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In this note we give a pedagogical account on linear partial di�erential operators (PDOs)

on manifolds and on vector bundles. Thereby we focus on the algebraic approach, in

which one de�nes a PDO as linear operator which interacts in a speci�c way with the C∞-
module structure of spaces of sections on vector bundles. To connect to the local theory

we also prove Peetre's theorem which says that local operators on spaces of sections

locally look just like usual PDOs (of �nite order). Then we introduce normally hyperbolic

operators, give some examples, and prove the Weitzenb�ock formula. Finally, we give a

brief outlook on some aspects of the theory of normally hyperbolic operators.



1 DIFFERENTIAL OPERATORS
ON MANIFOLDS

In this �rst section we introduce linear partial di�erential operators (PDOs) on manifolds,

that is PDOs acting on smooth functions on a manifoldM as well as PDOs taking smooth

sections of some vector bundle E overM to smooth sections of some other vector bundle

F over the same manifold M.

There are several equivalent approaches to PDOs on manifolds.

(1) The most basic one consists in pasting together locally de�ned PDOs, i.e., in de�n-

ing a PDO as a map taking smooth functions (sections) to smooth functions (sec-

tions) that in any (vector bundle-)chart looks like a PDO (of �nite order) on an

open subset of Euclidean space (see [H�or90, Sec. 6.4]).

A more elegant way using purely intrinsic notions and avoiding charts is provided by

using either of the following two characterisations of PDOs.

(2) H�ormander's characterisation: A linear, continuous operator between spaces of

smooth functions is a PDO of order at most m if and only if

R 3 τ 7→ e−iτϕ P(eiτϕ)(x)

is a polynomial in τ of degree at most m for all smooth ϕ and all points x (see

[H�or64], and also [Kah80, Thm. 6.3], [CP82, Sec. 1.7]; for operators acting on

sections replace P(eiτϕ) by P(eiτϕu) for an arbitrary section u).

(3) Peetre's Theorem: A linear (not necessarily continuous!) operator between spaces

of smooth functions (sections) is local (i.e., does not increase supports) if and only

if it can be written as a usual PDO (of �nite order) locally around each point (see

[Pee60] and also [Kah80, Ch. 6]).

Finally there is an entirely algebraic approach to PDOs which actually works in the more

general situation of operators acting between modules over some associative, commuta-

tive algebra with unit.
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(4) Algebraic approach: PDOs (of �nite order) are linear maps between spaces of

smooth functions (or sections) that interact with the C∞-module structure in a

speci�c way ([Her73, Ch. 1] and also [Nic07, Sec. 10.1]).

Since the algebraic approach is probably the least well-known to analysts we will focus on

it. However, to give a coherent introduction and to show that the algebraically de�ned

PDOs \really are" PDOs we also include some aspects of (3).

We start by �xing the basic notions.

1.1. PDOs on open subsets of Euclidean space. Let Ω ⊂ Rn be open. A par-

tial di�erential operator on Ω is a linear mapping P on a suitable space of functions

(or distributions) de�ned on Ω of the form

(1.1) u 7→ Pu :=
∑
α

aαD
αu.

Here α ∈ Nn0 is a multi-index and we have set Dj := −i∂j (1 6 j 6 n) and used

multi-index notation, that is Dα = Dα11 · · · · ·Dαnn .

Note carefully that we do not suppose the sum in (1.1) to be �nite! Instead we assume

that the coe�cients (aα)α are a locally �nite family of functions on Ω, meaning that

their supports (supp(aα))α form a locally �nite family of sets, i.e., each point x ∈ Ω has

a neighbourhood U that intersects only �nitely many of the sets supp(aα). This implies

that there exists an integer m such that for all functions u de�ned on U we have

Pu :=
∑
α6m

aαD
αu.

Equivalently, all but �nitely many of the aα vanish identically on any compact subset of

Ω.

We will sometimes denote P by P(x,D) to emphasise that the coe�cients depend on

x ∈ Ω. If all the functions aα ∈ C∞(Ω), we will say P has smooth coe�cients and we

will exclusively deal with such PDOs. In this case it is obvious that

P(x,D) : C∞(Ω)→ C∞(Ω).

is a linear and continuous operator.

For any PDO P on Ω we de�ne its order as

m := sup{|α| : ∃α with aα 6≡ 0}.

Observe that the order may be in�nite. An example of such an operator on R is the

following: choose aj ∈ D(j, j + 1) with aj(j +
1
2
) = 1 and set P(x,D) =

∑
j∈N aj(x)

d
dj
.

However, as we have seen above locally every PDO has a �nite order.
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If P is (globally) of �nite order m, the sum in (1.1) ranges only over |α| 6 m, i.e.,

(1.2) u 7→ Pu :=
∑

|α|6m

aαD
αu ∀u ∈ C∞(Ω).

In this case we de�ne the principal symbol Pm of P by

(1.3) Pm(x, ξ) :=
∑

|α|=m

aα(x)ξα (x ∈ Ω, ξ ∈ Rn),

which is a homogeneous polynomial of degree m in ξ with coe�cients in C∞(Ω).

1.2. Generalisation to systems. The above notions easily generalise to systems

of PDEs: A linear di�erential (s, t)-system on Ω consists of an operator

(1.4) P(x,D) =
∑
α

aα(x)Dα,

where Ω 3 x 7→ aα(x) now is a locally �nite family of smooth maps on Ω taking values

in the space of matrices L(Rs,Rt). Clearly such an operator is a continuous mapping

P : C∞(Ω,Rs) ∼= C∞(Ω)s → C∞(Ω,Rt) ∼= C∞(Ω)t and we also speak of an (s, t)-PDO.

