
1.1 Submanifolds

In [3, Sec. 2.1] we introduced submanifolds of Rn: M ⊆ R
n is called a submanifold

of dimension k if for every p ∈M there exists an open neighborhood W of p in R
n,

an open subset U of Rk and an immersion ϕ : U → R
n such that ϕ : U → ϕ(U) is

a homeomorphism and ϕ(U) = W ∩M . Then ϕ is called a local parametrisation
of M . By [3, 2.2.8], any such M is an abstract manifold whose natural manifold
topology is precisely the trace topology of Rn on M .

We now want to introduce appropriate notions of submanifolds for abstract mani-
folds in general. To this end we first need a few results on maps between manifolds.

1.1.1 Definition. Let M , N be manifolds and let f : M → N be smooth. The
rank rkp(f) of f at p ∈M is the rank of the linear map Tpf : TpM → Tf(p)N .

If ϕ = (x1, . . . , xm) is a chart of M at p and (y1, . . . , yn) a chart of N at f(p) then
the matrix of Tpf : TpM → Tf(p)N with respect to the bases ( ∂

∂x1

∣

∣

p
, . . . , ∂

∂xm

∣

∣

p
)

of TpM and ( ∂
∂y1

∣

∣

∣

f(p)
, . . . , ∂

∂yn

∣

∣

∣

f(p)
) is the Jacobi matrix of of ψ ◦ f ◦ ϕ−1 at ϕ(p)

(see [3, 2.4]). Thus rkp(f) = rkϕ(p)(ψ ◦ f ◦ ϕ
−1).

1.1.2 Definition. Let f :M → N be smooth. f is called immersion (submersion)
if Tpf is injective (surjective) for every p ∈M .

If dim(M) = m and dim(N) = n (which henceforth we will indicate by writing
Mm and Nn, respectively) then f is an immersion (resp. submersion) if and only
if rkp(f) = m (resp. = n) for all p ∈ M . The following result shows that maps of
constant rank locally always are of a particularly simple form.

1.1.3 Theorem. (Rank Theorem) Let Mm, Nn be manifolds and let f : M → N
be smooth. Let p ∈ M and suppose that rkp(f) = k in a neighborhood of p. Then
there exist charts (ϕ,U) ofM at p and (ψ, V ) of N at f(p) such that ϕ(p) = 0 ∈ R

m,
ψ(f(p)) = 0 ∈ R

n and

ψ ◦ f ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0).

Proof. By the above, the rank of f is independent of the chosen charts, so without
loss of generality we may assume that f : W → W ′, where W is open in R

m and
W ′ is open in R

n, p = 0, f(p) = 0 and rk(f) ≡ k on W . Since rk(Df(0)) = k there
exists an invertible k× k submatrix of Df(0) and without loss we may assume that

this matrix is given by ( ∂f
i

∂xj
)ki,j=1. Now consider the smooth map ϕ :W → R

m,

ϕ(x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fk(x1, . . . , xm), xk+1, . . . , xm).

Then ϕ(0) = 0 and

Dϕ(0) =





(

∂fi

∂xj

)k

i,j=1
∗

0 Im−k





is invertible. By the inverse function theorem ϕ thereby is a diffeomorphism from
some open neighborhood W1 ⊆ W of 0 onto some open neighborhood U1 of 0 in
R
m. Then on U1 we have

f ◦ ϕ−1(x) = f ◦ ϕ−1(x1, . . . , xk, xk+1, . . . , xm) = (x1, . . . , xk, f̄k+1(x), . . . , f̄n(x))
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for suitable smooth functions f̄k+1, . . . , f̄n. Consequently,

D(f ◦ ϕ−1)(0) =





Ik 0

∗
(

∂f̄r

∂xs

)

r=k+1,...,n

s=k+1,...,m



 .

