1.1 Submanifolds

In [3, Sec. 2.1] we introduced submanifolds of \mathbb{R}^n : $M \subseteq \mathbb{R}^n$ is called a submanifold of dimension k if for every $p \in M$ there exists an open neighborhood W of p in \mathbb{R}^n , an open subset U of \mathbb{R}^k and an immersion $\varphi: U \to \mathbb{R}^n$ such that $\varphi: U \to \varphi(U)$ is a homeomorphism and $\varphi(U) = W \cap M$. Then φ is called a local parametrisation of M. By [3, 2.2.8], any such M is an abstract manifold whose natural manifold topology is precisely the trace topology of \mathbb{R}^n on M.

We now want to introduce appropriate notions of submanifolds for abstract manifolds in general. To this end we first need a few results on maps between manifolds.

1.1.1 Definition. Let M, N be manifolds and let $f : M \to N$ be smooth. The rank $\operatorname{rk}_p(f)$ of f at $p \in M$ is the rank of the linear map $T_pf : T_pM \to T_{f(p)}N$.

If $\varphi = (x^1, \ldots, x^m)$ is a chart of M at p and (y^1, \ldots, y^n) a chart of N at f(p) then the matrix of $T_p f : T_p M \to T_{f(p)} N$ with respect to the bases $\left(\frac{\partial}{\partial x^1}\Big|_p, \ldots, \frac{\partial}{\partial x^m}\Big|_p\right)$ of $T_p M$ and $\left(\frac{\partial}{\partial y^1}\Big|_{f(p)}, \ldots, \frac{\partial}{\partial y^n}\Big|_{f(p)}\right)$ is the Jacobi matrix of $\psi \circ f \circ \varphi^{-1}$ at $\varphi(p)$ (see [3, 2.4]). Thus $\operatorname{rk}_p(f) = \operatorname{rk}_{\varphi(p)}(\psi \circ f \circ \varphi^{-1})$.

1.1.2 Definition. Let $f: M \to N$ be smooth. f is called immersion (submersion) if $T_p f$ is injective (surjective) for every $p \in M$.

If $\dim(M) = m$ and $\dim(N) = n$ (which henceforth we will indicate by writing M^m and N^n , respectively) then f is an immersion (resp. submersion) if and only if $\operatorname{rk}_p(f) = m$ (resp. = n) for all $p \in M$. The following result shows that maps of constant rank locally always are of a particularly simple form.

1.1.3 Theorem. (Rank Theorem) Let M^m , N^n be manifolds and let $f : M \to N$ be smooth. Let $p \in M$ and suppose that $\operatorname{rk}_p(f) = k$ in a neighborhood of p. Then there exist charts (φ, U) of M at p and (ψ, V) of N at f(p) such that $\varphi(p) = 0 \in \mathbb{R}^m$, $\psi(f(p)) = 0 \in \mathbb{R}^n$ and

$$\psi \circ f \circ \varphi^{-1}(x^1, \dots, x^m) = (x^1, \dots, x^k, 0, \dots, 0).$$

Proof. By the above, the rank of f is independent of the chosen charts, so without loss of generality we may assume that $f: W \to W'$, where W is open in \mathbb{R}^m and W' is open in \mathbb{R}^n , p = 0, f(p) = 0 and $\operatorname{rk}(f) \equiv k$ on W. Since $\operatorname{rk}(Df(0)) = k$ there exists an invertible $k \times k$ submatrix of Df(0) and without loss we may assume that this matrix is given by $(\frac{\partial f^i}{\partial x^j})_{i,j=1}^k$. Now consider the smooth map $\varphi: W \to \mathbb{R}^m$,

$$\varphi(x^1, \dots, x^m) = (f^1(x^1, \dots, x^m), \dots, f^k(x^1, \dots, x^m), x^{k+1}, \dots, x^m).$$