If P is of �nite order m, the principal symbol Pm of P at a point (x, ξ) ∈ Ω×Rn is now

de�ned by

Pm(x, ξ) =
∑

|α|=m

aα(x)ξα,

which is a matrix in L(Rs,Rt).
Of course all of the above can be formulated in the case of complex coe�cients in the

same way.

§ 1.1. PEETRE'S THEOREM

We now follow the route outlined in (3) above to some extend and start with a discussion

of the basic notion of locality, which we do in the context of linear operators acting on

smooth sections of vector bundles.

To this end we introduce some notation: Let E → M and F → M be real (or|with

the obvious changes in what follows|complex) vector bundles of �ber dimensions s and

t over the same smooth manifold M, which we always suppose to be Hausdor� and

paracompact. We will denote the respective projections by πE and πF or simply by π if



1.1. PEETRE'S THEOREM 5

there is no danger of misunderstanding. The �bers of E at x ∈ M will be denoted by

π−1
E (x) or Ex and likewise for F. The spaces of smooth sections of E and F are denoted

by Γ(E) and Γ(F), respectively.

1.3. Local operators.

De�nition. A linear operator P : Γ(E) → Γ(F) is called local if it does not increase

supports, that is

supp(Pu) ⊆ supp(u) ∀u ∈ Γ(E).

For a local operator we may de�ne its restriction to open subsets U ⊆M in a consistent

way, i.e., such that

(1.5) (Pu)|U = P(u|U) ∀u ∈ Γ(E).

Indeed, suppose u, v ∈ Γ(E) agree on U, then by locality supp(Pu− Pv) ⊆ supp(u− v) ⊆M \U,

hence

(1.6) u|U = v|U =⇒ (Pu)|U = (Pv)|U.

Now let u ∈ Γ(U,E) be a local section on U. To de�ne the action of P on u choose an open set

V ⊆ �V ⊆ U and χ ∈ D(U) with χ|V = 1. Then χu ∈ Γ(U,E) is compactly supported hence by

trivial extension χu ∈ Γ(E) and we may set

Pu := P(χu).

By (1.6) we have (Pu)|V is independent of the choice of χ. Now to de�ne the restriction of P to

U use a covering by relatively compact subsets Vα and corresponding cut-o� functions χα. By

(1.6) we have P(χαu)|Vα∩Vβ = P(χβu)|Vα∩Vβ . Hence the P(χαu)|Vα form a coherent family and

so de�ne a smooth section Pu ∈ Γ(U, F). This �nally allows us to de�ne the restriction P|Γ(U),

or P|U for short, of P such that (1.5) holds.

1.4. Local expressions. In order to study local operators P : Γ(E) → Γ(F) in

some more detail we introduce some notation. Let (U,φ) be a chart of M such that

both bundles E and F are trivial over U (i.e, E|U is di�eomorphic to U × Rs and F|U to

U× Rt). Then there exist di�eomorphisms

π−1
E (U) 3 z 7→ (φ(πE(z)), v(z)) ∈ φ(U)× Rs

π−1
F (U) 3 z 7→ (φ(πF(z)), w(z)) ∈ φ(U)× Rt

and v resp. w are �berwise linear (i.e., v is a linear isomorphism from each �ber π−1
E (x)

to Rs and likewise for w.) Hence the mappings

u 7→ v ◦ u ◦ φ−1 and u 7→ w ◦ u ◦ φ−1
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are isomorphisms from Γ(U,E) to C∞(ϕ(U))s resp. from Γ(U, F) to C∞(ϕ(U))t. Now by

(1.5) there exists a linear mapping Q : C∞(φ(U))s → C∞(ϕ(U))t such that

(1.7) w ◦ (Pu|U) ◦ φ−1 = Q(v ◦ (u|U) ◦ φ−1).

We will call Q the local expression of P on U (w.r.t. v and w). Our next aim is to show

that the local expressions of a local operator are just di�erential operators (of �nite

order).

1.5. Peetre's Theorem.

Theorem. Let P : Γ(E)→ Γ(F) be a linear and local operator. Then for each point x in

M there exists a chart (U,φ), such that both bundles are trivial over U, an integer m,

and a family of smooth functions aα : φ(U) → L(Rs,Rt) (|α| 6 m) such that the local

expression Q of P on U takes the form

(1.8) Q(x,D) =
∑

|α|6m

aα(x)Dα.

Observe that (1.8) says that the local expressions of a local operator precisely are (s, t)-

PDOs of �nite (but possibly di�erent) orders, cf. 1.2.

For the proof we shall use the following result.

Lemma. Let P : C∞(Ω;Rs) → C∞(Ω;Rt) be linear and local and let x0 ∈ Ω. Then there

exists an open neighbourhood U of x0 in Ω, m ∈ N and C > 0 such that

(1.9) ||Pϕ||∞ 6 C max
|α|6m

||∂αϕ||∞ =: C||ϕ||(m) ∀ϕ ∈ D(U \ {x0};Rs).

Proof. Let x0 ∈ U0 be open and relatively compact in Ω. We suppose that (1.9) does not hold.

Then

∃U1 ⊆ U1 ⊆ U0 \ {x0}, ∃ϕ1 ∈ D(U1,Rs) : ||Pϕ1||(0) > 2
2||ϕ1||(1).

Replacing U0 by U0 \U1 our indirect assumption implies

∃U2 ⊆ U2 ⊆ U0 \ (U1 ∪ {x0}), ∃ϕ2 ∈ D(U2,Rs) : ||Pϕ2||(0) > 2
2·2||ϕ2||(2).