Since D(f ◦ ϕ−1) = Df ◦ Dϕ−1 and Dϕ−1 is bijective it follows that rk(D(f ◦

ϕ−1)) = rk(Df) ≡ k on U1. Then necessarily ∂f̄r

∂xs
= 0 for r = k + 1, . . . , n and

s = k + 1, . . . ,m, i.e., f̄k+1, . . . , f̄n depend only on x1, . . . , xk. Now set

T (y1, . . . , yk, yk+1, . . . , ym) :=
(

y1, . . . , yk, yk+1 + f̄k+1(y1, . . . , yk), . . . , yn + f̄n(y1, . . . , yk)
)

.

Then T (0) = 0 and

DT (y) =

(

Ik 0
∗ In−k

)

,

so T is a diffeomorphism from some open neighborhood Ṽ of 0 in R
n onto some open

0 ∈ V ⊆W ′. Choose Ũ ⊆ U1 open such that f ◦ϕ−1(Ũ) ⊆ V and let U := ϕ−1(Ũ).
Let ψ := T−1, then

Ũ
ϕ−1

−→ U
f
−→ V

ψ
−→ Ṽ

and

ψ ◦ f ◦ ϕ−1(x1, . . . , xk, xk+1, . . . , xm) =

ψ(x1, . . . , xk, f̄k+1(x1, . . . , xk), . . . , f̄n(x1, . . . , xk)) = (x1, . . . , xk, 0, . . . , 0)

on Ũ . 2

1.1.4 Lemma. Let f :Mm → Nn be smooth, let p ∈M and suppose that rkp(f) =
k. Then there exists a neighborhood U of p in M such that rkq(f) ≥ k for all q ∈ U .
In particular, if k = min(m,n) then rkq(f) = k for all q ∈ U .

Proof. Picking charts ϕ around p and ψ around f(p), rkp(f) = k if and only if
there exists a k × k-submatrix of (D(ψ ◦ f ◦ ϕ−1)) with nonzero determinant. By
continuity, the same is then true on an entire neighborhood of p. This means that
the rank cannot drop locally. If k = min(m,n) then it also cannot increase. 2

1.1.5 Theorem. (Inverse function theorem) Let f : Mm → Nn be smooth, let
p ∈ M and suppose that Tpf : TpM → Tf(p)N is bijective. Then there exist
open neighborhoods U of p in M and V of f(p) in N such that f : U → V is a
diffeomorphism.

Proof. For charts ϕ ofM at p, and ψ at f(p) in N the map D(ψ ◦f ◦ϕ−1)(ϕ(p)) =
Tf(p)ψ ◦Tpf ◦Tϕ(p)ϕ

−1 is invertible. Hence by the classical inverse function theory,
ψ ◦ f ◦ ϕ−1 is a diffeomorphism around ϕ(p) and the claim follows. 2

1.1.6 Proposition. (Local characterization of immersions) Let f : Mm → Nn be
smooth and let p ∈M . TFAE:

(i) Tpf is injective.
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(ii) rkp(f) = m.

(iii) If ψ = (ψ1, . . . , ψn) is a chart at f(p) in N then there exist 1 ≤ i1 < · · · <
im ≤ n such that (ψi1 , . . . , ψim) is a chart at p in M .

Proof. Clearly, (i)⇔ (ii).
(ii)⇒(iii): Let ϕ be a chart at p in M . Then rk(D(ψ ◦ f ◦ ϕ−1)(ϕ(p))) = m, hence

there exist 1 ≤ i1 < · · · < im ≤ n with detD((ψi
1

, . . . , ψi
m

) ◦ f ◦ ϕ−1)(ϕ(p)) 6= 0.

By 1.1.5, then, (ψi
1

, . . . , ψi
m

) is a diffeomorphism locally around p, hence a chart.

(iii)⇒(ii): The linear map D((ψi
1

, . . . , ψi
m

)◦f ◦ϕ−1)(ϕ(p)) is bijective, so rk(D(ψ◦
f ◦ ϕ−1)(ϕ(p))) = m. 2

1.1.7 Proposition. (Local characterization of submersions) Let f :Mm → Nn be
smooth and let p ∈M . TFAE:

(i) Tpf is surjective.

