm· .m
)

w̃ dxdt +
∫

�

fbw̃ dSdt +
∫

Ω

w0w̃(0) dx∀w̃ ∈ W 1,∞(Q) with w̃(·, T ) = 0, (3.4a)

∫

Ω

C(ε(u(t))−Etr(z(t))):ε(̃u) dx = 0 ∀ũ ∈ H1
ΓD
(Ω; R

3), t ∈ (0, T ), (3.4b)

η1 + D
.
z + Etr

�
C(Etr(z)−ε(u))+ Hz + ∂zψC(z,m)

− κ1�z + ξ1 = −α1θγ
′(z) a.e. in Q, (3.4c)

η2 + α
.
m + ∂mψC(z,m)− κ2�m + ξ2 = μ0h − a0θm a.e. in Q, (3.4d)

∫

Q

(

e·curl ṽ − μ0(h+m)· .̃v)dxdt = μ0

∫

Ω

(h0+m0)·̃v(0, ·) dx

∀̃v ∈ H1(I ; L2
curl ,0(Ω; R

3)) with ṽ(·, T ) = 0, (3.4e)

curl h = S(z, θ)e and w = ω(z, θ) a.e. in Q, (3.4f)

together with the initial conditions (2.12a) for z and m, while the initial conditions for w and h are already
included in relations (3.4a) and (3.4e).

Let us remark that all weak solutions to the initial boundary value problem for system (2.11) can be checked
to preserve energy. In particular, one can reproduce the argument of Sect. 2.9 and obtain an analogous energy
balance, written in terms of w instead of θ , cf. (3.14) and (3.15) below.

3.2 Data qualification

Before moving on, let us enlist here the assumptions on the external loading data and on nonlinearities (i.e.
data determining the material properties) that are going to be used in the sequel of the paper. We shall ask for
the following:

Initial data:

w0 ∈ L1(Ω), w0 ≥ 0 a.e. in Ω, (3.5a)

z0 ∈ H1(Ω; R
N ), z0 ∈ K a.e. in Ω, (3.5b)

m0 ∈ H1(Ω; R
3), m0 ∈ S a.e. in Ω, (3.5c)

h0 ∈ L2
curl(Ω; R

3). (3.5d)

Boundary data hb and jb:

fb ∈ L1(�), fb ≥ 0, (3.5e)

∃hb ∈ L2(I ; L2
curl(Ω; R

3)) ∩ W 1,1(I ; L2(Ω; R
3)) such that −ν×hb = jb. (3.5f)

Nonlinearities:

c0, c1, α1, ψC, Etr,K, S are Lipschitz continuous (3.5g)

γ ∈ C1,1(K ), (3.5h)

∃ M, κ0 > 0, 3
2 > η > 0 ∀(z, θ)∈ K ×R, ξ ∈R

3 :
0 < κ0(1 + θ+) ≤ c0(θ)+ c1(θ)γ (z) ≤ M, (3.5i)

K(z, θ)ξ ·ξ ≥ κ0|ξ |2 and S(z, θ)ξ ·ξ ≥ κ0|ξ |2, (3.5j)

|K(z, θ)| ≤ M(1 + |θ |η) and |S(z, θ)| ≤ M. (3.5k)
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As already commented above, assumption (3.5i) guarantees that ω(z, ·) from (3.1) is invertible. Let us denote
its inverse by T (z, ·) : w �→ θ so that

T (z, w) = [ω(z, ·)]−1
(w).

By exploiting the smoothness of c0, c1, and γ , one readily checks that T ∈ C1,1(K × R). In particular, we
have by (3.5i) that

0 <
1

M
≤ ∂wT (z, w) = 1

c0(T (z, w))+ c1(T (z, w))γ (z)
≤ 1

κ0
(3.6)

so that ∂zT (z, w) = −∂wT (z, w)γ ′(z) is bounded as well. Moreover, by using T (z, 0) = 0 (recall that
ĉi (0) = 0) one has that

T (z, w) ≥ 0 ⇐⇒ w ≥ 0.

Moreover, by redefining c0 = c1 = 0 on (−∞, 0] one has that

∀w ≥ 0 : T (z,−w) = 0 (3.7)

so that T ≥ 0. Hence, by using again (3.5i) one gets

T (z, w) ≤ |w| |∂wT (z, w)| ≤ |w|
κ0(1 + T (z, w))

and the bound

√
κ0T (z, w) ≤ |w|1/2 (3.8)

ensues. In the following, we will occasionally use the shorthand notation

K0(z, w) = K(z,T (z, w)) ∂wT (z, w), (3.9a)

K1(z, w) = K(z,T (z, w)) ∂zT (z, w), and (3.9b)

A (z, w) = A(z,T (z, w)). (3.9c)

Let us record here some properties of the latter nonlinearities to be used later on. First of all, let us check that
K0 is coercive

K0(z, w)ξ ·ξ = K(z,T (z, w)) ∂wT (z, w) ξ ·ξ ≥ 1

M
κ0|ξ |2 (3.10)

where we have used (3.5j) and (3.6). Secondly, let us point out that

|K0(z, w)| + |K1(z, w)| ≤ C
(

1+|w|η), (3.11)

which follow from (3.5g)–(3.5h), (3.5k), and (3.6)–(3.8) for some suitable data-dependent constant C by
arguing as

|K0(z, w)| = |K(z,T (z, w)) ∂wT (z, w)| ≤ M
(

1 + |T (z, w)|η) 1

κ0

≤ M
(

1 + |w|η|∂wT (z, w)|η) 1

κ0
≤ C

(

1 + |w|η)

Finally, one directly checks that, for all w ≥ 0, one has

A (z,−w), K1(z,−w) = 0. (3.12)
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3.3 Existence result

Let us now formulate our main analytical result:

Theorem 1 (Existence of weak solutions) Under assumptions (3.5) there exists a weak solution
(θ, z,m, u, h, e) to the initial and boundary value problem (2.11)–(2.12) due to Definition 1. Moreover,
we have that θ ≥ 0 and, with w from (3.1),

.
w ∈ L1(I ; H3(Ω)∗),

.
h ∈ L2(I ; L2

curl ,0(Ω; R
3)∗), (3.13)

and this solution fulfils the following balance for the magnetomechanical energy

ΨMM(t) =
∫

Ω

(

ψMEC

(

ε(u(t)), z(t)
)+ ψMAG

(

b(t),m(t)
)

+ψCOUP

(

m(t), z(t)
)+ ψNL

(∇ z(t),∇m(t)
)+ ψCONST

(

z(t),m(t)
))

dx,

cf. also (2.14), as

ΨMM(t)+
t∫

0

∫

Ω

δ∗Z (
.
z)+ D

.
z·.z + δ∗M (

.
m)+ α| .m|2 + S(z, θ)e·e dxdt

= ΨMM(0)+
t∫

0

⎛

⎝

∫

Γ

jb·e dS −
∫

Ω

α1(θ)γ
′(z)·.z + a0θm· .mdx

⎞

⎠ dt (3.14)

for any t ∈ I , as well as the total energy conservation, cf. also (2.16) i.e. with w0 from Definition 1,

ΨMM(t)+
∫

Ω

w(t) dx = ΨMM(0)+
∫

Ω

w0 dx +
t∫

0

∫

Γ

jb·e + fb dSdt. (3.15)

Let us note that giving sense to the integrals
∫ t

0

∫

Γ
jb·e dS in (3.14) and in (3.15) is a bit tricky because

e itself does not have well-defined traces on Γ . The first idea is to understand it rather in sense of the bulk
integral

∫ t
0

∫

Ω
(curl hb·e−hb · curl e)dxdt , cf. also (2.13). Even more, since curl e = −μ0(

.
h+ .

m) is only in
L2(I ; L2

curl ,0(Ω; R
3)∗), cf. (3.13), this last integral is rather only a duality and, as hb �∈ L2(I ; L2

curl ,0(Ω; R
3)),

like in [83], we should still employ the by-part integration in time i.e. eventually

t∫

0

∫

Γ

jb·e dSdt :=
t∫

0

∫

Ω

(

curl hb·e+μ0hb· .m−μ0
.
hb·h

)

dxdt

+μ0

∫

Ω

(

hb(t)·h(t)−hb(0)·h0
)

dx, (3.16)

relying on the qualification of hb ∈ W 1,1(I ; L2(Ω; R
3)), cf. (3.5f) above.