Inductively we obtain in this way

(1.10) ∃Uk ⊆ Uk ⊆ U0 \ (

k−1⋃
i=1

Uk ∪ {x0}), ∃ϕk ∈ D(Uk,Rs) : ||Pϕk||(0) > 2
2k||ϕk||(k).

Now we set

ϕ :=

∞∑
k=1

1

2k||ϕk||(k)
ϕk.
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Since the supports of the ϕk's are disjoint, this expression is de�ned. Moreover, it converges for

each || ||(l) hence de�nes a smooth function ϕ with supp(ϕ) ⊆ �U0.

Now since restriction is well de�ned we obtain

(Pϕ)|Uk = P(ϕ|Uk) =
1

2k||ϕk||(k)
Pϕk.

Moreover, (1.10) implies that

∀k ∈ N ∃yk ∈ Uk ⊆ U0 : |P(ϕk)(yk)| > 2
2k||ϕk||(k)

and hence

|P(ϕ)(yk)| = |
1

2k||ϕk||(k)
Pϕk(yk)| > 2

k,

which contradicts the fact that Pϕ as a smooth function on Ω is bounded on the relative compact

subset U0. �

Proof of the Theorem. Fix x ∈ M and choose a relatively compact chart neighbourhood

U of x that is trivialising for both bundles. Then as detailed in 1.4 the local expression Q

of P on U is an operator from C∞(φ(U))s to C∞(φ(U))t. Moreover, Q can be written as

Q(f1, . . . , fs) = (
∑s
i=1Qki(fi))

t
k=1 with Qki = πk ◦Q ◦ ji, where ji is the injection C∞(φ(U)) 3

f 7→ (0, . . . , 0, f, 0, . . . , 0) ∈ C∞(φ(U)) and and πk is the k-th projection C∞(φ(U))t → C∞(φ(U)).

Since each Qki is clearly linear and local we may assume w.l.o.g. that r = 1 = s.

To begin with let V ⊆ φ(U) be open and suppose that

∃C > 0, m ∈ N0 : ||Qϕ||(0) 6 C||ϕ||(m) ∀ϕ ∈ D(V).

Now �x x ∈ V and set Qx : ϕ 7→ (Qϕ)(x). Then

|Qxϕ| = |Qϕ(x)| 6 C
∑

|α|6m

||∂αϕ||∞,
which shows that Qx is a distribution of order at most m.

Moreover, let supp(ϕ) ⊆ V \ {x}. Locality implies that supp(Qϕ) ⊆ V \ {x} so that Qxϕ = 0.

Hence we obtain supp(Qx) ⊆ {x}. Now the structure theorem of distributions tells us that Qx is a

linear combination of derivatives of δx of order at most m, i.e., there exists coe�cients ~aα(x) ∈ C
such that Qx =

∑
|α|6m

~aα(x)∂αδx that is

(1.11) Qϕ(x) = Qx(ϕ) =
∑

|α|6m

(−1)|α|~aα(x)∂αϕ(x) =:
∑

|α|6m

aα(x)∂αϕ(x) ∀ϕ ∈ D(V).

By (1.6) we may employ a cut-o� around x to see that (1.11) even holds for all f ∈ C∞(V).

(Indeed let χ ∈ D(V) with χ ≡ 1 on a neighbourhood of x then for any f ∈ C∞(V) we may write

Qf(x) = Q(χf)(x) =
∑
aα(x)∂α(χf)(x) =

∑
aα(x)∂αf(x).)

We next show that all aα depend smoothly on x: Insert f = xν for some multi-index ν into (1.11)

we obtain

Q(xν)(x) =
∑
α6ν

α!

(
ν

α

)
aα(x)xν−α ∀|ν| 6 m.
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Now for ν = 0 we �nd C∞(V) 3 P(1)(x) = a0(x). Going on by induction on |ν| we obtain that

all aα ∈ C∞(V).

Finally we prove the theorem. Since φ(U) is relatively compact we may cover it by �nitely many

(Vi, xi) (1 6 i 6 l), where each (Vi, xi) is of the form of (U, x0) in the above lemma. Using a

subordinate partition of unity we obtain

∃C ∃m : ||Qϕ||(0) 6 C||ϕ||(m) ∀ϕ ∈ D(φ(U) \ {x1, . . . , xl})

(Here m = max{mi : 1 6 i 6 l} where mi are the integers of the lemma, and C depends

on the Ci and the norms of the partition functions.) So by the above (1.11) holds for all f ∈
C∞(φ(U)\{x1, . . . , xl}). Now let f ∈ C∞(φ(U)) be arbitrary then (1.11) holds for f|(φ(U)\{x1,...,xl})

but since both sides of the equation are continuous they also have to agree on the �nitely many

exception points x1, . . . , xl. So we obtain (1.11) for all f ∈ C∞(φ(U)) and we are done. �

1.6. PDOs on vector bundles. Recalling that Peetre's theorem states that a local

operator P : Γ(E)→ Γ(F) locally just is a PDO of �nite order, the following de�nition is

sensible and also particularly elegant.

De�nition. A linear and local operator P : Γ(E)→ Γ(F) is called a PDO. If both bundles

are trivial, i.e., E = F = M× R (or C) we call P a PDO on M.

To introduce the notion of order in this setting we �rst de�ne the order m at a point

x ∈M as the largest number |α| such that there is some aα(x) 6= 0 in a local expression

for P in a neighbourhood of x. From the chain rule and the Leibniz rule it is clear that

m is independent of the choice of local expressions, hence well-de�ned.

