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Chapter 1

Introduction

To describe the world around us at a fundamental level it is necessary to know the
constituents of nature and the rules of the game the constituents play. The length
scales at which nowadays experiments can be performed are around 10−18 meters,
which requires energies around 1 tera electron Volt (TeV), corresponding to the mass
of about 1000 protons. The discipline within physics that tries to describe phenomena,
both the constituents and the rules of the game, at these length scales at a fundamental
level is therefore called high-energy physics.

One of the main achievements of high-energy physics is the Standard Model, which
was developed by Salam, Glashow and Weinberg between 1970 and 1973, for which
they were rewarded with a Noble prize. The Standard Model describes the elementary
particles and the three forces they can exert on each other; the weak force, the elec-
tromagnetic force and the strong force. An elementary particle feels the force from a
second elementary particle by the interchange of a third particle; the forces are carried
by the ‘force mediators’. The agreement of the predictions of the Standard Model
with experiments has encouraged the physics community to think that the Standard
Model is a major step in the right direction towards a theory of everything. However,
there are fundamental objections to the standard model.

As one of the important objections, we mention that the most familiar force is
absent in the Standard Model; the force that keeps us with both feet on the Earth,
gravity, is not incorporated in the Standard Model. It has been thought for a long
time that gravity can be incorporated in the Standard Model, but that we just do not
know how. Nowadays a large number of physicists has the opinion that new ideas are
needed and that a theory that incorporates both the physics of the Standard Model
and gravity does not resemble the Standard Model at all.

One such a new idea is superstring theory (the word ‘new’ is not quite correct
since the birth of superstring theory dates back to the 1970’s), which states that the
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constituents of nature can be described by one-dimensional objects, called strings.
One can debate whether superstring theory is a step in the right direction towards
a theory of everything but this debate we will avoid. In the opinion of the author,
superstring theory already taught us about many interesting aspects of theories in
general and if in the end string theory is wrong, we are at least a lot wiser.

Superstring theory only admits a consistent quantum mechanical formulation in
ten space-time dimensions and it turns out that five different consistent formulations
exist. All five superstring theories predict a whole tower of states, where the lowest
mass states correspond to massless particles and the first states of nonzero mass
have masses around the Planck mass ∼ 1019GeV ∼ 20µg. Due to the huge mass of
the massive states, the massive states are certainly beyond the reach of present-day
accelerators and thus one is mainly interested in the physics of the massless states.
The massless states can be described at a classical level by a supergravity theory.

A supergravity theory is a classical field theory that has a symmetry called su-
persymmetry and incorporates gravity. Supersymmetry is a symmetry that relates
the bosonic degrees of freedom to the fermionic degrees of freedom. Supersymmetric
theories have certain appealing properties and are used in various places. A disadvan-
tage of supersymmetric theories is that nature does not seem to be supersymmetric.
However, a theory can still be supersymmetric, although the solutions do not seem
to be supersymmetric.

Supergravity theories can be formulated in dimensions less than or equal to eleven.
Many supergravities that live in space-time dimensions less than ten can be obtained
from a ten-dimensional supergravity by writing ten-dimensional space-time as a direct-
product space X ×Y where X is four-dimensional and Y is six-dimensional, compact
and of small size1. The procedure to obtain lower-dimensional theories from higher-
dimensional theories is called dimensional reduction. If string theory is to describe the
world around us, a thorough understanding of dimensional reductions is indispensable,
since the observable world surely is not ten-dimensional.

Supergravity theories are often given a number N , as in the title of this thesis.
The number N denotes the amount of supersymmetry and it is a nonnegative integer.
In four space-time dimensions N can take values from 1 to 8 and in ten space-time
dimensions it is 1 or 2. This thesis is about four-dimensional N = 4 supergravities,
of which some can be obtained from a dimensional reduction of a ten-dimensional
N = 1 supergravity. However, not all N = 4 supergravities can be obtained from a
dimensional reduction; in the construction in four dimensions of N = 4 supergravity
it is possible to include so-called SU(1, 1)-angles. A higher-dimensional origin of these
SU(1, 1)-angles has up to now not been given.

There is no clear motivation why one should study N = 4 supergravities in par-
ticular. This thesis one should see more as a small piece of a huge jigsaw puzzle than

1Since experiments have not seen the extra dimensions, their size needs to be smaller than 10−18

meters. String theory predicts even sizes of around 10−35 meters.
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as a work on one puzzle on its own. Either string theory is wrong or it is right, but
we cannot choose between wrong and right if we have not studied the properties of
string theory in great detail. The investigation of supergravities is just one part of
finding the solution of the puzzle and within that part the N = 4 supergravities are
a small piece. However, this small piece is an interesting piece. The N = 8 super-
gravities do not allow for much freedom and the theory is so to say fixed; there is
no multiplet of fields that can be coupled to the fields of N = 8 supergravity. In
N = 1, 2 supergravities there is on the contrary much freedom in coupling various
fields to the supergravity fields and the most general version of the theory involves a
lot of unknown functions. The N = 4 supergravity can be coupled to sets of other
fields, but there exists only one such set and the way different copies of this set can be
coupled to the supergravity fields is restricted. Hence N = 4 supergravity contains
some freedom, which a theoretical physicist can play with, but not too much freedom,
in which a theoretical physicist would drown.

To investigate a theory one can try to solve the equations of motion and investigate
the solutions. This programme is not feasible in most cases. Hence we have to resort
to other methods, some of which use the concept of symmetry. One can gather much
information about the solutions of a theory by investigating the symmetries of the
equations of motion and of the Lagrangian. Supersymmetric field theories have a
large group of symmetries; not only are there the symmetries that relate fermions
and bosons, but also symmetries rotating the fermions into fermions and bosons into
bosons.

But not only in supergravities symmetry is an important tool; already in ele-
mentary physics lectures symmetry arguments are used to simplify solving problems.
More importantly, the interactions between particles in the Standard Model are man-
ifestations of symmetries2. A wave function of an electron can be given an arbitrary
global phase and hence a quantum theory of electrons has a global U(1)-symmetry.
Promoting the symmetry to a local symmetry requires the the incorporation of a
massless vector field to which the electron couples and electromagnetic interactions
are born.

Promoting a global symmetry to a local symmetry is called gauging and gauged
supergravities play an important role in understanding supergravities and string the-
ory. In the process of gauging a supergravity supersymmetry is broken; to restore
supersymmetry one has to modify the Lagrangian and the supersymmetry transfor-
mation rules for the fields. The modified Lagrangian contains a scalar potential in
general. The gauging of N = 4 supergravities is not trivial; the symmetry groups
that can be gauged are not known explicitly and the scalar potential that arises due
to the gauging is complicated and finding stationary points is a difficult task.

One of the main ideas of this thesis is that many aspects of N = 4 supergravity
can be understood from symmetry principles. Therefore the discussion is presented

2In this thesis we mean by a symmetry always a continuous symmetry, unless otherwise stated.
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with an emphasis on symmetries and the use of the mathematics of symmetries called
Lie group theory. For the reader not familiar with Lie groups and Lie algebras this
thesis contains a detailed appendix on Lie groups and Lie algebras, which - we hope
- contains all definitions and theorems that are needed to understand the text.

A part of the philosophy behind this thesis is to present the details and the precise
formulas, or to refer to the literature in which the precise details can be found. This
makes the discussion sometimes lengthy and boring for the reader who wants a fancy
story. But the author experienced that fancy stories bring little details, which are so
crucial for starting Ph.D.-students. This motivated to write a text in which precise
definitions and formulas are given and that can be a guide for starting Ph.D.-students.
Therefore we apologize in advance for referring in a few cases to overview- and review-
papers instead of to the original literature.

Before we finish the introduction and present the plan of the thesis, we want to
pose a few questions, which we hope to answer at the end of the thesis. The questions
are not the research questions but serve as ‘things to keep in mind’ while reading.

-1- What is the role played by the SU(1, 1)-angles and is there a higher-dimensional
origin?

-2- What symmetry groups can be gauged in N = 4 supergravity?

-3- Why do the scalars in supergravity theories often parameterize a coset G/K
with K the maximal compact subgroup of G?

-4- What is the relation between the isometries of the compact manifold over which
a higher-dimensional supergravity is reduced and the symmetries of the lower-
dimensional supergravity?

-5- What is the fate of string theories and supergravities?

In the last chapter we come back to these questions and try to formulate an answer.
The plan of the thesis is as follows. In chapter 2 we introduce indispensable tools

to understand gravity, supersymmetry and supergravity at a level that is used in
the thesis. In chapter 3 we develop the general theory of Kaluza–Klein reductions.
Kaluza–Klein reductions are a particular kind of dimensional reductions and are useful
in understanding the relation between ten-dimensional N = 1 and four-dimensional
N = 4 supergravities. In chapter 4 we present the N = 4 supergravity theory and
discuss the role of the SU(1, 1)-angles and the potential of the gauged theory. In
chapter 5 we conclude and try to answer the five questions posed above. In appendix
A we explain our conventions and give a few useful formulas, in appendix B we present
a detailed account on Lie group and Lie algebra theory and in appendix C we explain
the concept of spinors and fermions and present our conventions on spinors. The work
of the author is mainly discussed in chapters 3 and 4. In appendix D we give the
published papers.



Chapter 2

Gravity and Supergravity

Gravity is a force that is familiar to everyone and it was also the first force that was
described in a quantitatively accurate way by Newton in the end of the seventeenth
century. From the Newton era until the beginning of the twentieth century Newton’s
theory was accepted as the theory that describes gravity.

It was Einstein who came up with a totally new view on space and time, a view that
resulted in a completely new explanation for gravity. According to Einstein’s theory
of General Relativity space-time is a dynamical object and is curved in presence of
matter. Space-time in turn influences through its curvature the trajectory that matter
follows. Experiments have verified that General Relativity describes gravitational
interactions more accurately than Newton’s theory and nowadays General Relativity
has taken the prominent place of Newton’s theory to be the theory of gravity.

In contrast to gravity supersymmetry is less familiar and has not even been ob-
served by an experiment. But supersymmetry is attractive from a theoretical point of
view; it can solve some problems encountered in the Standard Model. Supersymmetry
has also been an indispensable tool in constructing consistent string theories, which
are viable candidates for the so-called theories of everything but are little supported
by experiments1. In combining supersymmetry and General Relativity one obtains
supergravity. It turns out that the supergravity theories are classical field theories
that describe the low-energy limit of string theory.

In section 2.1 some elementary differential geometry and General Relativity are
discussed. This section is more a kind of summary of concepts and formulas that are
used later than a textbook-like introduction. In section 2.2 we discuss the concept of
supersymmetry. In section 2.3 the chapter is concluded with a discussion on super-

1Some readers might prefer to say that there is no experimental evidence for string theory, but
the author shares the opinion of E. Witten, who remarked that string theory is the first theory to
predict the existence of gravity [1], which has been confirmed to exist experimentally.
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gravities and their properties. The reader who is not familiar with basic elements of
General Relativity or elementary concepts of differential geometry is referred to [2–9]
for good introductions, reviews and complete lists of references.

2.1 Gravity

2.1.1 Structures on Manifolds

One of the starting points of General Relativity is the equivalence principle, stating
that [4]: ”There is no local experiment that can distinguish between a nonrotating
free fall in a gravitational field and a uniform motion in space in the absence of
gravity”. It follows that physics can locally be described in a frame that is not
influenced by gravity. Since the trajectory of matter is influenced by gravity through
the curving of space-time, the absence of gravity means that space-time is not curved.
The equivalence principle can thus be translated to the statement that locally space-
time is flat, that is, it has no curvature. To describe curvature we will introduce the
Riemann tensor in equation 2.1.9. The Riemann tensor is one of the main ingredients
for the Einstein equation 2.1.13, which describes the interaction between space-time
and matter. The Einstein equation and the action from which the Einstein equation
can be derived are of major importance for both gravity and supergravity.

At every point p on an n-dimensional manifold2 M there is a vector space, called
the tangent space at p and denoted TMp. The tangent space at p describes the
tangent vectors to all curves through p. All tangent spaces together are called the
tangent bundle TM. An element of TM assigns to each p ∈ M an element of TMp

and is called a vector field.
At every point p ∈ M there exist basis vectors e1µ, . . . , e

n
µ, where n = dimM, that

span the tangent space TMp at p. If the basis vectors ei
µ are smoothly varying, one

speaks of a frame bundle3; locally the tangent bundle TM looks like IRn×IRn ∼= IR2n.
In a patch U ⊂ M we can use local coordinates xµ and for vector fields the standard
basis ∂µ. The set {∂1|p, . . . , ∂n|p} is called a coordinate frame at p ∈ M. With TMp

we associate the dual vector space TM∗
p.

When space-time is curved, the metric g, seen as a map g : TM → TM∗, is
in general not diagonal, that is, in general we have g(∂µ, ∂ν) 6= ηµν , where ηµν is
the Minkowski metric (see Appendix A). However, locally there exist vector fields
ta = tµa(x)∂µ satisfying g(ta, tb) = ηab and the set of vectors ta is called a (local)
orthonormal frame. Since both {ta} and {∂µ} are frames we have tµa(x) ∈ GL(n; IR)
for all x.

We introduce the dual of the orthonormal frame {ta}, consisting of 1-forms σa =
σa

µ(x)dxµ satisfying σa(tb) = δa
b . Now we define a covariant derivative, or connection,

2We assume the manifold admits a metric with Lorentzian signature -++. . . +.
3In this context a frame means a set of basis vectors attached to a point p on M.
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∇, which maps a vector field v = va(x)ta(x) ∈ TM to a vector-valued one-form -
that is, an element of TM⊗ TM∗ - in such a way that ∇ satisfies the Leibniz rule
and that ∇ is linear: if f is a function on M and v, w ∈ TM then

∇(fv) = df ⊗ v + f∇v , ∇(v + w) = ∇v + ∇w . (2.1.1)

Hence ∇ is fully determined by its action on the basis vectors ta. We define the
connection coefficients ωa

c
b by

∇ta = ωb
c
atc ⊗ σb ⇒ ∇ta(tb) = ωb

c
atc , (2.1.2)

where the Einstein convention for repeated indices is used (see appendix A). For
convenience one defines the connection 1-forms by ωa

b = ωc
a

bσ
c; the 1-forms ωa

b are
called spin connections. Similarly the Christoffel connections4 Γ λ

µν are defined by

∇(∂µ) = Γ λ
µν∂λ ⊗ dxν . (2.1.3)

The Lie bracket [X,Y ] of two vector fields X,Y is defined by

[X,Y ] = Z = Zµ∂µ, Zµ = Xν∂νY
µ − Y ν∂νX

µ . (2.1.4)

Combining the equations 2.1.2- 2.1.4 gives

∇tb(ta) −∇ta(tb) = [ta, tb] + tµb t
ν
a(Γ ρ

µν − Γ ρ
νµ)∂ρ , (2.1.5)

where the last term gives rise to the torsion tensor τ ;

τ(∂µ, ∂ν) = (Γ ρ
µν − Γ ρ

νµ)∂ρ , (2.1.6)

which is an example of a (2, 1)-tensor (see appendix A). By using the product rule
for differentiation one can show that

dσa(tb, tc) = −σa([tb, tc]) ⇒ dσa = −ωb
a

cσ
b ∧ σc + τa , (2.1.7)

where τa is a component of the torsion tensor with respect to the vector basis {ta}.
The extension of the spin connection to vector valued forms α = ta ⊗ αa (see

appendix A) is given by
∇α = ∇ta⊗̂αa + ta ⊗ dαa , (2.1.8)

where the symbol ⊗̂ is defined as follows: for a vector valued p-form β = βa ⊗ ωa,
where ωa is a p-form, and a q-form γ we define β⊗̂γ = βa ⊗ (ωa ∧ γ). From this one
can show that ∇∇ is a tensor:

∇∇(ta) = tcR
c
a, Rc

a = dωc
a + ωc

b ∧ ωb
a , (2.1.9)

4One can argue whether the name Christoffel connections is appropriate here; we take a pragmatic
approach and simply take this as the definition of the Christoffel connections and use it throughout.
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and the tensor Ra
b is called the Riemann tensor.

One can show that there exists just one spin connection that is torsionless and
metric compatible5. Metric compatibility means that the equation

dηab(tc) = g(∇ta, tb)(tc) + g(ta,∇tb)(tc) = 0 , (2.1.10)

is satisfied. The requirement 2.1.10 results in ωab = −ωba where ωab = ηacω
c
b. The

connection 1-forms are thus elements of the Lie algebra so(1, n−1). But two different
frames at a point p ∈ M are related by an so(1, n − 1) transformation, i.e. a local
Lorentz transformation, and so the result might not be totally unexpected.

In General Relativity one uses the word vielbeins for the dual 1-forms: ea
µdxµ = σa.

Since both the set {∂µ} and {ta} are frames, the map between the two is invertible and
hence the vielbein ea

µ is a nonsingular ‘matrix’ with inverse Eµ
a , satisfying Eµ

a e
b
µ = δb

a

and Eµ
a e

a
ν = δν

µ. One sees that the inverse vielbeins Eµ
a are the components of the

vectors ta.

For most applications in General Relativity one sets the torsion to zero, which is
consistent with local Lorentz symmetry - no local Lorentz transformation can be used
to map τ = 0 to a nonzero τ ′. Hence we obtain

dea = −ωa
be

b , (2.1.11)

which can be solved by introducing the objects of anholonomicity Ωa
bc through dea =

1
2Ωa

bce
b ∧ ec. One obtains

ωabc = 1
2 (−Ωabc + Ωcab + Ωbca) , (2.1.12)

where the objects with indices down are obtained by contracting with ηab. From the
spin connections the Riemann tensor can be calculated with the use of equation 2.1.9.

The Riemann tensor is the input for the Einstein equations that govern the inter-
action between space-time and matter. The Einstein equations are given by

Rµν − 1
2gµνR = κTµν , (2.1.13)

where Rµν = Raµ
a

ν is the Ricci tensor, R = gµνRµν is the Ricci scalar, κ is the
gravitational coupling constant and Tµν is the energy-momentum tensor of the matter
interacting with gravity. The left-hand side of equation 2.1.13 is purely determined
by the geometry of space-time and the right-hand side is determined by the matter
distribution. The Einstein equations thus tell us that the way matter is distributed
in space-time determines the structure of space-time.

5We show this below by giving an expression for a torsionless and metric compatible spin con-
nection.
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2.1.2 Gravity as a Gauge Theory

There is another sometimes more convenient point of view on the role of the connection
1-forms ωa

b and the Christoffel connections Γ ρ
µν ; one can view gravity as a kind of

gauge theory. The symmetry that is uplifted to a local symmetry is Lorentz symmetry.
In 1961 Kibble [10] presented a nice derivation of the Einstein equations starting from
local Lorentz invariance.

In the gauge theory language the spin connection is the gauge field and the Rie-
mann tensor is the field strength. The similarity between gauge theories and General
Relativity ceases to hold if equations of motion come into play; the Einstein equations
2.1.13 are not of the form ∂µF

µν = jν for some field strength Fµν and some current
jν .

Fields in physics are tensors and spinors. The tensors have components with
respect to the coordinate frame ∂µ and the orthonormal frame ta, and their duals
dxµ, σa respectively. The components with respect to the orthonormal frame are
inert under a change of coordinate frame, i.e. a general coordinate transformation,
but rotated into each other by local Lorentz transformations. The converse holds for
the components with respect to the coordinate frame.

Both general coordinate transformations and local Lorentz transformations are
groups, denoted GCT (M) and SO(1, n − 1) respectively. The vielbeins and the
inverse vielbeins are the transformation between a representation of the one group
into a representation of the other.

For a field φ in a representation ρ of the Lorentz group, an infinitesimal6 local
Lorentz transformation acts on φ as

δφ(x) = 1
2ǫ

ab(x)ρ(Σab)φ(x) , (2.1.14)

where Σab = −Σba are a basis of the Lie algebra so(1, d− 1) and satisfy

[Σab,Σcd] = ηbcΣad + ηadΣbc − ηacΣbd − ηbdΣac . (2.1.15)

For the spin 1/2 representation we can take the usual 2[n/2]-dimensional represen-
tation of the Clifford algebra generated by the Γa, 1 ≤ a ≤ n, with the relation

{Γa,Γb} = 2ηab . (2.1.16)

Then the spin 1/2 representation of the Lie algebra so(1, n− 1) is given by

ρ(Σab) = 1
2Γab ≡ 1

2Γ[aΓb] = 1
4 (ΓaΓb − ΓbΓa) . (2.1.17)

For the spin 1 representation one checks that the map

ρ(1) : Σcd 7→ ρ(Σcd)a
b = (δa

c ηdb − δa
dηbc) (2.1.18)

6We immediately leave the group and study the Lie algebra.
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indeed defines a representation. The matrices Γa are Lorentz-invariant, since a Γ-
matrix is both an endomorphism in the spin 1/2 representation and an element of a
spin 1 representation (see appendix C).

A covariant derivative transforms as the fields on which it acts, hence without
derivatives on the parameters of the transformation. We take the spin connection as
the gauge field for the Lorentz group. A covariant derivative of a field in a represen-
tation ρ of the Lorentz group is defined as

Dµ(ω)φ =
(
∂µ + 1

2ωµ
abρ(Σab)

)
φ . (2.1.19)

Note that in this definition the spin connection is already antisymmetric; ωµ
ab =

−ωµ
ba and thus metric compatibility and the requirement that Dµ(ω) is an so(1, n−1)-

covariant derivative are the same. The transformation of the spin connection is

δωµ
ab = −Dµ(ω)ǫab . (2.1.20)

The spin connection is not covariant as is to be expected from a connection, but the
difference of two connections is covariant.

The scalar ϕ, the vector Xµ and the co-vector Yµ are representations of GCT (M)
of which all other representations can be built by taking tensor products. For spinors
one needs to take a little care; we take ϕ, Xµ and Yµ to be nonspinorial. A spinor
of spin 1/2 behaves under general coordinate transformations as a scalar. Any other
spinor can be obtained by taking tensor products between nonspinorial representations
and a spin 1/2 representation. The map from so(1, n−1) representations toGCT (M)7

representations is thus 2 : 1 in a sense. The infinitesimal action of an infinitesimal
general coordinate transformation δxµ = ξµ(x) on ϕ, Xµ and Yµ is given by

δϕ = −ξν∂νϕ , (2.1.21a)

δXµ = ∂νξ
µXν − ξν∂νX

µ , (2.1.21b)

δYµ = −∂µξ
νYν − ξν∂νYµ . (2.1.21c)

The equations 2.1.21a-2.1.21c describe a Lie algebra representation, but the Lie alge-
bra is not finite-dimensional. From 2.1.21a-2.1.21c we see

[δξ1
, δξ2

] = δξ3
, ξµ

3 = ξλ
2 ∂λξ

µ
1 − ξλ

1 ∂λξ
µ
2 = Lξ1

(ξ2) , (2.1.22)

and hence the Lie algebra structure is given by the Lie derivative.
If we now pursue the approach taken and define an independent connection for

the group GCT (M) we do not obtain gravity. What does give gravity is identifying
the two connections and define the covariant derivative ∇µ with respect to general

7For the general coordinate transformations, both the group and the algebra are denoted
GCT (M).
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coordinate transformations by using the Lorentz transformation covariant derivative.
This can be done as follows (see also [3]): (1) the field, which is in some GCT (M)-
representation, is transformed to a Lorentz representation by contracting with viel-
beins (and/or inverses), (2) the covariant derivative Dµ(ω) acts on that field and (3)
the result is transformed back using vielbeins and inverse vielbeins. One obtains

∇µϕ = ∂µϕ , (2.1.23a)

∇µXν = ∂µXν − Γ ρ
µνXρ , (2.1.23b)

∇µY
ν = ∂µY

ν + Γ ν
µρY

ρ , (2.1.23c)

Γ ρ
µν = −ea

νDµ(ω)Eρ
a = Eρ

aDµ(ω)ea
ν , (2.1.23d)

where the Γ ν
µν are identified with the Christoffel connection. For a spin 1/2 spinor λ we

get ∇µλ = Dµ(ω)λ, since ∂µλ is covariant under general coordinate transformations
but not covariant under local Lorentz transformations.

One can see that equation 2.1.23d implies that

Dµ(ω)ea
ν = Γ ρ

µνe
a
ρ, Dµ(ω)Eρ

a = −Γ ρ
µνE

ν
a , (2.1.24)

which is equivalent to the vielbein postulate. The vielbein postulate states that the
vielbein is covariantly constant:

∇λe
a
µ = Dλ(ω)ea

µ − Γρ
λµe

a
ρ = ∂λe

a
µ + ωλ

a
be

b
µ − Γρ

λµe
a
ρ = 0 . (2.1.25)

For a field φ in a representation ρ of the Lorentz Lie algebra we have

[Dµ(ω),Dν(ω)]φ = (∂[µων]
ab + ω[µ

a
|c|ων]

cb)ρ(Σab)φ ≡ 1
2Rµν

ab(ω)ρ(Σab)φ , (2.1.26a)

[Da(ω),Db(ω)]φ = 1
2Rab

cd(ω)ρ(Σcd)φ− τab
cDc(ω)φ , (2.1.26b)

with

Rab
cd(ω) = Eµ

aE
ν
bRµν

cd(ω) , (2.1.27a)

τab
c(P ) = Eµ

aE
ν
b (Dµ (ω)eν

c − Dν(ω)eµ
c) = 2Eµ

aE
ν
b Γ ρ

[µν]e
c
ρ . (2.1.27b)

We see that the Riemann tensor Rµν
ab = Rνµ

ba plays the role of a field strength.
Since the torsion is the antisymmetric part of the Christoffel connection, we can

write

Γ ρ
µν =

{
ρ
µν

}

+ 1
2τµν

ρ , (2.1.28)

where

{
ρ
µν

}

denotes the symmetric part of the Christoffel connection. We have

∇µgνρ = 0 ⇒
{
ρ
µν

}

= 1
2g

ρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (2.1.29)
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For the antisymmetric part we can write

1
2τbc

aeb ∧ ec = ((de)cb + ωc
a

b) e
c ∧ eb . (2.1.30)

The easiest way to solve for the spin connections is to write ω = ω0 +ω1, where ω0 is
a solution of dea +ωa

0 b ∧ eb = 0 and ω1 is a solution of ωa
1 b ∧ eb = 1

2τ
a ≡ 1

2τbc
aeb ∧ ec.

The solution for ω0 is given by 2.1.12. For ω1 we have similarly

τbc
aeb ∧ ec = ω1b

a
ce

b ∧ ec ⇒
ω1abc = 1

2 (τbca + τacb − τabc) .
(2.1.31)

Though general relativity with torsion is not really understood - we could ask
ourselves what space-time with nonzero torsion would look like -, for supergravity
we will see it is inevitable to take torsion into account. If the torsion is zero, the
connection is determined uniquely by metric compatibility; when torsion is introduced
the uniqueness is lost.

2.1.3 An Action for Gravity

The Einstein equation 2.1.13 can be deduced from the action

S[ea
µ,Φ] = 1

2κ2

∫

M
dnx eR(ea

µ, ω) +

∫

M
dnx eL(Φ, ∂Φ, ea

µ) , (2.1.32)

where Φ stands for some fields collectively and R(e, ω) = Eµ
aE

ν
bRµν

ab(ω) is the Ricci
scalar and e = detea

µ. From the action 2.1.32 one sees that the similarity between
gauge theories and General Relativity ceases to hold when the Einstein equations
2.1.13 are introduced; the action 2.1.32 is not the action for a gauge theory with field
strength Rµν

ab.
In a general situation there might be torsion but we have yet no way to find

the torsion. To find the torsion we treat the vielbein and the spin connection as
independent; this formalism is called the first-order formalism [10–12]. The action of
uncoupled gravity

S =

∫

M
dnxLEH = 1

2κ2

∫

M
dnx eR(ea

µ, ω) , (2.1.33)

is called the Einstein–Hilbert action. Variation with respect to the spin connection and
inverse vielbein independently gives (see appendix A for some convenient formulas)

δLEH = − 1
κ2 Dµ (eEµ

aE
ν
b ) δων

ab + 1
κ2

(
eEν

bRµν
ab(ω) − 1

2eRe
a
µ

)
δEµ

a . (2.1.34)

The equation of motion for the spin connection puts the torsion to zero, while the
equation of motion of the vielbein gives the Einstein equation in vacuum:

Gµν ≡ Rµν − 1
2gµνR = 0 , (2.1.35)

which equals 2.1.13 for Tµν = 0.
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2.2 Supersymmetry

In the early days of quantum field theories the study of quantum field theories de-
scribing particles and their interactions seems to be governed by regularization and
renormalization. The calculations within these theories were plagued with so-called
infinities. The infinities are generated by loop-diagrams and it turns out that the
contributions from a fermionic loop-diagram and a bosonic loop-diagram have oppo-
site signs. Therefore one can suggest that invoking a symmetry between bosons and
fermions can help in cancelling infinities, and in a few cases it turns out to be so. The
symmetry between fermions and bosons is called supersymmetry.