(ii) rkp(f) = n.

(iii) If ψ = (ψ1, . . . , ψn) is any chart at f(p) in N then there exists a chart ϕ of
M at p such that (ψ1 ◦ f, . . . ψn ◦ f, ϕn+1, . . . , ϕm) is a chart at p in M .

Proof. Again, (i)⇔(ii) is obvious.
(ii)⇒(iii): Let ϕ̃ and ψ be charts at p and f(p), respectively. Since rk(D(ψ ◦
f ◦ ϕ−1)(ϕ(p))) = n, the Jacobi matrix D(ψ ◦ f ◦ ϕ−1)(ϕ(p)) possesses n linearly
independent columns. By permuting the coordinates of ϕ̃ we obtain a chart ϕ such
that the first n columns of D(ψ ◦ f ◦ ϕ−1)(ϕ(p)) are linearly independent. Now set
χ := (ψ1 ◦ f, . . . , ψn ◦ f, ϕn+1, . . . , ϕm). Then

D(χ ◦ ϕ−1)(ϕ(p)) =

(
(

∂ψi◦f◦ϕ−1

∂xj
(ϕ(p))

)n

i,j=1
∗

0 Im−n

)

(1.1.1)

Hence, by 1.1.5, χ ◦ ϕ−1 is a diffeomorphism around ϕ(p), and so χ is a chart at p.
(iii)⇒(ii): Since rk(D(χ ◦ ϕ−1)(ϕ(p))) = m, (1.1.1) implies that rk(D(ψ ◦ f ◦
ϕ−1)(ϕ(p))) = m. 2

1.1.8 Proposition. Let Mm, Nn, Rr be manifolds, f : M → N continuous and
g : N → R an immersion. If g ◦ f is smooth then so is f .

Proof. Given p ∈M , by 1.1.3 we may choose charts (ϕ,U) around f(p) in N, and
(ψ, V ) around g(f(p)) in R such that

gψϕ := ψ ◦ g ◦ ϕ−1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0). (1.1.2)

Let and (χ,W ) be a chart in M around p and set fϕχ := ϕ ◦ f ◦ χ−1.

M
f

−−−−→ N
g

−−−−→ R

χ





y





y

ϕ





y

ψ

R
m fϕχ
−−−−→ R

n gψϕ
−−−−→ R

r
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Then ψ◦(g◦f)◦χ−1 is defined on χ((g◦f)−1(V )∩W ), fϕχ is defined on χ(f−1(U)∩
W ), and gψϕ is defined on ϕ(g−1(V ) ∩ U). It follows that gψϕ ◦ fϕχ is defined on

χ(f−1(U) ∩W ) ∩ f−1
ϕχ (ϕ(g

−1(V ) ∩ U)) = χ(f−1(U) ∩W ) ∩ χ(f−1(g−1(V ) ∩ U))

= χ(f−1(g−1(V )) ∩ f−1(U) ∩W )

Since f is continuous, this shows that gψϕ ◦ fϕχ is a restriction of ψ ◦ (g ◦ f) ◦ χ−1

to an open set, hence is smooth. By (1.1.2), (gψϕ ◦fϕχ)
i = f iϕχ for 1 ≤ i ≤ n, hence

fϕχ is smooth. Thus, finally, f is smooth. 2

1.1.9 Proposition. Let Mm, Nn, Rr be manifolds, f : M → N a surjective
submersion and g : N → R arbitrary. If g ◦ f is smooth then so is g.

Proof. Using the same notations as in the proof of 1.1.8, by 1.1.3 we may choose the
charts (χ,W ) around p and (ϕ,U) around f(p) in such a way that fϕχ = ϕ◦f◦χ−1 =
(x1, . . . , xm) 7→ (x1, . . . , xn). As in the proof of 1.1.8, gψϕ ◦ fϕχ is a restriction of
ψ◦(g◦f)◦χ−1 to an open set, hence is smooth. Thus (x1, . . . , xm) 7→ gψϕ(x

1, . . . , xn)
and thereby gψϕ itself is smooth, which implies smoothness of g. 2

After these preparations we are now ready to introduce the notion of submanifold
of an abstract manifold.