The order of P is de�ned as the supremum of the orders of P at all points in M. Now

Peetre's theorem tells us that every PDO locally has a �nite order. However, if the

manifold M is non-compact the order may be in�nite and we are precisely in the same

situation as on subsets of Euclidean space, cf. 1.1.

If P is of �nite order m one may de�ne its principal symbol via the local expressions|in

which case one has to invoke a calculation in charts to see that this notion is well-de�ned,

see [CP82, Sec. 1.7]. Alternatively one may use H�ormander's characterisation of PDOs

of �nite order mentioned in (2) above, or de�ne the symbol at a point via inserting

functions into P that vanish to m-th order at that point (see [Kah80, Ch. 6]).

We will, however, proceed to the algebraic approach to PDOs where the notions of order

and symbol are de�ned in an intrinsic and geometric way. Only later we will see that

the operators obtained in this way precisely are the PDOs of �nite order of this section.



2 THE ALGEBRAIC APPROACH
TO PDOS ON MANIFOLDS

We now start our account on the algebraic approach to PDOs which to the author's best

knowledge �rst appeared in [Her70] but might have been folk knowledge already before.

We will mainly follow the account in [Nic07, Sec. 10.1].

2.1. Basic de�nitions. Let again E and F be real (or complex) vector bundles over

the same manifoldM and denote the respective spaces of sections by Γ(E) and Γ(F). We

denote the space of linear operators taking sections in E to sections in F by Op(E, F), i.e.,

we set

Op(E, F) = {T : Γ(E)→ Γ(F), linear}.

However, the space of sections Γ(E) possesses more structure than just that of a vector

space: Γ(E) is a module over the ring of smooth functions C∞(M), i.e., we have the

operation of pointwise multiplication C∞(M) × Γ(E) → Γ(E). So we can ask for more

algebraic compatibility of operators than just linearity: We will identify PDOs as ele-

ments of Op(E, F) that interact with the C∞(M)-module structure of Γ(E) and Γ(F) in a

speci�c way.

To begin with we set

PDO0(E, F) := Hom(E, F) = {P ∈ Op(E, f) : P is C∞(M)-linear},

i.e., P ∈ Op(E, F) belongs to PDO0(E, F) if for all f ∈ C∞(M) and all u ∈ Γ(E) we have

P(fu) = fP(u) or in terms of commutators

[P, f](u) := P(fu) − fP(u) = 0.

More structurally, each f ∈ C∞(M) de�nes a map

ad(f) : Op(E, F) → Op(E, F)

P 7→ ad(f)P := [P, f] = P ◦ f− f ◦ P.

Observe that in the above formula f actually denotes the operator of (C∞(M) module-)

multiplication with the function f. Now we may rephrase the de�nition of PDO0 as

PDO0(E, F) = {P ∈ Op(E, F) : ad(f)P = 0 ∀f ∈ C∞(M)} =: ker ad

9
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and go on iteratively.

De�nition. (PDOs) For m ∈ N we de�ne the spaces

PDO(m)(E, F) := ker adm+1

= {P ∈ Op(E, F) : P ∈ ker ad(f0)ad(f1) · · · ad(fm) ∀fi ∈ C∞(M)}

and we set

PDO(E, F) :=
⋃
m>0

PDO(m)(E, F).

Observe that

PDO(m)(E, F) = {P ∈ Op(E, F) : ad(f)P ∈ PDO(m−1)(E, F) ∀f ∈ C∞(M)},

a point of view which is particularly useful in induction proofs as we soon shall see.

In case E = F we write PDO(m)(E) instead of PDO(m)(E, E). In case E is the trivial

bundle M × R (or M × C), elements of PDO(m)(E) are maps on C∞(M) and are called

scalar operators and their space will be denoted by PDO(m)(M). Also, we will sometimes

just write PDO(m) if the bundels are clear from the context.

2.2. Some examples. To get acquainted with the above de�nitions and to explore

their content we will now look at some explicit examples of geometric operators in PDO.

Example. (The gradient) Let (M,g) be a semi-Riemannian manifold. We de�ne the

operator

grad : C∞(M) → X(M) ≡ Γ(TM)

u 7→ grad(u) := (du)#.

Here (du)# denotes the metric equivalent vector �eld of the di�erential du of u, i.e.,

du(X) = g((du)#, X) for all X ∈ X(M). In coordinates we hence have

grad(u)i∂i = gij(∂ju)∂i,

with gij denoting the components of the inverse metric and summation convention in

e�ect.

We check that grad ∈ PDO(1)(M× R, TM): For all f ∈ C∞(M) we have

(2.1) ad(f)grad(u) = [grad(u), f] = grad(fu) − fgrad(u) = grad(f)u = (df)#u,

which shows that ad(f)grad is just (the operator of) multiplication with grad(f). This

clearly is a C∞(M)-linear operation, hence ad(f)grad ∈ PDO0 and so grad ∈ PDO(1).
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Example. (Covariant derivatives) A covariant derivative or linear connection on E is

a linear map

∇ : Γ(E)→ Γ(T∗M⊗ E)

such that for all f ∈ C∞(M) and all u ∈ Γ(E) we have

∇(fu) = df⊗ u+ f∇u.

Here T∗M⊗E denotes the tensor product of the bundles T∗M and E, i.e., T∗M⊗E is the

bundle overM with �bers T∗xM⊗Ex. We recall a standard result on sections of product

bundles E ⊗ F stating Γ(E ⊗ F) = Γ(E) ⊗ Γ(F), where the tensor product on the right is

over the module C∞(M).