Another motivation for studying supersymmetry is found in reference [13] and the
argument goes as follows: gravity is always attractive and therefore gravity should
be mediated by even integer spin quanta8, whereas the well-known weak and elec-
tromagnetic forces are mediated by spin 1 quanta. Some no-go theorems (such as
that of [14]) forbid symmetry transformations between fields of different integer spin.
Hence if we want to unify gravity with the other forces we are faced with a problem,
which can be circumvented by introducing symmetry transformations between fields
differing half integer in spin. Hence supersymmetry is a necessary ingredient of any
theory unifying gravity with the other forces into a single quantum field theory.

Supersymmetry is also of major importance in the development of superstring
theory; without supersymmetry superstring theory is inconsistent [15–17].

2.2.1 Super Lie Algebras

A symmetry between fermions and bosons in a field theory in d dimensions means that
the particle states form representations of an algebra that contains (1) the algebra
Md of translations and Lorentz transformations called the Poincaré algebra of d-
dimensional space-time and (2) generators Qα that map a bosonic state |boson〉 to a
fermionic state |fermion′〉 and vice versa;

Qα

(
|boson〉

|fermion〉

)

∼
(
|fermion′〉
|boson′〉

)

. (2.2.1)

So we seek a way to uplift the Poincaré algebra with these necessarily fermionic
generators Qα to a ‘super Poincaré algebra’. The way to do this is by using super Lie
algebras.

A super Lie algebra S consists of a set theoretical disjoint sum of two vector spaces
B and F with a Z2-grading. This means that there is a map |.| : S → {0, 1}, with
|B| = 0,∀B ∈ B and |F | = 1,∀F ∈ F. To get a well defined operation |.| the elements
of S are either linear combinations of elements of F, or linear combinations of elements

8An assumption made is that a quantum field theory of gravity does not deviate too much from
the standard quantum field theories.
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of B but not a combination of both; this is what is meant by a set theoretical disjoint
sum9.

As a Lie algebra S is also equipped with a bilinear product [., .] : S × S → S,
which has the following graded symmetry and gradation property:

[A,B] = −(−1)|AB|[B,A] , |[A,B]| = (|A| + |B|)(mod2) . (2.2.2)

We define the adjoint action of an element A on an element B by adA(B) = [A,B].
For fixed A ∈ S the map adA is a linear map from S to S. The map ad can be seen
as a map from S to the set of linear maps from S to S. In order to promote S to a
super Lie algebra we impose the so-called graded Jacobi identities:

adF1 ◦ adF2 + adF2 ◦ adF1 = ad[F1, F2] , (2.2.3a)

adB1 ◦ adF2 − adF2 ◦ adB1 = ad[B1, F2] , (2.2.3b)

adB1 ◦ adB2 − adB2 ◦ adB1 = ad[B1, B2] , (2.2.3c)

where the Fi, Bi denote generic elements of F resp. B. Any S = F ∪ B with the
properties described above is a super Lie algebra [13,18].

A representation of a Lie super algebra is a linear map ρ and a vector space V
such that ρ : S → End(V ) and

ρ ([A,B]) = ρ(A)ρ(B) − (−1)|AB|ρ(B)ρ(A) . (2.2.4)

The adjoint action adA : B 7→ [A,B] defines a representation by virtue of the graded
Jacobi identities 2.2.3a-2.2.3c.

We sometimes write [F1, F2] = {F1, F2}. From the Jacobi identities equations
2.2.3a-2.2.3c follows that B is an ordinary Lie algebra and that the fermionic gener-
ators fit into a representation of the bosonic Lie algebra B.

To get a super Poincaré algebra, we take for B a direct sum of some Lie alge-
bra U (which corresponds to an internal symmetry) and the Poincaré algebra Md,
under which all fermionic generators transform in the spin 1/2 representation; fermi-
onic generators of spin higher than 1/2 are excluded [19]. The Poincaré algebra Md

is spanned by the d(d − 1)/2 spin generators Σµν (as defined in section 2.1) and
the d momentum operators Pµ, which form a commutative subalgebra and have the
following commutation relation with the spin generators Σµν :

[Σµν , Pλ] = −ηµλPν + ηνλPµ . (2.2.5)

The total number of fermionic generators is an integer multiple of the number
of components of the irreducible spinor in d dimensions. This integer we denote N

9Sometimes it is convenient to extend the definition to include linear combination of both B and
F. This alteration does not influence the following discussion.
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and in high-energy physics literature a super Poincaré algebra is often denoted by
the numbers N and d. One should keep in mind that this notation does not fix the
bosonic Lie algebra U. Therefore one also writes a super Poincaré algebra as a triple
(d,N ,U) to prevent confusion.

To illustrate the idea we work out an important example; the d = 4 and N = 4
super Poincaré algebra. For the bosonic part of the super Lie algebra we take B =
su(4)⊕Md. We take a basis {tm} of su(4) such that the structure constants are given
by: [tm, tn] = fmn

ptp.
As mentioned before a supersymmetry generator Q ∈ F has spin 1

2 , hence we add
spin 1

2 generators, which belong to a su(4) representation, say the vector represen-
tation 4 together with the complex conjugate in the 4̄ representation of su(4). So,
we have left-handed four-component spinors Qi and right-handed Qi = (Qi)∗. For
the Clifford algebra representation we will take the charge conjugation matrix C to
be antisymmetric and the Γ-matrices are real10. By working out the graded Jacobi
identities one finds:

[tm, Pµ] = [tm,Σµν ] = [Pµ, Q
i] = [Pµ, Qi] = 0

[Pµ, Pν ] = {Qi, Qj} = {Qi, Qj} = 0 ,

{Qi, Qj} = δi
j(1+ Γ5)ΓµC−1Pµ , [Σµν , Q

i] = 1
2ΓµνQ

i , [Σµν , Qi] = 1
2ΓµνQi ,

[tm, tn] = fmn
ptp , [tm, Q

i] = (tm)i
jQ

j , [tm, Qi] = (tm)i
jQj , (2.2.6)

[Σµν ,Σλρ] = ηνλΣµρ − ηµλΣνρ − ηνρΣµλ + ηµρΣνλ ,

[Σµν , Pλ] = −ηµλPν + ηνλPµ ,

where we denote (tm)i
j =

(
(tm)i

j
)∗

. Since the 4-representation consists of anti-
Hermitian matrices leaving the norm (v, w) =

∑

i(vi)
∗wi invariant we have the con-

straint

(tm)i
j + (tm)j

i = (tm + t†m)i
j = 0 , (2.2.7)

which is a necessary condition for the graded Jacobi identities to hold.
Because the commutator of two supersymmetry charges is a translation, making

supersymmetry local in a theory means that there is a local translation symmetry,
which is diffeomorphism invariance. Hence local supersymmetry implies gravity and
leads to supergravity. Supergravity is actually nothing more than a field theory with
local supersymmetry. But before we introduce supergravity, we discuss some other
important general features of the super Poincaré algebras.

The first feature is the possibility of introducing central charges. The anticom-
mutator between two Q’s can be modified to include an element of the center of the
super Lie algebra (thus by definition commuting with the whole algebra) on the right

10For conventions and technical details on spinor representations and Clifford algebras see appendix
C.
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hand side. In the example 2.2.6 we can try to put:

{Qi, Qj} = (1− Γ5)CZij . (2.2.8)

According to the Haag– Lopuszanski–Sohnius theorem [19] the right hand side of 2.2.8
should be Lorentz invariant, which singles out (1− Γ5)C.

The matrix C can be symmetric or antisymmetric, which forces Zij , the so-called
central charge, to be either a symmetric or an antisymmetric two-tensor of the Lie
algebra U. But since Zij commutes with everything, it has to be an invariant tensor,
which restricts the Lie algebra U since it should admit invariant (anti-)symmetric
two-tensors. If C = −CT then depending on whether the Qi are Majorana or Weyl
spinors, one is forced to take U ⊂ sp([N/2] , IR) or U ⊂ sp([N/2] ,C) respectively11.
For the above example of a super Lie algebra 2.2.6 it is not possible to include central
charges Zij since su(4) does not admit an antisymmetric two-tensor.

There is the possibility to neglect the Lorentz invariance and include a whole set
of central charges [20];

{Qi, Qj} = 2
∑

p

Γµ1...µpCZµ1...µp;ij . (2.2.9)

The central charges Zµ1...µp;ij are associated with charges of p-extended objects of
string theory or solitons of a supersymmetric field theory (see e.g. [21–24] for a more
complete discussion and more details). The presence of these objects breaks Lorentz
symmetry.

The second feature to discuss is R-symmetry. As often in high-energy physics
the concept is lacking a unique widespread definition. What we mean with R-
symmetry can also be found in references [13, 25]. A super Lie algebra admits auto-
morphisms like ordinary Lie algebras. Thus one can find a grading preserving map
ψ : S → S satisfying ψ([A,B]) = [ψ(A), ψ(B)], ∀A,B ∈ S. The automorphisms
of a super Lie algebra S form a group Aut(S) with Lie algebra Der(S). An ele-
ment D ∈ Der(S) is called a derivation and D is a grading preserving map satisfying
D([A,B]) = [D(A), B] + [A,D(B)], ∀A,B ∈ S. The adjoint action of elements of B

define a subalgebra of Der(S). Hence exponentiation of the adjoint action of B de-
fines a nontrivial subgroup of Aut(S) thereby proving that super Lie algebras admit
automorphisms. The R-symmetry group HR is by definition the group of automor-
phisms Aut(S) that act trivially on the Poincaré subalgebra; the restriction of HR to
Md gives the identity on Md.

The central charges restrict the R-symmetry group as we have seen, but from 2.2.6
we see that the anticommutator between Qi and Qj also restricts the R-symmetry
group. For the N = 4 d = 4 super Lie algebra we see that HR ⊂ Aut(S) ⊂ U(4).

11For our convention on the notation of the groups and algebras, see appendix A. For conventions
and notation of spinors, see appendix C.
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A third and final subject concerns representations. There exist so-called state
representations, which are finite-dimensional, and there exist field representations,
which are infinite-dimensional. Since this thesis mainly deals with field representations
we only sketch how to obtain a state representation.

For a state representation one chooses a rest-frame and fixes the momentum Pµ;
one therefore should decide whether one wishes to work out a massive or a massless
multiplet. Then the anticommutation relation

{
Qi, Q

j
}

= δj
i (1+Γ5)ΓµC−1Pµ can be

written as a set of anticommutation relations of creation and annihilation operators,

i.e. one obtains a set of equations of the form
{

biα, b
†
jβ

}

= δαβδij , where 1 ≤ i, j ≤ N .

Then one chooses a vacuum state |Pµ, 0〉 and acts on it with the creation operators

b†jβ to obtain all states in the multiplet. For a nice discussion on N = 1 multiplets in
any dimensions see [25].

An important feature of field representations is that the momentum is not some-
thing chosen but is represented by the operator ∂µ. The following section 2.2.2 is
about supersymmetric field theories, which are built with field representations.

2.2.2 Supersymmetric Field Theories

To incorporate the ideas of section 2.2.1 into a field theory we take a set of fields that
form a representation of a super Lie algebra. The fermionic generators Q ∈ F change
a boson into a fermion and vice versa. Also, acting twice with a supersymmetry
generator we find a translation. Hence it is necessary that the number of fermions
Nf equals the number of bosons Nb. But at this point there is a choice: either we
impose the equality Nb = Nf before imposing the equations of motion or after. Since
the number of degrees of freedom on-shell and off-shell are different, this does make a
difference. One therefore speaks of off-shell supersymmetry multiplets and of on-shell
supersymmetry multiplets. In this thesis we mostly work with on-shell multiplets; for
examples on off-shell multiplets and more details, see [13,26].

For on-shell multiplets in theories with supersymmetry it is a general feature that
the algebra closes, i.e. the transformation rules of the fields do define a representation,
only on-shell, hence up to equations of motion and symmetries of the latter.

To find an on-shell multiplet one starts with a state multiplet. From the state mul-
tiplet one finds the Lorentz representations present in the multiplet and the number
of on-shell degrees of freedom in each Lorentz representation. Then for each Lorentz
representation one finds the correct number of fields with the appropriate spin such
that the number of degrees of freedom match.

Therefore it is necessary to know the degrees of freedom of some particles. In d
dimensions the graviton, the gravitino, the massless vector, the massless fermion and
the massless scalar contain the degrees of freedom (denoted d.o.f.) as denoted in table
2.2.1 (see also [27]). The values of the function c(d) are given in appendix C.
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particle d.o.f.

graviton 1
2 (d− 1)(d− 2) − 1

gravitino c(d)(d− 3)
vector d− 2
fermion c(d)
scalar 1

Table 2.2.1: Degrees of freedom. c(d) denotes the degrees of freedom of a spin 1/2 particle

in d dimensions, which is explained in appendix C.

Having found such a multiplet of fields one constructs a Lagrangian and transfor-
mation rules and it is always possible to find a free theory, i.e. without interactions.
It is more difficult to find the transformation rules and the Lagrangian for a theory
with interactions. Below we present some techniques to find a Lagrangian and su-
persymmetry transformation rules for a theory with interactions, but we try by no
means to be complete12.

The conceptually simplest strategy is to take a multiplet of fields with equal
bosonic and fermionic degrees of freedom and to write down the most general Ansatz
with unknown coefficients for the supersymmetry transformations and for the La-
grangian. Then one tries to fit the coefficients by demanding that the algebra closes
on-shell. The strategy of trial and error works in many cases but can be cumbersome
and does not provide much insight.

There exists a procedure to start with the free theory and to incorporate inter-
actions order by order in a coupling constant g. One adjusts the Lagrangian and
transformation rules order by order in g. This procedure is called the Noether proce-
dure and involves no highbrow mathematics or insightful physics, but it is powerful.
See [11,29–33] for more explanation on this procedure and examples.

A more sophisticated and evenly powerful method is developed by Salam and
Strathdee [34] and uses superspace; one enlarges space-time to a manifold with fermi-
onic degrees of freedom. In this thesis we do not use the methods of superspace.
Therefore we do not go into more detail but refer to the vast amount of literature on
this subject, see e.g. [12] and references therein.

For local supersymmetry there exists a nice insightful method developed by West
and Chamseddine [35] and the idea is as follows. With every generator Tα of the super
Poincaré algebra we associate a gauge field V α

µ and a gauge parameter ǫα. We build
a compound gauge field Vµ = V α

µ Tα and a compound gauge parameter Λα = Tαǫ
α.

12There exists a vast amount of literature on how to construct supersymmetric Lagrangians. We
refer the reader to the literature on the subject for a more complete discussion; see e.g. [12, 13, 28]
and references therein.
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Since a gauge field always transforms as a covariant derivative of the gauge parameter,
we have:

δVµ = DµΛ = ∂µΛ + [Vµ,Λ] = δV α
µ Tα , (2.2.10)

from which we read off the coefficients in front of each generator. This method thus
boils down to gauging the super Poincaré algebra. In finding an invariant action one
has to be careful not to simply take L ∼ TrF 2 - where Fα is calculated from the
commutator of two covariant derivatives Dµ - since the Einstein–Hilbert Lagrangian
is linear in the Ricci scalar. For more explanation on this method, see e.g. [12,35,36].

There is a clear distinction between theories with global supersymmetry and local
supersymmetry. Those with local supersymmetry necessarily include gravity, i.e. the
supersymmetry multiplet contains a symmetric rank two tensor gµν , the graviton.
Since the graviton has spin two, supersymmetry dictates us that there should be a spin
5/2 or spin 3/2 particle. There is a problem however in coupling spin 5/2 particles
consistently to other particles [37], and hence a theory with local supersymmetry
is constructed with a metric tensor of spin 2 and a gravitino of spin 3/2, see e.g.
[11,29,38,39] and many more.

2.3 Simple Supergravities

Having a way of obtaining supersymmetric field theories, we can incorporate gravity
into these theories and try to build an invariant Lagrangian for a supermultiplet
containing the graviton gµν . An N = 1 supermultiplet that contains the metric is
an N = 1 supergravity multiplet and the corresponding field theory describing the
dynamics is called an N = 1 supergravity, or a simple supergravity. The Lie algebra
U is irrelevant since the fields make up a one-dimensional representation.

2.3.1 N = 1 Supergravity in d = 4

From table 2.2.1 and appendix C we conclude that in four dimensions a gravitino
contains 2 on-shell degrees of freedom. Since the graviton in four dimensions also has
2 degrees of freedom, a supersymmetry multiplet consisting of a gravitino ψµ and a
graviton gµν might exist in d = 4. And indeed one finds that the variations

δea
µ = κ

2 ǭΓ
aψµ , δψµ = 1

κDµ(ω)ǫ , (2.3.1)

with ǫ a spin 1/2 Majorana spinor, leave the following action invariant,

Ld=4,N=1 = 1
2κ2 eR(e, ω) − 1

2eψ̄µΓµνρ
(
∂ν + 1

4ων
abΓab

)
ψρ , (2.3.2)

and define a supersymmetry algebra [11,38]. The variation of the action with respect
to the spin connection gives the torsion

τµν
a = κ2

2 ψ̄µΓaψν . (2.3.3)
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The spin connection is determined from the torsion equation 2.1.27b;

Dµ(ω)ea
ν − Dν(ω)ea

µ = τµν
a . (2.3.4)

Choosing the spin connection to satisfy its equation of motion is useful in checking
the supersymmetry invariance of the action; the coefficient in front of δω vanishes
on-shell. Performing the supersymmetry variations is still nontrivial and details can
be found in [3].

A few general remarks can be made by looking at the above example. The first
concerns the variation of the gravitino; a general gravitino variation looks like

δψµ = 1
κ∂µǫ+ . . . , (2.3.5)

and hence the gravitino behaves like a gauge field of supersymmetry.
The second remark is about the ‘covariant derivative’ of the gravitino, which one

often defines as

D̂µ(ω)ψν =
(
∂µ + 1

4ωµ
abΓab

)
ψν , (2.3.6)

which is clearly not covariant, since there is no Christoffel connection. Therefore the
coupling of the gravitino to gravity is called nonminimal [29, 38]. However, it is not
the covariant derivative that enters the Lagrangian, but the ‘covariant field strength’
D̂µ(ω)ψν − D̂ν(ω)ψµ ≡ ψµν , which is covariant under both GCT (M) and so(1, 3).

The final remark is on the calculations involved; already the simple supergravity
examples as the one above give rise to tedious calculations and as a sign of that we
remark that for the first papers on supergravity and even for the one where the above
example was constructed [29], a computer was used to complete the calculations.

The action 2.3.2 is finite at one loop [40], which was already hinted at in the begin-
ning of section 2.2. A similar supergravity theory, where an N = 1 vector multiplet
is added to the supergravity multiplet, also renders finite one-loop corrections as was
shown in the same paper. The four-dimensional Einstein–Hilbert action 2.1.33 is also
finite at one-loop but the coupling of gravity to other fields without supersymmetry
destroys the one-loop finiteness [41]. These observations made supergravity theories
interesting from a quantum gravity point of view. However, it is generally believed
that higher-loop calculations will show that supergravity theories are not finite to all
orders.

2.3.2 N = 1 Supergravity in d = 11

An important development in supergravity theory was the construction of eleven-
dimensional supergravity [42]. Eleven is the highest dimension where a supersym-
metry multiplet exists that does not contain a spin 5/2 particle; necessarily it is an
N = 1 multiplet.
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The metric contains 44 degrees of freedom, whereas the gravitino contains 128
degrees of freedom, a mismatch that can be resolved by adding a three-form Aµνρ

gauge field to the multiplet.
Two different spin connections are used; one that is on-shell and another that is

‘supercovariant’. The latter is denoted ω̂µ
ab and satisfies the torsion-like equation

Dµ(ω̂)ea
ν − Dν(ω̂)ea

µ = Kµν
a ≡ κ2

2 ψ̄µΓaψν . (2.3.7)

The tensor Kµν
a is not the torsion but differs from the torsion by a term proportional

to ψ̄αΓµν
aαβψβ ; this term vanishes in four dimensions but enters in the equation

of motion for the spin connection in eleven dimensions. The supercovariant spin-
connection transforms without derivatives of the supersymmetry parameter ǫ, hence
the name. The supercovariant spin connection does not satisfy the equation of motion
of the spin connection, but the on-shell spin connection ω̄µ

ab does:

ω̄µab = ω̂µab +
κ2

8
ψ̄νΓµ

νρ
abψρ . (2.3.8)

The reason to introduce two different connections is to simplify some of the tedious
calculations.

For the three-form one defines a supercovariant field strength:

F̂µνλρ = 4∂[µAνλρ] + 3κ√
2
ψ̄[µΓνλψρ] . (2.3.9)

The supercovariance of F̂ and ω̂ is easily checked for the following supersymmetry
variations:

δea
µ = κ√

2
ǭΓaψµ , (2.3.10a)

δψµ =
√

2
κ Dµ(ω̂)ǫ+ 1

144

(
Γµ

ν1ν2ν3ν4 − δν1
µ Γν2ν3ν4

)
F̂ν1ν2ν3ν4

ǫ , (2.3.10b)

δAµνλ = − 3
2 ǭΓ[µνψλ] . (2.3.10c)

To find the correct transformation rules for the fields it is important to note
that δψµ is supercovariant. The gravitino is identified with the connection for local
supersymmetry and hence is not covariant, but the difference of two connections is
covariant. Hence if one varies δψµ with respect to a second supersymmetry parameter
ǫ̃, the result should contain no derivatives of ǫ̃, hence δψµ ∼ 1

κDµ(ω̂)ǫ+ . . . where the

ellipsis contains the supercovariant field strength F̂ .
The invariant action is:

L = e
2κ2R(e, ω̄) − e

48FµνλρF
µνλρ − e

2 ψ̄µΓµνρDν( ω̄+ω̂
2 )ψρ

− 1
192

√
2
eκ
(

ψ̄σΓστµνλρψτ + 12ψ̄[µΓνλψρ]
)(

Fµνλρ + F̂µνλρ

)

−
√

2κ
(144)2 ε

µ1...µ11Fµ1...µ4
Fµ5...µ8

Aµ9µ10µ11
,
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where some four fermion terms are captured in Dµ( ω̄+ω̂
2 ).

An important feature of eleven-dimensional supergravity is that many lower-
dimensional supergravity theories can be deduced from it by dimensional reduction.
This simplifies the construction of supergravity theories, since the methods for con-
structing supergravity theories such as the Noether method, can be quite elaborate,
whereas dimensional reductions are in many cases easier. Hence eleven-dimensional
supergravity is an (almost) all encompassing supergravity from which other lower-
dimensional supergravities can be obtained by a relatively straightforward procedure.

Eleven-dimensional supergravity was constructed before the first string theory
revolution, which was in 1984. Since superstring theory lives in ten dimensions eleven-
dimensional supergravity was kicked off its pedestal. But due to the second string
revolution in 1996, when an eleven-dimensional M-theory was conjectured [43], it was
quickly rehabilitated.

In the rest of the thesis we mainly work with the bosonic sector of supergravity
theories and for eleven-dimensional supergravity the bosonic action reads13:

Sd=11 =

∫

1
2κ2 ⋆ 1R− 1

2 ⋆ F(4) ∧ F(4) +
√

2κ
6 F(4) ∧ F(4) ∧A(3) , (2.3.11)

where F(4) = dA(3).

2.3.3 N = 1 Supergravities in d = 10

Of special interest to us are the simple ten-dimensional supergravities since upon
dimensional reduction these give four-dimensional N = 4 supergravities when no
supersymmetry is broken by the dimensional reduction.

In ten dimensions the irreducible spin 1/2 representation of the Lorentz group is
16-dimensional and on-shell a spinor thus has 8 degrees of freedom, which equals the
degrees of freedom of a massless vector. Thus a Yang–Mills vector Aµ and a spinor
ψ can build up a supermultiplet; this multiplet is called the N = 1 Super Yang–
Mills multiplet. The supersymmetry transformations and the (flat space-time) action
are given in section 4.2.1, where the N = 1 Super Yang–Mills theory is treated in
more detail. The Super Yang–Mills multiplet can be a nonabelian Super Yang–Mills
multiplet where Aµ and ψ take values in a faithful representation of a Lie algebra.

The N = 1 Super Yang–Mills multiplet can be coupled to the ten-dimensional
N = 1 supergravity multiplet consisting of a vielbein ea

µ, a two-form Bµν , a dilaton φ,
a Majorana–Weyl gravitino ψµ and a Majorana–Weyl spin 1/2 spinor λ of opposite
chirality, sometimes called dilatino. It turns out that there are two different anomaly-
free N = 1 supergravity theories in ten dimensions, namely the Type I, corresponding
to the low-energy effective action of Type I string theory and the Heterotic super-

13For conventions on forms and Hodge duals, see appendix A.
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gravity, corresponding in turn to the low-energy effective action of Heterotic string
theory. The field contents are the same, but the actions are different.

The bosonic Lagrangian of heterotic supergravity is14

LHet = e−2φ
(
⋆1R+ 4 ⋆ dφ ∧ dφ− 1

2 ⋆ H ∧H − 1
2Tr ⋆ F ∧ F

)
,

H = dB − 1
2Tr(A ∧ F + 2

3g
2A ∧A ∧A) ,

F = dA+ gA ∧A ,
(2.3.12)

where g is the Yang–Mills coupling constant and the gauge group has to be SO(32) or
E8×E8 to cancel the anomalies. Some terms that are needed to cancel the anomalies
are not presented in 2.3.12, for the full result see e.g. [16,17].

The bosonic Lagrangian of type I supergravity is

LI = e−2φ (⋆1R+ 4 ⋆ dφ ∧ dφ) − 1
2 ⋆ H ∧H − 1

2e−φTr ⋆ F ∧ F , (2.3.13)

with identical definitions for H and F and with the same omissions as in 2.3.12 but
for type I the gauge group has to be SO(32).

The Lagrangians 2.3.13 and 2.3.12 are mapped to each other by a Weyl rescaling
gµν 7→ eφgµν of the metric together with the mapping φ 7→ −φ.

Besides the two15 simple supergravities, there are two extended supergravities
living in ten dimensions, called type IIA and type IIB.

2.4 Extended Supergravities

In the preceding sections we looked at N = 1 supergravities where the representations
of the Lie algebra U are trivial. Taking the supersymmetry generatorsQ in a nontrivial
N -dimensional representation of the Lie algebra U gives rise to extended supergravity.
To not get spin 5/2 particles, the total supersymmetry generator components N c(d)
should not exceed 32.

Extended supergravities have some features that are not found in simple gravi-
ties. The most important is that all fields are in a representation of the Lie algebra
U. In most applications the supersymmetry generators Q are assembled in a vector
representation and hence one often writes Qi where the index i is a U vector index.
If there is one metric gµν , the gravitino ψµ is in the vector representation and hence
one writes ψi

µ for the U-vector components of ψµ.
If the number of supersymmetry generators in a supergravity theory is the maximal

number such that spin 5/2 or higher-spin fields are not present, one speaks of maximal

14The gravitational has been chosen such that the Einstein–Hilbert term has coefficient 1. For
similar presentations of the supergravities in ten dimensions see [44,45].

15One often speaks of five different ten-dimensional supergravities; one then counts Heterotic
SO(32) and Heterotic E8 × E8 as two different theories. Since the gauge group in our case is not
important we count them as one.
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supergravity; eleven-dimensional N = 1 supergravity is the only simple maximal
supergravity.

Below we give some examples of extended supergravities. We postpone a more
complete discussion of N = 4 supergravity in four dimensions to chapter 4. The
examples are examples of “ungauged” supergravities; no global symmetry has been
gauged. The gauging of global symmetries is discussed in section 2.4.4.

2.4.1 Type IIA and IIB Supergravity

In ten dimensions it is possible to formulate N = 2 supergravity, where the super-
symmetry algebra contains two fermionic supersymmetry generators Qi, i = 1, 2 both
with 8 components. Since the irreducible spinor in ten dimensions is Majorana–Weyl,
there are two possibilities; either the supersymmetry generators of the supergravity
theory have opposite chirality, say Γ11Q1 = +Q1 and Γ11Q2 = −Q2, or they have the
same chirality, say Γ11Qi = Qi. The first possibility is called type IIA supergravity
and the second possibility type IIB supergravity.