Then $\varphi(0) = 0$ and

$$D\varphi(0) = \begin{pmatrix} \left(\frac{\partial f^i}{\partial x^j}\right)_{i,j=1}^k & *\\ 0 & I_{m-k} \end{pmatrix}$$

is invertible. By the inverse function theorem φ thereby is a diffeomorphism from some open neighborhood $W_1 \subseteq W$ of 0 onto some open neighborhood U_1 of 0 in \mathbb{R}^m . Then on U_1 we have

$$f \circ \varphi^{-1}(x) = f \circ \varphi^{-1}(x^1, \dots, x^k, x^{k+1}, \dots, x^m) = (x^1, \dots, x^k, \bar{f}^{k+1}(x), \dots, \bar{f}^n(x))$$

for suitable smooth functions $\bar{f}^{k+1}, \ldots, \bar{f}^n$. Consequently,

$$D(f \circ \varphi^{-1})(0) = \begin{pmatrix} I_k & 0 \\ * & \left(\frac{\partial \bar{f}^r}{\partial x^s}\right)_{\substack{r=k+1,\ldots,n\\s=k+1,\ldots,m}} \end{pmatrix}.$$

Since $D(f \circ \varphi^{-1}) = Df \circ D\varphi^{-1}$ and $D\varphi^{-1}$ is bijective it follows that $\operatorname{rk}(D(f \circ \varphi^{-1}))$ $\varphi^{-1}) = \operatorname{rk}(Df) \equiv k \text{ on } U_1.$ Then necessarily $\frac{\partial \bar{f}^r}{\partial x^s} = 0$ for $r = k + 1, \dots, n$ and $s = k + 1, \dots, m$, i.e., $\bar{f}^{k+1}, \dots, \bar{f}^n$ depend only on x^1, \dots, x^k . Now set

$$\begin{aligned} T(y^1,\ldots,y^k,y^{k+1},\ldots,y^m) &:= \\ & \left(y^1,\ldots,y^k,y^{k+1} + \bar{f}^{k+1}(y^1,\ldots,y^k),\ldots,y^n + \bar{f}^n(y^1,\ldots,y^k)\right). \end{aligned}$$

Then T(0) = 0 and

$$DT(y) = \begin{pmatrix} I_k & 0\\ * & I_{n-k} \end{pmatrix},$$

so T is a diffeomorphism from some open neighborhood \tilde{V} of 0 in \mathbb{R}^n onto some open $0 \in V \subseteq W'$. Choose $\tilde{U} \subseteq U_1$ open such that $f \circ \varphi^{-1}(\tilde{U}) \subseteq V$ and let $U := \varphi^{-1}(\tilde{U})$. Let $\psi := T^{-1}$, then

$$\tilde{U} \xrightarrow{\varphi^{-1}} U \xrightarrow{f} V \xrightarrow{\psi} \tilde{V}$$

and

$$\begin{split} \psi \circ f \circ \varphi^{-1}(x^1, \dots, x^k, x^{k+1}, \dots, x^m) &= \\ \psi(x^1, \dots, x^k, \bar{f}^{k+1}(x^1, \dots, x^k), \dots, \bar{f}^n(x^1, \dots, x^k)) &= (x^1, \dots, x^k, 0, \dots, 0) \\ \text{on } \tilde{U}. \end{split}$$

on U.

1.1.4 Lemma. Let $f: M^m \to N^n$ be smooth, let $p \in M$ and suppose that $\mathrm{rk}_p(f) =$ k. Then there exists a neighborhood U of p in M such that $\operatorname{rk}_{q}(f) \geq k$ for all $q \in U$. In particular, if $k = \min(m, n)$ then $\operatorname{rk}_q(f) = k$ for all $q \in U$.

Proof. Picking charts φ around p and ψ around f(p), $\operatorname{rk}_p(f) = k$ if and only if there exists a $k \times k$ -submatrix of $(D(\psi \circ f \circ \varphi^{-1}))$ with nonzero determinant. By continuity, the same is then true on an entire neighborhood of p. This means that the rank cannot drop locally. If $k = \min(m, n)$ then it also cannot increase. \square

1.1.5 Theorem. (Inverse function theorem) Let $f: M^m \to N^n$ be smooth, let $p \in M$ and suppose that $T_p f : T_p M \to T_{f(p)} N$ is bijective. Then there exist open neighborhoods U of p in M and V of f(p) in N such that $f: U \to V$ is a diffeomorphism.

Proof. For charts φ of M at p, and ψ at f(p) in N the map $D(\psi \circ f \circ \varphi^{-1})(\varphi(p)) =$ $T_{f(p)}\psi \circ T_p f \circ T_{\varphi(p)}\varphi^{-1}$ is invertible. Hence by the classical inverse function theory, $\psi \circ f \circ \varphi^{-1}$ is a diffeomorphism around $\varphi(p)$ and the claim follows. \Box

1.1.6 Proposition. (Local characterization of immersions) Let $f: M^m \to N^n$ be smooth and let $p \in M$. TFAE:

(i) $T_p f$ is injective.