This existence result will be proved in the rest of the paper by means of a regularization and time-
discretization argument. In particular, we discuss the approximation of the problem in Sect. 4. Suitable a
priori estimates are then established in Sect. 5. Eventually, the passage to the limit is performed in Sect. 6.
Note that as a by-product of the existence analysis, we are advancing a stable and convergence discretiza-
tion scheme which might be of some independent applicative interest: in particular, it suggests a conceptual
numerical strategy when implementing an additional spatial discretization and an iterative procedure to solve
approximately the nonconstructive fixed point problem arising, in fact, in the proof of Lemma 1.
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4 Time discretization

As already mentioned, we tackle the existence of a weak solution to system (2.11) in the sense of Definition 1
by considering a suitable time discretization combined with a regularization. Let us introduce an equi-distant
partition of the interval [0, T ] with time-step τ > 0, assuming T/τ ∈ N. By making use of the notation
Dk
τ v = (vk

τ − vk−1
τ )/τ for the increment, we shall be considering the fully implicit discretized and regularized

system:

Dk
τw − div

(

K(zk
τ , θ

k
τ )∇θk

τ

) = δ∗Z (Dk
τ zk
τ )+ DDk

τ z·Dk
τ z + δ∗M (Dk

τm)+ α|Dk
τm|2

+ S(zk
τ , θ

k
τ )e

k
τ ·ek

τ

1+τ |ek
τ |2

+ A(zk
τ , θ

k
τ )D

k
τ z

1 + τ |A(zk
τ , θ

k
τ )|

+ a0θ
k
τ mk

τ ·Dk
τm =: rk

τ , (4.1a)

div C(ε(uk
τ )−Etr(z

k
τ )) = 0, (4.1b)

∂δ∗Z (Dk
τ z)+DDk

τ z+Etr
�

C
(

Etr(z
k
τ )−ε(uk

τ )
)+Hzk

τ+∂zψC(m
k
τ , zk

τ )

− κ1�zk
τ+NK (zk

τ ) � −α1(θ
k
τ )γ

′(zk
τ ), (4.1c)

∂δ∗M (Dk
τm)+αDk

τm+∂mψC(m
k
τ , zk

τ )−κ2�mk
τ+NS(mk

τ ) � μ0hk
τ−a0θ

k
τ mk

τ , (4.1d)

μ0(D
k
τ h + Dk

τm)+ curl ek
τ = 0, (4.1e)

curl hk
τ = S(zk

τ , θ
k
τ )e

k
τ , (4.1f)

wk
τ = ω(zk

τ , θ
k
τ ). (4.1g)

The mentioned regularization consist in the approximation of the unbounded terms S(z, θ)e·e and A(zk
τ , θ

k
τ )

by the bounded terms S(z, θ)e·e/(1+τ |e|2) and A(zk
τ , θ

k
τ )/(1 + τ |A(zk

τ , θ
k
τ )|), respectively. Note that these

regularizations depend on the time-step τ and vanish in the limit for τ → 0.
The initial and boundary conditions (2.12) are discretized by letting

z0
τ = z0, w0

τ = w0 = ω(z0, θ0), m0
τ = m0, h0

τ = h0, (4.2a)

uk
τ = 0 on ΓD, C(ε(uk

τ )−Etr(z
k
τ ))ν = 0 on ΓN, (4.2b)

∂ zk
τ

∂ν
= 0,

∂mk
τ

∂ν
= 0,

(

K(zk
τ , θ

k
τ )∇θk

τ

)·ν = f k
b,τ , ν×hk

τ = jk
b,τ on Γ, (4.2c)

where we have used f k
b,τ := (1/τ)

∫ kτ
(k−1)τ fb(t) dt and jk

b,τ := (1/τ)
∫ kτ
(k−1)τ jb(t) dt . Our first result concerns

the solvability of the discrete system (4.1): We shall find a vector
(

θk
τ , zk

τ ,mk
τ , uk

τ , hk
τ , ek

τ

) ∈ H := H1(Ω; R×R
N ×R

3×R
3)× L2

curl

(

Ω; R
3)× L2

curl

(

Ω; R
3) (4.3)

solving system (4.1) in a suitable weak sense, see (4.10) below. In particular, measurable selections of the
involved multivalued mappings are to be found. We have the following.

Lemma 1 (Existence of discrete solutions) Under assumptions (3.5), the boundary value system (4.1)–(4.2)
possesses at least one weak solution. Moreover, all such solutions fulfil wk

τ ≥0 and θk
τ ≥0 a.e. on Ω .

Sketch of the Proof. We apply the abstract existence theorem for equations involving set-valued nonlinear
pseudomonotone coercive operators from Hilbert spaces to the corresponding duals. In particular, we let the
base space be H and consider the mapping defined by system (4.1) (along with the conditions (4.2)) from the
six-tuple (θ, z,m, u, h, e) to the dual of H .

To prove the coercivity of the underlying nonlinear operator, the equations in (4.1) are to be tested, respec-
tively, by θk

τ , zk
τ , mk

τ , uk
τ , hk

τ , and −ek
τ . The nonmonotone terms are to be estimated by Hölder’s and Young’s

inequalities by exploiting the L∞-boundedness of zk
τ and mk

τ (due to the boundedness of K and S, respec-
tively). Moreover, we use the boundedness of the regularized Joule-heat term (i.e. the S-term) in (4.1a). The
remaining terms are quite easily controlled. In particular, the mentioned test of the Maxwell equations (4.1e)
by hk

τ and (4.1f) by −ek
τ uses the property

∫

Ω

(

curl hk
τ ·ek

τ − hk
τ · curl ek

τ

)

dx =
∫

Γ

(ν×hk
τ )·ek

τ dS =
∫

Γ

jk
b,τ ·ek

τ dS = −
∫

Γ

(ek
τ×hk

b,τ )·ν dS (4.4)
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where the last equality follows from having defined hk
b,τ = −ν× jk

b,τ and by using the estimate
∫

Γ

(ν×hk
τ )·ek

τ dS ≤ C
∥
∥hk

b,τ

∥
∥

L2
curl (Ω;R3)

∥
∥ek
τ

∥
∥

L2
curl (Ω;R3)

,

cf. [83] for details. The term
∫

Ω
Dk
τwθ

k
τ dx gives rise in particular to the term 1

τ

∫

Ω
ω(zk

τ , θ
k
τ )θ

k
τ dx which can

be estimated from below by ε
τ
‖θk
τ ‖2

L2(Ω)
with ε from (3.5i), and ensures full coercivity (also with respect to

constants). Altogether, by taking into account the positive-definiteness assumption (3.10), the coercive left-
hand side terms control ‖·‖2

H with the Hilbert space H from (4.3). This dominates the growth of the remaining
nonmonotone terms on the right-hand side of the heat equation (4.1a) by using the mentioned boundedness
of K and S. A(z, ·). Moreover, from a comparison in (4.1e) and (4.1f), we also obtain estimates on curl ek

τ in
L2(Ω; R

3) and curl hk
τ in L2(Ω; R

3). Hence, coercivity on the spaces indicated in (4.3) and the validity of the
formula (4.4) follow.