1.1.10 Definition. Let Mm and Nn be manifolds with N ⊆ M and denote by
j : N →֒ M the inclusion map. N is called an immersive submanifold of M if j
is an immersion. N is called a submanifold (or sometimes a regular submanifold),
if it is an immersive submanifold and in addition N is a topological subspace of
M , i.e., if the natural manifold topology of N is the trace topology of the natural
manifold topology on M .

This definition is a natural generalization of the notion of submanifold of Rn, cf. [3,
2.1.5]. The figure-eight manifold from [3, 2.1.5] (with atlas {N, j−1}) is an example
of an immersive submanifold that is not a regular submanifold.

1.1.11 Remark. If N is a submanifold of M then for each p ∈ N , the map
Tpj : TpN → TpM is injective. Hence Tpj(TpN) is a subspace of TpM that is
isomorphic to TpN . We will therefore henceforth identify Tpj(TpN) with TpN and
notationally suppress the map Tpj, i.e., we will consider TpN directly as a subspace
of TpM .

1.1.12 Theorem. Let Nn be an immersive submanifold of Mm. TFAE:

(i) N is a submanifold of M (i.e., N carries the trace topology of M).

(ii) Around any p ∈ N there exists an adapted coordinate system, i.e., for every
p ∈ N there exists a chart (ϕ,U) around p in M such that ϕ(p) = 0, ϕ(U ∩
N) = ϕ(U) ∩ (Rn × {0}) (with 0 ∈ R

m−n) and such that ϕ|U∩N is a chart of
N around p.

(iii) Every p ∈ N possesses a neighborhood basis U in M such that U ∩ N is
connected in N for every U ∈ U .

Proof. (i)⇒(ii): Let p ∈ N . By assumption, j : N →֒ M is an immersion. Thus
by 1.1.3 there exist charts (ψ, V ) around p in N and (ϕ, Ũ) around j(p) = p in M ,
with ϕ(p) = 0, such that

ϕ ◦ j ◦ ψ−1 = (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

5



The domain of ϕ ◦ j ◦ ψ−1 is ψ(V ∩ j−1(Ũ)). Since j is continuous, j−1(Ũ) is
open in N . Shrinking V to V ∩ j−1(Ũ) if necessary, we can assume w.l.o.g. that
V ⊆ j−1(Ũ)(= Ũ ∩N). The domain of definition of ϕ ◦ j ◦ ψ−1 then is ψ(V ). By
(i) there exists some open subset W of M such that V = W ∩N and without loss
we may assume that W = Ũ (otherwise replace both Ũ and W by Ũ ∩W ). Then
V = Ũ ∩N .

Denote by pr1 : Rm → R
n the projection map. We have

ϕ(V ) = ϕ(j(V )) = ϕ ◦ j ◦ ψ−1(ψ(V )) = ψ(V )× {0},

so pr1(ϕ(V )) = ψ(V ), which is open in R
n. Hence the set

U := ϕ−1((pr1(ϕ(V ))× R
m−n) ∩ ϕ(Ũ))

is open in M and contains p. It follows that (ϕ,U) is a chart of M around p and
we claim that ϕ(U ∩N) = ϕ(U) ∩ (Rn × {0}).

To see ‘⊆’, note that obviously ϕ(U ∩ N) ⊆ ϕ(U) and U ∩ N ⊆ Ũ ∩ N = V , so
ϕ(U ∩N) ⊆ ϕ(V ) ⊆ R

n × {0}. Conversely,

ϕ(U) ∩ (Rn × {0}) = (pr1(ϕ(V ))× {0}) ∩ ϕ(Ũ) = (ψ(V )× {0}) ∩ ϕ(Ũ)

Now let ϕ(u) ∈ ϕ(U) ∩ (Rn × {0}). Then for some v ∈ V we have

ϕ(u) = (ψ(v), 0) = ϕ ◦ j ◦ ψ−1(ψ(v)) = ϕ(j(v)) = ϕ(v),

so u = v ∈ V ⊆ N and thereby ϕ(u) ∈ ϕ(U ∩N).