- (*ii*) $\operatorname{rk}_p(f) = m$.
- (iii) If $\psi = (\psi^1, \dots, \psi^n)$ is a chart at f(p) in N then there exist $1 \le i_1 < \dots < i_m \le n$ such that $(\psi^{i_1}, \dots, \psi^{i_m})$ is a chart at p in M.

Proof. Clearly, (i) \Leftrightarrow (ii).

(ii) \Rightarrow (iii): Let φ be a chart at p in M. Then $\operatorname{rk}(D(\psi \circ f \circ \varphi^{-1})(\varphi(p))) = m$, hence there exist $1 \leq i_1 < \cdots < i_m \leq n$ with det $D((\psi^{i^1}, \ldots, \psi^{i^m}) \circ f \circ \varphi^{-1})(\varphi(p)) \neq 0$. By 1.1.5, then, $(\psi^{i^1}, \ldots, \psi^{i^m})$ is a diffeomorphism locally around p, hence a chart. (iii) \Rightarrow (ii): The linear map $D((\psi^{i^1}, \ldots, \psi^{i^m}) \circ f \circ \varphi^{-1})(\varphi(p))$ is bijective, so $\operatorname{rk}(D(\psi \circ f \circ \varphi^{-1})(\varphi(p))) = m$.

1.1.7 Proposition. (Local characterization of submersions) Let $f : M^m \to N^n$ be smooth and let $p \in M$. TFAE:

- (i) $T_p f$ is surjective.
- (*ii*) $\operatorname{rk}_p(f) = n$.
- (iii) If $\psi = (\psi^1, \dots, \psi^n)$ is any chart at f(p) in N then there exists a chart φ of M at p such that $(\psi^1 \circ f, \dots, \psi^n \circ f, \varphi^{n+1}, \dots, \varphi^m)$ is a chart at p in M.

Proof. Again, (i) \Leftrightarrow (ii) is obvious.

(ii) \Rightarrow (iii): Let $\tilde{\varphi}$ and ψ be charts at p and f(p), respectively. Since $\operatorname{rk}(D(\psi \circ f \circ \varphi^{-1})(\varphi(p))) = n$, the Jacobi matrix $D(\psi \circ f \circ \varphi^{-1})(\varphi(p))$ possesses n linearly independent columns. By permuting the coordinates of $\tilde{\varphi}$ we obtain a chart φ such that the first n columns of $D(\psi \circ f \circ \varphi^{-1})(\varphi(p))$ are linearly independent. Now set $\chi := (\psi^1 \circ f, \dots, \psi^n \circ f, \varphi^{n+1}, \dots, \varphi^m)$. Then

$$D(\chi \circ \varphi^{-1})(\varphi(p)) = \begin{pmatrix} \left(\frac{\partial \psi^i \circ f \circ \varphi^{-1}}{\partial x^j}(\varphi(p))\right)_{i,j=1}^n & *\\ 0 & I_{m-n} \end{pmatrix}$$
(1.1.1)

Hence, by 1.1.5, $\chi \circ \varphi^{-1}$ is a diffeomorphism around $\varphi(p)$, and so χ is a chart at p. (iii) \Rightarrow (ii): Since $\operatorname{rk}(D(\chi \circ \varphi^{-1})(\varphi(p))) = m$, (1.1.1) implies that $\operatorname{rk}(D(\psi \circ f \circ \varphi^{-1})(\varphi(p))) = m$.

1.1.8 Proposition. Let M^m , N^n , R^r be manifolds, $f: M \to N$ continuous and $g: N \to R$ an immersion. If $g \circ f$ is smooth then so is f.

Proof. Given $p \in M$, by 1.1.3 we may choose charts (φ, U) around f(p) in N, and (ψ, V) around g(f(p)) in R such that

$$g_{\psi\varphi} := \psi \circ g \circ \varphi^{-1}(x^1, \dots, x^n) = (x^1, \dots, x^n, 0, \dots, 0).$$
(1.1.2)

Let and (χ, W) be a chart in M around p and set $f_{\varphi\chi} := \varphi \circ f \circ \chi^{-1}$.