The pseudomonotonicity of the full operator follows because all nonmonotone terms are of lower
order except the term S in (4.1a). We just need to show weak–strong continuity. To this aim, by letting
(θi , zi ,mi , ui , hi , ei ) denote some weakly H -converging sequence to some limit (θ, z,m, u, h, e) and using
relations (4.1e)–(4.1f), it suffices to check that

lim sup
i→∞

∫

Ω

S(zi , θi )(ei−e)·(ei−e) dx

= lim sup
i→∞

∫

Ω

S(zi , θi )ei ·ei dx + lim
i→∞

∫

Ω

S(zi , θi )(e−2ei )·e dx

= lim sup
i→∞

∫

Ω

curl hi ·ei dx +
∫

Ω

S(z, θ)(e−2e)·e dx

= lim sup
i→∞

∫

Ω

(

curl hk
b,τ ·ei + curl (hi−hk

b,τ )·ei

)

dx −
∫

Ω

S(z, θ)e·e dx

= lim sup
i→∞

∫

Ω

(

curl hk
b,τ ·ei + (hi−hk

b,τ )·curl ei

)

dx −
∫

Ω

S(z, θ)e·e dx

= lim sup
i→∞

∫

Ω

(

curl hk
b,τ ·ei − μ0(hi−hk

b,τ )·
(

hi+mi

τ
− hk−1

τ +mk−1
τ

τ

))

dx −
∫

Ω

S(z, θ)e·e dx

≤
∫

Ω

(

curl hk
b,τ ·e − μ0(h−hk

b,τ )·
(

h+m
τ

− hk−1
τ +mk−1

τ

τ

)

− S(z, θ)e·e
)

dx

=
∫

Ω

(

curl hk
b,τ ·e + (h−hk

b,τ )·curl e − S(z, θ)e·e
)

dx

=
∫

Ω

(

curl hk
b,τ ·e + curl (h−hk

b,τ )·e − S(z, θ)e·e
)

dx = 0 (4.5)

where we used hi → h weakly in L2(Ω; R
3), mi → m strongly in L2(Ω; R

3), and the weak upper semi-
continuity of the functional h �→ ∫

Ω
−μ0h·h/τ dx . Hence, ei → e strongly in L2(Ω; R

3) and the weak–
strong continuity of the S-term in (4.1a) follows. Then, the claimed existence follows standardly by theory of
pseudomonotone operators using the classical Brézis theorem [20], possibly generalized for set-valued map-
pings having a convex potential, cf. e.g. [80, Sect. 5.3]. Eventually, one can test (4.1a) by −(θk

τ )
− = min(θk

τ , 0)
and exploit (3.12) and the sign of fb from (3.5e) in order to prove that θk

τ ≥ 0 almost everywhere. In view of
(3.5i), the mapping ω(z, ·) from (3.1) is increasing and, as ω(z, 0) = 0, we have also wk

τ = ω(zk
τ , θ

k
τ ) ≥ 0.��

Our next aim is that of specifying the discrete analogue of relations (3.4) for the time-discrete weak
solutions. In order to do so, we shall preliminarily observe that indeed the Biot-type relations (4.1c)–(4.1d) are
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here actually solved strongly. In particular, by letting ηk
1,τ and ηk

2,τ be selections in ∂δ∗Z (Dk
τ z) and ∂δ∗M (Dk

τm),
respectively, and observing that ηk

i,τ ∈ L∞, the bounds in (3.5g) and (3.11) entail that both zk
τ and mk

τ solve a
relation of the form

−κ�g + NC (g) � f (4.6)

in the dual of some H1-space, where f ∈ L2 and C is a nonempty, convex, and closed set. In particular, there
exists a measurable selection ξ such that ξ ∈ NC (g) almost everywhere. It is hence straightforward to check
that both ξ and −�g belong to L2 as a consequence of the monotonicity of the normal cone. The rigorous
proof needs a smoothening argument: one can use an exterior penalty δC,ε(g) := ε−1 min g̃∈C |g− g̃|2 i.e. the
Yosida approximation of δC , and consider the Dirichlet boundary value problem κ�gε − δ′C,ε(gε) = f with
the boundary condition gε = g on Γ with g solving (4.6), which ensures δ′C,ε(gε) = 0 on Γ so that the
boundary term arising by the test by �gε disappears, which allows for estimation

κ
∥
∥�gε

∥
∥2

L2(Ω)
≤
∫

Ω

κ|�gε |2 dx + δ′′C,ε(gε)∇ gε ·∇ gε dx

=
∫

Ω

κ|�gε |2 dx + δ′′C,ε(gε)∇ gε ·∇ gε dx −
∫

Γ

δ′C,ε(gε)∇ gε ·ν dS

=
∫

Ω

(

κ�gε − δ′C,ε(gε)
)

�gε dx = −
∫

Ω

f ·�gε dx ≤ ∥∥ f
∥
∥

L2(Ω)

∥
∥�gε

∥
∥

L2(Ω)
, (4.7)

which gives ‖�gε‖L2(Ω) ≤ ‖ f ‖L2(Ω)/κ and then, for ξ ε = δ′C,ε(gε), also

‖ξ ε‖L2(Ω) = ‖κ�gε+ f ‖L2(Ω) ≤ 2‖ f ‖L2(Ω),

and these estimates obviously pass to the limit as ε → 0. As such, the equation is solved strongly and g
actually belongs to H2

N . In particular, this observation entails that zk
τ ∈ H2

N (Ω; R
N ) and mk

τ ∈ H2
N (Ω; R

3) and
the corresponding inclusions (4.1c) and (4.1d) are solved strongly.

For the sake of rewriting the discrete system in a more compact form, let us define the piecewise affine,
the left-continuous piecewise-constant, and the right-continuous piecewise-constant interpolants on the time
partition. In particular, given any vectors {vk}T/τ

k=0, we define

vτ (t) = t − (k−1)τ

τ
vk
τ + kτ − t

τ
vk−1
τ for t ∈ [(k−1)τ, kτ ], k = 1, . . . , T/τ, (4.8a)

v̄τ (t) = vk for t ∈ ((k−1)τ, kτ ], k = 0, . . . , T/τ, (4.8b)

vτ (t) := vk−1
τ for t ∈ [(k−1)τ, kτ), k = 0, . . . , T/τ. (4.8c)

Given also {wk}T/τ
k=1, we will also use the discrete by-part summation formula

�
∑

k=1

τ(Dk
τw)v

k = w�τ v
� − w0v0 −

�
∑

k=1

τwk−1
τ Dk

τ v. (4.9)

We can specify our notion of discrete weak solution as that of a vector {(θk
τ , zk

τ ,mk
τ , hk

τ , ek
τ )}T/τ

k=1 in
H1(Ω)×H2

N (Ω; R
N )×H2

N (Ω; R
3)×H1

ΓD
(Ω; R

3)×L2
curl(Ω; R

3)×L2
curl(Ω; R

3) along with the selections

{(ηk
1,τ , η

k
2,τ , ξ

k
1,τ , ξ

k
1,τ , )}T/τ

k=1 ∈ L∞(Ω; R
N ×R

3)×L2(Ω; R
N ×R

3) such that, in terms of the interpolants
defined in (4.8),
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∫