A simple example of a connection is the Levi-Civita connection of a semi-Riemannian

metric, which in the present terminology is a connection on TM and by standard methods

can be extended to all tensor bundles T rsM.

To check that ∇ ∈ PDO(1) we calculate

(2.2) (ad(f)∇)u = [∇, f]u = ∇(fu) − f∇u = df⊗ u.

Hence ad(f)∇ is just tensor multiplication with the one-form df, which is clearly C∞-
linear.

Example. (The divergence) Again on a semi-Riemannian manifold (M,g) we de�ne

the divergence by

div : X(M) → C∞(M)

X 7→ divX := tr(∇X).

Here tr denotes the trace of (1, 1)-tensors and ∇ denotes the Levi-Civita connection of

g. Hence locally we have

div(X) = ∇iXi = ∂iX
i + Γ ikiX

k = |detg|−
1
2∂i(|detg|

1
2Xi)

where Γ ijk denotes the Christo�el symbols (of the second kind) and detg the determinant

of g.

We now check that div ∈ PDO(1)(TM,M× R). Indeed we have for f ∈ C∞(M)

(2.3) ad(f)divX = [divX, f] = div(fX) − fdivX = df(X),

hence ad(f)div is just the dual action of the one-form df which clearly is C∞-linear.
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Example. (Scalar operators in PDO(1)) We consider P ∈ PDO(1)(M). By de�nition

we have for all f ∈ C∞(M) that [P, f] ∈ PDO0(M) which allows us to de�ne a linear map

φ : C∞(M) → C∞(M)

f 7→ φ(f) := [P, f](1).

We next show that φ is a derivation on C∞(M). Indeed for f, g ∈ C∞(M) we have

φ(fg) = [P, fg](1) = P(fg) − fg P(1) = P(fg) − fP(g) + fP(g) − fg P(1)

= [P, f](g 1) + f P(g 1) − fg P(1) = g[P, f](1) + f[P, g](1) = gφ(f) + fφ(g).

Being a derivation, φ is given by a vector �eld on M, i.e., there exists X ∈ X(M) such

that

φ(f) = X f ∀f ∈ C∞(M).

To determine P completely we set µ := P(1) ∈ C∞(M). Then we obtain for all u ∈ C∞(M)

Pu = P(u1) = P(u1) − uP(1) + uP(1) = [P, u](1) + uP(1) = Xu+ µu,

hence P is sum of a derivation on C∞(M) and a zero order term.
It even holds that the space of PDOs of order at most one on M is the direct sum of the space

Der(C∞(M)) of derivations on C∞(M) and the space of homomorphisms on C∞(M), i.e.,

PDO(1)(M) = Der(C∞(M))⊕ Hom(C∞(M)).

Indeed, by the above we only have to show that Der(C∞(M)) ∩ Hom(M) is trivial. To see this

assume P ∈ Der(C∞(M)) ∩ Hom(M). Then we �nd for f, g ∈ C∞(M)

fgP(1) = P(fg) = P(f)g+ fP(g) = 2fgP(1),

which forces P(1) to vanish. But then we have P(f) = fP(1) = 0 for all f ∈ C∞(M) hence P = 0.

2.3. Connecting to the \classical approach".
We now are going to bridge the gap to the approach to PDOs of 1.6. The �rst step is to

show locality of elements in PDO(E, F).

Lemma. (Locality) Any P ∈ PDO(m)(E, F) is local.

Proof. We proceed by induction on m.

m = 0: Let P ∈ PDO0 and u ∈ Γ(E). For any U ⊆ M open that contains supp(u) we

may �nd a function f ∈ C∞(M) such that f = 1 on supp(u) and f = 0 outside U. So

fu = u and we have

P(u) = P(fu) = fP(u)
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and so P(u) = 0 outside U. Since U was arbitrary we obtain supp(P(u)) ⊆ supp(u).

m 7→ m+ 1: Let now P ∈ PDO(m+1), f ∈ C∞(M), u ∈ Γ(E). From P(fu) = [P, f](u) +

fP(u) we �nd that

supp(P(fu)) ⊆ supp([P, f](u))︸ ︷︷ ︸
⊆ supp(u)

by induction

∪ supp(f(P(u)))︸ ︷︷ ︸
⊆ supp(f) ∩ supp(P(u))

⊆ supp(f)

.

Now choosing U and f as in the case m = 0 we again �nd that supp(P(u)) ⊆ supp(u).�

The above lemma clearly tells us that any P ∈ PDO is a PDO in the sense of 1.6 above.

But actually we can say more: PDO is the space of PDOs of �nite order in the sense of

the de�nitions in 1.6 above.

Proposition. (PDO(E, F) is the space of PDOs of �nite order) The space PDO(m)(E, F)

precisely is the space of PDOs (in the sense of 1.6) of (�nite) order at most m.

Proof. Let P ∈ PDO(m)(E, F). Then by the above lemma P is local, hence by Peetre's

theorem around each point x has a local expression that is a PDO of order m(x). But we

havem(x) 6 m since otherwise the local expressionQ would violate ad(f0) . . . ad(fm)Q =

0 and so would P.

