
Some more technical remarks prior to the course

Pseudodifferential Operators and
Microlocal Analysis

What are pseudodifferential operators and what are they good for?
Pseudodifferential operators may be seen as natural generalizations of linear
partial differential operators. The main idea is to use Fourier transform in
the following way: The Fourier transform ϕ̂ of a function ϕ ∈ S(Rn) given
by ϕ̂(ξ) =

∫
e−ixξϕ(x) dx has the property

D̂αϕ(ξ) = ξαϕ̂(ξ)

(here Dα := (−i)α∂α) which by the Fourier inversion formula may be ex-
ploited to give

Dαϕ(x) = (2π)−n
∫
eixξξαϕ̂(ξ) dξ.

For a linear partial differential operator P (x,D) =
∑
|α|≤m aα(x)Dα this leads

to the formula

P (x,D) = (2π)−n
∫
eixξp(x, ξ)ϕ̂(ξ) dξ, (1)

where the “symbol” p(x, ξ) of the operator P (x,D) is the polynomial p(x, ξ) =∑
|α|≤m aα(x)ξα.

The idea is now to replace the polynomial p(x, ξ) by a more general “symbol”
for example by smooth functions p(x, ξ) satisfying estimates of the type

|∂αx∂βξ p(x, ξ)| ≤ Cαβ (1 + |ξ|2)(m−|β|)/2 (2)

for all (x, ξ) ∈ R2n and some m ∈ R. Note that every ξ-derivative improves
the fall off at infinity by one order, a property which mimics the behavior of
polynomials.
We now turn equation (1) into a definition associating with every symbol
p(x, ξ) satisfying (2) an operator P (x,D) acting on S which is more general
than a partial differential operator—hence called pseudodifferential operator.
The action of P (x,D) may subsequently be extended to S ′ and the L2-based
Sobolev spaces Hs.



It turns out that such operators are general enough to include approximative
inverses to elliptic partial differential operators. Here approximative means
up to a smooth function; the prime example being the construction of a
parametrix for constant coefficient elliptic operators in the course of the proof
of the elliptic regularity theorem (see e.g. G. Friedlander, Introduction to the
Theory of Distributions (Cambridge University Press, 1998), Thm. 6.1.8).
These approximative inverses are a key tool in the study of solvability and
hypoellipticity of e.g. general elliptic operators.
The main technical benefit obtained from definition (1) is that computations
on the operators (composition, adjoint, etc.) can be replaced by (easier)
computations on the symbols leading to the introduction of the mighty pseu-
dodifferential calculus. However, the technical complexity has to be stressed,
e.g. the convergence of integrals as in equation (1) for symbols satisfying an
estimate as in (2) has to be carefully analyzed; here the heavy machinery
of oscillatory integrals—which lies at the technical core of pseudodifferential
calculus—comes into the play.

Remarks on the aims and scope of the course.
Unfortunately many expositions of pseudodifferential calculus remain vague
in giving the details of the technicalities and pretend to work with abso-
lute convergent integrals whereas such well-known formulas as integration
by parts or differentiation under the integral require quite involved proofs in
case of oscillatory integrals. In this course we aim at giving full and detailed
proofs of these kind of statements and introduce pseudodifferential calculus
in a way that empowers the students to use it in their own work.
On the other hand we strive at presenting the main principles of the theory in
a clear and transparent way keeping technicalities to the necessary minimum.
These choices, however, have their drawback by necessitating that we restrict
ourselves to the most basic class of symbols, i.e., Sm as defined by (2) (also
known as Sm0,1). We will only briefly comment on more general classes of
symbols and, in particular, confine ourselves to global estimates (i.e., (x, ξ) ∈
R2n in (2)). The hope of course is that the student following this course will
acquire enough technical background and theoretical insight to find her/his
own way through more advanced literature, in particular, treating the topics
omitted here.
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