The bosonic action of type IIA is

LIIA =e−2φ
(
⋆1R+ 4 ⋆ dφ ∧ dφ− 1

2 ⋆ H(3) ∧H(3)

)
− 1

2 ⋆ G(2) ∧G(2)

− 1
2 ⋆ G(4) ∧G(4) − 1

2B(2) ∧ dC(3) ∧ dC(3) ,
(2.4.1)

where the index between parenthesis indicates the rank of the form and H(3) = dB(2),
G(2) = dC(1) and G(4) = dC(3) −H(3) ∧ C(1).

There is a common sector with both type I and Heterotic supergravities and this
sector is called the NS-NS sector (for an excellent explanation on the nomenclature
see [15,16,45]) and contains the metric gµν , the Kalb–Ramond two-form B(2) and the
dilaton φ, also called NS-NS fields.

The sector different from type I and Heterotic supergravity contains the so-called
type IIA R-R fields C(1) and C(3). Type IIB supergravity has the same NS-NS sector
but the R-R sector is different from that of type IIA; the type IIB R-R fields are the
gauge fields C(0), called the axion, C(2) and C(4).

The action of type IIB is

LIIB =e−2φ
(
⋆1R+ 4 ⋆ dφ ∧ dφ− 1

2 ⋆ H(3) ∧H(3)

)
− 1

2 ⋆ G(1) ∧G(1)

− 1
2 ⋆ G(5) ∧G(5) + 1

2C(4) ∧ dC(2) ∧H(3) ,
(2.4.2)

where H(3) = dB(2), G(1) = dC(0), G(3) = dC(2) −H(3) ∧ C(0) and:

G(5) = dC(4) − 1
2C(2) ∧H(3) + 1

2B(2) ∧ dC(2) . (2.4.3)

The field strength G(5) is self-dual; G(5) = ⋆G(5). The self-duality condition should
be imposed at the level of the equations of motion [46]; this condition does not follow
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from the action and imposing it in the action 2.4.2 makes the term ⋆G(5) ∧ G(5)

vanish. There exists a Lorentz invariant action that does not require the self-duality
condition, but its construction needs the introduction of auxiliary fields [47].

There is another type IIA supergravity called the Romans massive type IIA super-
gravity [48](for a particular nice and introductory discussion see reference [49]). This
theory contains a mass parameter that deforms the theory and in the limit where the
mass parameter goes to zero one obtains the ordinary massless type IIA supergrav-
ity. The massive theory does not admit a Minkowski vacuum and has been of great
importance in the theory of D8-branes [50–52]. The massless type IIA supergravity
theory can be obtained from eleven-dimensional supergravity by dimensional reduc-
tion, whereas for the massive type IIA and the type IIB no higher-dimensional origin
is known.

2.4.2 N = 4 Supergravity in d = 4

There are two main ingredients for four-dimensional N = 4 supergravity; the N = 4
Super Yang–Mills multiplet and the N = 4 supergravity multiplet. In this section we
briefly comment on these ingredients. In chapter 4 we treat N = 4 supergravity and
the coupling to the N = 4 Super Yang–Mills multiplet in more detail.

The N = 4 Super Yang–Mills multiplet contains a vector Aµ, four Weyl fermions
λi, which are in the vector representation of su(4), and six scalars φij = −φji in the
6− of su(4) 16. All fields are in a representation of a Lie algebra gY M , which commutes
with the super Poincaré algebra. The action and supersymmetry transformation rules
are given in section 4.2.1.

The N = 4 Super Yang–Mills theory in flat space is not only renormalizable, but it
is even finite; all contributions in perturbation theory that could give rise to infinities
precisely cancel [53–57]. This makes N = 4 Super Yang–Mills interesting from a
purely theoretical point of view, but the spectrum does not agree with observations.
There are for example no chiral fermions in the theory.

To obtain some concordance with observed nature one might hope to have a dy-
namical way of breaking supersymmetry at some high energy Eh. To solve the hi-
erarchy problem there should be an intermediate energy Em < Eh where not all
supersymmetry is broken and still N = 1 supersymmetry exists. To get chiral fermi-
ons there should be a lower energy El < Em where the N = 1 supersymmetry is
broken and no supersymmetry is left. From a phenomenological point of view it is
thus desirable to break supersymmetry in steps. However, this does not seem to be
possible, unless we include gravity (see e.g. [13]).

The N = 4 supergravity multiplet contains a vielbein ea
µ, four gravitini ψi

µ, six

vectors Ar
µ, four fermions χi and two scalars φα. The scalars φα parameterize an

SU(1, 1)/U(1) coset; we discuss this and other cosets in section 2.4.5 and in chapter

16For explanation on SU(4) representations see appendix B.
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3. The action and transformation rules of the fields of the ungauged theory was
constructed using different formalisms around 1977 [58,59].

The coupling of N = 4 Super Yang–Mills multiplets to the N = 4 supergravity
theory resulted in the so-called matter coupled N = 4 supergravity and was done
in the beginning of the 80’s by De Roo [60]. The action is invariant under global
SO(6, n)-rotations, where n is the number of added Super Yang–Mills multiplets. The
6n scalars from the Super Yang–Mills multiplets parameterize an SO(6, n)/SO(6) ×
SO(n) coset. The N = 4 supergravity theory thus has a global symmetry group
G = SO(6, n) × SU(1, 1) and the scalar parameterize the coset G/K where K =
SO(6) × SO(n) × U(1), which is the maximal compact subgroup of G.

In reference [61] the ten-dimensional type I supergravity with the SO(32)-vector
fields truncated away was dimensionally reduced. The result is matter coupled N = 4
supergravity where the number n of added Super Yang–Mills multiplets is six17.

The group SU(1, 1) is a global symmetry of the equations of motion but not a
symmetry of the action; it rotates the Bianchi identities and the equations of motion
and thus the electric and magnetic field strengths into each other. There exist two
formulations of d = 4 N = 4 supergravity where the SU(1, 1)-transformations leave
the action invariant, but either one has to give up that SO(6, 6) is a symmetry of the
action [62] or one has to give up general coordinate invariance [63].

2.4.3 Dualities

The highest dimension where a supergravity can be formulated is eleven. The lowest
dimension is three; in two dimensions gravity is trivial since then the Ricci scalar is
a topological number. Hence for 3 ≤ d ≤ 11 one can formulate supergravity theories.

All maximal supergravities in d ≤ 9 are unique18 and dimensional reduction over
a torus of eleven-dimensional supergravity gives rise to a maximal supergravity; hence
all maximal supergravities are related to eleven-dimensional supergravity by a dimen-
sional reduction over a torus.

In d dimensions the Lorentz group is SO(1, d− 1) and on-shell massless fields are
representations of the little group SO(d − 2). Hence the field content of maximal
supergravities can be found by decomposing the SO(9) representations of the eleven-
dimensional fields

{
ea
µ, φµ, Aµνρ

}
into SO(d − 2) representations. Thus dimensional

reduction is one way to relate different supergravity theories. But there is another
more intriguing way to relate supergravity theories; there exist dualities between some
theories.

17The value six is rather special; the global symmetry group is then maximally noncompact and
later we will see that this has important consequences.

18It should be understood that this holds for ungauged maximal supergravities.
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S-Duality

S-duality is a generalization of the electromagnetic duality in four dimensions; it
relates a theory at strong coupling constant to a theory at weak coupling constant.

The string coupling constant in ten dimensions gs is related to the expectation
value of the dilaton: gs ∼ e<φ>. Hence in ten dimensions S-duality relates Heterotic
SO(32) supergravity to Type I supergravity.

Type IIB is S self-dual since the theory has a global SL(2; IR)-symmetry and the S-
duality transformation is contained in the SL(2; IR)-transformations. This can be seen
by transforming the action 2.4.2 to the Einstein frame, where the Ricci scalar does not
have a dilatonic prefactor. The scalars φ and C(0) parameterize an SL(2; IR)/SO(2)

coset and can be combined in a complex scalar τ = C(0) + ie−φ. The SL(2; IR)
symmetry acts on the complex scalar τ as

τ 7→ aτ + b

cτ + d
, a, b, c, d ∈ IR , ad− bc = 1 . (2.4.4)

The other fields are in linear representations of SL(2; IR) (see e.g. [16, 49, 64, 65] for
more details).

The SL(2; IR) transformations contain the transformation τ 7→ −1/τ acting on
the imaginary part as e−φ 7→ eφ if C(0) = 0, i.e. in a vanishing axion background.
Hence S-duality transformations form a discrete subgroup of SL(2; IR) and type IIB
supergravity is S self-dual.

The situation for four-dimensional N = 4 supergravity theory is similar to the
IIB-case. The scalars φα, as mentioned in section 2.4.2, parameterize the coset
SU(1, 1)/U(1) and the group SU(1, 1) ∼= SL(2; IR) is a global symmetry rotating
electric and magnetic field strengths into each other. Hence d = 4 N = 4 supergrav-
ity is S self-dual.

T-Duality

T-duality is a string theory inspired duality; if d-dimensional bosonic string theory
is put on a geometry S1 × Md−1, where Md−1 is (d − 1)-dimensional Minkowski
and S1 is a one-dimensional compact dimension with length 2πR, the spectrum is
determined by two quantum numbers, called winding numbers (n) and momentum
numbers (m) [66,67]. The spectrum is invariant under interchanging n and m together
with inverting the radius of S1: R ↔ α′/R. For superstrings the story is even
nicer; the spectra of type IIA and type IIB superstring theory are interchanged under
R↔ α′R and n↔ m. This kind of duality is called T-duality.

T-duality manifests itself also in the supergravity theories; if the IIA and IIB
theories are dimensionally reduced to d = 9 the actions can be mapped to each
other19.

19This is not trivial; one has to be careful how the treat the self-dual five-form field strength.
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The two Heterotic string theories are also T-dual to each other [68]. From the
supergravity point of view this might come as a little surprise since the gauge groups
are different. But the gauge groups break down to their maximal abelian subalgebras
as explained in reference [69, 70]. Hence upon reduction both Heterotic supergravity
theories have a U(1)16 Yang–Mills sector and they are trivially the same. Hence a di-
mensional reduction of any ten-dimensional supergravity theory with 16 supercharges
gives the same result; changing the sign of the dilaton is in a supergravity theory
nothing more than a field redefinition.

When a supergravity theory is reduced over an n-torus, there are more radii to
invert and thus T-duality becomes a group of symmetries. Though this group of
symmetries is discrete, in the supergravity it is a continuous group. Since type IIA
and type IIB supergravity are T-dual, for d ≤ 9 T-duality manifests itself as a global
symmetry of a maximal supergravity (it does not follow from this discussion that it
cannot be local, but at least it s a global symmetry). Similarly, since all half-maximal
supergravities with 16 supercharges get mapped to the same supergravity theory by
a dimensional reduction over a torus, T-duality manifests itself as a global symmetry
group in supergravity theories with a total of 16 supercharges.

2.4.4 Gauged Supergravity

In sections 2.4.3 and 2.4.2 we came across the concept of a global symmetry group,
which is a symmetry of the equations of motion. Below ten dimensions S- and T-
duality manifest themselves as a global symmetry, and the combination of these gives
rise to a so-called U-duality group. But also R-symmetry gives rise to a global symme-
try group. We writeG for the total global symmetry group containing the R-symmetry
and T- and S-dualities. For example, d = 4 N = 4 matter coupled supergravity has
G = SO(6, n) × SU(1, 1).

Except for four-dimensional N = 1, 2 and five-dimensional N = 2 supergravity,
all supergravities share the property that the scalars parameterize a coset G/K where
K is the maximal compact subgroup of G [71, 72]. The subgroup K must be a local
symmetry since the scalars form a coset G/K (see section 2.4.5). The R-symmetry
group HR has a maximal compact subgroup denoted KR and some authors prefer
to reserve the name ‘R-symmetry group’ for the compact group KR. For maximal
supergravities it turns out that K = HR = KR.

Only a subgroup G′ of G is a global symmetry of the action; in the example of
d = 4 N = 4 matter coupled supergravity we have G′ = SO(6, n). The vector fields
present in the theory transform in a linear representation of G′, but the field strengths
and their duals make up a representation of G. Elements of G that are not in G′ thus
rotate electric and magnetic field strengths into each other. In d = 4 N = 4 matter
coupled supergravity the elements in G that are not in G′ form the group SU(1, 1)
and as mentioned before this is not a symmetry of the action but rotates the electric
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G/K

copies of K

Figure 2.4.1: A graphical representation of the group G as the manifold G/K with at every

point p ∈ G/K a copy of K attached.

and magnetic field strengths into each other.

Suppose there are m vector fields transforming in a linear representation of G′,
then we can try to gauge a subgroup F ⊂ G′ of dimension m. The gauging can be
done by introducing minimal couplings with a coupling constant g and where the
gauge fields are in the adjoint of F . To retain supersymmetry the fermion super-
symmetry transformation rules must include extra terms linear in g and the action
obtains a potential proportional to g2. The resulting supergravity is called a gauged
supergravity and the symmetry group is now the product of F and K and this is a
local symmetry.

If G is compact, the whole construction becomes almost trivial since the scalars
then parameterize the trivial coset 1, i.e. there are no scalars and no scalar potential
can arise.

2.4.5 Coset Scalars

As mentioned before, the scalars in supergravity theories often parameterize cosets.
In this section we give some details about cosets and the nonlinear sigma models,
i.e. models where the scalars parameterize a coset. Most of the material can also be
found in reviews and textbooks, such as [25,73,74].

Suppose G is a group and K is a subgroup of K. We can define an equivalence
relation in G by calling two elements g and g′ of G equivalent if there is an element
k ∈ K such that g = g′k. The equivalence classes [g] form a coset. Since every element
of G belongs to an equivalence class one can define a projection π : G → G/K; the
projection π is called the canonical projection. If [g] = [g′], then g = g′k for some
k ∈ K, and π(g) = π(g′) and hence π(K) = e with e the identity element of G. The
inverse map π−1[g] = {gk|k ∈ K} defines a copy of K at g. This gives an intuitive
picture of cosets; the group G can be seen as the coset G/K where at each point of
G/K is a copy of K attached.
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For every equivalence class one can choose a representative g, which defines a map
from G/K to G. If G is thought of as G/K with at every point of G/K a copy
of K attached, then the representative can be thought of as a slice through G that
intersects every copy of K precisely once.

If G is a Lie group and K is any Lie subgroup of G, the (left) coset G/K is a
manifold and can thus be described locally by coordinates yi. Since any two points p
and p′ on G/K can by construction be connected by an action of G, the manifold is
a homogeneous space.

Suppose the Lie algebras of G and K are g and k respectively. Then the Lie
algebra can be decomposed as g = k ⊕ p, where p is the complement of k in g. If the
decomposition can be done such that the commutation relations are schematically as

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k , (2.4.5)

then the homogeneous space is called symmetric. As an example we mention the
n-sphere Sn: Sn ∼= SO(n+ 1)/SO(n).

If ρ is a faithful representation of g then by exponentiating ρ(p) we obtain a
parametrization of G/K. More explicitly, if pi is a basis for p the manifold G/K can
be parameterized by exp yiρ(pi). Another and equivalent parametrization of G/K is
obtained by right-multiplying this parametrization by an (y-dependent) element of K.
The parametrization of G/K by exp yiρ(pi) is in most cases not useful for practical
calculations.

A representative L(y) of G/K is an element of G such that if y 6= y′ there is no
element k of K such that L(y)k = L(y′). Left-multiplication by an element of g ∈ G
takes one coset into another, hence we have

ρ(g)L(y) = L(y′)k , k ∈ K , (2.4.6)

where the element k ∈ K depends on both y and g. Right-multiplication by an
element of K leaves the point fixed, but gives another representative; in terms of the
picture 2.4.1, every representative is shifted along the ‘fibre’ K.

The parametrization of G/K by exponentiating ρ(p) is thus an example of con-
structing representatives of G/K in an explicit representation ρ of G. For a repre-
sentative in general we write L(y) but if the coordinate is of no importance we just
write L. It is convenient to think of L(y) as being in an explicit representation of G.

The form L(y)−1dL(y) is a one-form on G/K that takes values in the Lie algebra
g and can be decomposed as follows

L−1dL = ω + e , ω ∈ k , e ∈ p . (2.4.7)

We call e the G/K-vielbein and ω the G/K-connection. The notation and nomencla-
ture is on purpose suggestive; ω can be thought of as a kind of spin connection and
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e as a kind of vielbein. In fact, space-time can be thought of as a coset G/K where
G = GCT (Md) and K = SO(1, d− 1).

Suppose we act on L from the left by a y-independent element U of G, then L−1dL
is invariant. If we however act from the right with a local (i.e. y-dependent) element
O of K we have

ω 7→ O−1ωO +O−1dO, e 7→ O−1eO . (2.4.8)

Thus ω transforms as a connection while e is covariant. Since d2 = 0 we obtain

d(L−1dL) = −L−1dL ∧ L−1dL = −(ω + e) ∧ (ω + e) , (2.4.9)

which can again be decomposed in a k-part and a p-part. Thus we have

F(ω) ≡ dω + ω ∧ ω = −e ∧ e ,
T ≡ de+ ω ∧ e+ e ∧ ω = 0 ,

(2.4.10)

where F can be compared with the Riemann tensor and T with the torsion. The
torsion T vanishes since G/K is a symmetric space.

A nonlinear sigma model describes scalars that parameterize a coset. The scalars
can be seen as a map from the space-time manifold Md to the coset G/K. Hence we
can use the pull-back to obtain one-forms on Md: dφi = ∂µφ

idxµ.
Suppose V(φi) defines a representative of G/K and takes values in a representation

ρ of G, we define V(x) ≡ V(φi(x)) and

Ωµdxµ ≡ V−1dV = Qµdxµ + Pµdxµ , (2.4.11)

where Qµ is the projection of Ωµ onto k and Pµ is the projection of Ωµ onto p.
Under a local K transformation V 7→ Vk we have

Qµ 7→ k−1Qµk + k−1∂µk , Pµ 7→ k−1Pµk , (2.4.12)

and hence a K-covariant derivative is given by

DµV = ∂µV − VQµ = VPµ . (2.4.13)

A Lagrangian that is invariant under both global G-transformation and local K-
transformations is given by

L = 1
2Trρ

(
DµV−1DµV

)
= − 1

2Trρ (PµPµ) . (2.4.14)

We introduce the projection operator Π : g 7→ p that projects g onto the subspace
p. Using 2.4.5 we find

Trad (adxad(Πy)) = 0, ∀x ∈ k , ∀y ∈ g . (2.4.15)
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For semisimple Lie algebras the trace in any representation can be chosen to be
proportional to the trace in the adjoint representation (see appendix B). Therefore if
G is semisimple the Lagrangian 2.4.14 can be written as:

L = − 1
2Trρ

(
V−1∂µVΠ(V−1∂µV)

)
. (2.4.16)

There is another approach to nonlinear sigma models [75]. We start with the
representative V of G/K in an explicit representation ρ and construct a Lagrangian
with global G invariance and local K invariance as follows. We introduce a connection
Aµ taking values in k, construct a K-covariant derivative Dµ(A)V = ∂µV − VAµ and
demand that Aµ transforms as a connection under local K-transformations and is
invariant under global G-transformation. For this to work we need that if V is in
the representation ρ of G, then Aµ is in the derived representation dρ of k ⊂ g (see
Appendix B).

A Lagrangian that is invariant under local K-transformations and global G-trans-
formations is given by

L′ = − 1
2Trρ

(
V−1Dµ(A)VV−1Dµ(A)V

)
. (2.4.17)

The connection Aµ appears only algebraically and thus we can solve its equation of
motion. Varying the Lagrangian L′ with respect to Aµ we obtain

Trρ

(
Dµ(A)VV−1δAµ

)
= 0 , (2.4.18)

and hence we see that Dµ(A)VV−1 must be perpendicular to k since δAµ is an arbitrary
element of k. For semisimple G this means Dµ(A)VV−1 ∈ p, i.e. the gauge field Aµ

projects out the k-part of Dµ(A)VV−1. Thus if we use the equation of motion of Aµ

we obtain the Lagrangian for semisimple G:

L′ = − 1
2Trρ

(
Dµ(A)VV−1Π(Dµ(A)V)

)
. (2.4.19)

The Lagrangian 2.4.19 is identical to the Lagrangian 2.4.16. Therefore we can con-
clude that the two methods to arrive at a nonlinear sigma model are equivalent.

The action 2.4.19 still contains local K-symmetry. Therefore we can use K-
symmetry to bring V into a ‘nice form’, which has a physical interpretation as choosing
a gauge. If the subgroup K is the maximal compact subgroup of G the ’nice form’
can be made more explicit. According to the Iwasawa decomposition the Lie algebra
g can be decomposed as g = k⊕ s where k is the maximal compact subalgebra, which
is the Lie algebra of K, and s is a solvable Lie algebra. The decomposition g = k ⊕ s

is orthogonal with respect to the Cartan–Killing form. It is a theorem of Lie (see
e.g. [76]) that the matrices representing the solvable subalgebra s can be brought into
upper-triangular form. The upper-triangular form is what is meant by a ‘nice form’;
the coset G/K can be parameterized by exp s and hence we can use a gauge such that
V = exp ρ(S) for some S ∈ s.
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If K is the maximal compact subgroup of G, the matrix V has an interpretation
of a vielbein [75]. The associated ‘metric’ is given by:

M = VV# , (2.4.20)

where # stands for generalized transpose (see appendix B). The metric M is invariant
under local K-transformations. The nonlinear sigma model 2.4.16, or equivalently
2.4.19, can be written compactly as:

L = 1
8Tr

(
∂µM−1∂µM

)
. (2.4.21)

The ‘vielbein’ V should not be confused with the object e of equation 2.4.7, which
can also be defined as a vielbein, but then as a vielbein on G/K. The ‘vielbein’
interpretation V is only restricted to equation 2.4.20.

2.4.6 Relation with String Theory

Supergravity is a low-energy approximation of string theory. In this section we explain
briefly what is meant by this.

String theory starts with the assumption that the fundamental building blocks
of nature are one-dimensional objects, called strings. A string sweeps out a two-
dimensional surface in space-time. This surface is called the worldsheet. The dynam-
ics of a free string can be determined by a field theory living on the two-dimensional
worldsheet. Interactions are described by attaching so-called vertex operators to the
surface; the vertex operators describe the merging or splitting of strings and are linear
in the string coupling constant. By means of the vertex operators one can calculate
scattering amplitudes in any order of the string coupling constant. Hence string the-
ory is intrinsically perturbative and therefore one often speaks of string perturbation
theory instead of string theory in the hope that we will once find a nonperturbative
description.

In ordinary quantum field theory the interactions are described by interaction
terms in the Lagrangian. However for string theory there is yet not a (classical)
action known that describes the dynamics and interaction of strings. This has serious
consequences for obtaining a low-energy approximation of string theory.

The spectrum of string theory consists of a finite number of massless fields, which
we collectively denote by φ0, and an infinite tower of massive fields, which we collec-
tively denote by φH . All masses are integer multiples of ms ∼ 1019 GeV in order that
the graviton, which is one of the massless fields, interacts with such a strength that
Newtonian gravity is reproduced. The massive states are so massive that they cannot
be seen by any experiment and thus it is not necessary to take them into account
for low-energy physics, i.e. physics at an energy lower than 1019 GeV. It is therefore
desirable to have a low-energy approximation to string theory.
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In ordinary quantum field theory a low-energy approximation is obtained by in-
tegrating out the massive modes. In this way an effective low-energy action can be
obtained. Suppose string theory were described by an action S(φ0, φH), then the
effective low-energy action Seff (φ0) would be given by

eiSeff (φ0) ∼
∫

DφHeiS(φ0,φH) . (2.4.22)

The path integral includes loops of massive fields. Therefore the effective action
Seff (φ0) can be seen as a power series expansion in the Planck constant h.

However, there is no action for interacting strings and hence the procedure of
integrating out the massive modes is not at our disposal. One can proceed by studying
scattering amplitudes and trying to construct a classical action that reproduces these
amplitudes. The leading terms (h0) in the effective action are the classical limits
of the low-energy approximations. Since string theory contains both gravity and
supersymmetry, this classical limit of the low-energy action describes a supergravity
theory.

Though string theory was thought of as a candidate of a unifying theory, there are
five different consistent string theories. All five string theories live in ten-dimensional
space-time. Hence we expect at least five ten-dimensional supergravities serving as
classical low-energy approximations to the five string theories. It is quite special that
the five supergravities exhaust all possible ten-dimensional massless supergravities.
In ten dimensions there is a one-to-one correspondence between string theories and
supergravity theories.

One might then wonder what the role is of eleven-dimensional supergravity. In a
seminal paper [43] Witten showed that the dynamics of strongly coupled Type IIA
strings can at low energies be described by an eleven-dimensional supergravity. This
result might at first look weird but an elegant intuitive picture to keep in mind is that
the eleventh dimension is already present in ten-dimensional Type IIA string the-
ory but has size zero [77]. By increasing the string coupling constant the size of the
eleventh dimension grows and at the same time the strings grow in this dimension and
become two-dimensional objects, membranes. And indeed, eleven-dimensional super-
gravity contains a three-form Aµνρ that can couple naturally to a three-dimensional
world volume and thus the three-form couples to membranes.

The theory describing the full dynamics, also including massive fields, of the
eleven-dimensional theory is not known yet but already a name is given: M-theory
[43,78,79]. It is conjectured that taking limits of different parameters in M-theory one
ends up with a superstring/supergravity theory; for example, if we take a classical
low-energy limit we obtain eleven-dimensional supergravity. The dualities between
different string theories nicely fit into this picture. The dualities correspond to going
from one limit to another.

Since string theory is only known in the regime where the string coupling constant
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is small, the features of the nonperturbative M-theory lie outside the scope of string
theory. The nonperturbative regime can however be explored by supergravity theories
by means of so-called BPS-configurations. Therefore supergravity is an important tool
to get some grip of the until now mysterious M-theory.

Even from another totally different point of view supergravities are interesting.
A supergravity theory is a classical field theory and this makes supergravities more
accessible for explicit calculations. It is a drawback of superstring theory that its
calculations are seldom simple.





Chapter 3

Dimensional Reduction

In the previous chapter we saw that string theory has as a low-energy limit a su-
pergravity theory. String theory is only consistent in ten dimensions making ten-
dimensional supergravity theories interesting. In light of the conjectured M-theory
[43,78,79], eleven-dimensional supergravity [42] becomes evenly interesting. However,
nature seems to be four-dimensional. Fortunately almost all supergravities in nine or
less dimensions can be obtained from a ten- or eleven-dimensional supergravity by a
procedure called dimensional reduction.

The procedure of dimensional reduction relies on a basic idea; imagine a theory
living in D+1 dimensions and suppose that one dimension is compact and circle-like.
If one shrinks the radius of the circle to a size that we cannot see by experiment, we
don’t see it but it is there.

Getting sensible four-dimensional supergravity theories with a stringy origin is
not the only way dimensional reductions are used. Finding solutions in supergravities
corresponding to solitonic objects (p-branes), of which it is conjectured that they play
the role of a fundamental particle in M-theory, is facilitated by using dimensional
reductions. As a first step one obtains from a ten- or eleven-dimensional supergravity
a lower-dimensional supergravity by dimensional reduction. Finding a solution in
the lower-dimensional supergravitiy and uplifting the solution back to ten (or eleven)
dimensions gives rise to a solution in ten (or eleven) dimension, often corresponding
to a configuration of p-branes. Trying to find p-brane solutions directly in ten (or
eleven) dimensions turns out to be more difficult than using a dimensional reduction
(see for example [80]).

This chapter starts with an easy example from which some general features can be
understood. Then follows a general discussion on Kaluza–Klein dimensional reduction
and some of its applications in studying supergravity theories after which we discuss
briefly other kinds of dimensional reduction.
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3.1 Example: Fourier on a Circle

Before going into technical details, let us treat a pedagogical example. From this easy
example we can already see some important issues and where problems might pop
up, if any. See [81] for a similar discussion.

Since in ungauged supergravities most fields are massless, it is not a great loss of
generalization if we study massless particles. We take a free massless scalar ϕ living
in D+ 1 dimensions and we curl up one dimension, say the z-direction, to a compact
interval of length 2πR with the endpoints identified. Then the scalar admits a discrete
Fourier expansion;

ϕ(xµ, z) =
∑

n∈Zϕn(xµ)ein
z
R . (3.1.1)

The equation of motion of the scalar ϕ in D + 1 dimensions becomes

�D+1ϕ(xµ, z) = 0 ⇒ (�D −
(

n
R

)2
)ϕn(xµ) = 0 , ∀n ∈ Z , (3.1.2)

where �m denotes the d’Alembertian in m dimensions. We see that from a D-
dimensional point of view the scalar ϕ has decomposed in a tower of scalars ϕn

with masses | n
R |. If the radius R is shrunk to a size such that the characteristic mass

MR = 1/R becomes unreachable for detectors, only the massless scalar is an observ-
able particle. In the limit R → 0 we get an infinite mass gap and the massive states
decouple.