Then $\psi \circ (g \circ f) \circ \chi^{-1}$ is defined on $\chi((g \circ f)^{-1}(V) \cap W)$, $f_{\varphi\chi}$ is defined on $\chi(f^{-1}(U) \cap W)$, and $g_{\psi\varphi}$ is defined on $\varphi(g^{-1}(V) \cap U)$. It follows that $g_{\psi\varphi} \circ f_{\varphi\chi}$ is defined on

$$\chi(f^{-1}(U) \cap W) \cap f^{-1}_{\varphi\chi}(\varphi(g^{-1}(V) \cap U)) = \chi(f^{-1}(U) \cap W) \cap \chi(f^{-1}(g^{-1}(V) \cap U))$$
$$= \chi(f^{-1}(g^{-1}(V)) \cap f^{-1}(U) \cap W)$$

Since f is continuous, this shows that $g_{\psi\varphi} \circ f_{\varphi\chi}$ is a restriction of $\psi \circ (g \circ f) \circ \chi^{-1}$ to an open set, hence is smooth. By (1.1.2), $(g_{\psi\varphi} \circ f_{\varphi\chi})^i = f_{\varphi\chi}^i$ for $1 \le i \le n$, hence $f_{\varphi\chi}$ is smooth. Thus, finally, f is smooth. \Box

1.1.9 Proposition. Let M^m , N^n , R^r be manifolds, $f : M \to N$ a surjective submersion and $g : N \to R$ arbitrary. If $g \circ f$ is smooth then so is g.

Proof. Using the same notations as in the proof of 1.1.8, by 1.1.3 we may choose the charts (χ, W) around p and (φ, U) around f(p) in such a way that $f_{\varphi\chi} = \varphi \circ f \circ \chi^{-1} = (x^1, \ldots, x^m) \mapsto (x^1, \ldots, x^n)$. As in the proof of 1.1.8, $g_{\psi\varphi} \circ f_{\varphi\chi}$ is a restriction of $\psi \circ (g \circ f) \circ \chi^{-1}$ to an open set, hence is smooth. Thus $(x^1, \ldots, x^m) \mapsto g_{\psi\varphi}(x^1, \ldots, x^n)$ and thereby $g_{\psi\varphi}$ itself is smooth, which implies smoothness of g.

After these preparations we are now ready to introduce the notion of submanifold of an abstract manifold.

1.1.10 Definition. Let M^m and N^n be manifolds with $N \subseteq M$ and denote by $j: N \hookrightarrow M$ the inclusion map. N is called an immersive submanifold of M if j is an immersion. N is called a submanifold (or sometimes a regular submanifold), if it is an immersive submanifold and in addition N is a topological subspace of M, i.e., if the natural manifold topology of N is the trace topology of the natural manifold topology on M.

This definition is a natural generalization of the notion of submanifold of \mathbb{R}^n , cf. [3, 2.1.5]. The figure-eight manifold from [3, 2.1.5] (with atlas $\{N, j^{-1}\}$) is an example of an immersive submanifold that is not a regular submanifold.

1.1.11 Remark. If N is a submanifold of M then for each $p \in N$, the map $T_pj: T_pN \to T_pM$ is injective. Hence $T_pj(T_pN)$ is a subspace of T_pM that is isomorphic to T_pN . We will therefore henceforth identify $T_pj(T_pN)$ with T_pN and notationally suppress the map T_pj , i.e., we will consider T_pN directly as a subspace of T_pM .

1.1.12 Theorem. Let N^n be an immersive submanifold of M^m . TFAE:

- (i) N is a submanifold of M (i.e., N carries the trace topology of M).
- (ii) Around any p ∈ N there exists an adapted coordinate system, i.e., for every p ∈ N there exists a chart (φ, U) around p in M such that φ(p) = 0, φ(U ∩ N) = φ(U) ∩ (ℝⁿ × {0}) (with 0 ∈ ℝ^{m-n}) and such that φ|_{U∩N} is a chart of N around p.
- (iii) Every $p \in N$ possesses a neighborhood basis \mathcal{U} in M such that $U \cap N$ is connected in N for every $U \in \mathcal{U}$.