Ω

.
wτ (t) ṽ dx +

∫

Ω

K( z̄τ (t), θ̄τ (t))∇ θ̄τ (t)·∇ṽ dx +
∫

Γ

f̄b,τ (t) ṽ dS

=
∫

Ω

r̄τ (t) ṽ dx ∀ṽ∈ H1(Ω), t ∈(0, T ), (4.10a)

∫

Ω

C(ε(ūτ (t))−Etr( z̄τ (t))):ε(̃v) dx = 0 ∀̃v ∈ H1
ΓD
(Ω; R

3), t ∈ (0, T ), (4.10b)

η̄1,τ + D
.
zτ + Etr

�
C(Etr( z̄τ )−ε(ūτ ))+ H z̄τ + ∂zψC( z̄τ , m̄τ )

− κ1� z̄τ + ξ̄1,τ = −α1(θ̄τ )γ
′( z̄τ ), η̄1,τ ∈∂δ∗Z (

.
zτ ), ξ̄1,τ ∈ NK ( z̄τ ) a.e. in Q, (4.10c)

η̄2,τ + α
.
mτ + ∂mψC( z̄τ , m̄τ )− κ2�m̄τ + ξ̄2,τ = μ0 h̄τ − a0θ̄τ m̄τ ,

η̄2,τ ∈∂δ∗M (
.
mτ ), ξ̄2,τ ∈ NS(m̄τ ) a.e. in Q, (4.10d)

∫

Q

ēτ ·curl v̄τ − μ0(hτ+mτ )·
.
vτ dxdt = μ0

∫

Ω

(h0+m0)·vτ (·, 0) dx

∀vτ ∈ H1(I ; L2
curl,0(Ω; R

3)) with vτ (·, T ) = 0, (4.10e)

curl h̄τ = S( z̄τ , θ̄τ )ēτ and w̄τ = ω( z̄τ , θ̄τ ) a.e. in Q, and

h̄τ−hb ∈ L2(0, T ; L2
curl ,0(Ω; R

3)). (4.10f)

where r̄τ comes from (4.1a) via (4.8b).

5 A priori estimates

The existence result of Theorem 1 follows from the passage to the limit as τ → 0 into relations (4.10). This
in turn relies on weak compactness. As such, we shall establish here a suitable set of a priori estimates on the
discrete solutions which are independent of the regularization-discretization parameter τ . In particular, in what
follows, we use the symbol C in order to indicate any positive constant just depending on data and independent
of τ . Note that the actual value of C may change from line to line. Occasionally, dependencies of the constants
will be traced.

Lemma 2 (A priori estimates I) Under assumptions (3.5) we have that

∥
∥wτ

∥
∥

L∞(I ;L1(Ω))
≤ C, (5.1a)

∥
∥zτ
∥
∥

L2(I ;H2
N(Ω;RN ))∩ L∞(I ;H1(Ω;RN ))∩ H1(I ;L2(Ω;RN ))

≤ C, (5.1b)
∥
∥mτ

∥
∥

L2(I ;H2
N(Ω;R3))∩ L∞(I ;H1(Ω;R3))∩ H1(I ;L2(Ω;R3))

≤ C, (5.1c)
∥
∥ūτ

∥
∥

H1(I ;H1(Ω;R3))
≤ C, (5.1d)

∥
∥h̄τ

∥
∥

L∞(I ;L2(Ω;R3))∩ L2(I ;L2
curl(Ω;R3))

≤ C, (5.1e)
∥
∥eτ
∥
∥

L2(Q;R3)
≤ C, (5.1f)

∥
∥η̄1τ

∥
∥

L∞(Q;RN )
≤ C,

∥
∥η̄2τ

∥
∥

L∞(Q;R3)
≤ C, (5.1g)

∥
∥ξ̄1τ

∥
∥

L2(Q;RN )
≤ C,

∥
∥ξ̄2τ

∥
∥

L2(Q;R3)
≤ C. (5.1h)

Sketch of the Proof. The boundedness of η̄i,τ in (5.1g) is immediate. Indeed, note that both δ∗Z and δ∗M are
bounded since Z and M contain a small ball centered in the origin. As such, the corresponding subdifferentials
are bounded as well.

Let us now test (4.1b), (4.10c), (4.10d), (4.10e), and (4.10f) by Dk
τu, Dk

τ z, Dk
τm, h̄τ , and −ēτ , respectively.

We use the fact that ψC is semiconvex (namely, convex up to a quadratic correction) due to (3.5g). This allows
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for estimation when compensated by viscosity in the involved arguments i.e. z and m. For τ > 0 sufficiently
small, a suitable discrete chain rule yields

(

∂zψC(z
k
τ ,mk

τ )+ DDk
τ z
)·Dk

τ z + (∂mψC(z
k
τ ,mk

τ )+ αDk
τm
)·Dk

τm

=
(

∂zψC(z
k
τ ,mk

τ )+ D√
τ

zk
τ

)

·Dk
τ z +

(

∂mψC(z
k
τ ,mk

τ )+ α√
τ

mk
τ

)

·Dk
τm

− D√
τ

zk
τ ·Dk

τ z − α√
τ

mk
τ ·Dk

τm + DDk
τ z·Dk

τ z + α|Dk
τm|2

≥ 1

τ

(

ψC(z
k
τ ,mk

τ )+ Dzk
τ ·zk

τ+α|mk
τ |2

2
√
τ

− ψC(z
k−1
τ ,mk−1

τ )− Dzk−1
τ ·zk−1

τ +α|mk−1
τ |2

2
√
τ

)

− D√
τ

zk
τ ·Dk

τ z − α√
τ

mk
τ ·Dk

τm + DDk
τ z·Dk

τ z + α|Dk
τm|2

= ψC(z
k
τ ,mk

τ )−ψC(z
k−1
τ ,mk−1

τ )

τ
+
(

1−
√
τ

2

)(

DDk
τ z·Dk

τ z + α|Dk
τm|2). (5.2)

On the other hand, the free energy is convex in terms of u. This allows for estimation even without viscosity
in terms of

.
ε. By using (5.2), we can estimate the magneto-electro-mechanical energy of the system (2.16),

integrated over the time interval [0, �τ ] with � = 1, . . . , T/τ , as
∫

Ω

(

ψMEC(ε(ū
�
τ ), z�τ )+ψC(z

�
τ ,m�

τ )+ψNL(∇ z�τ ,∇m�
τ )+

μ0

2
|h�τ |2

)

dx

+ τ

�
∑

k=1

∫

Ω

(

δ∗Z (Dk
τ z)+ δ∗M (Dk

τm)+
(

1−
√
τ

2

)

DDk
τ z·Dk

τ z +
(

1−
√
τ

2

)

α|Dk
τm|2

)

dx

+ τ

�
∑

k=1

∫

Ω

(

S(zk
τ , θ

k
τ )e

k
τ ·ek

τ+α1(θ
k
τ )γ

′(zk
τ )·Dk

τ z+a0θ
k
τ mk

τ ·Dk
τm
)

dx

≤
∫

Ω

(

ψMEC(ε(ū0), z0)+ ψC(z0,m0)+ ψNL(∇ z0,∇m0)+ μ0

2
|h0|2

)

dx + τ

�
∑

k=1

∫

Γ

jk
b,τ ·ek

τdS. (5.3)

In order to estimate also the dissipative terms, we now add to the latter the discrete heat transfer equation (4.1a)
tested by 1/2. One gets

1

2

∫

Ω

w�τdx − 1

2

∫

Ω

w0dx = τ

2

�
∑

k=1

∫

Ω

(

δ∗Z (Dk
τ z)+ δ∗M (Dk

τm)+ DDk
τ z·Dk

τ z + α|Dk
τm|2

)

dx

+ τ

2

�
∑

k=1

∫

Ω

(
S(zk

τ , θ
k
τ )e

k
τ ·ek

τ

1+τ |ek
τ |2

+ A(zk
τ , θ

k
τ )D

k
τ z

1 + τ |A(zk
τ , θ

k
τ )|

+ a0θ
k
τ mk

τ ·Dk
τm
)

dx + τ

2

�
∑

k=1

∫

Γ

f k
b,τdS.