Keeping all the fields ϕn is not useful and a truncation to a finite set is desirable.
From the masses of the fields ϕn we can argue that a low-energy approximation only
retains the field ϕ0 and sets all the fields ϕn for n 6= 0 to zero. With interactions
to gravity the concepts of mass and energy become troubled and in general finding a
consistent truncation to a finite set of fields corresponding to a low-energy approxi-
mation becomes more difficult. Consistency in this context means that the fields that
are not put to zero do not give rise to nonzero source terms in the original equations of
motion for the fields that are put to zero. In other words, the fields that are truncated
away should not reappear through the dynamics of the higher-dimensional theory. For
this example the issue of consistency is dealt with easily since there is no interaction
between the scalar modes ϕn. In the more general case there are interactions and the
issue of consistency becomes more involved. However there exists an argument based
on symmetries for dealing with the issue.

We now present a symmetry argument to find a consistent truncation. The group
of diffeomorphisms of the circle is generated by an infinite-dimensional Virasoro al-
gebra [82]. This group has a finite one-dimensional subgroup U(1) generated by
constants shift along the z-direction. The U(1)-symmetry is also present in the lower-
dimensional theory. The tower of scalars ϕn comprises all irreducible representa-
tions of U(1), which are labelled by integers. Under the action of a U(1) element
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eiz 7→ eiz+ic, corresponding to shifting z to z + c, we see that

ϕn(x) 7→ einc/Rϕn(x) (3.1.3)

and the scalar ϕ0 is the only singlet.
The truncation to a singlet of a symmetry group G is always consistent, as we now

argue. The equations of motion of a field φ(α), where the superscript (α) denotes the
representation, are schematically Dφ(α) = J (α) (3.1.4)

where D denotes some differential operator and J (α) is a function of fields, acting as
a source term, which has to be in the same representation of G as φ(α). If all fields
that are not singlets under G are put to zero, the source J (α) must be zero, since out
of singlets alone, one cannot build a nontrivial representation. Hence, truncating a
theory to the singlets of a symmetry (sub-)group is always a consistent truncation.

3.2 Kaluza–Klein Reductions

The name Kaluza–Klein is from the physicist Klein and the mathematician Kaluza
who studied general relativity in 5 dimensions [83, 84]. The reason they did this was
that reducing the theory over a circle gave Einstein’s theory of General Relativity
in four dimensions coupled to Maxwell’s theory of electromagnetism. The work of
Kaluza and Klein was one of the earlier attempts to unify gravity with other forces.

Formally, a Kaluza–Klein dimensional reduction can be broken down into four
steps (the definition that we use for a Kaluza–Klein dimensional reduction follows
below in section 3.2.1). These four steps we first explain shortly and in the sections
3.2.1, 3.2.2, 3.2.3 and 3.2.4 we go into more detail for all four steps. See for a similar
discussion [85].

The first step is finding a (stable) vacuum in the higher-dimensional theory with
a geometry Y × X, where Y is a maximally symmetric space and X is a compact
homogeneous symmetric space; X ∼= G/K for a group G with subgroup K and if g

and k are the Lie algebras of G and K respectively then g = k ⊕ p with [k, p] ⊂ p and
[p, p] ⊂ k.

The second step is analyzing the fluctuations of the fields around their vacuum
values. The fluctuations are the lower-dimensional fields. The analysis of the fluc-
tuations is similar to the analysis of the Fourier expansion of the example in section
3.1.

The third step is a truncation to a finite set of fields. The truncation needs to
be consistent if we want to use the dimensional reduction procedure as a solution
generating technique. At the end of this chapter we shortly discuss some aspects
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of nonconsistent reductions. The final step consists of finding a lower-dimensional
Lagrangian that describes the dynamics of the lower-dimensional fields.

Often these four steps are less distinguished in the literature; one directly writes
down a (hopefully) consistent Ansatz for the fields and their fluctuations using a finite
set of fields. For clearness we stick as much as possible to the four steps mentioned
above.

3.2.1 Different Vacua

A solution that can be found in many supergravities is the solution where the space-
time geometry is maximally symmetric and all the fields, except the metric, vanish.
The Riemann tensor in a maximally symmetric space is of the special form

Rµνλρ = 1
3Λ(gµλgνρ − gνλgµρ) . (3.2.1)

The sign of Λ gives three different maximally symmetric spaces. (1) Λ = 0: D-
dimensional Minkowski space-time MD with zero curvature, (2)Λ < 0: D-dimensional
anti-de Sitter space-time AdSD with negative curvature and (3)Λ > 0: D-dimensional
de Sitter space-time dSD with positive curvature.

For a maximally symmetric space, the number of Killing vectors takes the maximal
value 1

2D(D + 1). A Killing vector is a vector field of which the flow consists of lines
on which the metric is constant. Hence if X is a Killing vector, then the Lie derivative
of the metric with respect to X vanishes: (LXg) = 0. It follows that a Killing vector
satisfies

∇µXν + ∇νXµ = 0 . (3.2.2)

Another set of vacua is given by spaces of the form Y d ×Xp, p + d = D, where
Y d is a d-dimensional maximally symmetric space and Xp is a p-dimensional sym-
metric compact space. In general the number of symmetries will have decreased. So
a physical process Y D → Y d × Xp, which corresponds physically to a spontaneous
compactification of space-time, involves symmetry breaking; the higher-dimensional
equations of motion exhibit a covariance under general coordinate transformation
whereas a solution of the form Y d ×Xp breaks this covariance. Since we are working
with theories involving gravity, we cannot simply calculate the energy difference be-
tween two vacua and decide which is the true vacuum. Even if the space-times are of
the form Md × T p, where T p denotes a p-torus, which has energy zero we cannot say
that these vacua have the same energy as we can not compare ”zero apples to zero
oranges” [86].

The direct-product structure of the vacuum means that the metric decomposes
into a block-diagonal structure

ĝµ̂ν̂(x, y) =

(
gµν(x) 0

0 gαβ(y)

)

. (3.2.3)
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The hat indicates the higher-dimensional fields and indices (for conventions on split-
ting up coordinates and indices, see appendix A). The requirement of maximally sym-
metric Y is maintained if we take a warped-product metric where gµν is multiplied by
a y-dependent function: ĝµν(x, y) = f(y)gµν(x). The geometry of a warped-product
space differs significantly from that of a direct-product space (see [85]).

The definition of a Kaluza–Klein dimensional reduction that we use lies in the
choice of the compact manifold X. A Kaluza–Klein dimensional reduction is a di-
mensional reduction where the compact manifold Xp is isomorphic to a symmetric
space G/K. The cosets G/K fall into three classes:

• G/K ∼= U(1)p. The compact manifold is flat and isomorphic to a torus. Some-
times people refer to these dimensional reductions as the Kaluza–Klein reduc-
tions. We have chosen to take a wider definition of Kaluza–Klein reductions
following [87].

• G/K ∼= P ⊂ G. The compact manifold is a (nonabelian) Lie group P . These
reductions are called group manifold reductions and DeWitt seems to be the
first to consider them [88].

• G/K a true coset, G nonabelian. For example: the n-sphere1 Sn = SO(n +
1)/SO(n) if n 6= 3 and the complex projective spaces CPn = SU(n+1)/SU(n).
It seems Pauli invented these dimensional reductions first in 1953 [89,90].

We assume G is compact implying that G is a direct product of a semisimple Lie
group G0 and a torus: G = G0 ⊗ U(1)m. We give a proof of this in section 3.4.2.

The Vielbein on G/K

Let us discuss the vacuum configuration of the vielbein on G/K in more detail. The
analysis becomes trivial for a torus and hence we assume G to be semisimple and
compact. The vielbein vacuum configuration is in a similar fashion as the metric in
equation 3.2.3 given by

êâ
µ̂ =

(
ea
µ 0
0 em

α

)

, (3.2.4)

where ea
µ is a vielbein of a maximally symmetric space. We now claim that for em

α

we can take the components of the G/K-vielbein e = eαdyα as defined by equation
2.4.7, where eα ∈ p. A torus is flat and hence the vielbein can be taken constant and
diagonal: em

α = δm
α . We prove the claim by showing that this choice gives rise to a

homogeneous metric, i.e. a metric invariant under the action of G.

1Of the spheres Sn only one is a group manifold: S3 = SO(4)/SO(3) ∼= SO(3)×SO(3)/SO(3) ∼=
SO(3).
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The homogeneous metric is given by the line element:

ds2G/K = −trad(e⊗ e) = −trad(eαeβ)dyα ⊗ dyβ . (3.2.5)

Since e is G-invariant, so is trad(eαeβ). The metric 〈, 〉 defined by 3.2.5 is com-
pletely determined by its values at the origin sinceG-invariance requires 〈X,Y 〉g−1K =
〈g∗X, g∗Y 〉K where g∗ is the push-forward of the map on G/K induced by L(y) 7→
gL(y). We now use the symbol g for the action of g ∈ G on G/K. For the metric
to be well-defined it has to be K-invariant since if g−1g′ ∈ K for g, g′ ∈ G, then
we need 〈X,Y 〉gK = 〈X,Y 〉g′K , which is true if 〈, 〉 is K-invariant. But since 〈, 〉 is
G-invariant, it is also K-invariant. The choice of parametrization of G/K should have
no influence on the metric, hence under L(y) 7→ L(y)k(y)−1, k(y) ∈ K, the metric
should be invariant. Under L(y) 7→ L(y)k(y)−1, k(y) ∈ K we have e 7→ kek−1. Hence
a reparametrization acts as a rotation the vector space T (G/K)K

∼= p by means of
the Adjoint action of K on p. The metric 〈, 〉 is clearly invariant under the Adjoint
action of K on p since the trace in the adjoint representation is AdG-invariant. This
proves the claim (QED).

The claim just proved has far reaching consequences. We introduce the matrices
D(k) = AdG(k)|p, k ∈ K 2, and |p denotes the restriction to p. The group G is
semisimple and compact and hence g is a compact Lie algebra, implying that the
metric defined by 3.2.5 is positive definite. The AdG(K)-invariance of the metric
implies that the matrices D(k) should be matrices in the vector representation of
SO(p). In other words, the representation of K defined by D(k) should be embedded
in the vector representation of SO(p), with p = dimG/K = dim p. For the Lie algebra
this implies that the adjoint representation of k restricted to its action on p should
consist of antisymmetric matrices, which form the vector representation of so(p).

We can in get explicit formulas for the embedding. The basis for the vector
representation of so(p) is given by the matrices (Σmn)pq = δmpδnq − δmqδnp. We
introduce a set of basis elements kī for k; we use the basis elements tm for p. Barred
indices correspond to components with respect to the basis kī of k while unbarred
indices correspond to components with respect to the basis tm of p.

From the embedding we see that there should be numbers cīnp = −cīpn such that

D(kī) =
∑

p,q

cīpqΣpq . (3.2.6)

From the structure constants fp
m̄n defined by [km̄, tn] = tpf

p
m̄n it follows that the

matrices D(km̄) satisfy D(km̄)pq = −D(km̄)qp = fp
m̄q = −fq

m̄p. Using this and
taking traces of equation 3.2.6 with Σrs we find

cm̄rs = 1
4 (fs

m̄r − fr
m̄s) = − 1

2f
r
m̄s ⇒ D(km̄) = − 1

2

∑

p,q

fp
m̄qΣpq . (3.2.7)

2In mathematics, the representation of the group K defined by the matrices D(k) is called the
isotropy-representation of K w.r.t. G/K, see e.g. [91]
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This result was also obtained by [87].

We can summarize the analysis of the vacuum configuration of the vielbein as
follows: the vielbein on G/K, with G semisimple, in the vacuum can be read off from
the projection of L−1dL to p and the adjoint action of K on p should be embedded in
the vector representation of the rotation group SO(p). This last sentence is sometimes
paraphrased as that the p-vector of SO(p) should contain the K-content of G/K.

Supersymmetry; Killing Spinors

The vacuum configuration can break supersymmetry. Since in the vacuum configura-
tion the fermions are zero, supersymmetry acts trivially on the bosons. The question
whether supersymmetry is broken or not, is whether the supersymmetry variation of
the fermions vanishes or not. If there is no flux the Einstein equation is R̂µ̂ν̂ = 0
and hence the internal manifold is Ricci flat and the lower-dimensional space-time is
Minkowski. The variation of the gravitino takes the form ∇µ̂ǫ = 0; this is the Killing
spinor equation. The integrability condition for the Killing spinor equation is

[∇µ̂,∇ν̂ ]ǫ = 0 ⇒ Rµ̂ν̂
âb̂Γâb̂ǫ = 0. (3.2.8)

Hence the integrability equation implies that vacuum configurations of the form
Minkowski × torus do not break supersymmetry.

We define the subgroup H of the Spin(1,D − 1) group3 to be generated by the

elements R̂µ̂ν̂
âb̂Γâb̂. The group H is called the restricted holonomy group. The

integrability equation implies that a covariant spinor exists that is a singlet under
the restricted holonomy group. It follows that the decomposition of the spin 1/2
representation of the group Spin(1,D − 1) under the subgroup H should contain at
least a singlet if we want an unbroken supersymmetry. This puts restrictions on the
group H and thus on the geometry. For some examples and a deeper discussion on
the relation between Killing spinors see the lecture notes of Gauntlett [92].

If fluxes are present we obtain a modified Killing spinor equation, which schemat-
ically takes on the form:

Dµǫ+Xµǫ = 0 . (3.2.9)

The integrability condition now implies that an unbroken supersymmetry exists only
if space-time has a nontrivial curvature. This of course is not so strange since a
flux contributes to the energy momentum tensor, and hence the Einstein equation
guarantees that the Ricci tensor does not vanish.

3The Spin(1, d − 1) is the group generated by the Γab and Spin(1, d − 1) turns out to be the
double cover of SO(1, d − 1); also see appendix C.
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3.2.2 Expansions of the Fluctuations

The fluctuations of the fields around their vacuum value are the lower-dimensional
fields. Nonzero vacuum values of the higher-dimensional fields correspond to pa-
rameters in the lower-dimensional theory. Before we truncate, the fluctuations are
arbitrary and therefore the expansion of the fluctuations involves the harmonic analy-
sis on symmetric spaces. There is little known for a general symmetric space, due to
the lack of an invariant measure. However, the symmetric spaces that we are inter-
ested in are of the form G/K with G compact. In these cases an invariant measure
exists [93].

Harmonic Expansion on a Group Manifold

If K is trivial, the analysis becomes easier. Let us write Ĝ for the set of all in-
equivalent unitary irreducible representations of G. One can prove that all unitary
irreducible representations of a compact group are finite-dimensional [93, 94]. Let us
label the representations ρs ∈ Ĝ by the upper index s: Ĝ = {ρs|s = 1, 2, . . .}. For a
representation ρs ∈ Ĝ we write the (ij)-matrix element of the unitary matrix repre-
senting the group element g ∈ G as D(s)(g)ij and the dimension of the representation
ρs we denote by ds. The matrix-elements are functions on the group G and satisfy
the Schur orthogonality relation

∫

G

D(s)(g)ijD
(s′)(g−1)kldµ(g) =

δilδjkδ
ss′

ds
, (3.2.10)

where µ is the unique invariant Haar measure on G normalized such that µ(G) = 1.
Hence the functions

√
dsD

(s)(g)ij form an orthonormal base for a subset of L2(µ,G),
the set of all square integrable functions on G. It is the famous Peter–Weyl theorem
[95] that states that the matrix-elements are a dense subset in L2(µ,G).

The Peter–Weyl theorem implies that any function Ψ ∈ L2(µ,G) can be expanded
as

Ψ(g) =
∑

s

∑

1≤i,j≤ds

√

dsD
(s)(g)ijψ̂

s
ji , (3.2.11)

where

ψ̂s
ij =

√

ds

∫

G

D(s)(g−1)ijΨ(g)dµ(g) . (3.2.12)

The equations 3.2.11-3.2.12 determine the harmonic expansion on G.
If G = U(1)n the irreducible representations are given by the one by one matrices

D~n(~θ) = e
~θ·~n, where ~n ∈ Zn is a vector with n integers and ~θ = (θ1, . . . , θn). Therefore

on the torus the standard Fourier analysis is obtained.
Tensorial fields on G are fields that carry a representation of the group that rotates

the tangent space. The largest possible group that rotates the tangent space isomet-
rically is SO(d), with d = dimG. On a group manifold all fields carry in a natural
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way representations of G; therefore every SO(d)-representation is decomposed in ir-
reducible G-representations. A field on G that takes values in a G-representation can
be expanded in a similar way as 3.2.11; the columns of a matrix in a representation of
G are basis elements of this representation. Therefore a field ψi(g) in the irreducible
representation ρ can be decomposed as

ψi(g) =
∑

j

√

dρD
(ρ)(g)ijψ̂j . (3.2.13)

The inversion formula to obtain ψ̂j is obtained using the orthogonality relation 3.2.10
of the matrix elements

√
dρD

(ρ)(g)ij .
Spinors can be defined if the group manifold admits a spin structure. We do not

go into details on the existence of spin structures.

Harmonic Expansion on a Symmetric Space

The harmonic expansion on coset manifolds was outlined in [87]. We show how the
procedure works and give an easy example. For more details we refer to [85,87,96,97].

From picture 2.4.1 we can see the group manifold G can be seen as G ∼= (G/K)⋉K.
This suggests that we can still use the matrix-elements of the group G to expand the
fields on G/K. The fields carry representations of the tangent space group, which is
SO(n), where n = dimG/K. Since the compact group K is a subgroup of SO(n) we
can decompose all tangent space representations into K-representations, see also the
discussion about the vielbein on G/K in section 3.2.1.

We give two examples. On the seven sphere S7 ∼= SO(8)/SO(7) the tangent space
group is SO(7), which coincides with K and hence all decompositions are trivial;
any irreducible SO(7)-representation is an irreducible K-representation. The man-
ifold SU(3)/SU(2) × U(1) has dimension 4 and therefore the tangent space group
is SO(4) ∼= SU(2) × SU(2). The vector representation of SO(4) is thus the (2, 2)
representation, i.e. the tensor product of the vector representations of both SU(2)
factors. The decomposition of this vector representation with respect to the subgroup
is [87]:

(2,2) → 2−1 ⊕ 2+1 , (3.2.14)

where the symbol 2−1 means the 2 representation of SU(2) where all vectors in this
representation carry U(1)-weight −1.

We take a field φi(g) where the index i indicates the components in a representation
µ of K. If g1 and g2 are in the same coset, there is an element k ∈ K such that
g1 = g2k. In terms of the picture 2.4.1 this corresponds to moving along a fibre.
Therefore for the field φi we require

φi(gk) =
∑

j

Dµ
ji(k)φj(g) , (3.2.15)
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where Dµ(k) is a matrix in the representation µ of K. We would like to relate this to
the expansion 3.2.11. This can only be done if the sum includes only those represen-
tations of G that contain the representation µ of K. For every representation λ of G
we have to do a decomposition with respect to K and see whether the decomposition
contains µ. The decomposition does depend on the embedding of K in G; for exam-
ple there is a family of manifolds corresponding to the cosets SO(5)/SO(3) differing
in how the SO(3) subgroup is embedded into SO(5) and the members of the family
differ in topology and in how the SO(5) irreducible representations are decomposed
into SO(3) irreducible representations [85].

If the decomposition of an irreducible G-representation λ into irreducible K-
representations reads λ → µ1 ⊕ . . . ⊕ µr then any matrix representing an element
k ∈ K in the λ representation of G can be written as

Dλ
ij(k) =








Dµ1(k) 0 . . .
0 Dµ2(k) . . .
...

. . . . . .
0 . . . Dµr (k)








ij

. (3.2.16)

Since a K-representation µ can occur multiply in the decomposition of λ, we
introduce an extra label ζ that labels the µ representations in λ:

λ→
m(λ,µ)
⊕

ζ=1

µζ ⊕ . . . , (3.2.17)

where the ellipsis contains representations not equivalent to µ and m(µ, λ) is the
number how many times µ occurs in the decomposition of λ.

Since the columns of a matrix in a representation of any group form a basis for the
module associated with that representation, one sees that the appropriate expansion
of the field φi in the µ-representation of K is

φi(g) =
∑

λ∈Ĝ

m(µ,λ)
∑

ζ=1

∑

m

Dλ
m,(iζ)(g)φλζm , (3.2.18)

where the index (iζ) is a compound index corresponding to the block decomposition
3.2.16, i.e. ζ labels the blocks corresponding to the µ representation and within a
block the rows and columns are labelled by the index i.

We can resolve an element g ∈ G into a product L(y)k and obtain the inversion
formula to 3.2.18:

φλζm =
VKdλ

dµ

∫

G/K

dµ(L(y))φi(L(y))Dλ
(iζ),m(L−1(y)) , (3.2.19)
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where dµ denotes the dimension of the irreducible representation λ, VK denotes the
volume of K and dµ(L(y)) denotes the invariant Haar measure on G evaluated at
L(y).

Example: Harmonic Expansion on S2

The two-sphere S2 is the symmetric space SO(3)/SO(2). The irreducible representa-
tions of SO(2) are labelled by integers n and a vector v in the one-dimensional irre-
ducible representation of SO(2) associated with the integer n transforms as v 7→ einθv,
where θ parameterizes SO(2): 0 ≤ θ < 2π. The irreducible nonspinorial represen-
tations of SO(3) are labelled by nonnegative integers j and have dimensions 2j + 1.
The decomposition of the j-representation of SO(3) with respect to SO(2) is:

j → 1−j ⊕ 1−j+1 ⊕ . . . 1j−1 ⊕ 1j , (3.2.20)

where the upper index denotes the integer corresponding to the SO(2) irreducible
representation. The decomposition 3.2.20 follows from the fact that any element
of SO(3) can be taken to generate the Cartan subalgebra, which is isomorphic to
SO(2). The n-representation of SO(2) is thus contained in all SO(3)-representations
with j ≥ |n|.

Let us denote the three independent generators in SO(3) by T1,T2 and T3 with
commutation relations [Ti, Tj ] =

∑

k ǫijkTk. The SO(2)-subgroup is generated by
T3. The two-sphere can be parameterized by L(θ, φ) = exp(−θT1 − φT2), which is
inconvenient for practical calculations. A parametrization more suited for practical
calculations is:

L(y) = exp(−φT3) exp(−θT2) . (3.2.21)

The appearance of the T3 generator and no T1 generator might worry the reader,
but using the Baker–Campbell–Hausdorff formula the parametrization 3.2.21 can be
related to a parametrization involving T1 in the exponent. Calculating L−1dL one
finds the vielbein e and the K-connection ω:

e = −T2dθ + T1 sin θdφ, ω = − cos θT3dφ . (3.2.22)

Therefore the invariant metric is given by the line element

ds2 = dθ2 + sin2 θdφ2 . (3.2.23)

The decomposition of irreducible SO(3)-representations, which are labelled by the
nonnegative integer j, into SO(2) irreducible representations corresponds to taking
T3 diagonal with eigenvalues −

√
−1j, . . . ,+

√
−1j. Since the tangent space is SO(2)

there is no need to decompose the tangent space group with respect to the subgroup
K = SO(2). The label ζ running from 1 to m(n, j) is now unnecessary since the
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SO(2) representations occur at most once in every SO(3) representation. Any field
ψn in the n-representation of SO(2) can now according to 3.2.18 be decomposed as

ψn(θ, φ) =

∞∑

j=|n|

j
∑

m=−j

√

2j + 1Dj
mn(θ, φ) . (3.2.24)

The so-called harmonics Dj
mn(θ, φ) satisfy

Dj
mn(θ, φ) = Dj

mn(e−φT3e−θT2) =

j
∑

k=−j

Dj
mk(e−φT3)Dj

kn(e−θT2)

= e−imφDj
mn(e−θT2) = e−imφDj

mn(0, θ) ,

(3.2.25)

since T3 is diagonal. For n = 0 the familiar expansion of a function in harmonics on
the sphere as treated in most quantum mechanics textbooks is recovered:

ψ(θ, φ) =

∞∑

j=0

j
∑

m=−j

√

2j + 1e−imφP j
m(θ) , (3.2.26)

where P j
m(θ) = Dj

m,0(0, θ).
The harmonics on the sphere are usually found by solving the Laplace equation

on the sphere. This holds in general: the harmonics are found by analyzing the spec-
trum of a G-invariant second or first order differential operator (the mass operator),
such as the Laplacian, Dirac and Lichnierowicz operator, see e.g. [85, 93, 97]. The
eigenfunctions of these operators form a dense subset of L2(µ,G/K).

The Full Expansion of the Fluctuations

For the fluctuations of the fields around their vacuum we can thus write an expansion
like 3.2.18 but where the coefficients ψ̂λm are functions of x, the lower-dimensional
space-time coordinate. This is in principle how it works, but as we shall see, we don’t
have to follow this tedious programme; things can be simplified significantly.

Without proof we quote a result of [87,98] that states that the spectrum of fluctu-
ations of the metric always contains a graviton and Yang–Mills fields. In a few cases
it is explicitly proved that the Yang-Mills fields are related to the Killing vectors of
G/K. It is generally believed that the off-diagonal metric fluctuations always (and
not just in those cases where it was shown to be so) contain the terms [99]

g(x, y)µα =
∑

I

AI
µ(x)KI

α(y) + . . . , (3.2.27)

where KI
α = gαβK

Iβ and KIα∂α is a Killing vector of the vacuum metric gαβ on
G/K. The field AI

µ is called the Kaluza–Klein vector and it is a gauge boson in the
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lower-dimensional theory. This can be seen as follows. The Killing vectors generate
a Lie subgroup of G;

[KI ,KJ ] = LKI (KJ ) = f IJ
L KL . (3.2.28)

For a general coordinate transformation with parameter ξα = ǫI(x)KIα(y) we have

∇(αξβ) = 0 . (3.2.29)

From this it follows that from a lower-dimensional point of view, the field AI
µ has

changed according to δAI
µ = Dµǫ

I , where Dµ is the covariant derivative of the gauge

group generated by the Killing vectors. Hence the field AI
µ behaves like a Yang–Mills

gauge fields.
One might expect that the Killing vectors generate the full isometry group G, but

when fluxes are turned on, the vacuum can transform nontrivially under the isometry
group and the symmetry group of the vacuum can be broken down to a subgroup of
the isometry group G [100–102].

3.2.3 Consistent Truncation

Keeping all fluctuations corresponds to keeping the full theory, but written in an
inelegant form. A crucial ingredient in doing a consistent dimensional reduction is
finding a good truncation. A consistent dimensional reduction is by definition a
dimensional reduction of which the solutions of the lower-dimensional theory can be
uplifted to a solution of the higher-dimensional theory. A necessary condition for
consistency is that the fields that are truncated away do not reappear through their
higher-dimensional equations of motion.

In the example of section 3.1 we truncated the massive fields away, corresponding
to a low-energy approximation. For a general vacuum we do not know what is meant
by mass or energy. But if there is a gauge symmetry, we have a sense of massless,
since a gauge field is massless.

There is no general recipe for finding a suitable truncation. For the toroidal
and group reductions we can find general truncations, which we explain in the section
where these reductions are discussed. For (truly) coset reductions the matter is tedious
and only for a few reductions consistency has been established. Luckily these are
precisely the interesting cases from a string/M-theory point of view; for example
eleven-dimensional supergravity on AdS4×S7 is known to admit a consistent Kaluza–
Klein reduction [103].

Sometimes it is possible to break supersymmetry by the truncation. The fluctua-
tions in general make up supersymmetry multiplets although the vacuum might not
be supersymmetric. If the fluctuations can be truncated to a subsector that does not
itself form a supersymmetry multiplet with respect to the original supersymmetry
algebra, the lower-dimensional theory has less supersymmetry.
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3.2.4 The Lower-Dimensional Lagrangian

To obtain the lower-dimensional Lagrangian one takes often the Kaluza–Klein Ansatz
and plugs this into the higher-dimensional Lagrangian and then expressing everything
in lower-dimensional quantities and integrating over G/K. Hence we need to know
what the Kaluza–Klein Ansatz is and how to find it.

The word Kaluza–Klein Ansatz is a misnomer, it is not an Ansatz. After the trun-
cation we are left with a finite number of lower-dimensional fields. The fluctuations
of the higher-dimensional fields can be expanded in the lower-dimensional fields. This
expansion is called the Kaluza–Klein Ansatz [100].