Conversely every PDO of (�nite) order m (in the sense of 1.6) has all local expressions

Q of order at most m. These clearly satisfy ad(f0) . . . ad(fm)Q = 0 (just do a little

calculation) hence by (1.7) P does and so P ∈ PDO(m). �

2.4. Order and principal symbol. Our next aim is to de�ne the principal symbol

for P ∈ PDO(m). To this end we derive two essential properties of the operator

ad(f1) · · · ad(fm)P ∈ PDO0

for f1, . . . , fm ∈ C∞(M). The �rst one is that it does not change if we permute the

functions f1, . . . , fm, and the second one is that it localises to points.

Lemma. Let P ∈ PDO(m)(E, F).

(i) (The ad(f)'s commute) For any pair f, g ∈ C∞(M) we have

ad(f)(ad(g)P) = ad(g)(ad(f)P).
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(ii) (Pointwise character) Let fi, gi (1 6 i 6 m) such that at x0 ∈M we have dfi(x0) =

dgi(x0) for all 1 6 i 6 m. Then

(ad(f1) · · · ad(fm)P)|x0 = (ad(g1) · · · ad(gm)P)|x0 .

Proof. Let P, f, g, as well as fi and gi as in the statement.

(i) ad(f)(ad(g)P) = [[P, g], f] = [[P, f], g] + [P, [f, g]] = [[P, f], g] = ad(g)(ad(f)P).

(ii) Since ad(constant) = 0 we may assume w.l.o.g. that fi(x0) = gi(x0) for all i.

Actually it su�ces to show that

(ad(f1)ad(f2) · · · ad(fm)P)|x0 = (ad(g1)ad(f2) · · · ad(fm)P)|x0 ,

since we then may go on by induction.

Set φ = f1 − g1 and Q = ad(f2) · · · ad(fm)P ∈ PDO(1). We have to show that

(ad(φ)Q)|x0 = 0.

Since φ vanishes at x0 to second order we may write φ =
∑
j αjβj with the α's and

β's smooth functions vanishing at x0. But then we �nd

(ad(φ)Q)|x0 = (
∑
j

ad(αjβj)Q)|x0 =
∑
j

([Q,αj]βj)|x0 +
∑
j

(αj[Q,βj])|x0 = 0.

�

Summing up we have that the mapping

(f1, . . . , fm) 7→ 1

m!
(ad(f1) · · · ad(fm)P)|x0 ∈ Hom(Ex0 , Fx0)

is multilinear and symmetric in all slots and that it only depends on dfi(x0) =: ξi ∈
T∗x0M. Hence it induces a symmetric multilinear map on (T∗x0M)m

(ξ1, . . . ξm) 7→ σ(P)x0(ξ1, . . . , ξm) :=
1

m!
(ad(f1) · · · ad(fm)P)|x0 ,

where the fi are arbitrary smooth functions with dfi(x0) = ξi ∈ T∗x0M. Now recall that

σ(P)x0 as a symmetric and multilinear map by polarisation is completely determined by

the homogeneous polynomial

σm(P)x0(ξ) := σ(P)x0(ξ, . . . , ξ︸ ︷︷ ︸
m-times

).
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Hence taking f ∈ C∞(M) with df(x0) = ξ0 and using the abbreviation ad(f)m =

ad(f) · · · ad(f) (m-times) we have the mapping

σm(P)x0 : T∗x0M → Hom(Ex0 , Fx0)

σm(P)x0(ξ0) := 1
m!

ad(f)m P|x0 .

By varying the base point x0 we obtain a mapping

σm(P) : T∗M→ Hom(E, F)

which respects �bers, i.e., σm(P)(ξ) : Eπ(ξ) → Fπ(ξ). Also along the �bers of T∗M the

map ξ → σm(P)(ξ) looks like a homogeneous polynomial of degree m with coe�cients

in Hom(Eπ(ξ), Fπ(ξ)).
Even more geometrically we may say that

σm(P) ∈ Hom(π∗E, π∗F),

where π∗E and π∗F are the pullback bundles of E resp. F along π : T∗M→M, the projection of

the cotangent bundle. Roughly speaking this is a bundle over the manifold T∗M where the �ber

over ξ ∈ T∗M is precisely the �ber Eπ(ξ) of E over π(ξ), the footpoint of ξ in T∗M. For more

details on pullback bundles see [Die72, 16.19].

Finally we are in the position to make the following de�nition.

De�nition. (Order and Principal symbol) We say that P ∈ PDO(m)(E, F) is of order

m if σm(P) 6≡ 0. In this case we call σm(P) the principal symbol of P. We denote the

space of all PDOs of order m by PDOm(E, F).

Let us now look at some examples.

Example. (The gradient) Recall the gradient gradf = (df)# from 2.2. We now look

at its principal symbol to see grad ∈ PDO1(M × R, TM). Indeed by (2.1) we have for

ξ0 ∈ T∗x0M and f ∈ C∞(M) with df(x0) = ξ0

(2.4) σ1(grad)x0(ξ0) = ad(f)grad|x0 = ξ
#
0 ,

i.e., the principal symbol at (x0, ξ0) is just multiplication with the metric equivalent

vector ξ#0 of ξ0 (Even more explicitly we have σ1(grad)x0(ξ0) : R 3 a 7→ aξ
#
0 ∈ Tx0M.)

Varying the base point we obtain

σ1(grad) : T∗M 3 ξ 7→ ξ#. ∈ Hom(M× R, TM).
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Example. (Covariant derivatives) Any covariant derivative in E by (2.2) is of order

one with principal symbol

(2.5) σ1(∇)(ξ) = ξ⊗

i.e, tensor multiplication by ξ.

Example. (The divergence) The divergence divX = tr(∇X) from 2.2 is also of order

one with principal symbol (cf. (2.3))

(2.6) σ1(div)(ξ) = ξ(.),

i.e., the dual action of the one-form ξ.