Proof. (i) \Rightarrow (ii): Let $p \in N$. By assumption, $j : N \hookrightarrow M$ is an immersion. Thus by 1.1.3 there exist charts (ψ, V) around p in N and (φ, \tilde{U}) around j(p) = p in M, with $\varphi(p) = 0$, such that

$$\varphi \circ j \circ \psi^{-1} = (x^1, \dots, x^n) \mapsto (x^1, \dots, x^n, 0, \dots, 0).$$

The domain of $\varphi \circ j \circ \psi^{-1}$ is $\psi(V \cap j^{-1}(\tilde{U}))$. Since j is continuous, $j^{-1}(\tilde{U})$ is open in N. Shrinking V to $V \cap j^{-1}(\tilde{U})$ if necessary, we can assume w.l.o.g. that $V \subseteq j^{-1}(\tilde{U}) (= \tilde{U} \cap N)$. The domain of definition of $\varphi \circ j \circ \psi^{-1}$ then is $\psi(V)$. By (i) there exists some open subset W of M such that $V = W \cap N$ and without loss we may assume that $W = \tilde{U}$ (otherwise replace both \tilde{U} and W by $\tilde{U} \cap W$). Then $V = \tilde{U} \cap N$.

Denote by $\operatorname{pr}_1 : \mathbb{R}^m \to \mathbb{R}^n$ the projection map. We have

$$\varphi(V) = \varphi(j(V)) = \varphi \circ j \circ \psi^{-1}(\psi(V)) = \psi(V) \times \{0\},\$$

so $\operatorname{pr}_1(\varphi(V)) = \psi(V)$, which is open in \mathbb{R}^n . Hence the set

$$U := \varphi^{-1}((\mathrm{pr}_1(\varphi(V)) \times \mathbb{R}^{m-n}) \cap \varphi(\tilde{U}))$$

is open in M and contains p. It follows that (φ, U) is a chart of M around p and we claim that $\varphi(U \cap N) = \varphi(U) \cap (\mathbb{R}^n \times \{0\}).$

To see ' \subseteq ', note that obviously $\varphi(U \cap N) \subseteq \varphi(U)$ and $U \cap N \subseteq \tilde{U} \cap N = V$, so $\varphi(U \cap N) \subseteq \varphi(V) \subseteq \mathbb{R}^n \times \{0\}$. Conversely,

$$\varphi(U) \cap (\mathbb{R}^n \times \{0\}) = (\mathrm{pr}_1(\varphi(V)) \times \{0\}) \cap \varphi(\tilde{U}) = (\psi(V) \times \{0\}) \cap \varphi(\tilde{U})$$

Now let $\varphi(u) \in \varphi(U) \cap (\mathbb{R}^n \times \{0\})$. Then for some $v \in V$ we have

$$\varphi(u) = (\psi(v), 0) = \varphi \circ j \circ \psi^{-1}(\psi(v)) = \varphi(j(v)) = \varphi(v),$$

so $u = v \in V \subseteq N$ and thereby $\varphi(u) \in \varphi(U \cap N)$.

Finally, $\varphi|_{U\cap N}$ is a chart of N around p since $U\cap N = j^{-1}(U)$ is an open neighborhood of p in N and

$$\varphi|_{U\cap N} \circ \psi^{-1} = \varphi|_{U\cap N} \circ j \circ \psi^{-1} = \varphi \circ j \circ \psi^{-1}|_{U\cap N}$$
$$= (x^1, \dots, x^n) \mapsto (x^1, \dots, x^n, 0, \dots, 0).$$

Identifying $\mathbb{R}^n \times \{0\}$ with \mathbb{R}^n , this latter map is the identity on \mathbb{R}^n , so $\varphi|_{U \cap N} = \psi|_{U \cap N}$, hence it is a chart.

(ii) \Rightarrow (iii): Let (φ, U) be a chart as in (ii). Pick $\varepsilon_0 > 0$ such that $B_{\varepsilon_0}(0) \subseteq \varphi(U)$ and let $U_{\varepsilon} := \varphi^{-1}(B_{\varepsilon}(0))$ for $\varepsilon < \varepsilon_0$. Then $\mathcal{U} := \{U_{\varepsilon} \mid \varepsilon < \varepsilon_0\}$ is a neighborhood basis of p in M and

$$\varphi(U_{\varepsilon} \cap N) = \varphi(U_{\varepsilon} \cap U \cap N) = B_{\varepsilon}(0) \cap \varphi(U \cap N) = B_{\varepsilon}(0) \cap (\mathbb{R}^{n} \times \{0\})$$

is connected in \mathbb{R}^n . Thus \mathcal{U} serves the desired purpose.