In a toroidal reduction the truncation is clear and the Kaluza–Klein Ansatz follows
straightforward. For the toroidal reduction and group manifold reduction we explicitly
discuss the Kaluza–Klein Ansätze in the corresponding sections. For the (truly) coset
reduction we refer to the existing literature, e.g. [96,104–111] and references therein.
Note that a Kaluza–Klein Ansatz is not unique; two different Kaluza–Klein Ansätze
are related by a lower-dimensional field redefinition.

Typical for Kaluza–Klein reductions is that the expansion around the vacuum
is not written explicitly, but implicitly. Let us give an example, where we do a
dimensional reduction from five to four dimensions. We choose as vacuum Minkowski
in five dimensions - we suppose this is a solution. The vacuum metric is thus

ĝµ̂ν̂(x, y) =

(
ηµν 0
0 1

)

. (3.2.30)

The most general five-dimensional metric can be written as

ĝµ̂ν̂(x, y) =

(
gµν(x, y) + φ2(x, y)Aµ(x, y)Aν(x, y) φ(x, y)Aµ(x, y)

φ(x, y)Aν(x, y) φ(x, y)

)

. (3.2.31)

Equation 3.2.31 describes the full metric and can be used to obtain the expansions
of the fluctuations. On a circle this means we Fourier expand the fields gµν , Aµ and
φ. The truncation is then to the y-independent sector, which is consistent by the
symmetry argument of section 3.1. The truncated metric is given by

ĝµ̂ν̂(x) =

(
gµν(x) + φ2(x)Aµ(x)Aν(x) φ(x)Aµ(x)

φ(x)Aν(x) φ(x)

)

. (3.2.32)

In this form the vacuum metric and truncated expansion are put in one single met-
ric. Equation 3.2.32 is called the Kaluza–Klein Ansatz for the metric. Since this
nomenclature is so often used we stick to the tradition and (ab)use it as well.

For every isometry of the higher-dimensional vacuum configuration there is a mass-
less gauge boson. In this case, massless is defined by having a gauge transformation.
The higher-dimensional theory has in many cases symmetries; the symmetries that are
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not broken or truncated away in the dimensional reduction are present in the lower-
dimensional theory. The massless gauge bosons of the lower-dimensional theory are
thus in general associated with a subgroup of the isometry group of the vacuum and
remnants of higher-dimensional gauge symmetries.

3.3 Toroidal Reductions

A torus is flat and has vanishing Ricci tensor. Hence if there are no fluxes the
maximally symmetric space-time Y d is Minkowski. Thus in the absence of fluxes
there appear no new parameters in the lower-dimensional theory. Hence starting
with a ten-dimensional supergravity (not Romans type IIA) we will end up in a
lower-dimensional ungauged supergravity.

In this section we carry out the dimensional reduction over a torus without fluxes.
We first discuss the issue of the expansion and truncation and then motivate the
Kaluza–Klein Ansatz. The global symmetry group of the ungauged supergravity and
how to find it is discussed in section 3.3.2.

The Field Expansions and Truncations

For the torus T p the vacuum configuration is almost trivial; the torus is flat and
therefore the vielbein on the torus can be taken to be diagonal. Expanding the
fields around their vacuum values can be done by standard Fourier analysis and the
truncation is to the U(1)p singlets; i.e. all retained fluctuations are independent of
the coordinates on the torus.

The action of the U(1)p of the torus commutes with the supersymmetry algebra.
Hence the zero modes also form a supersymmetry multiplet of a supersymmetry al-
gebra with the same number of supercharges as in the original theory. Therefore the
truncation to the zero modes does not break supersymmetry.

Unbroken supersymmetry implies that we already know what the result of the
dimensional reduction is. Suppose we start with Type I supergravity, which has 16
supercharges, then in four dimensions we end up with an N = 4 ungauged super-
gravity since the irreducible spinor in four dimensions has four real components. The
number of vector multiplets that is coupled to the pure supergravity multiplet is easily
calculated; the two-form gives six vector as well as the metric. Hence we end up with
a total of 12 vectors in four dimensions. Pure N = 4 supergravity in four dimensions
contains 6 vectors, so we have N = 4 supergravity coupled to 6 vector multiplets.
This is also what Chamseddine found [61].
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The Kaluza–Klein Ansatz

The Kaluza–Klein Ansatz is a generalization of 3.2.32. The correct generalization
describing the lower-dimensional fields is most conveniently found by expanding the
fields in the tangent space as we explain below.

The lower-dimensional fields transform under lower-dimensional general coordi-
nate transformations and under internal symmetries that are remnants of the higher-
dimensional general coordinate transformations. We want the fields to transform in
‘the right way’ under the transformations induced by the higher-dimensional general
coordinate transformations. The only general coordinate transformations that are
consistent with the truncation to the y-independent sector are

lower-dimensional g.c.t. : xµ 7→ xµ + ξµ(x) (3.3.1a)

internal symmetries : yα 7→ ξα(x) + Λα
βy

β . (3.3.1b)

To find the fields that transform correctly under these symmetries it is convenient
to write the Kaluza–Klein Ansatz in the tangent space, since the fields with tangent
space indices are inert under general coordinate transformations. This statement also
holds for group manifold reductions.

To illustrate the ideas we work out the toroidal reduction of the bosonic sector
of ten-dimensional Heterotic supergravity. We illustrate how global symmetries arise
and give a general method for finding the global symmetry group from the reduction.
We do not write all calculations down in every detail; the details can be found in for
example [112].

3.3.1 Heterotic Supergravity on a Torus

We reduce the bosonic sector of ten-dimensional Heterotic supergravity to D dimen-
sions over a d-torus in the absence of fluxes. The ten-dimensional action of the bosonic
sector of Heterotic supergravity is given by (see 2.3.12)

LHet = e−φ
(
⋆1R+ ⋆dφ ∧ dφ− 1

2 ⋆ H ∧H − 1
2Tr ⋆ F ∧ F

)
. (3.3.2)

where we rescaled the ten-dimensional dilaton φ. The Kaluza–Klein Ansatz for the
metric is given by the line element

ds210 = gµνdxµdxν +Gαβ(dyα − V α)(dyβ − V β) . (3.3.3)

In this line element V α = V α
µ dxµ is the Kaluza–Klein vector. We can equally well

specify the vielbein by

êa = ea, êm = Φm
α (dyα − V α) ≡ Φm

α f
α . (3.3.4)
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The object Φm
α is to be identified with the y-independent term in the expansion of

the fluctuations of the vielbein on the torus and it satisfies Φm
α δmnΦn

β = Gαβ .

As mentioned before the Kaluza–Klein Ansatz for the fields is found by expanding
the higher-dimensional fields - from now on indicated with a hat - in lower-dimensional
fields in the tangent space; we expand the fields with respect to the basis ea and fα.
Instead of working with em we work with fα; this has the advantage that dfα =
−dV α ≡ −Fα. The Kaluza–Klein Ansätze are:

φ̂ = φ+ 1
2 lndetGαβ ,

B̂ = B(2) +B(1)
α ∧ fα + 1

2Bαβf
α ∧ fβ ,

ÂI = AI(1) +AI
αf

α ,

(3.3.5)

where B(2) = 1
2Babe

a ∧ eb = 1
2Bµνdxµ ∧ dxν and similarly: B

(1)
α = Bµαdxµ and

AI(1) = AI
µdxµ. The index I on AI is a Yang–Mills index.

In the absence of fluxes the vacuum configuration for the nonmetric fields is triv-
ial; all fields vanish in the chosen vacuum. Hence equations 3.3.5 represent the y-
independent terms in the fluctuations of the fields around the vacuum value 0.

Suppose we want nontrivial vacuum values. One then adds a term to the Kaluza–
Klein Ansatz of the fields; this term gives rise to a flux-term in the field strength. For
example, we could have taken ÂI = AI(1) + AI

αf
α + αI , where αI is a one-form on

the torus that is only defined locally. Acting on it with the differential operator gives
the flux-term M I = dαI ; this equation means that locally the flux-term M I can be
written as the d of a one-form. If it is possible to write M I globally on the torus as
M I = dαI the flux, which is defined by the integral of M I over a two-cycle on the
torus, vanishes. For the moment we do not use fluxes.

We restrict ourselves to the maximal abelian subalgebra of the Yang–Mills algebra
(see also section 2.4.3). This restriction also simplifies the analysis. The Cartan
subalgebra of both SO(32) and E8 × E8 has dimension 16, but we take this number
to be N . This makes contact with four-dimensional N = 4 supergravity, which admits
the possibility to couple any number of vector multiplets to the supergravity multiplet.

It is straightforward to calculate from equations 3.3.5 the field strengths. The
field strengths can be reassembled in the Lagrangian, which can be integrated over
the torus. Setting

∫

Td d
dy = 1 , one obtains the D-dimensional Lagrangian

L =e−φ
(

⋆1R+ ⋆dφ ∧ dφ− 1
2

∑

I

⋆F I ∧ F I − 1
2

∑

I

GαβF I
αF

I
β

− 1
2 ⋆ dGαβ ∧ dGαβ − 1

2Gαβ ⋆ F
α ∧ F β − 1

2 ⋆ H
(3) ∧H(3)

− 1
2G

αβ ⋆ H(2)
α ∧H(2)

β − 1
4G

αβGγδ ⋆ H(1)
αγ ∧H(1)

βδ

)

.

(3.3.6)
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The field strengths are given by4

F I = dAI −AI
αF

α , F I
α = dAI

α ,

H = dB +Bα ∧ Fα − 1
2A

I ∧ F I ,

Hα = dBα +BαβF
β − 1

2A
I ∧ dAI

α ,

Hαβ = dBαβ + 1
2

(
AI

αdAI
β −AI

βdAI
α

)
.

(3.3.7)

To extract physical information from a supergravity action it is useful to ‘go the
Einstein frame’. By this we mean that a Weyl rescaling gµν 7→ eaφgµν is performed
such that the resulting action contains the Ricci scalar without a dilatonic prefactor.
If the Weyl rescaling has been performed the kinetic term for the dilaton acquires the
canonical form − 1

2 ⋆ dφ ∧ dφ.
As mentioned before, the action 3.3.6 describes ungauged N = 4 supergravity

coupled to 6 abelian Yang–Mills multiplets. In accordance with this, there appears
no potential in the action 3.3.6.

The scalars Gαβ , Bαβ and AI
α describe an SO(d,d + N)/SO(d) × SO(d + N)

coset [75]. In reference [75] it was shown that the scalars can be rearranged into the
(2d +N) × (2d +N)-matrix

M =





G−1 −G−1C −G−1aT

−CTG−1 G+ CTG−1C + aTa CTG−1aT + aT

−aG−1 aG−1C + a 1 + aG−1aT



 , (3.3.8)

where a = (AI
α), B = (Bαβ) and C = 1

2a
Ta + B. The matrix M is a symmetric

SO(d,d +N)-matrix; M satisfies MT ηM = η where

η =





0 1 01 0 0
0 0 1 . (3.3.9)

The kinetic terms of the scalars appearing in the action 3.3.6 can now be written as
1
8 tr(∂µM

−1∂µM). The reader who wants to check this is warned; the calculation is
tedious. For more details on this construction see [75]. In section 3.3.2 we develop a
method how to recognize the coset that is parameterized by the scalars.

Circle-by-Circle Approach

The n-torus is topologically equivalent to the direct product of n circles. Hence we
can do a torus reduction step by step, where at every step we do a circle reduction.
Though this procedure might look a little clumsy, as we will see in the next section,
one can obtain useful information in a circle-by-circle approach.

4Any repeated Yang–Mills index I, J, . . . is summed over.
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The Kaluza–Klein Ansatz for the metric for reducing over a circle is:

ds2D+1 = e2αϕds2D + e−2α(D−2)ϕ(dy + Vµdxµ)2 , (3.3.10)

where the number α is given by

α =
1

√

2(D − 1)(D − 2)
≡ 1

2s . (3.3.11)

The value of α is chosen such that the action obtained from the reduction maintains in
Einstein frame if the action was originally in Einstein frame. By performing a circle-
by-circle reduction the internal metric is upper triangular. At every reduction step we
‘produce’ a dilaton ϕi and they can be assembled in a vector ~ϕ. Every Kaluza–Klein
vector V i

µ gives rise to scalars Aij , which is only nonzero if i < j.
All steps can be rearranged in one step, where the line element of the Kaluza–Klein

Ansatz is given by

ds210 = e
1
2~g·~ϕds2D +

d∑

i=1

e2~γi·~ϕ(hi)2 , d +D = 10 , (3.3.12)

where

~ϕ = (ϕ1, . . . , ϕd) , ~g = 2(s1, s2, . . . , sd) , (3.3.13a)

~γi =
1

4
~g − 1

2
~fi , ~fi = (0, . . . , 0

︸ ︷︷ ︸

i−1

, (9 − i)si, si+1, . . . , sd) , (3.3.13b)

hi = dyi + V i
µdxµ +

∑

i<j≤n

Aijdyj . (3.3.13c)

From 3.3.13c one sees that the internal metric is upper triangular. A disadvantage of
performing a dimensional reduction following the procedure sketched above is that the
distinction between tangent space indices and coordinate indices is less clear though
this distinction can be restored [D].

3.3.2 Global Symmetries Analysis

In all but three ungauged supergravity theories the scalars parameterize a coset G/K,
where G is the global symmetry group and K is the maximal compact subgroup of
G. The scalar manifolds of this kind that appear in supergravities are maximally
noncompact irreducible Riemannian symmetric spaces.

An irreducible Riemannian symmetric space is a manifold G/K associated to
a triple (g, k, θ), where g is the real simple Lie algebra of G, k is a subalgebra of
g and the Lie algebra of K and θ is an involutive automorphism of which k is the
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eigenspace with eigenvalue +1. The triples (g, k, θ) with the just mentioned properties
are classified [94,113].

We are interested in the cases where the manifold G/K is such that k is the
maximal compact subalgebra of g; then the involutive automorphism θ becomes the
Cartan involution and G/K is the maximally noncompact irreducible Riemannian
symmetric space. In appendix B we give a classification of the maximally noncompact
irreducible Riemannian symmetric spaces.

The real Lie algebra g can be decomposed as:

g = k ⊕ a ⊕ n , (3.3.14)

where k is as before, a is the noncompact Cartan subalgebra and n is the nilpotent
subalgebra spanned by the positive restricted root generators. The decomposition
3.3.14 is called the Iwasawa decomposition of g. It follows from the Iwasawa decom-
position that G/K ∼= exp (a ⊕ n). The elements of a are called noncompact Cartan
generators. In the remainder we try to minimize the Lie algebra technicalities, which
we review in appendix B.

The classification of the noncompact cosets G/K gives rise to a simple technique
for finding the global symmetry group G from the toroidal dimensional reduction
without having to do the sophisticated guess as in equation 3.3.8. For maximal
supergravities this ‘trick’ was already found by [114,115]. With a little group theory
the analysis can be extended to nonmaximal supergravities as we show in this section.
The discussion is based on [D] and details can be found in this reference.

The analysis of the global symmetries starts with a circle-by-circle reduction of
an action in Einstein frame. At every step the Kaluza–Klein Ansatz for the metric is
given by equations 3.3.10 and 3.3.11. At the ith step we write αi for the corresponding
α and ϕi for the corresponding ϕ.

The idea behind the analysis is the following. The scalars that emerge from the
dimensional reduction appear in two disguises; either they appear only with deriva-
tives or they also appear in exponential couplings to other fields. The scalars of the
first kind are called axions and the scalars of the second kind are called dilatons. The
dilatons ϕi can be arranged in a vector ~ϕ and the coupling of the dilatons to other
fields is of the form

exp (~ϕ · ~c) ⋆ F(p+1) ∧ F(p+1) , (3.3.15)

where F(p+1) is the field strength of a p-form. The vectors ~c are called dilaton coupling
vectors. The crucial point is that the dilaton coupling vectors are identified with the
positive restricted roots of a real form of a semisimple Lie algebra g, which has a
subalgebra k that is compactly embedded in g. Accordingly with every dilaton ϕi

we associate a noncompact Cartan generator Hi and every axion is identified with
an element of the positive restricted root subalgebra n. From the positive restricted
roots one can find g and k and hence G and K.
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To explain the technique of finding the global symmetry groupG we use as example
the dimensional reduction of Heterotic supergravity to D > 2 dimensions. The Yang–
Mills sector is restricted to the Cartan subalgebra and the dimension 16 of the Cartan
subalgebra is generalized to N . The action in Einstein frame reads:

S =

∫

M10

d10 x e
(

R− 1

2
(∂Φ0)2 − 1

12
e−Φ0H2 − 1

4
e−

1
2Φ0

N∑

I=1

F I
µνF

Iµν
)

, (3.3.16)

where e = detea
µ, Φ0 is the ten-dimensional dilaton and F I = dAI . The field strength

H contains the Yang–Mills Chern–Simons term: H = dB −∑N
I=1

1
2A

I ∧ F I .
The ten-dimensional metric reduces to a metric gµν , Kaluza–Klein vectors V i

µ and
axions Aij , which follow from the reduction of the Kaluza–Klein vectors and are only

nonzero if i < j. The gauge potential ÂI reduces to a gauge potential AI and scalars
AI

j . The result of the reduction of the Kalb–Ramond potential B̂(2) is a two-form
Bµν , vectors Bµi and scalars Bij and the dimensional reduction of the dilaton results
in a dilaton.

The Kaluza–Klein Ansatz for the Kalb–Ramond field B̂µ̂ν̂ is given by

B̂(2) = 1
2Bµνdxµ ∧ dxν +B

(1)
µi dxµ ∧ hi + 1

2B
(0)
ij h

i ∧ hj , (3.3.17)

and for the other fields similar, see [D]. To obtain the lower-dimensional Lagrangian,
the precise form of the field strengths is unimportant. At the step of the reduction
going from D + 1 to D dimensions one uses that for any (n + 1)-form field strength
F(n+1) the kinetic term reduces as

1
(n+1)! êF̂

2
(n+1) → 1

(n+1)!ee
−2nαϕF 2

(n+1) + 1
n!ee

2α(D−n−1)ϕF 2
(n) , (3.3.18)

where e = detea
µ. The Ricci scalar reduces as

êR̂→ eR− 1
2e(∂φ

i)2 − 1
4ee

−2α(D−1)ϕ(F i)2 , (3.3.19)

where F i is the Kaluza–Klein field strength of V i, which can contain axionic terms.
In D dimensions we obtain the Lagrangian L = L1 + L2 + L3, with

e−1L1 = R− 1
2∂µ

~Φ · ∂µ~Φ − 1
2

∑

1≤i<j≤d

(Fij)2e
~Bij ·~Φ − 1

4

d∑

i=1

(Fi)
2e

~Bi·~Φ ,

e−1L2 = − 1
12e

~A·~ΦH2 − 1
4

d∑

i=1

e
~Ai·~Φ(Hi)2 − 1

2

∑

1≤i<j≤d

e
~Aij ·~Φ(Hij)2 ,

e−1L3 = − 1
4e−

1
2

~G·~Φ
N∑

I=1

(F I)2 − 1
2

d∑

i=1

N∑

I=1

e
~Ci·~Φ(F I

i )2 , ,

(3.3.20)
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where5

H = dB − (dBi)ΓijV
j + 1

2 (dBij)ΓimΓjnV
mV n − 1

2 (AI −AI
i ΓijV

j)F I ,

Hn = (dBi)Γin − (dBij)ΓimΓjnV
m − 1

2 (AI −AI
i ΓijV

j)F I
n − 1

2A
I
nF

I ,

Hmn = (dBij)ΓimΓjn + 1
2

(
AI

pΓpmF
I
n −AI

pΓpnF
I
m

)
,

Fij = (dAim)Γmj ,

F i = dV i − (dAim)ΓmnV
n = dV i − FijV

j ,

(3.3.21)

and
~Φ = (Φ0, ϕ1, . . . , ϕd) = (Φ0, ~ϕ) , ~Fi = (0, ~fi) ,
~Bij = −~Fi + ~Fj , ~G = (1, ~g) ,
~Ai = ~Fi − ~G , ~Bi = −~Fi ,
~Aij = ~Fi + ~Fj − ~G , ~A = −~G ,
Ci = ~Fi − 1

2
~G ,

(3.3.22)

where the vectors ~ϕ, ~fi and ~g are as in 3.3.13c. The vectors from equation 3.3.22
contain the information about the coset structure.

Recognizing the Scalar Coset

As explained above the dilaton coupling vectors can be identified with the positive
restricted roots of a real semisimple Lie algebra g. In particular we assume that
the inner product between the dilaton coupling vectors is proportional to the inner
product between the corresponding restricted roots. At the end of this section we
show that the assumption is true.

The vectors 3.3.22 satisfy the following relations

~Aij + ~Bik = ~Akj , ~Aij + ~Bjk = ~Aik ,

~Ci + ~Cj = ~Aij , ~Cj = ~Bij + ~Ci , i < j ,

~G · ~G = 8
D−2 ,

~Fi · ~Fj = 2δij + 2
D−2 ,

~Fi · ~G = 4
D−2 ,

~Ai · ~G = − 4
D−2 ,

~Aij · ~G = 0 , ~Bij · ~Bkl = 2δik − 2δil − 2δjk + 2δjl ,

~Ci · ~Cj = 2δij , ~Aij · ~Bkl = −2δik + 2δil − 2δjk + 2δjl .

(3.3.23)

All dilaton coupling vectors can be written as a sum of the vectors ~C1 and ~Bi,i+1

with integer coefficients. Hence the restricted root vectors λd−i and λd associated to

the vectors ~Bi,i+1 and ~C1 respectively generate the whole lattice of positive restricted

5Every repeated index is summed over.
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root vectors; they are the simple restricted root vectors. The simple restricted root
vectors make up a root system just like ordinary simple root vectors of semisimple
Lie algebras with the minor differences that the root system need not be reduced and
that the root vectors can have multiplicity greater than one; the dimension of the
subspace corresponding to a particular restricted root can be greater than one.

We can draw a Dynkin diagram for the restricted root system:

λ1 λ2 λd−1 λd

The multiplicities are found from the dimensional reduction; the multiplicity of a
restricted root vector is how often it appears in the Lagrangian. Looking at the
action 3.3.20 one sees that the multiplicity of λi is 1 for 1 ≤ i < d and N for i = d,
and the multiplicities of 2λi are zero.

If we know the multiplicities of the simple restricted root vectors λi and of twice
the simple restricted root vectors 2λi, together with the Dynkin diagram of the λi,
then the Lie algebras g and k are known and can be read off from tables B.4.1 and
B.4.2 in appendix B. The lower-dimensional Lagrangian as obtained by a circle-by-
circle reduction contains all information to read off the coset G/K. For Heterotic
supergravity the coset in D > 4 dimensions is SO(d,d +N)/SO(d) × SO(d +N).

There are subtleties if D = 4 and D = 3. In four dimensions the two-form Bµν can
be dualized. More generally, in D dimensions one should always dualize all (D − 2)-
forms to obtain the so-called maximal scalar manifold [115]. Having dualized the
two-form in four dimensions one can again read off the restricted root vectors and
count multiplicities and draw the Dynkin diagram of the simple restricted roots to
find the coset corresponding to the maximal scalar manifold. The maximal scalar
manifold in four dimensions of Heterotic supergravity is SL(2; IR)/U(1) ⊗ SO(6, 6 +
N)/SO(6) × SO(6 +N).

In three dimensions all vectors can be dualized and applying the above proce-
dure to find the maximal scalar manifold of three-dimensional Heterotic supergravity
results in the coset SO(8, 8 +N)/SO(8) × SO(8 +N).

Coset Construction

Having recognized the cosetG/K we need to check that the scalars in theD-dimensional
Lagrangian indeed parameterize the coset G/K. We therefore have to show that a
coset construction based on the coset found by recognizing the positive restricted
roots gives the same scalar Lagrangian as obtained from the dimensional reduction.
We first assume D > 4. For more details see [D].

The noncompact Cartan generators associated with the dilatons are written Hi

and are assembled in a (d + 1)-dimensional vector ~H (we incorporate the dilaton
already present in ten dimensions, this gives rise to some technicalities, which we
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avoid in this discussion; see [D]). We identify with every positive restricted root vector
a Lie algebra element. We therefore make the following identification:

~Bij ↔ Eij , i < j , [ ~H,Eij ] = ~BijEij ,

~Aij ↔ Rij = −Rji , [ ~H,Rij ] = ~AijRij , (3.3.24)

~Ci ↔ YiI , 1 ≤ I ≤ N , [ ~H, YiI ] = ~CiYiI .

The generators Eij , Rij and YiI as defined by equations 3.3.24 span the positive
restricted root subalgebra n of g.

From equations 3.3.23 and using the Jacobi identities we see that the commutation
rules are:

[Eij , Ekl] = δjkEil − δilEkj , [Eij , Rkl] = −δikRjl + δilRjk ,
[Eij , YkK ] = −δikYjK , [YiI , YjJ ] = MIJRij ,
[YiI , Rkl] = 0 , [Rij , Rkl] = 0 ,

(3.3.25)

where the matrix MIJ can not be fixed by the Jacobi equations since it involves a
choice of basis in the subspace spanned by the YiI .

Using the vector representation of SO(d,d+N) we see that we can take MIJ = δIJ

[D]. The coset Lagrangian can be constructed using the representative V defined by
V = V1V2V3Ω with:

V1 = exp
(

1
2
~Φ · ~H

)

,

V2 = · · ·U24U23 · · ·U14U13U12 , Uij = exp
(

AijEij

)

no sum ,

V3 = exp
(∑

i<j

BijRij

)

,

Ω = exp
(∑

iI

AiIYiI

)

,

(3.3.26)

where Aij , Bij and AiI are the axions and ~Φ are the dilatons. From this one finds:

dV1V1
−1 = 1

2d~Φ · ~H ,

V1dV2V2
−1V1

−1 =
∑

i<j

Fije
1
2

~Φ· ~BijEij ,

V1V2dV3V3
−1V2

−1V1
−1 =

∑

i<j

∑

mn

e
1
2

~Aij ·~ΦdBmnΓmiΓnj , (3.3.27)

V1V2V3dΩΩ−1 (V1V2V3)
−1

=
∑

Ii

e
1
2

~CiI ·~ΦF I
i YIi + 1

2

∑

Imij

e
1
2

~Aij ·~ΦAI
mΓmiF

I
j Rij , .
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From 3.3.27 one calculates the scalar action:

SG/K = 1
8

∫

dDx eTr
(
∂µM∂µM−1

)
. (3.3.28)

where the trace is in a representation and M = V#V, where # denotes the generalized
transpose (see appendix B).

Though M is in a representation of the group G, the trace in the action is in a
Lie algebra representation. Using that the Cartan involution θ is an automorphism
we rewrite the action 3.3.28 as:

SG/K = − 1
4

∫

dDxe
(
Tr(∂µVV−1∂µVV−1) + Tr(∂µVV−1(∂µVV−1)#)

)

= − 1
2

∫

dDxeTr(∂µVV−1P∂µVV−1) ,

(3.3.29)

where P : g → g denotes the projection operator defined byP : x 7→ 1
2 (1− θ)x , (3.3.30)

which is indeed a projection operator since θ2 = 1 and on k we have P = 0.

Putting all parts together, the scalar Lagrangian is precisely the same as obtained
by dimensional reduction. There are some technicalities we have avoided; there is
a one-dimensional subspace in the (d + 1)-dimensional space in which ~Φ lives that
decouples from the rest. One can see the decoupling needs to occur since the dimension
of SO(d,d + N)/SO(d) × SO(d + N) is d whereas the dilaton vector is (d + 1)-
dimensional. See [D] for more details on how to deal with this technicality and to
obtain the correct scalar Lagrangian.

One concludes that a circle-by-circle reduction admits a relatively easy way to find
the coset G/K parameterized by the scalars.

We now prove the claim made at the beginning of this section, that the inner
product between the dilaton coupling vectors is proportional to the inner product of
the restricted root vectors. We use a basis Hi for the noncompact part of the Cartan
subalgebra such that Trad(HiHj) = δij . We see from 3.3.24 that the components of
a dilaton coupling vector ~c are (~c)i = γ(Hi), where γ is the restricted root associated
with ~c. Using the Cartan–Killing metric B(, ), there is for every restricted root µ a
unique noncompact Cartan generator Hµ such that µ(h) = B(h,Hµ) for all noncom-
pact Cartan generators h. We define 〈µ, λ〉 = B(Hµ,Hλ) = Trad(HµHλ). We have
Hµ =

∑

i ciHi and the ci are given by µi = µ(Hi). Hence Trad(HµHλ) =
∑

i µiλi.
For semisimple Lie algebras the trace in any representation can be taken proportional
to the Cartan–Killing metric. In the construction of the coset we use Tr(HiHj) ∼ δij
and hence the claim is proved.
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3.4 Group Manifold Reductions

A group manifold is a Lie group. The group manifolds of semisimple G have much
structure and admit an explicit analysis.