Finally, ϕ|U∩N is a chart of N around p since U ∩ N = j−1(U) is an open neigh-
borhood of p in N and

ϕ|U∩N ◦ ψ
−1 = ϕ|U∩N ◦ j ◦ ψ

−1 = ϕ ◦ j ◦ ψ−1|U∩N

= (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

Identifying R
n × {0} with R

n, this latter map is the identity on R
n, so ϕ|U∩N =

ψ|U∩N , hence it is a chart.

(ii)⇒(iii): Let (ϕ,U) be a chart as in (ii). Pick ε0 > 0 such that Bε0(0) ⊆ ϕ(U)
and let Uε := ϕ−1(Bε(0)) for ε < ε0. Then U := {Uε | ε < ε0} is a neighborhood
basis of p in M and

ϕ(Uε ∩N) = ϕ(Uε ∩ U ∩N) = Bε(0) ∩ ϕ(U ∩N) = Bε(0) ∩ (Rn × {0})

is connected in R
n. Thus U serves the desired purpose.

(iii)⇒(i): Denote by TM and TN the topologies on M and N , respectively. Since
j : N →֒ M is continuous, for every W ∈ TM we get j−1(W ) = W ∩ N ∈ TN , so
TM |N ≤ TN . Conversely we will show that any TN -neighborhood of any p ∈ N is
also a TM |N -neighborhood of p. To this end let p ∈ N and let U be a neighborhood
of p in N such that is homeomorphic to a ball in R

n (e.g. the inverse image of such
a ball under a chart). Then ∂U is compact in N , so also j(∂U) = ∂U is compact in
M (since j is continuous). Since p ∈ U◦, p 6∈ ∂U and so by (iii) there exists some
V ∈ U with V ∩ ∂U = ∅. If we can show that V ∩ N ⊆ U then we are done since
V ∩N is a neighborhood of p in TM |N . Assume, therefore, that V ∩N 6⊆ U . This
means that (V ∩N)∩(N \U) 6= ∅. Thus V ∩N is connected and (p ∈)(V ∩N)∩U 6= ∅
as well as (V ∩N) ∩ (N \ U) 6= ∅. But this implies (V ∩N) ∩ ∂U 6= ∅ and thereby
V ∩ ∂U 6= ∅, a contradiction. 2
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1.1.13 Remark. (i) For M = R
m, condition (ii) from 1.1.12 is precisely (T) from

[3, 2.1.8] (local trivialization). Therefore, submanifolds of Rm in the sense of [3] are
exactly submanifolds of Rm in the sense of 1.1.10.

(ii) Consider the subset N of R2 that consists of the interval [−1, 1] on the y-axis,
plus the graph of sin(1/x) between x = 0 and x = 1. Then N is an immersive
submanifold of R2 that is not a submanifold due to 1.1.12 (iii): in fact, any ball
around (0, 0) of radius less than 1 intersects N in a non-connected set.

1.1.14 Proposition. Let N be a submanifold of M and let f : P →M be smooth
and such that f(P ) ⊆ N . Then also f : P → N is smooth.

Proof. Since N carries the trace topology of M and f : P →M is continuous, also
f : P → N is continuous. Also, j : N →֒ M is an immersion and by assumption
j ◦ f is smooth. The claim therefore follows from 1.1.8. 2

1.1.15 Corollary. Let M be a manifold and let N be a subset of M . Then N can
be endowed with the structure of a submanifold of M in at most one way.