By choosing τ small enough and adding the latter to (5.3) we get

∫

Ω

(

ψMEC(ε(ū
�
τ ), z�τ )+ ψC(z

�
τ ,m�

τ )+ ψNL(∇ z�τ ,∇m�
τ )+ μ0

2
|h�τ |2 + 1

2
w�τ

)

dx

+ τ

4

�
∑

k=1

∫

Ω

(

δ∗Z (Dk
τ z)+ δ∗M (Dk

τm)+ DDk
τ z·Dk

τ z + α|Dk
τm|2 + S (zk

τ , w
k
τ )e

k
τ ·ek

τ

)

dx

≤
∫

Ω

(

ψMEC(ε(ū0), z0)+ ψC(z0,m0)+ ψNL(∇ z0,∇m0)+ μ0

2
|h0|2 + 1

2
w0

)

dx
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+ τ

�
∑

k=1

∫

Ω

(
A(zk

τ , θ
k
τ )D

k
τ z

1 + τ |A(zk
τ , θ

k
τ )|

− α1(θ
k
τ )γ

′(zk
τ )·Dk

τ z − 1

2
a0θ

k
τ mk

τ ·Dk
τm
)

dx

+ τ

�
∑

k=1

∫

Γ

(

jk
b,τ ·ek

τ + 1

2
f k
b,τ

)

dS. (5.4)

As for to control the above right-hand side, we observe that the initial terms are bounded due to the smoothness
ofψC (3.5g) and the (3.5b)–(3.5d), the boundary term containing fb is bounded due to (3.5e) and the remaining
boundary term can be estimated by imitating the scenario (3.16) and using the by-part summation like (4.9)
as follows:

τ

�
∑

k=1

∫

Γ

jk
b,τ ·ek

τdS = τ

�
∑

k=1

∫

Ω

(

curl hk
b,τ ·ek

τ−hk
b,τ ·curl ek

τ

)

dx

= τ

�
∑

k=1

∫

Ω

(

curl hk
b,τ ·ek

τ+μ0hk
b,τ ·(Dk

τ h + Dk
τm)

)

dx

= τ

�
∑

k=1

∫

Ω

(

curl hk
b,τ ·ek

τ+μ0hk
b,τ ·Dk

τm
)

dx + μ0

∫

Ω

(

h�b,τ ·h�τ−h0
b,τ ·h0

)

dx − τμ0

�
∑

k=1

∫

Ω

Dk
τ hb·hk−1

τ dx

≤ μ0‖h�b,τ
∥
∥

L2(Ω;R3)

∥
∥h�τ

∥
∥

L2(Ω;R3)
+ τ

�
∑

k=1

(
1

2ε

∥
∥hk

b,τ

∥
∥

2
L2

curl(Ω;R3)
+ ε
∥
∥ek
τ

∥
∥

2
L2(Ω;R3)

+ ε
∥
∥Dk

τm
∥
∥

2
L2(Ω;R3)

)

+ τμ0

�
∑

k=1

∥
∥Dk

τ hb
∥
∥

L2(Ω;R3)

(

1 + ∥∥hk−1
τ

∥
∥2

L2(Ω;R3)

)

+ μ0‖h0
b,τ

∥
∥

L2(Ω;R3)

∥
∥h0

∥
∥

L2(Ω;R3)
(5.5)

with ε > 0 to be chosen sufficiently small, namely ε < min(κ0, α) with κ0 from (3.10), and then to be treated
by a discrete Gronwall inequality, exploiting also (3.5f). As for the other terms in the right-hand side of (5.4),
by using (3.11) and letting ε > 0 be suitably small, we proceed as follows

τ

�
∑

k=1

∫

Ω

A(zk
τ , θ

k
τ )D

k
τ zk
τdx ≤ C

�τ∫

0

∫

Ω

(

1 +√w̄τ
)

|.zτ | dxdt ≤ ε

�τ∫

0

∫

Ω

|.zτ |2dxdt + C

ε

�τ∫

0

∫

Ω

w̄τdxdt + C,

− τ

�
∑

k=1

∫

Ω

α1(θ
k
τ )γ

′(zk
τ )·Dk

τ z dx ≤ C

�τ∫

0

∫

Ω

(

1+√w̄τ
)

|.zτ | dxdt ≤ ε

�τ∫

0

‖.zτ‖2
L2(Ω;R3)

dt

+ C

ε

�τ∫

0

∫

Ω

w̄τdxdt + C,−τ
2

�
∑

k=1

∫

Ω

a0θ
k
τ mk

τ ·Dk
τmdx ≤ C

�τ∫

0

∫

Ω

(

1+√w̄τ
)

| .mτ | dxdt

≤ ε

�τ∫

0

‖ .
mτ‖2

L2(Ω;R3)
dt + C

ε

�τ∫

0

∫

Ω

w̄τdxdt + C.

Hence, by collecting the latter into (5.4), recalling that wk
τ ≥ 0, and applying the (discrete) Gronwall lemma

(possibly taking a small time-step), we obtain estimates (5.1a)–(5.1c) as well as the L2-estimate of eτ . Estimate
(5.1e) follows from the identity

curl (h̄τ−h̄b,τ ) = S(zk
τ , θ

k
τ )ēτ−curl h̄b,τ (5.6)

and from the already established bounds and (3.5k). Estimate (5.1f) follows then from equation (4.1e). Addi-
tionally, we also estimate ūτ in L∞(I ; H1(Ω; R

3)). Moreover, by the linearity of the solution mapping
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(z, b) �→ u for relation (3.4b), the bound on
.
u follows from that of

.
zτ . In particular, estimate (5.1d) ensues.

Eventually, by comparison in relations (4.10c) and (4.10d), we have that −κ1� z̄τ + ξ̄1,τ and −κ2�m̄τ + ξ̄2,τ

are bounded in L2. This entails the boundedness in H2 for z̄τ and m̄τ , see (5.1b)–(5.1c), as well as the bounds
(5.1h) on ξ i,τ . ��

Let us now refine the energy estimate of Lemma 2 in order to obtain some control of time and space
variations of w. This resides on the use of a by now classical argument from [17].

