	• 1	•
H'am	11 I :	ienname:
T CILL	. 4 4 .	

Vorname:

Matrikelnummer:

Studienkennzahl:

\square R.	Steinbauer	(WS03/04, 7. Termin)
--------------	------------	----------------------

☐ H. Schichl (SoSem04, 2. Termin)

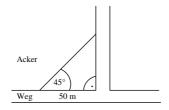
1	
2	
$egin{bmatrix} 2 \ 3 \ 4 \ 5 \end{bmatrix}$	
4	
5	
\mathbf{G}	

Note:

Prüfung zu Einführung in das mathematische Arbeiten

(14.5.2004)

1. (a) (Rechtwinkeliges Dreieck) Ein rücksichtsloser Wanderer biegt 50 m vor einer rechtwinkeligen Wegkreuzung unter einem Winkel von 45° ab und geht durch einen Acker (siehe Grafik).



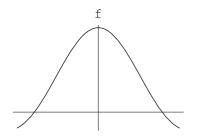
- (i) Welche Weglänge erspart sich der Wanderer? (2 Punkte)
- (ii) Aufgrund des tiefen Bodens am Acker kommt der Wanderer nur mit der halben Geschwindigkeit voran, die er auf der Strasse hätte. Gewinnt er durch seine Abkürzung Zeit? (2 Punkte)
- (b) (Kurvendiskussion) Der Graph der rationalen Funktion

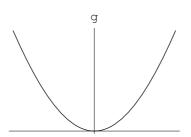
$$f(x) = \frac{ax + b}{x^2}$$

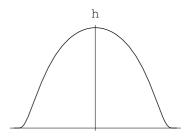
hat in W = (-1, -2) einen Wendepunkt.

- (i) Ermittle die Funktionsgleichung von f sowie den maximalen Definitionsbereich. (3 Punkte)
- (ii) Bestimme alle Nullstellen, Hoch- und Tiefpunkte von f und fertige eine Skizze an. (3 Punkte)
- (iii) Gib eine Stammfunktion von f an. (2 Punkte)

2. (Ableitungspuzzle) Gegeben seien die Graphen der Funktionen $f,\,g$ und h.



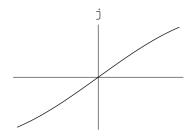


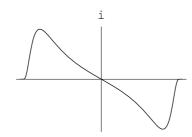


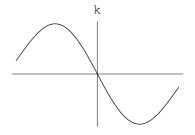
Welche der Funktionen i, j, k (Graphen siehe unten) ist

- (a) die erste Ableitung von f:
- (b) die erste Ableitung von g:
- (c) die erste Ableitung von h:

Begründe deine Auswahl! (4 Punkte)



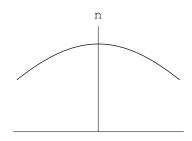


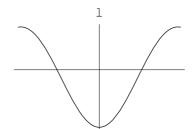


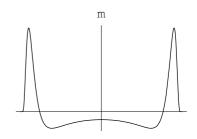
Welche der Funktionen $l,\,m,\,n$ (Graphen siehe unten) ist

- (d) die zweite Ableitung von f:
- (e) die zweite Ableitung von g:
- (f) die zweite Ableitung von h:

Begründe deine Auswahl! (4 Punkte)







- 3. (a) (Äquivalenzrelation) Sei M eine Menge und \sim eine Äquivalenzrelation auf M.
 - i. Für $a \in M$ definiere den Begriff der Äquivalenzklasse C_a von a. (2 Punkte)
 - ii. Beweise, dass $C_a \neq \emptyset$ für alle $a \in M$ gilt. (1 Punkt)
 - iii. Beweise, dass aus $a \sim b$ folgt, dass $b \in C_a$. (2 Punkte)
 - (b) (Algebra) Sei $G = (\mathbb{R} \setminus \{0\}) \times \mathbb{R}$ zusammen mit der Verknüpfung \circ

$$(a_1, a_2) \circ (b_1, b_2) = (a_1b_1, a_2 + a_1b_2)$$

gegeben. Überprüfe, ob (G, \circ) eine Gruppe ist. (5 Punkte)

- 4. (Funktionen) Seien A und B Mengen und sei $f: A \to B$ eine Funktion.
 - (a) Für $M \subseteq A$ definiere den Begriff des Bildes von M unter f. (3 Punkte)
 - (b) Für $N \subseteq B$ definiere den Begriff des Urbilds von N unter f. (3 Punkte)
 - (c) Gegeben seien die beiden Funktionen

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto x^2$$

$$h: [0, \infty) \longrightarrow \mathbb{R}$$

$$x \mapsto x^2.$$

Bestimme die Mengen g([-1,1]), h((0,1]), $g^{-1}(2) = g^{-1}(\{2\})$ und $h^{-1}(2) = h^{-1}(\{2\})$. (4 Punkte)