Proof. By definition, N has to carry the trace topology of M . Suppose that there
are two differentiable structures that make N a submanifold of M and denote N
with these structures by N1, N2. Since j : Ni → M is smooth for i = 1, 2, 1.1.14
shows that both id : N1 → N2 and id : N2 → N1 are smooth. Hence id : N1 → N2

is a diffeomorphism and so the differentiable structures on N coincide. 2

1.1.16 Definition. Let M , N be manifolds. A smooth map i : N → M is called
an embedding if i is an injective immersion and if i is a homeomorphism from N
onto (i(N), TM |i(N)).

1.1.17 Remark. (i) If i : N → M is an embedding then i(N) can be turned into
a submanifold of M by declaring i to be a diffeomorphism. The charts of i(N) then
are the ψ◦i−1, where ψ is any chart of N . This manifold i(N) then is a submanifold
of M : Let j : i(N) →֒ M be the inclusion map. Then i = j ◦ i is an immersion
and i is a diffeomorphism by definition, so j is an immersion. Also, i(M) carries
the trace topology by assumption. By 1.1.15 this manifold structure on i(N) is the
only one possible.

Next we want to check how to tell whether a given subset N of M can be made
into a submanifold of M . We first generalized the condition from 1.1.12 (ii):

1.1.18 Definition. LetMm be a manifold and let N be a subset ofM . We say that
N possesses the submanifold-property of dimension n if for every p ∈ N there exists
a chart (ϕ,U) of p in M such that ϕ(p) = 0 and ϕ(U ∩ N) = ϕ(U) ∩ (Rn × {0}).
(ϕ,U) then is called an adapted coordinate system.

1.1.19 Theorem. Let Mm be a manifold and let N be a subset of M possessing
the submanifold-property of dimension n. Then N can be equipped in a unique way
with a differentiable structure such that it becomes an n-dimensional submanifold
of M . If pr1 : Rm → R

n denotes the projection then A := {(ϕ̃ := pr1 ◦ ϕ,U ∩N) |
ϕ is an adapted coordinate system} is a C∞-atlas for N . In addition, j : N →֒ M
is an embedding.
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Proof. Uniqueness is clear from 1.1.15. Let (ϕ1, U1), (ϕ2, U2) be adapted coordi-
nate systems with (U1 ∩N) ∩ (U2 ∩N) 6= ∅. We have to show that ϕ̃1 and ϕ̃2 are
C∞-compatible. We first note that since the ϕi are homeomorphisms, so are the ϕ̃i
as maps from Ui ∩N with the trace topology onto pr1(ϕi(Ui) ∩ (Rn × {0})).

Let θ : Rn →֒ R
m, θ(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0). Then ϕ̃−1

i = ϕ−1
i ◦ θ. It

follows that ϕ̃1 ◦ ϕ̃
−1
2 is defined on ϕ̃2(U1∩U2∩N) (= pr1(ϕ2(U1∩U2))∩(R

n×{0}),
hence open in R

n), and

ϕ̃1 ◦ ϕ̃
−1
2 = (pr1 ◦ ϕ1) ◦ (pr1 ◦ ϕ2)

−1 = pr1 ◦ ϕ1 ◦ ϕ
−1
2 ◦ θ

is smooth. Consequently, A is an atlas for N and by [3, 2.2.7] the natural manifold
topology of N is precisely the trace topology of M on N . If (ϕ,U) is an adapted
chart then ϕ◦ j ◦ ϕ̃−1 = θ, so j is an immersion. Since N carries the trace topology,
j : N → (j(N), TM |j(N)) is a homeomorphism, so j is an embedding. 2

1.1.20 Proposition. Let Mm, Nn be manifolds, N compact and i : N → M an
injective immersion. Then i is even an embedding and i(N) is a submanifold of M
that is diffeomorphic to N .

Proof. We have to show that i : (N, TM |i(N)) is a homeomorphism. We already
know that this map is continuous and bijective. But also i−1 is continuous: Let
A ⊆ N be closed, hence compact. Then (i−1)−1(A) = i(A) is compact and therefore
closed. The final claim follows from 1.1.17 (i). 2

1.1.21 Corollary. Let f : Nn →Mm be an immersion. Then every p ∈ N has an
open neighborhood U such that f |U : U → M is an embedding. Thus the difference
between an immersion and an embedding is of a global nature.