Lemma 3 (A priori estimates II) Under assumptions (3.5), we have that
∥
∥∇w̄τ

∥
∥

Lr (Q;R3)
≤ Cr ,

∥
∥w̄τ

∥
∥

Lq (Q) ≤ Cq , and (5.7a)
∥
∥∇ θ̄τ

∥
∥

Lr (Q;R3)
≤ Cr ,

∥
∥w̄τ

∥
∥

Lq (Q) ≤ Cq , with 1 ≤ r < 5/4, , 1 ≤ q < 5/3, (5.7b)
∥
∥
.
wτ
∥
∥

L1(I ;H3(Ω)∗) ≤ C and (5.7c)
∥
∥
.
hτ
∥
∥

L2(I ;L2
curl ,0(Ω;R3)∗) ≤ C. (5.7d)

Sketch of the Proof. The doubly nonlinear structure of the heat equation, involving both ω and K, makes this
estimate quite technical. In order to obtain the bound on the gradient of w, we test equation (4.1a) by jη(wk

τ )

with jη : w �→ 1 − (1+w)−η with η > 0; note that we cannot use the test by jη(θk
τ ). Indeed, this would

make treatment of the K-term simpler but does not pair well with the
.
w-term. Note that r̄τ from (4.1a) is

uniformly bounded in L1(Q) by virtue of the estimates of Lemma 2 and of the bounds (3.11) and (3.5k). Since
θ = T (z, w), one can express the heat flux as

K(z, θ)∇θ = K(z,T (z, w))∇T (z, w) = K0(z, w)∇w + K1(z, w)∇ z (5.8)

where K0 and K1 are given in positions (3.9). The above-mentioned test provides the following bound

κ0η

∫

Q

|∇w̄τ |2
(1+w̄τ )1+η dxdt = κ0

∫

Q

j ′η(w̄τ )|∇w̄τ |2 dxdt

≤
∫

Q

j ′η(w̄τ )K0( z̄τ , w̄τ )∇w̄τ ·∇w̄τ dxdt =
∫

Q

K0( z̄τ , w̄τ )∇w̄τ ·∇ jη(w̄τ ) dxdt

≤
∫

Q

K0( z̄τ , w̄τ )∇w̄τ ·∇ jη(w̄τ ) dxdt +
∫

Ω

ĵη(w̄τ (T, ·)) dx

≤
∫

Ω

ĵη(w0) dx +
∫

�

f̄b,τ jη(w̄τ ) dSdt +
∫

Q

(

r̄τ jη(w̄τ )− K1( z̄τ , w̄τ )∇ z̄τ ·∇ jη(w̄τ )
)

dxdt

≤ ‖w0‖L1(Ω) + ‖ f ‖L1(�) + ‖r̄τ‖L1(Q) + η

∫

Q

K1( z̄τ , w̄τ )∇ z̄τ ·∇w̄τ
(1+w̄τ )1+η dxdt

≤ C + ‖r̄τ‖L1(Q) + η

∫

Q

(
1

4ε
|∇ z̄τ |2 + ε

|K1( z̄τ , w̄τ )|2
(1+w̄τ )

|∇w̄τ |2
(1+w̄τ )1+η

)

dxdt

= C + ‖r̄τ‖L1(Q) + η

∫

Q

(
1

4ε
|∇ z̄τ |2 + εC

|∇w̄τ |2
(1+w̄τ )1+η

)

dxdt (5.9)

where κ0 > 0 is the coercivity constant in (3.10), we have used the bound on K1 from assumption (3.11), and
ĵη is a primitive function of jη. In the latter computation, we have also used the fact that

jη(w
k
τ )D

k
τw ≥ Dk

τ ĵη(w) (5.10)

which is a consequence of the convexity of ĵη. By choosing ε > 0 small enough, we absorb the last term in the
right-hand side of (5.9) to the left. In particular, we have proved that the term η

∫

Q |∇w̄τ |2(1+w̄τ )−(1+η)dxdt



Magnetic shape-memory alloys 803

is uniformly bounded in L1(Q). Estimate (5.7a) now follows from a careful application of the Gagliardo-
Nirenberg inequality as in [80, Sects. 12.1 and 12.8-9].

For (5.7b), we use the already obtained estimates (5.7a) and (5.1b) and the identity

∇ θ̄τ = 1

c0(θ̄τ )+c1(θ̄τ )γ ( z̄τ )
∇̄wτ − ĉ1(θ̄τ )γ

′( z̄τ )
c0(θ̄τ )+c1(θ̄τ )γ ( z̄τ )

∇̄ zτ (5.11)

obtained by applying the ∇-operator to the identity (3.1). Note that we use also the assumption (3.5i) here. By
uniform at most linear growth of T (z, ·) due to (3.6), the Lq -estimate (5.7a) of w̄τ is inherited by θ̄τ i.e. the
Lq -estimate in (5.7b) is proved, too.

In order to estimate
.
wτ , we use comparison into relation (4.10a) and get that

∥
∥
.
wτ
∥
∥

L1(I ;(H3(Ω))∗) = sup
‖v‖L∞(I ;H3(Ω))≤1

∫

Q

.
wτv dxdt

= sup
‖v‖L∞(I ;H3(Ω))≤1

⎧

⎪⎨

⎪⎩

∫

�

f̄b,τ v dSdt +
∫

Q

(

δ∗Z (
.
zτ )+D

.
zτ ·.zτ+δ∗M (

.
mτ )+α| .mτ |2

)

v dxdt

+
∫

Q

(

S( z̄τ , θ̄τ )
1+τ |ēτ |2 ēτ ·ēτ + A( z̄τ , θ̄τ )

.
zτ

1 + τ |A( z̄τ , θ̄τ )|
+ a0θ̄τ m̄τ · .mτ

)

v − K( z̄τ , θ̄τ )∇ θ̄τ ·∇v dxdt

⎫

⎪⎬

⎪⎭

. (5.12)

Owing to the already established estimates (5.7b) and the bound (3.5k) with η < 3/2, we have that the
term K( z̄τ , θ̄τ ) is bounded in L5/2−ε(Q; R

3×3) so that K( z̄τ , θ̄τ )∇ θ̄τ is bounded in L1(Q; R
3). In particular,

estimate (5.7c) ensues.

As for the estimate on
.
hτ , one uses relation (4.1e) in order to infer that

‖ .
hτ‖L2(I ;L2

curl ,0(Ω;R3)∗) = sup
‖v‖

L2(I ;L2
curl ,0(Ω;R3))

≤1

∫

Q

.
hτ ·v dxdt

= sup
‖v‖

L2(I ;L2
curl ,0(Ω;R3))

≤1

1

μ0

∫

Q

(

curl ēτ+μ0
.
mτ

)·v dxdt

= sup
‖v‖

L2(I ;L2
curl ,0(Ω;R3))

≤1

1

μ0

∫

Q

(

ēτ ·curl v+ .
mτ ·v

)

dxdt. (5.13)

In particular, estimate (5.7d) follows from the already obtained bounds (5.1c) and (5.1f). ��

6 Passage to the limit

This section brings to the proof of the existence result of Theorem 1 via the passage to the limit in the
(regularization and) discretization parameter τ . We formulate this convergence statement as follows.

Proposition 1 (Convergence for τ → 0) Under assumptions (3.5), the sequences θτ , zτ , mτ , uτ , hτ , eτ , ηi,τ ,
and ξ i,τ , which exist by Lemma 1, possess weakly∗ converging subsequences in the topologies of estimates
(5.1). Moreover, one also has that the strong convergences including also for w̄τ , namely:

θ̄τ → θ and w̄τ → w strongly in L5/3−ε(Q) with any 0 < ε ≤ 2/3, (6.1a)

( z̄τ , m̄τ ) → (z,m) strongly in W 1,6−ε(Q; R
N ×R

3) with any 0 < ε ≤ 5, (6.1b)
.
zτ → .

z strongly in L2(Q; R
N ), (6.1c)

.
uτ → .

u strongly in L2(I ; H1(Ω; R
3)), (6.1d)

.
mτ → .

m strongly in L2(Q; R
3), (6.1e)
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ēτ → e strongly in L2(Q; R
3), (6.1f)

(η1,τ , η2,τ ) → (η1, η2) weakly* in L∞(Q; R
N ×R

3), (6.1g)

(ξ1,τ , ξ2,τ ) → (ξ1, ξ2) weakly in L2(Q; R
N ×R

3). (6.1h)

Each limit (θτ , z,m, u, h, e) obtained by this way, along with (ηi , ξ i ), is a weak solution to the initial boundary
value problem (2.11)–(2.12) in accord to Definition 1. Additionally, it fulfils (3.13), (3.14), and (3.15).

