1.1 Submanifolds

In [3, Sec. 2.1] we introduced submanifolds of R™: M C R™ is called a submanifold
of dimension k if for every p € M there exists an open neighborhood W of p in R™,
an open subset U of R¥ and an immersion ¢ : U — R™ such that ¢ : U — ¢(U) is
a homeomorphism and ¢(U) = W N M. Then ¢ is called a local parametrisation
of M. By [3, 2.2.8], any such M is an abstract manifold whose natural manifold
topology is precisely the trace topology of R™ on M.

We now want to introduce appropriate notions of submanifolds for abstract mani-
folds in general. To this end we first need a few results on maps between manifolds.

1.1.1 Definition. Let M, N be manifolds and let f : M — N be smooth. The
rank vk, (f) of f at p € M is the rank of the linear map T, f : TyM — Ty, N.

If o = (z!,...,2™) is a chart of M at p and (y',...,y") a chart of N at f(p) then

t
the matrix of T, f : T,M — Ty,yN with respect to the bases (%|p See % p)

! at o(p)

of T,M and (=2 I c/ is the Jacobi matrix of of 1) o f o @™
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(see [3, 2.4]). Thus rk,(f) = rky) (o fop™).

1.1.2 Definition. Let f: M — N be smooth. f is called immersion (submersion)
if T, f is injective (surjective) for every p € M.

If dim(M) = m and dim(N) = n (which henceforth we will indicate by writing
M™ and N", respectively) then f is an immersion (resp. submersion) if and only
if rk,(f) = m (resp. = n) for all p € M. The following result shows that maps of
constant rank locally always are of a particularly simple form.

1.1.3 Theorem. (Rank Theorem) Let M™, N™ be manifolds and let f : M — N
be smooth. Let p € M and suppose that vk, (f) = k in a neighborhood of p. Then
there exist charts (p,U) of M atp and (¥, V) of N at f(p) such that p(p) =0 € R™,
¢(f(p)) =0 €R" and

Yo fop lat ... z™) = (z!,...,25,0,...,0).

Proof. By the above, the rank of f is independent of the chosen charts, so without
loss of generality we may assume that f: W — W’ where W is open in R™ and
W’ is open in R™, p =0, f(p) = 0 and rk(f) = k on W. Since rk(Df(0)) = k there
exists an invertible k& X k submatrix of D f(0) and without loss we may assume that

of" \k

this matrix is given by (557); ;—1- Now consider the smooth map ¢ : W — R™,

ozt .. ™) = (fHat, . a™), L Rt ™) 2R ™),

Then (0) = 0 and

@), -
Dp(0) = 39”’();’,;‘:1 s
m—k

is invertible. By the inverse function theorem ¢ thereby is a diffeomorphism from
some open neighborhood W7 C W of 0 onto some open neighborhood U; of 0 in
R™. Then on U; we have

fo(pil(x) = fo@71(m1’"'7xk’$k+1""7xm) = (x17'")xk7fk+1($)7""-f_n(x))



for suitable smooth functions f*+1,..., f*. Consequently,

I, 0
D(foep 1h(0) = * (af’”)T:Hl n

ox®

s=k+1,...,m

Since D(f o ¢™') = Df o Dp~! and Dy~ is bijective it follows that rk(D(f o
¢ 1)) =1k(Df) = k on U;. Then necessarily 9. —0forr=Fk+1,...,n and

- oxs
s=k+1,...,m,ie, fF*1 .. f* depend only on z', ..., 2*. Now set

(y17"'7yk?yk+1+~f_k+1(y1""’yk)3"'7yn+-fn(y17""yk))'

DT(y) = (I'“ ! )

*  Inog

Then T(0) = 0 and

so T'is a diffeomorphism from some open neighborhood V of 0 in R” onto some open
0 €V C W' Choose U C U; open such that fop 1(U) CV and let U := o= 1(U).
Let ¢ := T, then

—1

vtsuLv Sy

and
Yo fop l(zt ... ak M ™) =
Pzt 2k Rt ), e 2R) = (2., 2R,0,...,0)
on 0. _

1.1.4 Lemma. Let f: M™ — N" be smooth, let p € M and suppose that tk,(f) =
k. Then there exists a neighborhood U of p in M such that tk,(f) > k for allqg € U.
In particular, if k = min(m,n) then rky(f) =k for allg € U.