(iii) \Rightarrow (i): Denote by \mathcal{T}_M and \mathcal{T}_N the topologies on M and N, respectively. Since $j: N \hookrightarrow M$ is continuous, for every $W \in \mathcal{T}_M$ we get $j^{-1}(W) = W \cap N \in \mathcal{T}_N$, so $\mathcal{T}_M|_N \leq \mathcal{T}_N$. Conversely we will show that any \mathcal{T}_N -neighborhood of any $p \in N$ is also a $\mathcal{T}_M|_N$ -neighborhood of p. To this end let $p \in N$ and let U be a neighborhood of p in N such that is homeomorphic to a ball in \mathbb{R}^n (e.g. the inverse image of such a ball under a chart). Then ∂U is compact in N, so also $j(\partial U) = \partial U$ is compact in M (since j is continuous). Since $p \in U^\circ$, $p \notin \partial U$ and so by (iii) there exists some $V \in \mathcal{U}$ with $V \cap \partial U = \emptyset$. If we can show that $V \cap N \subseteq U$ then we are done since $V \cap N$ is a neighborhood of p in $\mathcal{T}_M|_N$. Assume, therefore, that $V \cap N \nsubseteq U$. This means that $(V \cap N) \cap (N \setminus U) \neq \emptyset$. Thus $V \cap N$ is connected and $(p \in)(V \cap N) \cap U \neq \emptyset$ as well as $(V \cap N) \cap (N \setminus U) \neq \emptyset$. But this implies $(V \cap N) \cap \partial U \neq \emptyset$ and thereby $V \cap \partial U \neq \emptyset$, a contradiction.

1.1.13 Remark. (i) For $M = \mathbb{R}^m$, condition (ii) from 1.1.12 is precisely (T) from [3, 2.1.8] (local trivialization). Therefore, submanifolds of \mathbb{R}^m in the sense of [3] are exactly submanifolds of \mathbb{R}^m in the sense of 1.1.10.

(ii) Consider the subset N of \mathbb{R}^2 that consists of the interval [-1,1] on the *y*-axis, plus the graph of $\sin(1/x)$ between x = 0 and x = 1. Then N is an immersive submanifold of \mathbb{R}^2 that is not a submanifold due to 1.1.12 (iii): in fact, any ball around (0,0) of radius less than 1 intersects N in a non-connected set.

1.1.14 Proposition. Let N be a submanifold of M and let $f : P \to M$ be smooth and such that $f(P) \subseteq N$. Then also $f : P \to N$ is smooth.

Proof. Since N carries the trace topology of M and $f : P \to M$ is continuous, also $f : P \to N$ is continuous. Also, $j : N \hookrightarrow M$ is an immersion and by assumption $j \circ f$ is smooth. The claim therefore follows from 1.1.8.

1.1.15 Corollary. Let M be a manifold and let N be a subset of M. Then N can be endowed with the structure of a submanifold of M in at most one way.

Proof. By definition, N has to carry the trace topology of M. Suppose that there are two differentiable structures that make N a submanifold of M and denote N with these structures by N_1 , N_2 . Since $j : N_i \to M$ is smooth for i = 1, 2, 1.1.14 shows that both id : $N_1 \to N_2$ and id : $N_2 \to N_1$ are smooth. Hence id : $N_1 \to N_2$ is a diffeomorphism and so the differentiable structures on N coincide.

1.1.16 Definition. Let M, N be manifolds. A smooth map $i : N \to M$ is called an embedding if i is an injective immersion and if i is a homeomorphism from Nonto $(i(N), \mathcal{T}_M|_{i(N)})$.

1.1.17 Remark. (i) If $i: N \to M$ is an embedding then i(N) can be turned into a submanifold of M by declaring i to be a diffeomorphism. The charts of i(N) then are the $\psi \circ i^{-1}$, where ψ is any chart of N. This manifold i(N) then is a submanifold of M: Let $j:i(N) \to M$ be the inclusion map. Then $i = j \circ i$ is an immersion and i is a diffeomorphism by definition, so j is an immersion. Also, i(M) carries the trace topology by assumption. By 1.1.15 this manifold structure on i(N) is the only one possible.

Next we want to check how to tell whether a given subset N of M can be made into a submanifold of M. We first generalized the condition from 1.1.12 (ii):

1.1.18 Definition. Let M^m be a manifold and let N be a subset of M. We say that N possesses the submanifold-property of dimension n if for every $p \in N$ there exists a chart (φ, U) of p in M such that $\varphi(p) = 0$ and $\varphi(U \cap N) = \varphi(U) \cap (\mathbb{R}^n \times \{0\})$. (φ, U) then is called an adapted coordinate system.