Proof Owing to the uniform estimates from Lemma 2 and standard weak* compactness arguments, we have that
the sequences (θτ , zτ ,mτ , uτ , hτ , eτ ) and (ηi,τ , ξ i,τ ) admit weakly* converging subsequences (not relabelled)
to the limit (θ, z,m, u, h, e) and (ηi , ξ i ) in the topologies of the estimates (5.1). By the Aubin-Lions theorem,
convergences (6.1a) and (6.1b) follow. Note that the proof of convergence (6.1a) requires some interpolation
technique (as in [80, Cor.7.8]) and, for the first convergence in (6.1a), one still uses that θ̄τ → θ weakly
in L5/3−ε(Q) due to the a priori estimates and simultaneously T ( z̄τ , w̄τ ) → T (z, w) by the continuity of
the Nemytskiı̆ operator, so that θ̄τ = T ( z̄τ , w̄τ ) converges even strongly to θ = T (z, w); note that (6.1a)

follows even without having any information about
.
θ at disposal. Thus, we also have w = ω(z, θ) as needed

in the definition (3.4f). Owing to these convergences and to the continuity of the other Nemytskiı̆ mappings
induced by ψC

′ and γ ′, one can pass to the limit in equations/inclusions (4.10b)–(4.10f) getting, respectively,
(3.4b)–(3.4f). The almost everywhere inclusions ξ1 ∈ NK (z) and ξ2 ∈ NS(m) follow directly from the strong
convergences (6.1b).

In order to check for the inclusions in (3.3g) and (3.3h), we shall argue by lower semicontinuity and test
equations (4.10c) and (4.10d) by z̄τ and m̄τ , respectively. By letting ψ̃ be defined as the lower semicontinuous
and convex function

ψ̃(ε(u), z,∇ z,∇m) :=ψMEC(ε(u), z)+ψC(m, z)+ψNL(∇ z,∇m)+ψCONST(z,m), (6.2)

we get that

lim sup
τ→0

∫

Q

(

η̄1τ ·.zτ + η̄2τ · .mτ

)

dxdt

= lim sup
τ→0

⎡

⎢
⎣

∫

Q

(

−∂Aψ̃( Āτ )·
.
Aτ − D

.
zτ ·.zτ − α| .mτ |2

)

dxdt

+
∫

Q

(

−α1(θ̄τ )γ
′( z̄τ )·.zτ − a0θ̄τ m̄τ · .mτ + μ0 h̄τ · .mτ

)

dxdt

⎤

⎥
⎦

≤
∫

Ω

ψ̃(ε(u0), z0,∇ z0,∇m0) dx − lim inf
τ→0

∫

Ω

ψ̃
(

ε(uτ (T )), zτ (T ),∇ zτ (T ),∇mτ (T )
)

dx

− lim
τ→0

∫

Q

(

α1(θ̄τ )γ
′( z̄τ )·.zτ + a0θ̄τ m̄τ · .mτ

)

dxdt

− lim inf
τ→0

∫

Q

(

D
.
zτ ·.zτ+α| .mτ |2

)

dxdt + lim sup
τ→0

μ0

∫

Q

h̄τ · .mτ dxdt

≤
∫

Ω

ψ̃(ε(u0), z0,∇ z0,∇m0)dx −
∫

Ω

ψ̃
(

ε(u(T )), z(T ),∇ z(T ),∇m(T )
)

dx

−
∫

Q

(

α1(θ)γ
′(z)·.z + a0θm· .m + D

.
z·.z + α| .m|2

)

dxdt

−
⎛

⎜
⎝

μ0

2

∫

Ω

(|h(T )|2 − |h0|2
)

dx +
∫

Q

S(z, θ)e·e dxdt +
∫

�

jb·e dSdt

⎞

⎟
⎠
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(3.16)=
∫

Q

(

− d

dt
ψ̃(ε(u), z,∇ z,∇m)− D

.
z·.z − α| .m|2

)

dxdt

−
∫

Q

(

α1(θ)γ
′(z)·.z + a0θm· .m − μ0h· .m

)

dxdt

=
∫

Q

(

η1·.z + η2· .m
)

dxdt, (6.3)

where we have used the shorthand notation A = (ε(u), z,∇ z,∇m) and

μ0

∫

Q

h̄τ · .mτ dxdt = −
∫

Q

h̄τ ·
(

μ0
.
hτ+curl ēτ

)

dxdt ≤ μ0

2

∫

Ω

(|h0|2−|hτ (T )|2
)

dx −
∫

Q

curl ēτ ·h̄τ dxdt

= μ0

2

∫

Ω

(|h0|2−|hτ (T )|2
)

dx −
∫

Q

(

ēτ ·curl (h̄τ−h̄b,τ )+curl ēτ ·h̄b,τ
)

dxdt

= μ0

2

∫

Ω

(|h0|2−|hτ (T )|2
)

dx −
∫

Q

(

S( z̄τ , θ̄τ )ēτ ·ēτ−ēτ ·curl h̄b,τ + μ0(
.
mτ+

.
hτ )·h̄b,τ

)

dxdt

= μ0

2

∫

Ω

(|h0|2−|hτ (T )|2
)

dx −
∫

Q

(

S( z̄τ , θ̄τ )ēτ ·ēτ−ēτ ·curl h̄b,τ + μ0
.
mτ ·h̄b,τ

)

dxdt

+ μ0

∫

Q

.
hb,τ ·h̄τ (· − τ) dxdt+

∫

Ω

(

hb,τ (0)·h0−hb,τ (T )·hτ (T )
)

dx, (6.4)

cf. also the manipulations in (4.5) and (5.5), and further we have used the weak lower semicontinuity of
h �→ ∫

Ω
|h(T )|2 dx and of (z, θ, e) �→ ∫

Q S(z, θ)e·e dxdt so that

lim sup
τ→0

∫

Q

h̄τ · .mτ dxdt ≤ 1

2

∫

Ω

(|h0|2−|h(T )|2) dx −
∫

Q

(
S(z, θ)e·e − e·curl hb

μ0
+ .

m·h̄b − .
hb·h

)

dxdt

+
∫

Ω

(

hb(0)·h0 − hb(T )·h(T )
)

dx =
∫

Q

h· .m dxdt (6.5)

where the last equality is due to analogous calculus as used already in (6.4) that can be made rigorous
by limiting a mollification. The last equality in (6.3) follows from the already established relations (3.4c),
(3.4d), and (3.4e)–(4.10f), and the inclusions in (3.3i) and (3.3j). Moreover, we have exploited the fact that
zτ (T ) → z(T ), mτ (T ) → m(T ), and uτ (T ) → u(T ) weakly in H1; note that u(T ) is determined uniquely
by z(T ) and m(T ) for the latter limsup-estimate in (6.3). The last equality in (6.3) is due to the classical chain
rule result [21, Lemme 3.3, p.73]. Standard maximal monotonicity arguments [21] entail that η1 ∈ ∂δ∗Z (