2.5. Composition. As the �nal issue of this section we provide an essential tool to

construct new PDOs from old.

Proposition. (Composition of PDOs) Let E, F and G be vector bundles over M and

let P ∈ PDO(m)(F,G), Q ∈ PDO(l)(E, F). Then we have

P ◦Q ∈ PDO(m+l)(E,G) and σm+l(P ◦Q) = σm(P) ◦ σl(Q).

Proof. We prove the �rst statement by induction onm+l. Form+l = 0 the assertion is

obvious. For the inductive step m+ l 7→ m+ l+ 1 we just take f ∈ C∞(M) and calculate

[P ◦Q, f] = P ◦Q ◦ f− f ◦ P ◦Q
= P ◦Q ◦ f− P ◦ f ◦Q+ P ◦ f ◦Q− f ◦ P ◦Q = [P, f] ◦Q+ P ◦ [Q, f].(2.7)

By induction hypothesis both operators on the r.h.s. are of order m + n, hence we are

done.

To prove the second statement we calculate for ξ ∈ T∗M with π(ξ) = x

σm+l(P ◦Q)(ξ) =
1

(m+ l)!
ad(f)m+lP ◦Q|x

=
1

(m+ l)!

∑
k

(
m+ l

k

)
ad(f)kP ◦ ad(f)m+l−kQ|x

=
1

(m+ l)!

(m+ l)!

m! l!
ad(f)mP ◦ ad(f)lQ|x = σm(P) ◦ σl(Q).

�



3 NORMALLY HYPERBOLIC
OPERATORS

Here we introduce operators which generalise the wave equation on R1+n in the geometric

setting. Our presentation is in
uenced by [BGP07, Sec. 1.5] and [BK96].

3.1. The basic de�nition. To begin with observe that the principal symbol of the

wave operator is intimately connected to the Minkowski metric η = diag(−1, 1, . . . , 1)

since we have for (τ, ξ) ∈ R1+n

σ2(�)(ξ, τ) = −τ2 + |ξ|2 = η((τ, ξ), (τ, ξ)).

We now de�ne a class of operators of second order with their principal symbol given by

(minus) the (inverse) of some Lorentzian metric.

De�nition. (Normally hyperbolic operators) Let E be a vector bundle over a manifold

M. An operator P ∈ PDO2(E) is called normally hyperbolic if there exists a Lorentzian

metric g on M such that

σ2(P)x(ξ) = −gx(ξ, ξ) IdEx ∀x ∈M, ξ ∈ T∗xM,

where IdEx denotes the identity operator on the �ber Ex.

Using local coordinates on M and a local trivialisation of E a normally hyperbolic oper-

ator may be written as (using summation convention)

P = −gij(x)∂i∂j +A
i(x)∂i + B(x),

where again gij(x) are the components of the inverse metric at x ∈M and Ai and B are

matrix valued coe�cients depending smoothly on x.

3.2. Examples.
Our �rst example of a normally hyperbolic operator will be the metric d'Alembertian of

a Lorentzian metric, which sometimes is also called Laplace Beltrami operator or simply

wave operator.

17
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Example. (The metric d'Alembertian) Let (M,g) be a Lorentzian manifold. We de�ne

the metric d'Alembertian of g by

�g : C∞(M) → C∞(M)

�gu := −div gradu.

By the formulas from 2.2 we have in local coordinates

�gu = −div gradu = ∇igij∂ju = gij∇i∇ju,

where we have used that the Levi-Civita connection is metric and that it agrees with the

chart derivative on functions. Also note the important formula

�gu = |detg|−
1
2∂i(|detg|

1
2gij∂ju).

We now check that �g is normally hyperbolic. In view of Prop. 2.5, �g ∈ PDO(2) and

we may calculate the principal symbol using (2.4) and (2.6) (ξ ∈ T∗M)

σ2(�g)(ξ) = −σ1(div) ◦ σ1(grad)(ξ) = −ξ(ξ#) = −g(ξ, ξ).

The operator to be discussed next is the connection d'Alembert operator which some-

times is also called Bochner-Laplace operator. In some sense this is the key example

since we will see below that any normally hyperbolic operator can be brought into a

normal form involving this operator.

Example. (The connection d'Alembertian) Let E be a vector bundle over M and let

∇ be a linear connection on E. Furthermore let g be a Lorentzian metric on M.

Now ∇ together with the Levi-Civita connection ∇g of g induces a connection on T∗M⊗
E.
In explicit terms this connection is given by

∇T∗M⊗E =: ~∇ : Γ(T∗M⊗ E) ∼= Ω1(M)⊗ Γ(E) → Γ(T∗M⊗ T∗M⊗ E)

~∇(η⊗ u) = ∇g(η)⊗ u+ η⊗∇u.

Observe also that we have ~∇(f(η⊗ u)) = df⊗ η⊗ u+ f ~∇(η⊗ u).

Now we de�ne the connection d'Alembertian as the composition of the following three

operators

Γ(E)
∇−→ Γ(T∗M⊗ E)

~∇−→ Γ(T∗M⊗ T∗M⊗ E)
trg⊗IdE−→ Γ(E),

i.e., we set

�∇ := −trg ⊗ IdE(∇T
∗M⊗E ◦ ∇).

We now check that �∇ is normally hyperbolic. First observe that as the composition of

two operators in PDO(1) and one in PDO0 the connection d'Alembertian is in PDO(2).