1.1.19 Theorem. Let M^m be a manifold and let N be a subset of M possessing the submanifold-property of dimension n. Then N can be equipped in a unique way with a differentiable structure such that it becomes an n-dimensional submanifold of M. If $\operatorname{pr}_1 : \mathbb{R}^m \to \mathbb{R}^n$ denotes the projection then $\mathcal{A} := \{(\tilde{\varphi} := \operatorname{pr}_1 \circ \varphi, U \cap N) \mid \varphi \text{ is an adapted coordinate system}\}$ is a \mathcal{C}^{∞} -atlas for N. In addition, $j : N \to M$ is an embedding. **Proof.** Uniqueness is clear from 1.1.15. Let (φ_1, U_1) , (φ_2, U_2) be adapted coordinate systems with $(U_1 \cap N) \cap (U_2 \cap N) \neq \emptyset$. We have to show that $\tilde{\varphi}_1$ and $\tilde{\varphi}_2$ are \mathcal{C}^{∞} -compatible. We first note that since the φ_i are homeomorphisms, so are the $\tilde{\varphi}_i$ as maps from $U_i \cap N$ with the trace topology onto $\operatorname{pr}_1(\varphi_i(U_i) \cap (\mathbb{R}^n \times \{0\}))$.

Let $\theta : \mathbb{R}^n \hookrightarrow \mathbb{R}^m$, $\theta(x^1, \ldots, x^n) = (x^1, \ldots, x^n, 0, \ldots, 0)$. Then $\tilde{\varphi}_i^{-1} = \varphi_i^{-1} \circ \theta$. It follows that $\tilde{\varphi}_1 \circ \tilde{\varphi}_2^{-1}$ is defined on $\tilde{\varphi}_2(U_1 \cap U_2 \cap N)$ (= $\operatorname{pr}_1(\varphi_2(U_1 \cap U_2)) \cap (\mathbb{R}^n \times \{0\})$, hence open in \mathbb{R}^n), and

$$\tilde{\varphi}_1 \circ \tilde{\varphi}_2^{-1} = (\mathrm{pr}_1 \circ \varphi_1) \circ (\mathrm{pr}_1 \circ \varphi_2)^{-1} = \mathrm{pr}_1 \circ \varphi_1 \circ \varphi_2^{-1} \circ \theta$$

is smooth. Consequently, \mathcal{A} is an atlas for N and by [3, 2.2.7] the natural manifold topology of N is precisely the trace topology of M on N. If (φ, U) is an adapted chart then $\varphi \circ j \circ \tilde{\varphi}^{-1} = \theta$, so j is an immersion. Since N carries the trace topology, $j: N \to (j(N), \mathcal{T}_M|_{j(N)})$ is a homeomorphism, so j is an embedding. \Box

1.1.20 Proposition. Let M^m , N^n be manifolds, N compact and $i : N \to M$ an injective immersion. Then i is even an embedding and i(N) is a submanifold of M that is diffeomorphic to N.

Proof. We have to show that $i : (N, \mathcal{T}_M|_{i(N)})$ is a homeomorphism. We already know that this map is continuous and bijective. But also i^{-1} is continuous: Let $A \subseteq N$ be closed, hence compact. Then $(i^{-1})^{-1}(A) = i(A)$ is compact and therefore closed. The final claim follows from 1.1.17 (i).

1.1.21 Corollary. Let $f : N^n \to M^m$ be an immersion. Then every $p \in N$ has an open neighborhood U such that $f|_U : U \to M$ is an embedding. Thus the difference between an immersion and an embedding is of a global nature.

Proof. By 1.1.3 there exist charts φ at p and ψ at f(p) such that $\psi \circ f \circ \varphi^{-1} = (x^1, \ldots, x^n) \mapsto (x^1, \ldots, x^n, 0, \ldots, 0)$. Thus there exists a compact neighborhood V of p such that $f|_V$ is injective. As in the proof of 1.1.20 it follows that $f|_V : V \to (f(V), \mathcal{T}_M|_{f(V)})$ is a homeomorphism. Let $U \subseteq V$ be an open neighborhood of p. Then $f|_U$ is an injective immersion and $f: U \to (f(U), \mathcal{T}_M|_{f(U)})$ is a homeomorphism, so $f: U \to M$ is an embedding. \Box

1.1.22 Theorem. Let M^m , N^n be manifolds and $f: N \to M$ smooth with $\operatorname{rk}(f) \equiv k$ on N (k < n). Let $q \in f(N)$. Then $f^{-1}(q)$ is a closed submanifold of N of dimension n - k.