Higher-Dimensional Vacuum

The higher-dimensional vacuum, around which the fluctuations are considered, is
for group manifold reductions in general not known. One only requires that the
geometry is Yd ×G where Yd is a maximally symmetric space and G is a Lie group.
In many cases one does not even require that Yd is a maximally symmetric space; the
reduction is performed and the lower-dimensional theory in practice always admits
a maximally symmetric vacuum, which one can (try to) uplift to a solution of the
higher-dimensional theory.

The fluxes of the fields are not specified; the vacuum value is absorbed into the
Kaluza–Klein Ansatz. If one finds in the lower-dimensional theory that some field does
not have the trivial value as solution, then its original higher-dimensional solution
around which was perturbed, was also nontrivial. Since the vacuum is not known,
except the internal geometry of G, the expansion and truncation involve a slight
modification of the programme advocated in section 3.2.

A group contains natural parameters through its structure constants and there-
fore one expects that the structure constants appear in the lower-dimensional theory
as massive parameters. Hence we expect to arrive at a lower-dimensional gauged
supergravity possibly with a scalar potential.

We now discuss the geometry of G 6. The group G acts on itself in two ways; by
left multiplication La : g 7→ ag and right multiplication Ra : g 7→ ga for g, a ∈ G.
There exist dimG left-invariant independent vector fields τα, α = 1, 2, . . . ,dimG,
i.e. they are invariant under the left-translations La. There exists a dual basis σα,
α = 1, 2, . . . ,dimG of one-forms satisfying σα(τβ) = δα

β and the Maurer–Cartan
equation

dσα = − 1
2f

α
βγσ

β ∧ σγ , (3.4.1)

where fα
βγ are the structure constants of G determined by the Lie bracket [τβ , τγ ] =

ταf
α

βγ . The one-forms σα are left-invariant.
In a similar way there exist right-invariant vector fields and right-invariant one-

forms. The structure constants determined by the Lie bracket between two right-
invariant vector fields are different (for more details see e.g. [6]). There are no bi-
invariant vector-fields.

From the left-invariant one-forms one can construct the metric g = Mαβσ
α ⊗ σβ ,

which is a left-invariant metric for any nondegenerate constant Mαβ . If one chooses
for Mαβ the Cartan–Killing metric of G the metric is bi-invariant. This choice gives

6In appendix B.5 we give more details on the geometry of compact groups.
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the ‘most symmetric’ geometry. We therefore take the bi-invariant metric to be the
vacuum metric on the group manifold G. The isometry group is thus G×G and the
Killing vectors of the left-action of G are the right-invariant vector fields and vice
versa (see [6] for a proof of this statement).

The existence of the left-invariant vector fields has a topological consequence; the
group manifold G admits nowhere vanishing vector fields. Due to a theorem of Hopf
this can only hold if the Euler characteristic χ(G) vanishes. This is important when
we discuss gauge transformations of gauge fields on G.

Expansion and Truncation of Fluctuations

The left-invariant one-forms and vector fields form a basis for the fields7 living on the
group manifold G. A one-form ω on TG∗ can thus be expanded as ω(y) = ωα(y)σα(y).
Acting on ω with left-translation we see (L∗

gω)(gy) = (L∗
gωα)(gy)(L∗

gσ
α)(gy) = ωα(gy)

σα(y) by left-invariance of σα. The one-form is thus left-invariant if and only if ωα

is constant over G. Similarly a p-form ω(p) = ωα1···αp
σα

1 ∧ · · · ∧ σα
p is left-invariant

if and only if the ωα1···αp
are constants. The coefficients ωα1···αp

are functions on G
and can thus be expanded as in 3.2.11. We now wish to find a suitable truncation.

By the singlet analysis of section 3.1 we see that restricting to the singlets of the
isometry group G×G is consistent. This means that we keep both the left-invariant
and right-invariant vector fields as Killing vectors. However this is in general not
possible. One problem is that there are for general G no bi-invariant one-forms and
hence little fields survive the truncation.

A second problem is that the left-invariant Killing vectors are not right-invariant.
This can be seen as follows. The left-invariant vector fields generate right-translations.
If X is a left-invariant vector field generating a right-translation, then the variation of
a left-invariant vector field Y under the right-translation generated by X is LX(Y ) =
[X,Y ], which is in general nonzero.

A third problem related to the second is explained in [99]; the inner product of a
left-invariant vector field with a right-invariant vector field is a scalar function that
in general does depend on the coordinates on G and is thus not invariant under left-
and right-translations. This scalar function does appear in the equations of motion of
the lower-dimensional fields, which are independent of the coordinates on G and thus
we obtain a contradicting set of equations of motion for the lower-dimensional fields.

We therefore discard the possibility of restricting the fluctuations to the full isom-
etry group. The aforementioned problems are solved if we truncate to the fluctuations
that are invariant under the subgroup of the isometry group generated by the left-
translations. The isometry group is still G × G but we truncate the Killing vectors
appearing in the metric components gµα to the left-invariant Killing vectors. Hence

7We ignore the issue of whether it is possible to define fermions on G and restrict ourselves to
bosonic fields.
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a Lie derivative along a right-invariant vector fields annihilates all the fluctuations
surviving the truncation.

Kaluza–Klein Ansatz

The most general left-invariant metric h on G is h = Gαβσ
α ⊗ σβ , where Gαβ is a

nondegenerate symmetric matrix that is constant over G. This motivates the following
Kaluza–Klein Ansatz for the metric:

ds2 = gµνdxµdxν +Gαβ(σα − V α)(σβ − V β) . (3.4.2)

The V α are the Kaluza–Klein gauge vectors and only the σα depend on the coordi-
nates yα.

We know show that the off-diagonal components of the metric match up with
3.2.27. We write σα =

∑

β Sαβdyβ , where Sαβ is a y-dependent matrix. The left-

invariant vector fields dual to the σα are given by τα =
∑

β S
−1
βα∂β . The vacuum

metric on G can be chosen G0 = δαβσ
α ⊗ σβ =

∑

γ SγαΣγβdyα ⊗ dyβ since G is
compact. The left-invariant vector fields are the Killing vectors and hence the off-
diagonal components of the metric 3.4.2 with respect to the basis (dxµ,dyα) become
to zeroth order in x

gµα =
∑

β

V β
µ (τβ)α =

∑

βγ

V β
µ (τβ)γ(G0)αγ =

∑

β

V β
µ (σβ)α , (3.4.3)

which matches with 3.2.27.
The Kaluza–Klein Ansatz for the vielbein is given by

êa = ea , êm = Em
α (σα − V α) , (3.4.4)

where Em
α is such that Em

α δmnE
n
β = Gαβ . The index m is a tangent space index and

α, β, . . . are curved indices.
The Kaluza–Klein Ansatz for other fields than the metric is given by an expansion

in the vielbeins and the only dependence on yα is encoded in the Maurer–Cartan one-
forms in the vielbeins. The lower-dimensional fields are defined as the coefficients
in the expansion with respect to the basis {ea, hα ≡ σα − V α}. Defining the lower-
dimensional fields in this way guarantees that the lower-dimensional fields transform
in the adjoint representation of G, the truncated isometry group. The Kaluza–Klein
vectors V α transform as gauge fields δV α = −Dλα, where λα is a parameter in the
adjoint of G and D is the G-covariant derivative.

3.4.1 Heterotic Supergravity on a Group Manifold

We now give an example of a group manifold reduction and perform a dimensional
reduction over a group manifold of ten-dimensional dualized Heterotic supergravity
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to four dimensions and analyze the lower-dimensional symmetries. The analysis is
based on [C]. We begin with the action 3.3.2:

S2-form =

∫

e−φ
(

R⋆1 + ⋆dφ ∧ dφ− 1
2⋆H

(3) ∧H(3) − Tr ⋆F (A) ∧ F (A)
)

. (3.4.5)

where the field strengths are defined as in section 2.3.12. We dualize the two-form
B to a six-form; it is in this formalism that we can see many features of the group
manifold reduction procedure. We obtain the dualized action S6-form = SSG + SYM,
where

SSG =

∫

e−φ(R⋆1 + ⋆dφ ∧ dφ) − 1
2eφ ⋆H(7) ∧H(7) ,

SYM = −
∫

e−φTr ⋆F (A) ∧ F (A) −B(6) ∧ TrF (A) ∧ F (A) ,

(3.4.6)

and where H(7) = dB(6). The gauge transformations of B(6) are δB(6) = dΛ(5). The
gauge transformations are reduced in a similar fashion as the fields.

The volume of G is normalized as
∫

G
σ1 ∧ . . . ∧ σ6 = 1. The compactness of G

implies that the structure constants are traceless, fα
αβ = 0.

The basis elements hα satisfy

dhα = −F (V )α − fα
βγh

β ∧ V γ − 1
2f

α
βγh

β ∧ hγ . (3.4.7)

where the Kaluza–Klein field strengths F (V )α are given by

F (V )α = dV α + [V, V ]α = dV α + 1
2f

α
βγV

β ∧ V γ . (3.4.8)

The reduction Ansätze for the other fields are given by8:

φ̂ = φ+ 1
2 ln |detGαβ | , (3.4.9)

B̂(6) = 1
2!B

(4)
α1α2

hα1hα2 + 1
3!B

(3)
α1...α3

hα1 · · ·hα3 + 1
4!B

(2)
α1...α4

hα1 · · ·hα4

+ 1
5!B

(1)
α1...α5

hα1 · · ·hα5 + 1
6!B

(0)
α1...α6

hα1 · · ·hα6 . (3.4.10)

ÂI = AI
ae

a +AI
αh

α . (3.4.11)

For the m-forms B(m) we used the shorthand notation

B(m)
α1...α6−m

= 1
m!B

(m)
a1...amα1...α6−m

ea1 · · · eam , m = 0, 1, . . . , 6 , (3.4.12)

From the Ansatz (3.4.10) one obtains the seven-form field strength Ĥ(7) = dB̂(6).
Substituting the expression for B̂ gives:

Ĥ(7) =

4∑

m=1

1
m!(7−m)!H

(m)
a1...amα1...α7−m

ea1 · · · eamhα1 · · ·hα7−m . (3.4.13)

8We omit the ∧-symbols in this section to simplify the formulae.
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The reduction of SSG gives the four-dimensional action S = S1 + S2 with:

S1 =

∫

e−φ
(

R⋆1 + 1
2⋆dφdφ− 1

2Gαβ ⋆F (V )αF (V )β

+ 1
4⋆DGαβDGαβ − V1(G) ⋆1

)

,

S2 = − 1
2

∫

eφ detGαβ

(
1
3!⋆H

(4)α1...α3H(4)
α1...α3

+ 1
4!⋆H

(3)α1...α4H(3)
α1...α4

+ 1
5!⋆H

(2)α1...α5H(2)
α1...α5

+ 1
6!⋆H

(1)α1...α6H(1)
α1...α6

)

.

(3.4.14)

The covariant derivative D is covariant with respect to gauge transformations asso-
ciated with right-translations. The contraction in the H2-terms is with Gαβ . The
scalar potential V1(G) due to reduction of the gravitational sector is given by [116]

V1(G) = 1
4Gα1α2

Gβ1β2Gγ1γ2fα1
β1γ1

fα2
β2γ2

+ 1
2G

α1α2fβ
α1γf

γ
α2β . (3.4.15)

The expressions for the curvatures H(p) are

H(1)
α1...α6

= DB(0)
α1...α6

+ 15fβ
[α1α2

B(1)
α3...α6]β , (3.4.16a)

H(2)
α1...α5

= DB(1)
α1...α5

+B
(0)
α1...α5βF (V )β + 10fβ

[α1α2
B(2)

α3...α5]β , (3.4.16b)

H(3)
α1...α4

= DB(2)
α1...α4

+B(1)
α1...α4βF (V )β + 6fβ

[α1α2
B(3)

α3α4]β , (3.4.16c)

H(4)
α1...α3

= DB(3)
α1...α3

+B(2)
α1...α3βF (V )β + 3fβ

[α1α2
B(4)

α3]β . (3.4.16d)

The gauge transformations of B(n) are

δB(n)
α1...α6−n

= DΛ(n−1)
α1...α6−n

− Λ(n−2)
α1...α6−nβF (V )β

− 1
2 (6 − n)(5 − n)fβ

[α1α2
Λ(n)

α3...α6−n]β .
(3.4.17)

At some points in the analysis it is more convenient to redefine the p-form gauge
fields by dualizing to upper internal indices:

B(n)
α1...α6−n

≡ 1
n! ε̃α1...α6−n β1...βn

B̃(n)β1...βn , (3.4.18)

where ǫ̃α1···α6
denotes the six-dimensional completely antisymmetric alternating sym-

bol9. The fields B̃(n) have the correct transformation properties under gauge transfor-
mations due to the unimodularity of G, which in turn is guaranteed by compactness
of G [C]. The corresponding curvatures for the fields B̃(n) are:

H̃(n)α1...αn−1 = DB̃(n−1)α1...αn−1 + (n− 1)(−1)n B̃(n−2)[α1...αn−2F (V )αn−1]

+ n−1
2 f [α1

β1β2
B̃(n)α2...αn−1]β1β2 . (3.4.19)

9The object ǫ̃α1···α6 is thus the six-dimensional Levi–Civitá symbol; see appendix A.
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The Yang–Mills field strengths are defined by: F̂ (Â)I = dÂI + (Â ∧ Â)I . Using
3.4.11 one finds10:

F̂ (Â)I = GI + D̄AI
αh

α + 1
2FI

α1α2
hα1hα2 , (3.4.20)

where we use the following definitions:

F (A)I = dAI + 1
2f

I
JKA

JAK , (3.4.21a)

GI = F (A)I −AI
αF

α(V ) , (3.4.21b)

D̄AI
α = dAI

α + fβ
αγV

γAI
β + f I

JKA
JAK

α , (3.4.21c)

FI
α1α2

= f I
JKA

J
α1
AK

α2
−AI

γf
γ

α1α2
. (3.4.21d)

The ten-dimensional Chern–Simons form Ĉ can be rewritten as

Ĉ = Tr (Â dÂ+ 2
3 Â Â Â) = 1

2 Â
I F̂ (Â)I − 1

12f
I
JKÂ

I ÂJ ÂK . (3.4.22)

Substitution of the Ansatz (3.4.11) gives

Ĉ = C(3) + C(2)
αh

α + 1
2!C

(1)
α1α2

hα1hα2 + 1
3!C

(0)
α1α2α3

hα1hα2hα3 , (3.4.23)

where

C(3) = 1
2 (AIGI − 1

6f
I
JKA

IAJAK) , (3.4.24a)

C(2)
α = 1

2 (AID̄AI
α +AI

αG
I − 1

2f
I
JKA

IAJAK
α) , (3.4.24b)

C(1)
α1α2

= − 1
2A

IAI
γf

γ
α1α2

−AI
[α1

D̄AI
α2] , (3.4.24c)

C(0)
α1α2α3

= f I
JKA

I
α1
AJ

α2
AK

α3
− 3

2A
I
[α1
fδ

α2α3]A
I
δ . (3.4.24d)

The reduction of the ten-dimensional action SYM is facilitated by using dĈ = 1
2 F̂

I F̂ I .
For the topological term in SYM we write

L̂CS = B̂(6) ∧ Tr (F̂ ∧ F̂ ) = −Ĥ(7) ∧ Ĉ(3) + total derivative, (3.4.25)

which gives the following contribution to the four-dimensional action:

LCS = −H̃(1)C(3) − H̃(2)αC(2)
α − 1

2!H̃
(3)α1α2C(1)

α1α2

− 1
3!H̃

(4)α1α2α3C(0)
α1α2α3

.
(3.4.26)

10In the following D̄ stands for a covariant derivative that is covariant with respect to both the
Scherk–Schwarz and Yang–Mills gauge transformations. It should be kept in mind that AI is the
one-form corresponding to the gauge vector, while AI

α are scalar fields. The internal indices α, β, . . .
are therefore always written explicitly. Any repeated Yang–Mills index I, J, . . . is summed over.
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After a partial integration one obtains

LCS = 1
2 B̃

(0)GIGI − B̃(1)αGID̄AI
α + 1

2 (GIFI
α1α2

− D̄AI
α1

D̄AI
α2

)B̃(2)α1α2

− 1
2 B̃

(3)α1α2α3D̄AI
α1
FI

α2α3
+ 1

8 B̃
(4)α1...α4FI

α1α2
FI

α3α4
. (3.4.27)

We now give the complete four-dimensional Lagrangian with Yang–Mills fields, in
the Einstein frame and in terms of the redefined fields 3.4.18:

L =L1 + L2 + L3 + L4 , (3.4.28)

L1 =
√−g

(

R− 1
2∂µφ∂

µφ− 1
4e−φ F (V )µν

αGαβF (V )µν β

+ 1
4DµGαβDµGαβ − eφ V1(G)

)

, (3.4.29)

L2 = −√−g
(

1
2e2φ ∂µB̃

(0)∂µB̃(0) + 1
4eφ H̃(2)

µν
αH̃(2)µν βGαβ

+ 1
4!H̃

(3)
µνλ

α1α2H̃(3)µνλβ1β2Gα1β1
Gα2β2

(3.4.30)

+ 1
2·3!4!e

−φH̃(4)
µνλρ

α1α2α3H̃(4)µνλρβ1β2β3Gα1β1
Gα2β2

Gα3β3

)

,

L3 = −√−g e−φ
(

1
4G

I
µνG

I µν + 1
2eφ D̄µA

I
αD̄

µ
AI

βG
αβ

+ 1
4e2φ FI

α1α2
FI

β1β2
Gα1β1Gα2β2

)

, (3.4.31)

L4 = − ǫ̃µνλρ
(

1
8 B̃

(0)GI
µνG

I
λρ − 1

2 B̃
(1)

µ
αGI

νλD̄ρA
I
α

+ 1
4 B̃

(2)
λρ

αβ
(

1
2G

I
µνFI

αβ − D̄µA
I
αD̄νA

I
β

)
(3.4.32)

− 1
2·3! B̃

(3)
µνλ

αβγD̄ρA
I
αFI

βγ + 1
8·4! B̃

(4)
µνλρ

αβγδFI
αβFI

γδ

)

.

3.4.2 Stückelberg Symmetries and Cohomology

We now analyze the system of gauge transformations 3.4.17 and the presence of mass-
terms in the Lagrangian S2 in equation 3.4.14. The parameters Λ(n) of the gauge
transformations 3.4.17 generate shift symmetries. In analyzing which fields are phys-
ical we can restrict ourselves to the shift-symmetries. The shift-symmetries are called
Stückelberg symmetries after the German physicist who introduced a formalism for
dealing with massive gauge fields [117] (he is best known for introducing the concept
of baryon conservation in 1939).

For a generic field Φ with p internal indices the local shift symmetry acts as:

δΦα1...αp
= fβ

[α1α2
Λα3...αp]β . (3.4.33)

The mass term for a field Φ is constructed from (see equations 3.4.16)

(m[Φ])α1...αp+1
= fβ

[α1α2
Φα3...αp+1]β . (3.4.34)
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We associate with each Φ an element of the set Λ
(p)
L of left-invariant p-forms on

G:

Φα1...αp
7→ Φ(p) = 1

p!Φα1...αp
σα1 . . . σαp . (3.4.35)

For the exterior derivatives dp : Λ
(p)
L → Λ

(p+1)
L , we define the images Z(p) ≡ Im (dp−1),

the kernels Ω(p) = Ker (dp) and the quotients H(p) = Ω(p)/Z(p). The equations
(3.4.33) and (3.4.34) describe a cohomology problem for the left-invariant forms:

δΦ(p) = dΛ(p−1), m[Φ(p)] = dΦ(p) . (3.4.36)

Due to a theorem by Chevalley and Eilenberg [118] this cohomology problem is equiv-
alent to the de Rahm cohomology on the group manifold G if G is compact and con-
nected. In particular we have dimH(p) = bp where bp is the pth Betti number of G.
Since dp is a homomorphism we have

Z(p) ∼= Λ
(p−1)
L /Ω(p−1) , (3.4.37)

giving us the recurrence relation

dimZ(p+1) = dim Λ
(p)
L − dimZ(p) − bp =

(
6

p

)

− bp − dimZ(p) . (3.4.38)

The recurrence relation 3.4.38 can be solved starting from dim Z(0) = 0:

dimZ(1) = 1 − b0 ,

dimZ(2) = 5 − b1 + b0 ,

dimZ(3) = 10 − b2 + b1 − b0 ,

dimZ(4) = 10 − b3 + b2 − b1 + b0 ,

dimZ(5) = 5 − b4 + b3 − b2 + b1 − b0 = 5 − χ(G) + b6 − b5 ,

dimZ(6) = 1 − b5 + b4 − b3 + b2 − b1 + b0 = 1 + χ(G) − b6 ,

(3.4.39)

where χ(G) is the Euler characteristic of the six-dimensional G

χ(G) =

6∑

r=0

(−1)rbr . (3.4.40)

Since the group manifold is compact and connected we have Poincaré duality: bp =
b6−p. On compact connected six-dimensional Lie groups b0 = 1 and thus:

2b1 − 2b2 + b3 = 2 . (3.4.41)
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field features dimension DOF

B(4)
gauge dimZ(2) 0
massive dimZ(3) 0
massless b2 0

B(3)
gauge dimZ(3) 0
massive dimZ(4) 1
massless b3 0

B(2)
gauge dimZ(4) 0
massive dimZ(5) 3
massless b4 1

B(1)
gauge dimZ(5) 0
massive dimZ(6) 3
massless b5 2

B(0)
gauge dimZ(6) 0
massive 0 1
massless b6 1

Table 3.4.1: Result of the analysis of the shift symmetries of the Kalb–Ramond fields B(n).

Each B(n) splits in three parts: gauge degrees of freedom, massive and massless components.

The third column shows how the dimension of the various spaces Z(p) and H(p) determines

the number of components of B(n). DOF indicates the number of degrees of freedom for

each choice of the 6 − n internal indices.

For odd-dimensional compact connected Lie groups a relation like 3.4.41 cannot be
deduced since due to Poincaré duality the Euler characteristic vanishes identically.

We draw the following conclusions: (1) The mass terms 3.4.34 are invariant under
the shift symmetries. (2) A field can be gauged away if Φ(p) ∈ Z(p). These fields
do not have mass terms11. (3) If and only if a field Φ(p) has a mass term, there is a
Φ(p+1) that can be gauged away, i.e. Φ(p+1) is ‘eaten’ by Φ(p). (5) Physical massless

fields are elements of H(p) for some p. (6) The number of massive fields in Λ
(p)
L is

dimZ(p+1).
In this context the fields B(n) in four dimensions are interpreted as elements of

Λ
(6−n)
L , for n = 0, . . . , 4. The implications for these fields are presented in Table

3.4.1. The total number of physical degrees of freedom in four dimensions is obtained
by taking, for each row of Table 3.4.1, the product of the dimension in the third,
and the number of degrees of freedom in the fourth column, and by summing these

11Having no mass term does not imply the field is massless since the notion of a mass depends on
the space-time symmetry group.
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products. Using (3.4.39) one finds that this sum is 28 + χ(G). As noted before
the Euler characteristic vanishes since a group manifold admits a set of nowhere
vanishing vector fields (the left-invariant vector fields for example). Hence the total
number of degrees of freedom of the fields B(n), n = 0, . . . , 4 in four dimensions is
28, in correspondence with the number of degrees of freedom of the ten-dimensional
two-form (or equivalently six-form).

The equation of motion of a massless B(3) is DB(3) = 0. From this and the above
cohomology analysis we conclude that we can give a vacuum expectation value (vev)
to a B(3) if b3 6= 0. If the group G is nonabelian then b3 6= 0, since for any compact
nonabelian group there is a nonzero harmonic 3-form given by

Ω3 = Tr(g−1dg ∧ g−1dg ∧ g−1dg), g ∈ G . (3.4.42)

In the case of B(4) the equation of motion is algebraic, it sets, in the absence of
Yang–Mills fields, certain components of H(4) to zero. The b2 massless components
in table 3.4.1 do not appear in the action at all, and never give rise to fluxes.

If G is semisimple, b1 = b5 = 0. This follows from the more general theorem
proved in appendix B.5 that on a semisimple compact group the first and the one
but last Betti numbers vanish; b1 = bn−1 = 0. Combining this with b0 = b6 = 1 and
χ(G) = 0, we see that all vectors B(1) can be gauged away.

Examples for Six-Dimensional Compact Groups

The only simple compact Lie groups with dimension not exceeding 6 are SU(2) and
SO(3) the difference between the two being that the first is the double cover of the
latter. Since both are connected, the Chevalley–Eilenberg theorem applies to both
and concerning the Betti numbers they are indistinguishable.

Some examples of compact six-dimensional groups are constructed using SU(2)
and U(1): G = SU(2) × SU(2), G = SU(2) × U(1)3, G = U(1)6. The Betti numbers
of SU(2) are (b0, b1, b2, b3) = (1, 0, 0, 1) and for U(1)n we have bk =

(
n
k

)
.

To calculate the Betti numbers of the product of two compact manifolds we use
the Künneth formula (see appendix B or e.g. [5]). The Betti numbers for the three
groups mentioned above are put in table 3.4.2. Using the equations 3.4.39 it is a
matter of plugging in the numbers to find the values of dimZ(n) in the table 3.4.1 for
these groups. In table 3.4.3 we have presented the result.

From table 3.4.3 we see that for the group U(1)6 all fields B(n) are massless. This
is in agreement with the fact that the toroidal reductions of ungauged supergravities
without fluxes results in ungauged supergravities, in which all fields are massless.

We claim that the list in 3.4.3 exhausts all six-dimensional compact connected Lie
groups except for the trivial substitution of an SU(2)-factor by an SO(3)-factor. We
conclude this section with proving this claim.
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Group b0 b1 b2 b3 b4 b5 b6

SU(2) × SU(2) 1 0 0 2 0 0 1
SU(2) × U(1)3 1 3 3 2 3 3 1
U(1)6 1 6 15 20 15 6 1

Table 3.4.2: The Betti numbers for a few six-dimensional compact connected Lie groups.

field features
dimension for the groups:

DOF
SU(2) × SU(2) SU(2) × U(1)3 U(1)6

B(4) gauge 6 3 0 0
massive 9 9 0 0
massless 0 3 15 0

B(3) gauge 9 9 0 0
massive 9 9 0 1
massless 2 2 20 0

B(2) gauge 9 9 0 0
massive 6 0 0 3
massless 0 3 15 1

B(1) gauge 6 3 0 0
massive 0 0 0 3
massless 0 3 6 2

B(0) gauge 0 0 0 0
massive 0 0 0 0
massless 1 1 0 1

Table 3.4.3: Result of the analysis of the shift-symmetries of the Kalb–Ramond fields B(n)

for the group SU(2)×SU(2), SU(2)×U(1)3 and U(1)6, in the reduction of B(6) from 10 to

4 dimensions. See the caption of Table 3.4.1 for more details.
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We first prove that the list in 3.4.3 exhausts all connected compact six-dimensional
Lie groups that have a reductive Lie algebra. A reductive Lie algebra is by definition a
Lie algebra g such that for every ideal a in g there is an ideal b in g such that g = a⊕b.
It follows that a reductive Lie algebra is the direct sum of its derived algebra g′ and
its center such that g′ is semisimple [94]. From this we see that table 3.4.3 contains
all possible connected compact six-dimensional Lie groups with reductive Lie algebra.
The proof is finished if we can prove that any compact Lie group has a reductive Lie
algebra. In order to do this we first show that every representation of a compact Lie
group is unitary.

A compact Lie groupH admits a measure µ that is invariant under left-translations:
µ(gh) = µ(h). A way to see this is that the wedge product of all left-invariant one-
forms σa on H is a left-invariant volume form. Since the group H is compact we can
integrate over the whole group. Suppose we have a representation ρ of H in a vector
space V that has an inner product 〈, 〉0. Then we define the inner product 〈, 〉

〈v, w〉 =

∫

H

dµ(h)〈ρ(h)−1v, ρ(h)−1w〉0 , v, w ∈ V . (3.4.43)

With respect to the inner product 〈, 〉 the representation ρ is unitary;

〈ρ(g)v, ρ(g)w〉 =

∫

H

dµ(h)〈ρ(h)−1ρ(g)v, ρ(h)−1ρ(g)w〉0

=

∫

H

dµ(h)〈ρ(g−1h)−1v, ρ(g−1h)−1w〉0

=

∫

H

dµ(g−1h)〈ρ(g−1h)−1v, ρ(g−1h)−1w〉0

= 〈v, w〉 .