Proof. Picking charts ¢ around p and ¢ around f(p), rk,(f) = k if and only if
there exists a k x k-submatrix of (D(1) o f o »~1)) with nonzero determinant. By
continuity, the same is then true on an entire neighborhood of p. This means that
the rank cannot drop locally. If k¥ = min(m,n) then it also cannot increase. O

1.1.5 Theorem. (Inverse function theorem) Let f : M™ — N™ be smooth, let
p € M and suppose that T,f + T,M — Ty, N is bijective. Then there exist
open neighborhoods U of p in M and V of f(p) in N such that f : U — V is a
diffeomorphism.

Proof. For charts ¢ of M at p, and ¢ at f(p) in N the map D (o fop=1)(p(p)) =
TepyoTyfo Tw(p)ga’l is invertible. Hence by the classical inverse function theory,
Yo fop ! is a diffeomorphism around ¢(p) and the claim follows. O

1.1.6 Proposition. (Local characterization of immersions) Let f : M™ — N™ be
smooth and let p € M. TFAE:

(i) Tpf is injective.



(11) 1k, (f) =m.

(iii) If ¢ = (', ...,¥"™) is a chart at f(p) in N then there ewist 1 < iy < --- <
im < n such that (Y™, ... ") is a chart at p in M.

Proof. Clearly, (i)« (ii).

(ii)=-(iii): Let ¢ be a chart at p in M. Then rk(D() o f o p~1)(¢(p))) = m, hence
there exist 1 < iy < -+ < ip, < n with det D((1p* ..., 0" ) o f oo~ 1)(p(p)) # 0.
By 1.1.5, then, (¢ ,...,1"") is a diffeomorphism locally around p, hence a chart.
(iii)=-(ii): The linear map D((Wl, o) o fop™ ) (p(p)) is bijective, so tk(D(¢o
foe™)(e(p))) = m. =

1.1.7 Proposition. (Local characterization of submersions) Let f : M™ — N™ be
smooth and let p € M. TFAE:

(i) T,f is surjective.

(ii) 1iy(f) = .

(iii) If o = (Y1, ..., ") is any chart at f(p) in N then there exists a chart o of
M at p such that (Yl o f,... 9" o f,o" T ... ©™) is a chart at p in M.

Proof. Again, (i)<(ii) is obvious.

(ii)=-(iii): Let ¢ and @ be charts at p and f(p), respectively. Since rk(D() o
foo H(p(p)) = n, the Jacobi matrix D(¢) o f o o~ 1)(¢(p)) possesses n linearly
independent columns. By permuting the coordinates of ¢ we obtain a chart ¢ such
that the first n columns of D()o fop~1)(¢(p)) are linearly independent. Now set

X:: (wlof7._.7¢nof7g0n+17...7g0m). Then

dplofop?

D(xw‘l)(w(p))=<( 9 ((p(p)))i,jzl *> (1.1.1)
0 I n

Hence, by 1.1.5, x o ¢~ ! is a diffeomorphism around ¢(p), and so Y is a chart at p.

(iii)=>(ii): Since rk(D(x o ¢ N (p(p))) = m, (1.1.1) implies that rk(D(¢) o f o
™) (e(p))) = m. O

1.1.8 Proposition. Let M™, N™, R" be manifolds, f : M — N continuous and
g: N — R an immersion. If g o f is smooth then so is f.

Proof. Given p € M, by 1.1.3 we may choose charts (p,U) around f(p) in N, and
(1, V) around ¢(f(p)) in R such that

G = Yogop Yt ... 2") = (', ...,2",0,...,0). (1.1.2)

Let and (x, W) be a chart in M around p and set f,, :=¢@o fox L.

fSPX

R™ R™ Ive R




Then o (go f)ox ™! is defined on x((go f)~H(V)NW), fouy is defined on x(f~H(U)N

W), and gy, is defined on ¢(g~ (V) NU). It follows that gy, o f,y is defined on

X(THU)NW) 0 o (g™ (V)N ) = x(fHU)NW) nx(fH g (V)N D))
=x(fTHg (V)N fHU)NW)

Since f is continuous, this shows that gy, o fyy is a restriction of o (go f) o x™

to an open set, hence is smooth. By (1.1.2), (gy, © foy )’ = f5, for 1 <i < n, hence
feox is smooth. Thus, finally, f is smooth. O

1

1.1.9 Proposition. Let M™, N™, R" be manifolds, f : M — N a surjective
submersion and g : N — R arbitrary. If go f is smooth then so is g.