.
z) and

η2 ∈ ∂δ∗S(
.
m), that is, the two inclusions in (3.3g) and (3.3h). Putting this information into the last equality in

(6.3) results into the energy balance:
∫

Ω

ψ̃
(

ε(u(T )), z(T ),∇ z(T ),∇m(T )
)

dx+
∫

Q

(

D
.
z·.z+α| .m|2+δ∗Z (

.
z)+δ∗S(

.
m)
)

dxdt

=
∫

Q

(

α1(θ)γ
′(z)·.z+a0θm· .m−μ0h· .m

)

dxdt+
∫

Ω

ψ̃(ε(u0), z0,∇ z0,∇m0)dx . (6.6)

We are hence left with the limit passage in the heat equation (4.10a). The essential step is to show the
convergence of the heat sources. In order to do so, we start by discussing the dissipative terms. In particular,
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referring to the abridged notation (6.2), we use the discrete magneto-electro-mechanical energy inequality
(5.3) and lower semicontinuity in order to obtain that

∫

Q

(

δ∗Z (
.
z)+D

.
z·.z+δ∗M (

.
m)+α| .m|2+S(z, θ)e·e

)

dxdt

≤ lim inf
τ→0

∫

Q

(

δ∗Z (
.
zτ )+D

.
zτ ·.zτ+δ∗M (

.
mτ )+α| .mτ |2+S( z̄τ , θ̄τ )ēτ ·ēτ

)

dxdt

≤ lim sup
τ→0

∫

Q

(

δ∗Z (
.
zτ )+

(

1−
√
τ

2

)

D
.
zτ ·.zτ+δ∗M (

.
mτ )+

(

1−
√
τ

2

)

α| .mτ |2 + S( z̄τ , θ̄τ )ēτ ·ēτ
)

dxdt

≤
∫

Ω

(

ψ̃(ε(u0), z0,∇ z0,∇m0)+μ0

2
|h0|2

)

dx

− lim inf
τ→0

∫

Ω

(

ψ̃(ε(uτ (T )), zτ (T ),∇ zτ (T ),∇mτ (T ))+μ0

2
|hτ (T )|2

)

dx

− lim
τ→0

∫

Q

(

α1(θ̄τ )γ
′( z̄τ )·.zτ + a0θ̄τ m̄τ · .mτ

)

dxdt + lim
τ→0

∫

�

j̄b,τ ·ēτdSdt

≤
∫

Ω

(

ψ̃(ε(u0), z0,∇ z0,∇m0)+μ0

2
|h0|2

)

dx

−
∫

Ω

(

ψ̃(ε(uτ (T )), zτ (T ),∇ zτ (T ),∇mτ (T ))+μ0

2
|h(T )|2

)

dx

−
∫

Q

(

α1(θ)γ
′(z)·.z + a0θm· .m

)

dxdt +
∫

�

jb·e dSdt

=
∫

Q

(

δ∗Z (
.
z)+D

.
z·.z+δ∗M (

.
m)+α| .m|2+S(z, θ)e·e

)

dxdt, (6.7)

where limτ→0
∫

�
j̄b,τ ·ēτdSdt = ∫

�
jb·e dSdt is to be understood in the sense of (3.16). The first inequality

in (6.7) uses in particular lim infτ→0
∫

Q S( z̄τ , θ̄τ )ēτ ·ēτdxdt ≥ ∫

Q S(z, θ)e·e dxdt , which uses the already
proved strong convergence z̄τ and w̄τ and the continuity and positive semidefiniteness of S , cf. [42, Sect.4.3,
Thm.4.4]. The last equality in (6.7) is due to (6.6) summed with the electromagnetic energy balance (2.13)
integrated over [0, T ]. In the present regularity setting, this needs

μ0

∫

Ω

|h(T )|2dx − μ0

∫

Ω

|h0|2dx + μ0

∫

Q

.
m·h dxdt +

∫

Q

S( z̄τ , θ̄τ )e·e dx dt =
∫

�

jb·e dΓ dt

where, again, the latter term is interpreted as in (3.16). Note that this is exactly the desired magnetomechanical
energy balance (3.14).

In particular, (6.7) shows that all inequalities in (6.7) are, in fact, equalities. On the other hand, the integrand
on the left-hand side of (6.7) is uniformly convex. This entails the strong convergences for

.
zτ and

.
mτ as in (6.1c)

and (6.1e). We also get the strong convergence z̄τ as in (6.1f); we refer to [83, Step 4 in the proof of Prop. 1] for
details. As for the strong convergence (6.1d) for

.
uτ , one takes the time derivative of (4.10b) and test it on

.
uτ so

that, by using (6.1c), one can check that limτ→0
∫

Q Cε(
.
uτ ):ε( .uτ ) dxdt = limτ→0

∫

Q CEtr(
.
zτ ):ε( .uτ ) dxdt =

∫

Q CEtr(
.
z):ε( .u) dxdt = ∫

Q Cε(
.
u):ε( .u) dxdt and then (6.1d) follows from the weak convergence

.
uτ → .

u
which is obvious.

Having (6.1c), (6.1e), and (6.1f) at our disposal, we have that r̄τ converges in L2(Q) with r̄τ defined by
(4.1a) and the limit passage in the discrete heat equation towards (3.4a) is simple. As

.
w ∈ L1(I ; H3(Ω)∗),

we can test (3.4a) by 1 and add it to (3.14) in order to deduce (3.15). ��
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7 Concluding remarks

Let us collect here some comments on some possible developments of the theory, both from the modelling and
from the analytic viewpoint.

Remark 1 (Nonmagnetic limit.) One can consider some asymptotic analysis leading to the suppression of the
magnetization in the medium. Indeed, by letting the convex domain M → R

3 (in the Hausdorff sense, for
instance) one has that, in the limit, δ∗

R3 = δ0. Hence,
.
m is forced to be 0 and no magnetization evolution is

possible. This procedure can be made rigorous by means of an adaptation of the Γ -convergence analysis for
rate-independent processes developed in [65].

Remark 2 (No martensitic transformation.) Similarly as above, one could consider the limit Z → R
N which

entails δ∗Z → δ0. In the limit one has that
.
z = 0 so that no martensitic transformation is possible and the

systems reduces to a model for thermomechanics and magnetism. Again, the rigorous argument towards the
limit can be grounded on the analysis in [65].

Remark 3 (Fully rate-independent ferro/paramagnetic and martensitic transformation.) We are presently not
in the position of proving the existence of a weak solution to the system in the purely rate-independent case,
namely for D = 0 and α = 0. Still, also in this case, some a priori estimates can be deduced. Indeed, if Z and
M are bounded, one can still check for the boundedness of

.
zτ and

.
mτ in L1 so that also the corresponding

dissipative and adiabatic heat sources are bounded in L1(Q). Hence, the estimates for w are still valid. This
entails the stability of the numerical scheme. On the other hand, the limit passage is still not obvious. The
difficulty relies in controlling the product A(z, θ)

.
z. Indeed,

.
z is a priori a measure on Q̄ and A(z, θ) is in

L∞(Q) but can hardly be expected to range over C(Q̄) and even continuously dependent on z and w in such
a space. In this case, one should resort in designing an even weaker notion of solution.
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82. Roubíček, T., Tomassetti, G.: Ferromagnets with eddy currents and pinning effects: their thermodynamics and analysis. Math.

Models Methods Appl. Sci. 21, 29–55 (2011)
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