We now calculate σ2(�∇) using Prop. 2.5 and (2.5)

σ2(�
∇)(ξ) = −(trg ⊗ IdE) ◦ σ1( ~∇) ◦ σ1(∇)(ξ) = −(trg ⊗ IdE)(ξ⊗ ξ⊗ .) = −g(ξ, ξ)IdE.
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Example. (Further examples) Many well known operators of geometry fall into the class of

normally hyperbolic operators. We list a few.

(i) The Yamabe operator on an n-dimensional Lorentzian manifold is

Y = �g +
n− 2

4(n− 1)
R,

where R denotes the scalar curvature.

(ii) The Hodge Laplace operator on an oriented Lorentzian manifold is

4k = dd∗ + d∗d.

(iii) The square of the Dirac operator on a Lorentzian spin manifold.

3.3. The Weitzenb�ock formula. In this �nal part we will prove that each nor-

mally hyperbolic operator can be written as the connection d'Alembertian for a suitable

connection plus zero order terms. We �rst give the precise statement.

Theorem. (Weitzenb�ock formula) Let P be a normally hyperbolic operator on E→M.

Then there exists a unique connection ∇ on E and a unique BP ∈ Γ(Hom(E, E)) such

that

(3.1) P = �∇ + BP.

Equation (3.1) is usually refered to as the Weitzenb�ock formula and Bp is called the

Weitzenb�ock remainder of P.

Proof. We start with a little calculation. Let ∇ any connection on E. Using the notation

of 3.2 we then have for all f ∈ C∞(M) and all u ∈ Γ(E)

~∇∇(fu) = ~∇(df⊗ u+ f∇u) = ∇g(df)⊗ u+ 2df⊗∇u+ f ~∇ ◦∇u.

Hence we obtain for the connection d'Alembertian

(3.2) �∇(fu) = (�gf)u− 2∇gradfu+ f�∇u.

Now we prove uniqueness. Suppose P satis�es (3.1), then Bp = P−�∇ ∈ Γ(Hom(E, E))

and we �nd using (3.2)

f(Pu−�∇u) = (P −�∇)(fu) = P(fu) − (�gf)u+ 2∇gradfu− f�∇u.
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So we obtain

(3.3) ∇gradfu =
1

2
(fPu− P(fu) + (�gf)u).

Recalling that at any x ∈M every X ∈ TxM can be written as gradf(x) for some suitable

f ∈ C∞(M) we see by (3.3) that ∇ is uniquely determined in terms of P and �g.
Finally we obtain existence by using (3.3) as the de�nition of ∇ on E since then our

above calculations show that ∇ satis�es (3.1). �

Remark. Having seen the proof one might wonder where and how the �rst order terms in

P−�∇ have disappeared. The answer is, that they have been put into the connection ∇. To see

this more explicitly denote by ∇ ′ any connection on E and write for the �rst order operator

P −�∇
′
= A ◦ ∇ ′ + B

with A ∈ C∞(M,Hom(T∗M⊗ E, E) and B ∈ C∞(M,Hom(E, E)). Then setting

∇Xu = ∇ ′Xu−
1

2
A(X[ ⊗ u)

does the trick as can be shown by an explicit calculation, see [BGP07, Lem. 1.5.5]. Here X[

denotes the metric equivalent one-form to X.

3.4. Where to go from here.

The existence theory of normally hyperbolic operators is well-understood. As you should

expect from the very name, the Cauchy problem is well posed|not only locally but also

globally provided the manifold has \good causal structure". Local fundamental solutions

can be constructed using the so-called Hadamard parametrix construction (see [H�or94,

Sec. 14.7] as well as [BGP07, Ch. 2] and [Fri75, Ch. 4{5]). From there one obtaines

a (semi-)global existence theorem ([BGP07, Ch. 3]). (For the notions from Lorentzian

geometry appearing below also see Mike Kunzinger's lecture.)

Theorem. Let P be a normally hyperbolic operator on E and let the underlying manifold

M be globally hyperbolic with spacelike Cauchy hypersurface S. Denote by ν the future

directed timelike unit normal vector �eld along S.

(i) (Existence and uniqueness) For each u0, u1 ∈ Γc(S, E) and for each f ∈ Γc(E) (i.e.,

all of them compactly supported) there exists a unique solution u ∈ Γ(E) of the

Cauchy problem

Pu = f, u|S = u0, ∇νu|S = u1.



21

(ii) (Finite propagation speed) The solution from (i) satis�es

supp(u) ⊆ J(supp(u0) ∪ supp(u1) ∪ supp(f)),

where J(A) denotes the union of the causal future and causal past of a set A.

(iii) (Continuous dependence on the data) The mapping

Γc(E)⊕ Γc(S, E)⊕ Γc(S, E) 3 (f, u0, u1) 7→ u ∈ Γ(E)

is linear and continuous.

The local fundamental solutions of normally hyperbolic operators with respect to a point

x share the following property with the ordinary wave operator: they are supported in

the forward or backward causal cone of x. Recall that in case of the wave operator on

R1+n we know more, depending on whether n is even or odd. Namely, in odd space

dimensions we have sharp wave propagation, meaning that the fundamental solution is

supported on the light cone only, while in even space dimensions we have residual waves.

Now a Huygens operator is a normally hyperbolic operator that has sharp wave prop-

agation. In 1923 Hadamard posed the problem of �nding all Huygens operators, which

remains unsolved to date. From the general theory of fundamental solutions one can

infer that on a manifold of dimension n there are no Huygens operators if n is odd or

n = 2. The characterisation of Huygens operators in even dimensions n > 4 is a very

rich theory; for an overview see [BK96].
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