(3.4.44)

Hence the representation ρ is equivalent to a unitary representation. This we use to
prove reductivity of the Lie algebra.

The unitarity of the representations of the Lie group H ensures that every repre-
sentation of the Lie algebra h of H is equivalent to an anti-Hermitian representation;
in particular the adjoint representation of h. Let a be an ideal in h and define a⊥ to
be the orthogonal complement of a with respect to the inner product 〈, 〉 in which the
adjoint representation is anti-Hermitian. Then a⊥ is also an ideal, since for b ∈ a⊥,
a ∈ a and l ∈ h we have 〈a, [l, b]〉 = 〈a, adl(b)〉 = −〈adl(a), b〉 = 0 since [l, a] ∈ a and
thus [l, b] ∈ a⊥.

If V is any vector space equipped with an inner product 〈, 〉V , then for any subspace
W we have V = W⊕W⊥, where W⊥ is the orthogonal complement of W with respect
to the inner product 〈, 〉V the Lie algebra. Hence h decomposes uniquely into a and
a⊥ and both a and a⊥ are ideals. Hence h is reductive. This completes the proof.
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3.5 Scherk–Schwarz Reductions

There are two types of Scherk–Schwarz reductions. Both are generalizations of the
toroidal reductions. Whereas in toroidal reductions the Kaluza–Klein Ansatz is such
that all fields do not depend on the coordinates on the torus, in the Scherk–Schwarz
reductions they do. The dependence on the internal coordinates can be done in
two ways, making the difference between the so-called Scherk–Schwarz I and Scherk–
Schwarz II reductions. In this section we briefly comment on these types of reductions.
For more details and examples we refer to the literature, e.g. [49, 116, 119–125] and
references therein.

Scherk–Schwarz I Reductions

Scherk–Schwarz I reductions use a global symmetry of the higher-dimensional theory
[120]. We call the global symmetry group G and we denote the coordinates on the
torus yi with the identification yi ≡ yi + 2πRi. We assemble the coordinates into a
vector ~y.

For each coordinate yi we introduce the vector ~ei with components (~ei)j = 2πRiδij .
The y-dependence of a field φ, which takes values in a representation of G, is such
that going around the torus in one direction the field returns to its value up to a
global symmetry transformation; φ(~y + ~ei) = giφ(~y), where gi ∈ G and giφ denotes
the action of gi on φ and the dependence on the lower-dimensional coordinates is
suppressed. Since ~ei + ~ej = ej + ~ei we have gigj = gjgi, and hence the gi form an
abelian discrete subgroup of G.

The Kaluza–Klein Ansatz for the field φ is

φ̂(xµ, ~y) = g(~y)φ(xµ) , (3.5.1)

where the g(~y) parameterizes a subgroup of G such that g(~ei) = gi.
The group G is a global symmetry group and thus the Lagrangian is a singlet

under G. Hence the Lagrangian is independent of y. This can only be arranged if all
derivatives of a field depends in the same way on y as the field itself; ∂yi

(g(~y)φ(x)) =

g(~y)φ̃i(x) for some φ̃(x)i. Hence we need [120]

g(~y)−1∂yi
g(~y) = Ci , (3.5.2)

where Ci is a y-independent element of the Lie algebra of G. In terms of the Ci the
Kaluza–Klein Ansatz of the field φ is

φ̂(xµ, ~y) = exp
(

Ciyi

)

φ(x) . (3.5.3)

The objects Ci give rise to mass terms in the lower-dimensional supergravity and thus
the Scherk–Schwarz I reductions result in a lower-dimensional gauged supergravity.
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If the abelian subgroup generated by the Ci commutes with the higher-dimensional
supersymmetry algebra no supersymmetry is broken. More generally, the lower-
dimensional supersymmetry is determined by the subalgebra of the higher-dimensional
supersymmetry algebra that commutes with the subalgebra generated by the elements
Ci.

Scherk–Schwarz II Reductions

Scherk–Schwarz II reductions use the higher-dimensional symmetry of general co-
ordinate transformations to give the fields a nontrivial dependence on the internal
coordinates yi [116]. One introduces matrices U(y)β

α and Ũ(y)α
β such that a field with

p lower internal indices and q upper internal indices has the following Kaluza–Klein
Ansatz (suppressing lower-dimensional indices)

φ̂α1...αp

β1...βq (x, y) = U(y)γ1
α1

· · ·U(y)γp
αp
Ũ(y)β1

δ1
. . . Ũ(y)

βq

δq
φγ1...γp

δ1...δq (x) . (3.5.4)

Consistency requires Ũ(y)γ
αU(y)β

γ = δβ
α and that the following relation holds [116]:

Ũ δ1
α Ũ δ2

β

(
∂δ1

Uγ
δ2

− ∂δ2
Uγ

δ1

)
= −fγ

αβ , (3.5.5)

for some constants fγ
αβ and ∂α = ∂yα

.

If we introduce the one-forms σ̃α = Ũ(y)α
βdyβ equation 3.5.5 is equivalent to

dσ̃α = − 1
2f

α
γδσ̃

γ ∧ σ̃δ , (3.5.6)

and the Kaluza–Klein Ansatz 3.5.4 is for a p-form on the internal manifold equivalent
to

φ̂αp...αp
(x, y)dyα1 ∧ · · · ∧ dyαp = φ(x)αp...αp

σ̃α1 ∧ · · · ∧ σ̃αp . (3.5.7)

Hence a Scherk–Schwarz II reduction looks equivalent to a group manifold reduction
where the group G has structure constants fα

γδ.
There is however a global issue; nothing forbids the structure constants appearing

on the right-hand side of equation 3.5.5 to be the structure constants of a noncompact
group (the structure constants have to be traceless though, fα

βα = 0 [116] but this
does not mean that the group is compact). To obtain a compact manifold one divides
by a noncompact discrete subgroup Γ such that G/Γ is compact [121]. Then locally
one can use the Kaluza–Klein Ansatz 3.5.4.

3.6 Other Reductions and Consistency

In Kaluza–Klein reductions the internal manifold is a symmetric space but symmetric
spaces are just one special class of manifolds that can be used for dimensional reduc-
tions. To obtain other dimensional reductions one can, for example, try to generalize
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to the spaces that are obtained by modding a symmetric space G/K out by a discrete
subgroup Γ of G, for example Tn/Zn (an n-cube with the boundaries not identified).

There are dimensional reductions that require a totally new approach, such as
reducing over Joyce Manifolds, Calabi–Yau Manifolds or manifolds with some ‘struc-
ture’, such as G2-structures. In this thesis we do not treat them. We refer to the vast
amount of literature on this subject, e.g. [126–137] and references therein.

When considering reductions and their consistency there is a subtle issue one
has to keep in mind. In the preceding sections it was greatly emphasized that the
truncation to a finite set of fields should be a consistent one. But if one is interested
in an effective low-energy approximation of a supergravity theory one can go around
the difficult issue of consistency. If the states with light masses couple to states with
heavy masses, the heavy states can be produced via an interaction at high energies.
So an inconsistent truncation is truly wrong at high energies but at energies below
a certain cutoff scale the original theory can in some cases be safely described by a
truncated theory where some interactions have been discarded. Of course one cannot
truncate at will, in some cases a blind truncation will lead to a theory that is no longer
a good approximation to the mother theory. If a truncation to a low-mass sector does
not work, the physically right approach is to integrate out the massive modes. See
for a more technical explanation on this issue [138,139].

If one wants to be able revert the action of dimensional reduction and uplift a
lower-dimensional solution, one needs a consistent reduction. Recall the definition
of a consistent reduction from section 3.2.3: a reduction is consistent if every lower-
dimensional solution can be uplifted to a solution of the higher-dimensional theory.

A feature of Kaluza–Klein reductions is that the explicit expression for the higher-
dimensional fields is given by means of the Kaluza–Klein Ansatz. For other reductions
the precise expressions may not be known; for example the metric on many Calabi–
Yau manifolds is not known but one does know that the Ricci tensor vanishes. On
the one hand it is appealing that without knowing the precise expressions for the
fields still many statements can be made about the lower-dimensional action and
even the Lagrangian can be constructed, but on the other hand the explicitness of
Kaluza–Klein theories, admitting a full quantitative analysis, is also appealing.



Chapter 4

N = 4 d = 4 Supergravity and

its Scalar Potential

In the previous chapter we have investigated the relation between higher-dimensional
supergravities and lower-dimensional supergravities. One can ask the question whether
all four-dimensional supergravities can be deduced from a ten-dimensional supergrav-
ity. The answer is by the time of writing of this thesis still not known. To obtain
an answer both the dimensional reductions of ten-dimensional supergravity and the
features of four-dimensional supergravity need to be investigated.

For any theory the most important objects are the solutions of the equations
of motion. Within the solutions the most prominent place is taken by the vacuum
solution(s). Most vacuum solutions are characterized by the vanishing of all fields
except the metric and the scalars, of which the latter take constant values. The
scalars contribute to the curvature through the scalar potential. The value of the
scalars at the vacuum determine how much supersymmetry is broken. Therefore the
vacua of a theory can be studied by the scalars and their potential.

In four dimensional N = 4 supergravity it is possible to introduce so-called
SU(1, 1)-angles. These angles influence the scalar potential and hence the vacua
of the theory. A ten-dimensional origin of the SU(1, 1)-angles is not known.

In this chapter we study N = 4 d = 4 supergravity and we focus on the potential
of the theory. A premature discussion on N = 4 d = 4 supergravity was given in
section 2.4.2, which we extend in this chapter. In section 4.1 we introduce the four-
dimensional N = 4 supergravity multiplet, give its (gauged and ungauged) action
and introduce the SU(1, 1)-angles. In section 4.2 we introduce the matter multiplets
and in section 4.2.2 we study the symplectic embedding. The symplectic embedding
provides a technique for determining the coupling between the scalars and the vectors
in a supergravity. In section 4.3 we briefly discuss the matter coupled gauged N = 4



78 N = 4 d = 4 Supergravity and its Scalar Potential

d = 4 supergravity and in section 4.4 we introduce the scalar potential of N = 4
d = 4 supergravity. In sections 4.5 and 4.6 we study the potential for semisimple and
CSO-gaugings. We always assume that the number of space-time dimensions is four,
unless otherwise stated.

4.1 The Pure N = 4 Supergravity

In this section we review the basics of pure N = 4 d = 4 supergravity. We do
not consider the construction of the theory, which has been done in the end of the
seventies, see e.g. [58,59,140].

The supergravity multiplet of N = 4 supergravity consists of a metric, four grav-
itini, six vectors, four spin-1/2 fermions and two scalars. All fields carry a repre-
sentation of su(4) ∼= so(6); the metric and the scalars are singlets under su(4), the
fermions are in the vector representation 4 of su(4) and the vector fields are in the
real 6 representation of su(4), which is the same as the vector representation of so(6).

The Scalar Manifold SU(1, 1)/U(1)

The two scalars φα, α = 1, 2, parameterize an SU(1, 1)/U(1) coset. We define φα by
φ1 = (φ1)∗ and φ2 = −(φ2)∗. We introduce an SU(1, 1)-matrix V by:

V =

(
φ1 φ2

φ2 φ1

)

; |φ1|2 − |φ2|2 = φαφα = 1 , (4.1.1)

and which satisfies V†η1,1V = η1,1 where

η1,1 =

(
1 0
0 −1

)

. (4.1.2)

We decompose the Lie algebra su(1, 1) into its compact part and its noncompact
part; su(1, 1) = u(1) ⊕ u(1)⊥. In the vector representation the subalgebra u(1) is
spanned by t1 = iσ3, whereas u(1)⊥ is spanned by t2 = σ1 and t3 = σ2, where the σi

are the Pauli-matrices (see Appendix A). We call P the projection onto u(1)⊥.
We find PV−1∂µV =

(
0 −φ2∂µφ1 + φ1∂µφ2

−φ2∂µφ
1 + φ1∂µφ

2 0

)

, (4.1.3)

and thus for the SU(1, 1)-scalars we find the kinetic Lagrangian:

1
2Tr

(
V−1∂µVPV−1∂µV

)
= ∂µφα∂

µφα + φα∂µφαφ
β∂µφβ . (4.1.4)

The kinetic term 4.1.4 is the kinetic term of the SU(1, 1)-scalars of N = 4 supergravity
found in the literature [36,59].
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Using a U(1)-transformation we can make φ1 real. Hence we take the following
parametrization of SU(1, 1)/U(1)

φ1 =
1√

1 − r2
, φ2 =

reiχ

√
1 − r2

. (4.1.5)

The parameter r is restricted to the interval [0, 1) and χ is an angular parameter
running from 0 to 2π. Substituting the parametrization 4.1.5 into the kinetic term
4.1.4 gives rise to the scalar kinetic Lagrangian:

L[r, χ] = − 1

(1 − r2)2
(
∂µr∂

µr + r2∂µχ∂
µχ
)
. (4.1.6)

We now briefly show the connection with other formulations of the scalar manifold
SU(1, 1)/U(1). We first put z = re−iχ and define

τ = i
1 − z

1 + z
, (4.1.7)

and obtain the scalar Lagrangian

L[τ ] = −1

4

∂µτ∂
µτ̄

(Imτ)2
. (4.1.8)

The action 4.1.8 is invariant under Möbius-transformations: τ 7→ (aτ + b)(cτ + d)−1,
where a, b, c, d ∈ IR and ad− bc = 1. Putting τ = σ + ie−φ we obtain the Lagrangian
of the coset SL(2; IR)/SO(2)

L[σ, φ] = −1

4

(
∂µφ∂

µφ+ e2φ∂µσ∂
µσ
)
. (4.1.9)

In the following we use that formalism that gives the most elegant result.

The Bosonic Lagrangian

Ungauged N = 4 supergravity admits a formulation in which SU(4) ∼= SO(6) is a
global symmetry. Using the SU(1, 1)-variables σ, φ the bosonic Lagrangian reads in
the SO(6)-formulation

e−1L =R(ω) − 1
2

(
∂µφ∂

µφ+ e2φ∂µσ∂
µσ
)

− 1
4e−φ

6∑

a=1

F a
µνF

µν,a − 1
8σǫ

µνρσ
6∑

a=1

F a
µνF

a
ρσ ,

(4.1.10)

where F a
µν = ∂µA

a
ν−∂νA

a
µ are the abelian field strengths. The global SO(6)-symmetry

rotates the field strengths F a
µν and the fermions. To go to the SU(4)-formulation one
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uses the ’t Hooft symbols (see appendix A.3.2) to rewrite the field strengths as:
F ij

µν = 1
2 (Ga)ijF a

µν .

The six vectors Aa
µ can be promoted to nonabelian gauge fields by making a six-

dimensional subgroup H of SO(6) a local symmetry group. The gauged theory has no
longer a global SO(6)-symmetry, but only the local H-symmetry. We associate with
every gauge field Aa

µ a generator Ta such that the structure constants are given by:

[Ta, Tb] = fab
cTc . The tensors fabc ≡ fab

dδdc have to be completely antisymmetric.
To remain supersymmetric the Lagrangian 4.1.10 acquires a potential. The potential
V (σ, φ) is given by:

V (σ, φ) = −eφ
∑

a,b,c

(fab
c)2 . (4.1.11)

The potential 4.1.11 is unbounded from below. In theories that are described in flat
space-times a potential that is unbounded from below is a problem, since there is no
stable vacuum with the lowest energy. For theories that involve gravity the stability
of an anti-de Sitter vacuum is guaranteed if the Breitenlohner–Freedman bound is
satisfied [141,142].

The SU(1, 1)-angles

There exists a formulation of ungauged pure N = 4 supergravity in which the global
SO(6)-symmetry is broken; all vector fields are coupled to the SU(1, 1)-scalars in
another way. To see what happens it is convenient to rewrite the scalars φ and σ into
the complex scalar z as defined above; σ + ie−φ = i(1 − z)(1 + z)−1. The different
couplings are then obtained by putting z 7→ e−2iαaz in each coupling to the gauge
field Aa

µ. The Lagrangian is given by [36,143]

e−1L =R(ω) − 2

(1 − |z|2)2
∂µz∂

µz̄ − 1
4

6∑

a=1

1 − |z|2
|1 + ze−2iαa |2F

a
µνF

µν,a

− 1
4ǫ

µνρσ
6∑

a=1

Im(ze−2iαa)

|1 + ze−2iαa |2F
a
µνF

a
ρσ .

(4.1.12)

The factor of 2 for the SU(1, 1)-angles αa is for later convenience. One can show that
the action 4.1.12 is related to the action 4.1.10 by a duality rotation, which we discuss
in section 4.2.2.

It is clear that the gauging is affected by the introduction of the SU(1, 1)-angles.
To have local H-symmetry, the SU(1, 1)-angles need to be chosen such that they
respect the H-symmetry. This is discussed in more detail in the sections 4.5.1 and
4.6.2. For now we remark that if the structure constant fab

c is nonzero, then αa =
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αb = αc. The potential that arises from the gauging becomes [36,143]:

V (z) = −|1 + ze−2iαa |2
1 − |z|2

∑

a,b,c

(fab
c)2 − 1

36

∑

a,...,f

ǫabcdeffab
cfde

f sin(αa − αd) . (4.1.13)

The potential 4.1.13 can have an extremum [36], which was also noticed by [144].

The fact that due to the introduction of the SU(1, 1)-angles the potential of pure
N = 4 supergravity can have an extremum, makes the SU(1, 1)-angles appealing.
However, to the knowledge of the author it has never been shown how to obtain
the SU(1, 1)-angles from a dimensional reduction of a ten-dimensional supergravity.
Therefore there seems to be no string theoretical origin of the SU(1, 1)-angles.

4.2 The Vector Multiplet

For N = 4 supersymmetry there is only one matter multiplet that can be coupled to
the supergravity multiplet; the vector multiplet, which is the subject of this section.
We first consider in general the N = 4 supersymmetric Yang–Mills theory, then we
consider the symplectic embedding, which provides us with useful information about
the coupling to the supergravity multiplet. In particular, we construct the coupling
of the scalars to the vector fields when all SU(1, 1)-angles are equal.

4.2.1 N = 4 d = 4 Super-Yang–Mills

The N = 4 Super-Yang–Mills theory can be obtained from a dimensional reduction
of the ten-dimensional N = 1 Super-Yang–Mills theory. In Super-Yang–Mills theory
gravity is not included and hence the theory is formulated in a Minkowski space-time.

We first discuss important aspects of the ten-dimensional N = 1 Super-Yang–Mills
theory and subsequently discuss the dimensional reduction to four dimensions. The
conventions, notations and some useful formulas for spinors are explained in section
appendix C.

The Ten-Dimensional Theory

In ten dimensions the nonabelian N = 1 Super-Yang–Mills multiplet consists of a
gauge potential Aµ and a Majorana–Weyl spinor ψ satisfying Γ11ψ = P+ψ, where P+

is a chiral projection operator. Both fields take values in a compact Lie algebra g.
The Lagrangian is given by:

LSY M =

∫

d10x
(

1
4Trad (FµνF

µν) + i
2Tradψ̄ΓµDµψ

)
, (4.2.1)



82 N = 4 d = 4 Supergravity and its Scalar Potential

where ψ̄ = ψTC, with C the antisymmetric charge conjugation matrix, and where

Dµψ = ∂µψ + gY M [Aµ, ψ] , Fµν = ∂µAν − ∂νAµ + gY M [Aµ, Aν ] . (4.2.2)

The field strength Fµν satisfies the Bianchi identity D[µFνρ] = 0. An infinitesimal
Yang–Mills transformation with parameter Λ taking values in g acts on the fields as:

δΛψ = [Λ, ψ] , δΛAµ = − 1
gY M

DµΛ . (4.2.3)

The awkward looking sign in front of the Lagrangian 4.2.1 is due to the fact that
for compact Lie algebras the trace in the adjoint representation is negative definite.
The Lagrangian 4.2.1 is real due to the identity C = BC∗B, where B is the symmetric
complex conjugation matrix. The Lagrangian 4.2.1 is invariant under the supersym-
metry transformations:

δǫAµ = iǭΓµψ , δǫψ = − 1
2ΓµνF

µνǫ . (4.2.4)

The i in the supersymmetry transformation of Aµ is needed to keep the field Aµ real.
Using the Fierz identity for two Majorana–Weyl fermions ǫ1, ǫ2 of positive chirality

ǫ2ǭ1 − ǫ2ǭ1 = − 1
8 ǭ1Γµǫ2ΓµP− − 1

920 ǭ1Γµ1···µ5ǫ2Γµ1···µ5
P− , (4.2.5)

we find that the supersymmetry algebra is given by:

[δǫ1 , δǫ2 ]ψ = −2iǭ1Γµǫ2∂µψ + [−2igY M ǭ1ΓσAσǫ2, ψ] + 7i
8 ǭ1Γρǫ2ΓρΓµDµψ ,

− i
960 ǭ1Γν1···ν5ǫ2Γν1···ν5

ΓµDµψ

[δǫ1 , δǫ2 ]Aµ = −2iǭ1Γνǫ2∂νAµ + Dµ (2iǭ1ΓσAσǫ2) .

(4.2.6)

The supersymmetry algebra closes up to gauge transformations with gauge parameter
Λ = −2igY M ǭ1Γρǫ2Aρ and up to the equation of motion of the fermion, ΓµDµψ = 0.

The Reduction

We now perform a toroidal reduction to obtain the four dimensional Super-Yang–
Mills N = 4 multiplet. All ten-dimensional fields and indices are hatted. The
ten-dimensional space-time indices µ̂, ν̂, . . . are split into 0 ≤ µ, ν, . . . ≤ 3 and 1 ≤
a, b, . . . ≤ 6. The coordinates on the four-dimensional space-time are denoted xµ and
the coordinates on the six-dimensional torus are denoted by ya. All lower-dimensional
fields are independent of the coordinates ya.

The reduction Ansatz for the gauge potential is given by Â = Aµ(x)dxµ +
Za(x)dya. From this we find the following components of the ten-dimensional field
strength F̂µ̂ν̂ :

F̂µν = Fµν = Fµν = ∂µAν − ∂νAµ + gY M [Aµ, Aν ] ,

F̂µa = DµZa = ∂µZa + gY M [Aµ, Za] ,

F̂ab = gY M [Za, Zb] .

(4.2.7)
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The reduction of the fermions is done by choosing a particular representation of
the Clifford algebra of so(1, 9). We take:

Γ̂µ = γµ ⊗ 18×8 , Γ̂a = γ5 ⊗ Γa , (4.2.8)

where γµ represent the Clifford algebra of so(1, 3) and Γa represent the Clifford algebra
of so(6) by means of the ’t Hooft symbols Ga as explained in appendix C.3.

The Clifford algebra of so(1, 3) can be taken to be real γ∗µ = γµ and an explicit

real representation is given in C.2. Hence B
(4)
− ∼ 14×4 and we choose a basis for

the fermions such that B
(4)
− = −i14×4. The charge conjugation matrix of so(1, 3),

denoted C, we therefore take to be C = iγ0. The chirality matrix γ5 = iγ0γ1γ2γ3 is
purely imaginary.

For the charge conjugation matrix C and the complex conjugation matrix B we
take the decomposition:

C = iγ0 ⊗ C̃ , B = −i14×4 ⊗ C̃ , (4.2.9)

where C̃ is the symmetric charge conjugation matrix of so(6). The explicit represen-
tation of C̃ is given by equation C.3.2. The chirality matrix is given by Γ̂11 = γ5⊗Γ7.
The explicit representation of Γ7 is given by equation C.3.3.

The spinors ψ̂ are decomposed as:

ψ̂(x, y) =

8∑

i=1

ψ(i)(x) ⊗ θi . (4.2.10)

The spinors θi are the real basis spinors given by: (θi)j = δij and hence a ten-

dimensional spinor ψ̂ is effectively written as:

ψ̂ =






ψ(1)

...
ψ(8)




 . (4.2.11)

Imposing the Majorana constraint ψ̂∗ = iBψ gives:

(ψ(1))∗ = ψ(5) , (ψ(2))∗ = ψ(6) , (ψ(3))∗ = ψ(7) , (ψ(4))∗ = ψ(8) . (4.2.12)

Therefore we write the first four ψ(i) with a upper index as ψi, i = 1, 2, 3, 4, and
the last four with a lower index ψi, i = 1, 2, 3, 4; we then have ψi∗ = ψi. We thus
decompose the ten-dimensional spinor ψ̂ as a doublet of a quartet of fermions, where
one doublet is the complex conjugate of the other;

ψ̂ =

(
ψi

ψi

)

. (4.2.13)
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Imposing the chirality constraint Γ̂11ψ̂ = ψ̂ gives:

γ5ψ
i = ψi , γ5ψi = −ψi , (4.2.14)

which is consistent with γ∗5 = −γ5.
We define for the four-dimensional spinor ψi the conjugates ψ̄i = ψiT γ0 and for

ψi similarly ψ̄i = ψT
i γ0. With this definition we have (ψ̄i)

∗ = ψ̄i and

ˆ̄ψ = i(ψ̄i, ψ̄
i) . (4.2.15)

Under the action of SU(4) the spinors ψ̄i and ψi both transform in the 4 and ψ̄i and
ψi transform in the 4̄.

Putting the expressions together one finds:

LSY M =Trad

(
1
4FµνF

µν + 1
2

6∑

a=1

DµZaDµZa − 1
2 ψ̄iγ

µDµψ
i − 1

2 ψ̄
iγµDµψi

+ 1
4g

2
Y M

6∑

a,b=1

[Za, Zb][Za, Zb] + gY M

6∑

a=1

ZaIm
(
ψ̄iGa,ijψ

j
))

(4.2.16)

When we use the ’t Hooft symbols Gij
a to define

φij = 1
2

∑

a

Gij
a Za (4.2.17)

and its complex conjugate φij = φij∗ and use the properties of the ’t Hooft symbols
(see appendix A.3.2) we obtain the result:

LSY M =Trad

(
1
4FµνF

µν + 1
2DµφijDµφij − 1

2 ψ̄iγ
µDµψ

i − 1
2 ψ̄

iγµDµψi

+
g2

Y M

4
[φij , φkl][φ

ij , φkl] + igY M

(
ψ̄iφ

ijψj − ψ̄iφijψ
j
))

.

(4.2.18)

The supersymmetry transformation under which the action 4.2.18 is invariant are
given by:

δAµ = −ǭiγµψi − ǭiγµψ
i ,

δφij = −i
(
ǭiψj − ǫjψi + ǫijklǭkψl

)
,

δψi = − 1
2F

µνγµνǫ
i + 2i

(
Dµφ

ij
)
γµǫj + 2[φik, φkj ]ǫj .

(4.2.19)

The supersymmetry transformation rules 4.2.19 can be found by reducing the ten-
dimensional supersymmetry transformation rules 4.2.4.
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The action 4.2.18 contains a scalar potential that is proportional to g2
Y M . When

we take the abelian limit - that is, setting the derived algebra g′ to zero - the scalar po-
tential vanishes. In the abelian limit only the free theory survives and the Lagrangian
becomes a sum of kinetic terms.

To obtain matter coupled N = 4 supergravity the free theory is coupled to the
ungauged N = 4 supergravity. To gauge the coupled theory one uses the global
symmetry group G of which a subgroup H is promoted to a local symmetry. The
gauge fields of the supergravity multiplet and the gauge fields from the Super-Yang–
Mills multiplet are then promoted to the Yang–Mills fields of the group H and all
derivatives are made covariant with respect to H.

The gauging procedure in general breaks supersymmetry and to restore supersym-
metry one has to modify the supersymmetry transformation rules and the Lagrangian.
The modification of the Lagrangian involves adding a potential. The appearance of a
scalar potential looks natural in the light of the action 4.2.18, since this action has a
local gauge symmetry and is supersymmetric (though globally supersymmetric). The
potential in gauged matter coupled supergravity is also proportional to the square of
the coupling constant of the gauge group H. However, the two potentials are differ-
ent in nature; the potential of 4.2.18 is contained in the potential of gauged matter
coupled N = 4 supergravity.