Proof. By 1.1.3 there exist charts ϕ at p and ψ at f(p) such that ψ ◦ f ◦ ϕ−1 =
(x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0). Thus there exists a compact neighborhood V
of p such that f |V is injective. As in the proof of 1.1.20 it follows that f |V : V →
(f(V ), TM |f(V )) is a homeomorphism. Let U ⊆ V be an open neighborhood of p.
Then f |U is an injective immersion and f : U → (f(U), TM |f(U)) is a homeomor-
phism, so f : U →M is an embedding. 2

1.1.22 Theorem. Let Mm, Nn be manifolds and f : N →M smooth with rk(f) ≡
k on N (k < n). Let q ∈ f(N). Then f−1(q) is a closed submanifold of N of
dimension n− k.

Proof. Since f is continuous, f−1(q) is closed in N . We show that f−1(q) possesses
the submanifold property of dimension n − k. The claim then follows from 1.1.19.
Let p ∈ f−1(q). Then by 1.1.3 there exist charts (ϕ,U) at p and (ψ, V ) at f(p) = q
such that ϕ(p) = 0, ψ(q) = 0 and

fψϕ(x) = ψ ◦ f ◦ ϕ−1(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0).

Here, fψϕ is defined on ϕ(U ∩ f−1(V )) =: ϕ(W ). Then (ϕ,W ) is a chart of N at p
and

ϕ(f−1(q) ∩W ) = ϕ(f−1(q)) ∩ ϕ(W ) = ϕ(f−1(ψ−1(ψ(q)))) ∩ ϕ(W )

= f−1
ψϕ(0) ∩ ϕ(W ) = ({0} × R

n−k) ∩ ϕ(W ).

2
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1.1.23 Corollary. Let f : Nn → Mm be smooth with m < nand let q ∈ N . If
rkp(f) = m for all p ∈ f−1(q) then f−1(q) is a closed submanifold of N of dimension
n−m.

Proof. Let p ∈ f−1(q). Then f has maximal rank (= m) at p, hence by 1.1.4 even
in an open neighborhood U of p in N . Therefore the rank of f equals m on an
open neighborhood Ñ of f−1(q) in N . The claim now follows by applying 1.1.22 to
f : Ñ →M . 2

1.1.24 Remark. For N = R
n and M = R

m this result reduces to the description
of submanifolds as zero-sets of regular maps, cf. [3, 2.1.8].

1.1.25 Proposition. Under the assumptions of 1.1.22, let L := f−1(q) and let
p ∈ L. Then TpL = ker(Tpf).

Proof. For any smooth curve c in L with c(0) = p, f ◦ c ≡ q, so 0 = d
dt

∣

∣

0
(f ◦

c) = Tpf(c
′(0)). Hence TpL ⊆ ker(TpM). Since dim(kerTpf) + dim(imTpf) =

dimTpN = n, dim(kerTpf) = n− k = dimTpL, and equality follows. 2

1.1.26 Example. Let π : TM → Mm be the canonical projection and let p ∈
M . Then π is smooth and rk(π) = m since with respect to a chart ψ of M we
have ψ ◦ π ◦ Tψ−1 = pr : R2m → R

m (cf. [3, 2.5.6]). By 1.1.23 it follows that
π−1(p) = TpM is an m-dimensional submanifold of TM . Moreover, by 1.1.25, for
vp ∈ TpM we have TvpTpM = ker(Tvpπ). By the proof of 1.1.22, the submanifold
charts of TpM are given by Tψ|TpM = Tpψ. As these are linear isomorphisms, the
trace topology of TM on TpM is precisely the usual topology of TpM as a finite-
dimensional vector space. Also, Tpψ is a diffeomorphism, so the manifold structure
of TpM as well is its usual differentiable structure as a finite-dimensional vector
space.
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