Proof. Since f is continuous, $f^{-1}(q)$ is closed in N. We show that $f^{-1}(q)$ possesses the submanifold property of dimension n - k. The claim then follows from 1.1.19. Let $p \in f^{-1}(q)$. Then by 1.1.3 there exist charts (φ, U) at p and (ψ, V) at f(p) = q such that $\varphi(p) = 0$, $\psi(q) = 0$ and

$$f_{\psi\varphi}(x) = \psi \circ f \circ \varphi^{-1}(x^1, \dots, x^n) = (x^1, \dots, x^k, 0, \dots, 0)$$

Here, $f_{\psi\varphi}$ is defined on $\varphi(U \cap f^{-1}(V)) =: \varphi(W)$. Then (φ, W) is a chart of N at p and

$$\varphi(f^{-1}(q) \cap W) = \varphi(f^{-1}(q)) \cap \varphi(W) = \varphi(f^{-1}(\psi^{-1}(\psi(q)))) \cap \varphi(W)$$
$$= f^{-1}_{\psi\varphi}(0) \cap \varphi(W) = (\{0\} \times \mathbb{R}^{n-k}) \cap \varphi(W).$$

1.1.23 Corollary. Let $f : N^n \to M^m$ be smooth with m < n and let $q \in N$. If $\operatorname{rk}_p(f) = m$ for all $p \in f^{-1}(q)$ then $f^{-1}(q)$ is a closed submanifold of N of dimension n - m.

Proof. Let $p \in f^{-1}(q)$. Then f has maximal rank (=m) at p, hence by 1.1.4 even in an open neighborhood U of p in N. Therefore the rank of f equals m on an open neighborhood \tilde{N} of $f^{-1}(q)$ in N. The claim now follows by applying 1.1.22 to $f: \tilde{N} \to M$.

1.1.24 Remark. For $N = \mathbb{R}^n$ and $M = \mathbb{R}^m$ this result reduces to the description of submanifolds as zero-sets of regular maps, cf. [3, 2.1.8].

1.1.25 Proposition. Under the assumptions of 1.1.22, let $L := f^{-1}(q)$ and let $p \in L$. Then $T_pL = \ker(T_pf)$.

Proof. For any smooth curve c in L with c(0) = p, $f \circ c \equiv q$, so $0 = \frac{d}{dt}\Big|_0 (f \circ c) = T_p f(c'(0))$. Hence $T_p L \subseteq \ker(T_p M)$. Since $\dim(\ker T_p f) + \dim(\operatorname{im} T_p f) = \dim T_p N = n$, $\dim(\ker T_p f) = n - k = \dim T_p L$, and equality follows. \Box

1.1.26 Example. Let $\pi : TM \to M^m$ be the canonical projection and let $p \in M$. Then π is smooth and $\operatorname{rk}(\pi) = m$ since with respect to a chart ψ of M we have $\psi \circ \pi \circ T\psi^{-1} = \operatorname{pr} : \mathbb{R}^{2m} \to \mathbb{R}^m$ (cf. [3, 2.5.6]). By 1.1.23 it follows that $\pi^{-1}(p) = T_pM$ is an m-dimensional submanifold of TM. Moreover, by 1.1.25, for $v_p \in T_pM$ we have $T_{v_p}T_pM = \ker(T_{v_p}\pi)$. By the proof of 1.1.22, the submanifold charts of T_pM are given by $T\psi|_{T_pM} = T_p\psi$. As these are linear isomorphisms, the trace topology of TM on T_pM is precisely the usual topology of T_pM as a finite-dimensional vector space. Also, $T_p\psi$ is a diffeomorphism, so the manifold structure of T_pM as well is its usual differentiable structure as a finite-dimensional vector space.

Bibliography

- [1] Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, 1986.
- [2] Brickel, F., Clark, R.S., Differentiable Manifolds. An Introduction. Van Nostrand, 1970.
- [3] Kunzinger, M., Differentialgeometrie 1, Skriptum, 2008.