


71. (a) Finde zu jedem $n \in \mathbb{N}$ eine Kapazitätsfunktion für das abgebildete Netzwerk, bei der der Algorithmus aus dem Beweis des max-flow min-cut theorem bei ungünstiger Wahl der "Verbesserungspfade" mehr als n solcher Pfade braucht.

- (b) Finde eine Schranke für die Anzahl der Pfade durch eine Funktion von |V| und |E|, falls immer kürzestmögliche Verbesserungspfade gewählt werden.
- 72. Betrachte alle Schnitte im folgenden Netzwerk, finde einen maximalen Fluß und überprüfe das max-flow-min-cut theorem.

73. Finde einen maximalen Fluß im folgenden Netzwerk:

74. Wie lassen sich die Überlegungen aus der Vorlesung auf den Fall übertragen, dass es mehrere Quellen s', s'', \ldots und Senken t', t'', \ldots gibt? Erläutere das am folgenden Netzwerk:

75. Zeige, dass das max-flow-min-cut theorem auch für eine Kapazitätsfunktion mit Werten in \mathbb{R}^+ gilt.