Proof. Using the same notations as in the proof of 1.1.8, by 1.1.3 we may choose the

charts (x, W) around p and (p, U) around f(p) in such a way that f,, = pofox~! =

(zt,...,2™) — (z',...,2"). As in the proof of 1.1.8, gy, o fuy is a restriction of
Yo(gof)ox ! to an open set, hence is smooth. Thus (z!, ..., 2™) — gy, (z!, ... 2")
and thereby gy, itself is smooth, which implies smoothness of g. O

After these preparations we are now ready to introduce the notion of submanifold
of an abstract manifold.

1.1.10 Definition. Let M™ and N™ be manifolds with N C M and denote by
j: N — M the inclusion map. N is called an immersive submanifold of M if j
is an immersion. N is called a submanifold (or sometimes a regular submanifold ),
if it is an immersive submanifold and in addition N is a topological subspace of
M, i.e., if the natural manifold topology of N is the trace topology of the natural
manifold topology on M.

This definition is a natural generalization of the notion of submanifold of R", cf. [3,
2.1.5]. The figure-eight manifold from [3, 2.1.5] (with atlas {N,j~!}) is an example
of an immersive submanifold that is not a regular submanifold.

1.1.11 Remark. If N is a submanifold of M then for each p € N, the map
T,j : T,N — T,M is injective. Hence T,j(T,N) is a subspace of T,M that is
isomorphic to T, N. We will therefore henceforth identify T,,j(T,N) with T, N and
notationally suppress the map 7,7, i.e., we will consider T}, NV directly as a subspace
of T,M.

1.1.12 Theorem. Let N™ be an immersive submanifold of M™. TFAE:

(i) N is a submanifold of M (i.e., N carries the trace topology of M ).

(i) Around any p € N there exists an adapted coordinate system, i.e., for every
p € N there ezists a chart (p,U) around p in M such that p(p) =0, (U N
N)=pU)N (R x {0}) (with 0 € R™™) and such that p|ynn is a chart of
N around p.

(iti) Every p € N possesses a neighborhood basis U in M such that U N N is
connected in N for every U € U.

Proof. (i)=(ii): Let p € N. By assumption, j : N < M is an immersion. Thus

by 1.1.3 there exist charts (1, V) around p in N and (¢, U) around j(p) = p in M,
with ¢(p) = 0, such that

pojoyp t=(zt,...,2") — (z,...,2™,0,...,0).
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The domain of ¢ o j o ¢p~1 is (V N j71(U)). Since j is continuous, j~1(U) is
open in N. Shrinking V to V' N j’l(U) if necessary, we can assume w.l.o.g. that
V C j~YU)(= UNN). The domain of definition of ¢ 0 j o ¢~ then is ¢(V). By
(1) there exists some open subset W of M such that V =W N N and without loss
we may assume that W = U (otherwise replace both U and W by U N W). Then
V=UNN.

Denote by pry : R™ — R"™ the projection map. We have

p(V) = 0(j(V)) = pojov™ (¥(V)) = (V) x {0},

so pry(p(V)) = 1(V), which is open in R™. Hence the set

U=~ ((pry(o(V) x R™" ") N p(U))

is open in M and contains p. It follows that (¢, U) is a chart of M around p and
we claim that (U N N) = p(U) N (R™ x {0}).

To see ‘C’, note that obviously (U N N) C p(U) and UNN CUNN =V, so
e(UNN) C (V) CR™ x {0}. Conversely,

p(U) N (R" x {0}) = (pry(2(V)) x {0}) N o(U) = (&(V) x {0}) N p(0)

Now let p(u) € p(U) N (R™ x {0}). Then for some v € V' we have

p(u) = ($(v),0) = pojor ™ (¥(v) = ¢(j(v)) = p(v),

sou=wv eV CN and thereby ¢(u) € o(UNN).

Finally, ¢|ynn is a chart of N around p since U N N = j~1(U) is an open neigh-
borhood of p in N and

plunn o™ = pluavojop T = ooy uan
=zt ..., 2") = (2',...,2™,0,...,0).

Identifying R™ x {0} with R™, this latter map is the identity on R™, so ¢|pnn =
Y|unn, hence it is a chart.

(if)=-(iii): Let (p,U) be a chart as in (ii). Pick g9 > 0 such that B.,(0) C ¢(U)
and let U. := p~1(B(0)) for € < 9. Then U := {U. | € < g¢} is a neighborhood
basis of p in M and

(U N N) = p(U. \U N N) = B.(0) N (U N N) = B.(0) N (R x {0})

is connected in R™. Thus U serves the desired purpose.

(iii)=(i): Denote by Ty and Ty the topologies on M and N, respectively. Since
j : N < M is continuous, for every W € Tpy we get j= (W) =W NN € Ty, so
Tu|ny < Ty. Conversely we will show that any Ty-neighborhood of any p € N is
also a Ty ny-neighborhood of p. To this end let p € N and let U be a neighborhood
of pin N such that is homeomorphic to a ball in R™ (e.g. the inverse image of such
a ball under a chart). Then OU is compact in N, so also j(OU) = U is compact in
M (since j is continuous). Since p € U°, p € OU and so by (iii) there exists some
V el with VNoU = 0. If we can show that VN N C U then we are done since
V' N N is a neighborhood of p in Tys|n. Assume, therefore, that VN N ¢ U. This
means that (VNN)N(N\U) # . Thus VNN is connected and (p €)(VNAN)NU # ()
as well as (VN N)N (N \U) # (. But this implies (V N N) N AU # O and thereby
V NoU # (), a contradiction. O



1.1.13 Remark. (i) For M = R™, condition (ii) from 1.1.12 is precisely (T) from
[3, 2.1.8] (local trivialization). Therefore, submanifolds of R™ in the sense of [3] are
exactly submanifolds of R™ in the sense of 1.1.10.

(ii) Consider the subset N of R? that consists of the interval [—1,1] on the y-axis,
plus the graph of sin(1/z) between = 0 and = 1. Then N is an immersive
submanifold of R? that is not a submanifold due to 1.1.12 (iii): in fact, any ball
around (0,0) of radius less than 1 intersects N in a non-connected set.

1.1.14 Proposition. Let N be a submanifold of M and let f: P — M be smooth
and such that f(P) C N. Then also f : P — N is smooth.

Proof. Since N carries the trace topology of M and f : P — M is continuous, also
f: P — N is continuous. Also, j : N < M is an immersion and by assumption
jo fis smooth. The claim therefore follows from 1.1.8. a

1.1.15 Corollary. Let M be a manifold and let N be a subset of M. Then N can
be endowed with the structure of a submanifold of M in at most one way.

Proof. By definition, NV has to carry the trace topology of M. Suppose that there
are two differentiable structures that make N a submanifold of M and denote N
with these structures by Ny, Ns. Since j : N; — M is smooth for i = 1,2, 1.1.14
shows that both id : N — Ns and id : Ny — N7 are smooth. Hence id : N; — N»
is a diffeomorphism and so the differentiable structures on N coincide. O

1.1.16 Definition. Let M, N be manifolds. A smooth map i : N — M 1is called
an embedding if i is an injective immersion and if © is a homeomorphism from N
onto (i(N), Tarliny)-

1.1.17 Remark. (i) If i : N — M is an embedding then i(NN) can be turned into
a submanifold of M by declaring i to be a diffeomorphism. The charts of i(/N) then
are the 9 oi~!, where 1 is any chart of N. This manifold i(N) then is a submanifold
of M: Let j : i(N) < M be the inclusion map. Then i = j o is an immersion
and i is a diffeomorphism by definition, so j is an immersion. Also, i(M) carries
the trace topology by assumption. By 1.1.15 this manifold structure on i(N) is the
only one possible.

Next we want to check how to tell whether a given subset N of M can be made
into a submanifold of M. We first generalized the condition from 1.1.12 (ii):

1.1.18 Definition. Let M™ be a manifold and let N be a subset of M. We say that
N possesses the submanifold-property of dimension n if for every p € N there exists
a chart (p,U) of p in M such that o(p) =0 and o(UNN) = o(U) N (R™ x {0}).
(p,U) then is called an adapted coordinate system.

1.1.19 Theorem. Let M™ be a manifold and let N be a subset of M possessing
the submanifold-property of dimension n. Then N can be equipped in a unique way
with a differentiable structure such that it becomes an n-dimensional submanifold
of M. If pry : R™ — R"™ denotes the projection then A := {(p :=pr; o, UNN) |
v is an adapted coordinate system} is a C*°-atlas for N. In addition, j : N < M
is an embedding.



Proof. Uniqueness is clear from 1.1.15. Let (¢1,U1), (¢2,Us) be adapted coordi-
nate systems with (U3 N N) N (U2 N N) # 0. We have to show that @; and @9 are
C*°-compatible. We first note that since the ¢; are homeomorphisms, so are the @,
as maps from U; N N with the trace topology onto pry (p;(U;) N (R™ x {0})).

Let 0 : R® < R™, f(2',... 2") = (2%,...,2",0,...,0). Then @;1 = w;l of. It
follows that $; 05 ' is defined on @o(U; NU2NN) (= pry (92 (UrNU2))N(R™ x {0}),
hence open in R™), and

Pro@y! = (pryopi)o(pryows) !t =pryopiop;’ of
is smooth. Consequently, A is an atlas for N and by [3, 2.2.7] the natural manifold
topology of N is precisely the trace topology of M on N. If (p,U) is an adapted

chart then pojo@~—t = 6, so j is an immersion. Since N carries the trace topology,
J N = (§(N), Taljwvy) is a homeomorphism, so j is an embedding. O

1.1.20 Proposition. Let M™, N™ be manifolds, N compact and i : N — M an
injective immersion. Then i is even an embedding and i(N) is a submanifold of M
that is diffeomorphic to N.

Proof. We have to show that i : (IV, Tas[i(n)) is @ homeomorphism. We already
know that this map is continuous and bijective. But also i~! is continuous: Let
A C N be closed, hence compact. Then (i~1)~(A4) = i(A) is compact and therefore
closed. The final claim follows from 1.1.17 (i). O

1.1.21 Corollary. Let f: N™ — M™ be an immersion. Then every p € N has an
open neighborhood U such that f|y : U — M is an embedding. Thus the difference
between an immersion and an embedding is of a global nature.

Proof. By 1.1.3 there exist charts ¢ at p and ¢ at f(p) such that 9o fop ! =
(', ..., 2") — (zt,...,2",0,...,0). Thus there exists a compact neighborhood V'
of p such that f|y is injective. As in the proof of 1.1.20 it follows that f|y : V —
(f(V), Tarlg(vy) is a homeomorphism. Let U C V' be an open neighborhood of p.
Then f|y is an injective immersion and f : U — (f(U), Tar|fv)) is a homeomor-

phism, so f: U — M is an embedding. O

1.1.22 Theorem. Let M™, N" be manifolds and f : N — M smooth with tk(f) =
k on N (k <n). Let q € f(N). Then f~1(q) is a closed submanifold of N of
dimension n — k.

Proof. Since f is continuous, f~!(gq) is closed in N. We show that f~!(q) possesses
the submanifold property of dimension n — k. The claim then follows from 1.1.19.
Let p € f~1(q). Then by 1.1.3 there exist charts (¢,U) at p and (¢, V) at f(p) = ¢
such that ¢(p) =0, ¥(¢) = 0 and

fop(@) = o fog T (,...,a") = (&',...,a%,0,...,0).

Here, fy, is defined on (U N f=1(V)) =: ¢(W). Then (p, W) is a chart of N at p
and

e(fTH ) NW) =o(fHq) Ne(W) = o(f (¥~ (¥(q)))) N (W)
= [ra(0)Ne(W) = ({0} x R"*) np(W).
O



1.1.23 Corollary. Let f : N®™ — M™ be smooth with m < nand let ¢ € N. If
rk,(f) =m forallp € f~'(q) then f~'(q) is a closed submanifold of N of dimension
n—m.

Proof. Let p € f~1(q). Then f has maximal rank (= m) at p, hence by 1.1.4 even
in an open neighborhood U of p in N. Therefore the rank of f equals m on an
open neighborhood N of f~'(q) in N. The claim now follows by applying 1.1.22 to
f:N— M. a

1.1.24 Remark. For N = R" and M = R this result reduces to the description
of submanifolds as zero-sets of regular maps, cf. [3, 2.1.8].

1.1.25 Proposition. Under the assumptions of 1.1.22, let L := f~1(q) and let
p € L. Then T,L = ker(T,f).

Proof. For any smooth curve ¢ in L with ¢(0) = p, foc = ¢, so 0 = %’0 (fo
¢) = T,f(c'(0)). Hence T,L C ker(T,M). Since dim(kerT,f) + dim(imT),f) =
dimT,N = n, dim(ker T, f) = n — k = dim T, L, and equality follows. O

1.1.26 Example. Let 7 : TM — M™ be the canonical projection and let p €
M. Then 7 is smooth and rk(mw) = m since with respect to a chart ¢ of M we
have 1 o o TYp~1 = pr : R?™ — R™ (cf. [3, 2.5.6]). By 1.1.23 it follows that
77 1(p) = T,M is an m-dimensional submanifold of TM. Moreover, by 1.1.25, for
vy € T,M we have T, T,M = ker(T,, 7). By the proof of 1.1.22, the submanifold
charts of T, M are given by T)|r,n = Tp1p. As these are linear isomorphisms, the
trace topology of T'M on T),M is precisely the usual topology of T, M as a finite-
dimensional vector space. Also, Tp,% is a diffeomorphism, so the manifold structure
of T,M as well is its usual differentiable structure as a finite-dimensional vector
space.
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