4.2.2 The Symplectic Embedding

In ungauged supergravity all gauge fields are abelian gauge fields. The gauge fields
couple to the scalars in the following way:

L = −f(Φ) ⋆ F ∧ F + g(Φ)F ∧ F , (4.2.20)

where f and g are functions depending on the scalars, collectively denoted Φ. The
functions f and g can be found when the scalar manifold is known by a trick called the
‘symplectic embedding’. We now present how the symplectic embedding works and
apply it to ungauged N = 4 supergravity, where the scalar manifold is SU(1, 1)/U(1)⊗
SO(6, n)/SO(6) × SO(n). This section is based on [36, 72]. To make the presenta-
tion less spoilt by a large number of indices, we first introduce a compact and more
abstract notation. We then show how the symplectic groups arise as duality groups,
rotating equivalent but different Lagrangians into each other. Then we use the duality
group to obtain the coupling of the vector fields to the scalars.

We introduce N abelian gauge field strengths F I
µν , I = 1, . . . , N . The scalars Φ

parameterize a coset G/K. The most general Lagrangian for the field strengths F I
µν

coupled to the scalars Φ is1

Lvec[Φ, F ] = − 1
4γIJF

I
µνF

Jµν + 1
8θIJǫ

µνλρF I
µνF

J
λρ , (4.2.21)

1The role of gravity is immaterial and hence we will take a flat space-time Lagrangian. The
extension to curved space-times is straightforward.
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where γIJ and θIJ are Φ-dependent symmetric matrices.
The field strengths F I are two-forms and the space of two-forms we denote Ω2.

Let us define the linear transformation j on Ω2 by

(jF )µν = 1
2ǫµνλρF

λρ , (4.2.22)

for any F ∈ Ω2. We have j2 = −1.
We assemble the field strengths F I into the vector F = (F 1, . . . , FN ), which is an

element of W = IRN ⊗ Ω2. We equip W with the inner product (, ) defined by

(X ,Y) =
N∑

I=1

X I
µνYI,µν , X ,Y ∈ W . (4.2.23)

The linear transformation j is extended to the linear transformation J = 1 ⊗ j
on W. Since J squares to minus the identity on W it has eigenvalues +i and −i and
therefore we pass to the complex extension of W, denoted WC. The inner product
(, ) is extended to a bilinear form on WC by C-linearity; if U, V,X, Y ∈ W, then on
WC we have

(U + iV,X + iY ) = (U,X) + i (V,X) + i (U, Y ) − (V, Y ) . (4.2.24)

The vector space WC splits into the direct sum of the eigenspaces of J . We define
for any F ∈ WC the projections F± onto the ±i-eigenspaces of J by

F = F+ + F−, F± = 1
2 (F ∓ iJF) , JF± = ±iF± . (4.2.25)

With respect to the inner product (, ) the ±i-eigenspaces of J are orthogonal to each
other.

We introduce the symmetric kinetic matrix K and its complex conjugate K̄ by

K = iγ + θ , K̄ = −iγ + θ , (4.2.26)

where the components of γ and θ are γIJ and θIJ respectively. We put K = K ⊗ 1.
If JX = ±iX then we have JKX = ±iKX .

With these definitions the Lagrangian 4.2.21 can be written as

Lvec[Φ,F ] =
i

4

(
F+,KF+

)
− i

4

(
F−, K̄F−) . (4.2.27)

We define G by

JG ≡ 2
∂Lvec

∂F = (−γ ⊗ 1+ θ ⊗ j)F , (4.2.28)

which gives G = (γ ⊗ j + θ ⊗ 1)F . One finds the following J -eigenspace decomposi-
tion of G:

G+ = KF+ , G− = K̄F− . (4.2.29)
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The equation of motion and Bianchi identity now read

∂µ(jF)µν = 0 , ∂µ(jG)µν = 0 . (4.2.30)

The Bianchi equation and the equation of motion are invariant under GL(2N, IR)-
transformations;

(
F+

µν

G+
µν

)′
=

(
A B
C D

)(
F+

µν

KF+
µν

)

, (4.2.31)

where A,B,C,D are N ×N -matrices. However for general GL(2N, IR)-rotations the
transformation of G± is inconsistent with its definition 4.2.28. We now show that when
we restrict to Sp(N, IR)-rotations and transform the scalars, using G-transformations,
the inconsistency can be cured. We thus show that an isometry of the scalar man-
ifold G/K accompanied by an Sp(N, IR)-rotation on the electric and magnetic field
strengths, gives rise to an equivalent set of equations of motions and Bianchi equa-
tions. The combination of the isometry of G/K with the Sp(N, IR)-rotation is called
a duality transformation. The duality transformations do not describe symmetries of
the Lagrangian, but symmetries of the equations of motion and Bianchi identities.

A duality transformation acts on the vector fields as a GL(2N, IR)-transformation
mapping F ,G to F ′,G′ respectively such that the following relation holds:

JG′ = 2
∂L′

vec

∂F ′ , (4.2.32)

where L′
vec is the new vector Lagrangian: L′

vec = Lvec[Φ′,F ′]. Imposing the constraint
4.2.32 gives

K ′ = (C +DK)(A+BK)−1 , (4.2.33)

where the A,B,C,D are the N ×N -matrix as in equation 4.2.31. Transformations of
the kind 4.2.33 are called fractional linear transformation and they form a group.

What singles out the symplectic group is the requirement that the new kinetic
matrix K ′ is again symmetric and that the duality rotations form a group, called the
duality group. Working out the requirement of symmetry of K ′ gives

0 = ATC +KT (BTC −DTA) +KTBTDK − Transpose . (4.2.34)

Since K is an arbitrary complex symmetric matrix, we find ATC = CTA, DTB =
BTD and ATD − CTB = σ1, σ ∈ IR. The constraints can be summarized by

ΛT

(
0 1
−1 0

)

Λ = σ

(
0 1
−1 0

)

, Λ =

(
A B
C D

)

. (4.2.35)

The number σ must equal 1 in order that the duality transformations describe a
group. The duality group is then fixed and is Sp(N, IR). We have thus proved that
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any theory involving scalars and N abelian field strengths the maximal symmetry
group of the equations of motion and Bianchi identities is Sp(N, IR). The Sp(N, IR)-
rotation is fixed by the isometry of the scalar manifold. Hence we can see the duality
rotations as an embedding map from the set of isometries of the scalar manifold to
the group Sp(N, IR).

We now present a way to find the kinetic matrix K. The idea is to embed the
isometry group G into Sp(N, IR) such that the compact subgroup K gets embedded
into the compact subgroup of Sp(N, IR).

The group Sp(N, IR) is isomorphic to the group USp(N,N) ≡ Sp(N,C)∩U(N,N).
A complex 2N × 2N -matrix M describes an element of USp(N,N) if

MT

(
0 1
−1 0

)

M =

(
0 1
−1 0

)

; M†
(1 0

0 −1)M =

(1 0
0 −1) . (4.2.36)

The general form of M ∈ USp(N,N) is

M =

(
T V ∗

V T ∗

)

, where T†T − V†V = 1 and T†V∗ = V†T∗, (4.2.37)

If Λ is a Sp(N, IR)-matrix, then the matrix M , given by

M = CΛC−1 where, C =
1√
2

(1 i11 −i1) , (4.2.38)

is a USp(N,N)-matrix. Using the USp(N,N)-language has the advantage that the
compact subgroup is ‘on the diagonal’; the compact subgroup of USp(N,N) is U(N)
and is obtained by putting V = 0 in equation 4.2.37.

Let V(Φ) be a representative of G/K, then we embed V into a 2N × 2N -matrixV(Φ) ∈ USp(N,N), such that if Φ 6= Φ′, there is no U(N)-matrix W such thatV(Φ′) = V(Φ)

(
W 0
0 W ∗

)

. (4.2.39)

The USp(N,N)-element V(Φ) describes the symplectic embedding of G/K into the
coset USp(N,N)/U(N), such that K is embedded in U(N). We write the matrixV(Φ) in block form as V(Φ) =

(
U0(Φ) U∗

1 (Φ)
U1(Φ) U∗

0 (Φ)

)

. (4.2.40)

If we perform a duality transformation, mapping Φ to Φ′, the matrix V(Φ) gets
rotated by a USp(N,N)-matrix S such that

SV(Φ) = V(Φ′)

(
W (Φ) 0

0 W ∗(Φ)

)

, S =

(
T V ∗

V T ∗

)

, (4.2.41)
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where W is a U(N)-matrix. Re-expressing this in Sp(N, IR)-language, using 4.2.38
and the expression for V 4.2.40 one finds

U†
0 (Φ′) + U†

1 (Φ′) = W †(Φ)
(

U†
0 (Φ)

(
AT + iBT

)
+ U†

1 (Φ)
(
AT − iBT

))

,

U†
0 (Φ′) − U†

1 (Φ′) = W †(Φ)
(

U†
0 (Φ)

(
DT − iCT

)
− U†

1 (Φ)
(
DT + iCT

))

,
(4.2.42)

where A,B,C,D are given by inverting 4.2.38;
(
A B
C D

)

= C−1SC . (4.2.43)

From 4.2.42 we see that putting

K = i
(

U†
0 + U†

1

)−1 (

U†
0 − U†

1

)

(4.2.44)

solves the transformation rule 4.2.33. Using thatV is a USp(N,N)-matrix one verifies
that K is symmetric. Hence we have found a way to find the kinetic matrix. The
result 4.2.44 is the result derived in 1981 by Gaillard and Zumino [145].

We now apply the procedure outlined above and obtain the vector-scalar couplings
in ungauged N = 4 supergravity coupled to n vectors with all SU(1, 1)-angles equal.

There are 6+n vectors and hence the symplectic group of interest is Sp(6+n, IR) ∼=
USp(6 + n, 6 + n). The scalar manifold is given by:

G/K =
SU(1, 1)

U(1)
⊗ SO(6, n)

SO(6) × SO(n)
. (4.2.45)

Since the global symmetry group consists of the direct product of the two groups
SU(1, 1) and SO(6, n), the symplectic embedding must be such that the embedded
SU(1, 1) commutes with the embedded SO(6, n). The embedding map into USp(6 +
n, 6 + n) is denoted I.

The precise embedding is contained in the decompositions of the irreducible repre-
sentations of Sp(N, IR) into irreducible representations of the global symmetry group.
The decomposition is often dictated by supersymmetry. We take the decomposition
as given and proceed from there to give the scalar vector couplings. The decomposi-
tion of the vector representation 12 + 2n of Sp(6 + n, IR) decomposes into the direct
sum of two vector representations of SO(6, n): 12 + 2n → (6 + n) ⊕ (6 + n). The
decomposition of the vector representation 12 + 2n of Sp(6 + n, IR) decomposes into

the irreducible representations of SU(1, 1) as 12 + 2n → ⊕6+n
i=1 2, where 2 denotes

the vector representation of SU(1, 1).
Let V1 be an (6 + n) × (6 + n) SO(6, n)-matrix satisfying:

VT
1 η6,nV1 = η , η6,n =

(
−16×6 0

0 1n×n

)

. (4.2.46)
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Then the symplectic embedding of V1 into Sp(6 + n, IR) can be taken to be:

V1 →֒
(V1 0

0 V−T
1

)

∈ Sp(6 + n, IR). (4.2.47)

Hence the embedding I(V1) of V1 into USp(6 + n, 6 + n) is

I : V1 7→ 1
2

(
V1 + η6,nV1η6,n V1 − η6,nV1η6,n

V1 − η6,nV1η6,n V1 + η6,nV1η6,n

)

. (4.2.48)

A general SU(1, 1)-matrix is given by

V2(φα) =

(
φ1 φ2

φ2 φ1

)

; |φ1|2 − |φ2|2 = φαφα = 1 . (4.2.49)

The embedding of this matrix into USp(6 + n, 6 + n) is given by

I(V2(φα)) =

(
Reφ11+ iImφ1η6,n Reφ21− iImφ2η6,n

Reφ21+ iImφ2η6,n Reφ11− iImφ1η6,n

)

, (4.2.50)

and the embeddings commute.
The embedding is completed by puttingV(φα, Z) = I(V1) ◦ I(V2) =

(
U0(φα, Z) U∗

1 (φα, Z)
U1(φα, Z) U∗

0 (φα, Z)

)

(4.2.51)

and inserted in the master equation 4.2.44 gives:

K(φα, Z) =
i

|φ1 + φ2|2
(
V1VT

1

)−1
+

2Im(φ1φ2∗)

|φ1 + φ2|2 η6,n . (4.2.52)

We now choose a particular representative for the SO(6, n)-scalars. We put

η6,nV−1
1 =

(
X Y
U V

)

, V−T
1 η6,nV−1

6,n = η6,n , (4.2.53)

from which we find

η6,nV−T
1 V−1

1 η6,n = η6,n + 2

(
XT

Y T

)
(
X Y

)
. (4.2.54)

We call (X ,Y )a
R = Za

R, with 1 ≤ a, b, . . . ≤ 6 and 1 ≤ R,S, . . . ≤ 6 + n, and we
define ZRS =

∑

a Za
RZa

S . For the kinetic matrix we find

K(φα, Za
R)RS =

i

|φ1 + φ2|2 (ηRS + 2ZRS) +
2Im(φ1φ2∗)

|φ1 + φ2|2 ηRS , (4.2.55)
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where ηRS are the components of η6,n, and ZRS = ZTUηRT ηUS . If L is an SO(6, n)-
matrix, then so is LT and hence we have Za

RηRSZb
S = −δab, and thus ηRS + 2ZRS

is an SO(6, n)-matrix.

The coupling between the scalars and the vectors is given by:

Lvec = −ηRS + 2ZRS

4|φ1 + φ2|2 F
R
µνF

Sµν +
Im(φ1φ2∗)

4|φ1 + φ2|2 ηRSF
R
µνF

S
ρσǫ

µνρσ , (4.2.56)

which is the same scalar-vector coupling as found with the conformal programme by
De Roo for all SU(1, 1)-angles equal [60].

We now show that the result 4.2.56 is compatible with the Lagrangian of pure
supergravity. When n = 0 the manifold SO(6, n)/SO(6) × SO(n) becomes trivial;
the scalars Za

R can be put to Za
R = δa

R using the local SO(6). Hence we have
ηRS + 2ZRS = δRS . When we parameterize the SU(1, 1)-scalars as

φ1 =
1

√

1 − |z|2
, φ2 =

z
√

1 − |z|2
, z ∈ C, |z| < 1 , (4.2.57)

we obtain the vector-scalar couplings of 4.1.12 for all SU(1, 1)-angles equal.

We thus have obtained by using duality symmetries the vector scalar couplings.
When the SU(1, 1)-angles are nonzero the coupling 4.2.56 becomes a little different,
but is a straightforward extension of 4.2.56.

4.3 Matter Coupled Gauged N = 4 Supergravity

We now discuss briefly the N = 4 matter coupled gauged supergravity, where the
number of matter multiplets is n. We restrict ourselves mostly to the bosonic sector.
For the full result and a more complete discussion see e.g. [36]. We do not present
the Lagrangian since it is not very instructive. We also do not give the most general
gaugings; our gaugings are a subsector of the most general gaugings as discussed
in [146] (in terms of reference [146] our gaugings are characterized by the vanishing
of the parameter ξαM ).

The field content of the theory is: one metric, four gravitini of spin 3/2, 6+n gauge
fields, 4 + 4n fermions of spin 1/2 and 6n + 2 scalars. The scalars are the SU(1, 1)-
scalars and the SO(6, n)-scalars. The SU(1, 1)-scalars can be combined in a complex
scalar z as shown in section 4.1. The SO(6, n)-scalars are the Za

R, as in section
4.2.2. The kinetic term of the SU(1, 1)-scalars is as in section 4.1 while the kinetic
term of the SO(6, n)-scalars is expressed in terms of the symmetric SO(6, n)-matrix
MRS = ηRS + 2ZRS as

Lkin[Za
R] = 1

16Tr
(
∂µM

−1∂µM
)
. (4.3.1)
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The ungauged theory has a global symmetry group G = SO(6, n) × SU(1, 1)
of which the maximal compact subgroup K = SO(6) × SO(n) × U(1) is a local
symmetry group. The gauge fields are all abelian and the scalars parameterize the
coset G/K. The U(1)-symmetry is used to write the SU(1, 1)-scalars as z and the
SO(n)-subgroup of K acts trivially on the scalars Za

R, while the global SO(6, n) acts
as Za

R 7→ OR
SZa

S .
The coupling of the scalars to the vector fields in the ungauged theory was dis-

cussed section 4.2.2 for equal SU(1, 1)-angles. As in section 4.1 the extension to
different SU(1, 1)-angles can be done by replacing z with ze2iαR for each vector field
AR

µ , or equivalently putting φ1 7→ φ1eiαR and φ2 7→ φ2e−iαR for each vector field AR
µ .

A subgroup H of G can be promoted to a local symmetry; this destroys the
global symmetry G. The number of vector fields is 6 +n and hence at most a (6 +n)-
dimensional group can be gauged. With every gauge field AR

µ we associate a generator

TR and we define the gauge group H by its structure constants fRS
T : [TR, TS ] =

fRS
TTT . The structure constants are not arbitrary but have to satisfy

fRS
T ηTU + fRU

T ηTS = 0 . (4.3.2)

Hence the adjoint representation of the Lie algebra h of the group H has to be embed-
ded in the vector representation of so(6, n). This severely restricts the possibilities
of gaugings and is discussed more in detail when we investigate the scalar poten-
tial. The scalar potential factorizes in an SU(1, 1)-part and an SO(6, n)-part. The
potential arises when the ungauged supergravity is gauged while keeping the theory
supersymmetric.

4.4 The Scalar Potential

The solutions of a theory are the most important features of a theory and within the
solutions the vacua play the most dominant role. The vacua are the backgrounds
around which the quantum field theory is developed.

We are mainly interested in vacua where the geometry is maximally symmetric
and all fields except the metric vanish. In this siutation the number of Killing vectors
is maximal. If we denote the Killing vectors by KI , I = 1, 2, . . . , the metric satisfies
(LKIg)µν = ∇µK

I
ν + ∇νK

I
µ = 0. For a given metric the maximal number of Killing

vectors is thus 10. It turns out that there are only three distinct maximally symmetric
geometries . Either space-time is Minkowski or de Sitter or anti-de Sitter. In a
Minkowski space-time there is no curvature and the 10 Killing vectors generate an
SO(3, 1) ⋉ IR4-group. In a de Sitter space-time the curvature is positive and the
Killing vectors form an so(4, 1) Lie algebra, while in an anti-de Sitter the curvature
is negative and the Lie algebra formed by the Killing vectors is so(3, 2).

The configuration of the fields has to be compatible with the symmetry and there-
fore the Lie derivative along a Killing vector on a field has to vanish. For gauge
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fields one of course demands that the Lie derivative along a Killing vector on the field
strength vanishes. However, working out the Lie derivatives along the Killing vectors
is quite tedious for the de Sitter and anti-de Sitter vacua.

All three isometry groups contain the Lorentz group. Therefore it is a necessary
condition that all fields (or field strengths for gauge fields) are invariant under local
Lorentz symmetry. For a scalar this implies that it has to be constant since ∂aΦ =
Eµ

a ∂µΦ, where Φ is any scalar, is not invariant under local Lorentz transformations
unless ∂aΦ = 0. The requirement that the scalars are constant is precisely what one
obtains when demanding that the Lie derivative along the Killing vectors vanishes on
the scalars. The fermions are in irreducible representations of the Lorentz group and
hence in a Lorentz invariant configuration all fermions vanish. Along similar lines, all
two-form field strengths have to vanish. Hence for N = 4 d = 4 supergravity a solution
is a vacuum solution if the scalars are constants, the metric describes a maximally
symmetric space and all other fields (field strengths for gauge fields) vanish.

The scalar potential in the vacuum configuration V0 is the only contribution of the
nonmetric fields to the energy-momentum tensor. The vacuum potential V0 therefore
determines the geometry. If V0 > 0 the geometry is de Sitter, if V0 < 0 the geometry
is the anti-de Sitter and if V0 = 0 the geometry is Minkowskian.

Recent observations have shown that the universe is at present in an accelerating
phase [147–150]. Therefore our universe has (on large scale) a de Sitter geometry
or is evolving into a de Sitter geometry [151]. On the other hand, there are no-go
theorems that state that no dimensional reduction of a ten-dimensional supergravity
theory admits a four-dimensional de Sitter vacuum [152,153].

Within the context of string theory some attempts have been made to evade the
no-go theorems, for example in [154–156], but in these cases it is a delicate issue to
stabilize all the scalars. When not all scalars are stabilized, the vacuum is not stable
and the theory will roll into another vacuum, which in most cases is not a de Sitter
vacuum (see e.g. [157]).

In four dimensions it is possible to obtain stable de Sitter vacua from N = 2
supergravities [158,159]. But also in five dimensional N = 2 supergravities stable de
Sitter vacua have been constructed [160].

In order to obtain a de Sitter vacuum it seems necessary to gauge a noncom-
pact group. It has been shown that the noncompact gaugings can in some cases be
associated with a dimensional reduction of a higher dimensional supergravity over
a noncompact manifold [161]. But not for all gauged supergravities a higher di-
mensional origin is known; for example, for the anomaly-free six-dimensional Salam–
Sezgin model [162–164] and for the matter coupled N = 4 supergravity with nontrivial
SU(1, 1)-angles no higher dimensional origin is yet known. Maybe it is not possible
to obtain all lower-dimensional supergravities from a ten-dimensional supergravity.

There exist vacua where spacetime geometry is not maximally symmetric and
where vector fields have nonvanishing field strengths. Examples are provided by the



94 N = 4 d = 4 Supergravity and its Scalar Potential

electrovac and magnetovac solutions [165–167]. However, we focus on maximally
symmetric spacetimes.

In the following sections we try to find stable de Sitter vacua in N = 4 supergravity.
We first give the potential and give various definitions that come in handy at later
points in the discussion. In section 4.5 we discuss semisimple gaugings and in section
4.6 we study the potential obtained from gauging a CSO-group, the concept of which
is discussed in the same section. The possible extensions of the analysis are discussed
in section 4.7.

The Potential of N = 4 Supergravity

We first give the potential and then discuss the ingredients. The potential is given by

V (Za
R, φα) =1

4

[
ZRUZSV

(
ηTW + 2

3Z
TW
)]

Re
(

Φ∗
(R)Φ(U)

)

g(R)g(U)fRST fUV W

+ 1
36Z

RSTUV W Im
(

Φ∗
(R)Φ(U)

)

g(R)g(U)fRST fUV W , (4.4.1)

where ZRS = Za
RZa

S and ZRSTUV W = ǫabcdefZa
RZb

SZc
TZd

UZe
V Zf

W are SO(6)-
invariant combinations of the SO(6, n)-scalars. Therefore the scalar potential is
SO(6)-invariant. The compact subgroup SO(6)×SO(n) acts on the SO(6, n)-scalars
Za

R only through the first SO(6) subgroups and hence the potential is invariant under
the local symmetry group SO(6) × SO(6).

The structure constants are not arbitrary; fRST ≡ ηRUf
U

ST is completely anti-
symmetric, which is equivalent to the constraint 4.3.2. The coupling constants are
contained in the numbers g(R). For every subgroup of the gauge group we allow dif-
ferent coupling constants. With every generator TR we associate a coupling constant
g(R), such that if TR and TS belong to the same subgroup, then g(R) = g(S).

The SU(1, 1)-scalars are contained in Φ(R) through

Φ(R) = eiαRφ1 + e−iαRφ2 . (4.4.2)

If all αR angles are the same we have ImΦ∗
(R)Φ(U) = 0 and the last term in the

potential 4.4.1 vanishes. In this situation the symmetry group of the potential is
enlarged to O(6).

4.5 The Potential with Semisimple Gaugings

In this section we study the potential with semisimple gaugings. Most of the discussion
can be found in references [A,B]. Before we study the potential we analyze which gauge
groups are allowed.
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4.5.1 Semisimple Gaugings

Let us denote the gauge group with H. If we demand that H is semisimple, H is the
direct product of simple groups: H = H1 ⊗ . . .⊗Hn. We denote the Lie algebras of
the simple factors Hi by hi; h is the direct sum of the hi. A basis of h is given by
T1, T2, . . . such that we have [TR, TS ] = fRS

TTT . The coefficients fRS
T are real and

are called the structure constants of h.
With each gauge field AR

µ we associate a generator TR in the gauge algebra and
an SU(1, 1)-angle αR. The gauge group rotates the gauge fields associated to the
same factor into each other. All the generators that can be obtained by rotating the
generator TR need to have the same SU(1, 1)-angle αR for the gauge group to be a
symmetry. Hence along the gauge orbit of TR, denoted by Γ[TR] and defined by

Γ [TR] =
{

eadA(TR)|A ∈ h
}
, (4.5.1)

the SU(1, 1)-angle has to be constant. If Γ[TR] ∩ Γ[TS ] 6= 0 we need αR = αS . For
semisimple groups the gauge orbits are the simple factors and hence with each simple
factor we associate a single SU(1, 1)-element.

Let us define a nondegenerate symmetric bilinear form Ω : h × h → IR on h by

Ω(TR, TS) = ηRS . (4.5.2)

The relation 4.3.2 then reads Ω([TR, TS ], TU ) = Ω(TR, [TS , TU ]) and Ω is thus an
invariant bilinear symmetric nondegenerate form on h. From now on we abbreviate
‘symmetric nondegenerate bilinear form’ as ‘metric’. A group H can be a gauge group
if Ω is an invariant metric on the Lie algebra of H.

For simple complex Lie algebras there is up to a multiplicative constant just one
invariant metric. In appendix B we prove this statement. Since the Cartan–Killing
metric is invariant, all invariant metrics on a simple complex Lie algebra are pro-
portional to the Cartan–Killing metric. For real Lie algebras of which the complex
extension is simple, the same result holds. This can be seen by going to the complex
extension; if the real Lie algebra would have more than one invariant metric, so would
the complex Lie algebra, which is a contradiction.

However, there exist real Lie algebras of which the complex extension is not simple
and in this case the complex extension is the direct sum of two identical simple
complex Lie algebras [94]. The real Lie algebra is then complex; it is a complex Lie
algebra, written as a real direct sum of the real and imaginary part2. An example
is given by so(1, 3), for which we have so(1, 3)C = so(3)C ⊕ so(3)C and so(1, 3) ∼=
so(3) ⊕IR iso(3). One can show that for real Lie algebras of this kind there exist a
two-parameter family of invariant metrics. In the discussion that follows we ignore
this and take as invariant metric on the Lie algebra the metric that is proportional to

2Note that the decomposition into the real and imaginary part is not unique.
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Real Forms dim ki dim pi Real Forms dim ki dim pi

su(2) 3 0 so(1, 3) 3 3
sl(2, IR) 1 2 so(5) 10 0
su(3) 8 0 so(1, 4) 6 4

su(2, 1) 4 4 so(2, 3) 4 6
sl(3, IR) 3 5

Table 4.5.1: The real simple Lie algebras of dimension not exceeding twelve. For every real

simple Lie algebra the dimension of the compact subalgebra dim ki and of the noncompact

part dim pi are denoted.

the Cartan–Killing metric. Only so(1, 3) appears in our discussion as a complex Lie
algebra and the extension to a two-parameter family of invariant metrics is postponed
and left for later research.

For semisimple Lie algebras consisting of n simple factors that are not complex,
the space of invariant metrics is n-dimensional. The Cartan–Killing metric of each
simple factor hi has to be proportional to the metric Ω.

To make contact with string theory we will take 6 vector multiplets coupled to
N = 4 supergravity. This corresponds to ten-dimensional N = 1 supergravity where
the Yang–Mills fields are truncated away. With the choice of six additional vector
multiplets the total number of gauge vectors is twelve and hence the gauge group H
can at most be 12-dimensional.

Every simple Lie algebra hi can be decomposed as hi = ki ⊕ pi, where ki is the
compact part and where pi is the noncompact part. In table 4.5.1 we have put up to
isomorphisms the real simple Lie algebras of dimension less than twelve. The relevant
isomorphisms are:

su(2) ∼= so(3) ∼= sp(1) , so(1, 3) ∼= sl(2,C)IR

su(1, 1) ∼= sl(2, IR) ∼= sp(1, IR) ∼= so(1, 2) , so(2, 3) ∼= sp(2, IR)

so(2, 2) ∼= sl(2, IR) ⊕ sl(2, IR) , so(1, 4) ∼= sp(1, 1) .

(4.5.3)

The real Lie algebra sl(2,C)IR is obtained by writing the complex Lie algebra sl(2,C)
as the direct sum of its real part and its complex part sl(2,C)IR ∼= sl(2, IR)⊕IRisl(2, IR)
(also see appendix B).

The Cartan–Killing metric is negative definite on the compact part and positive
definite on the noncompact part. Therefore the dimensions of each ki and pi cannot
exceed six. From table 4.5.1 we see that the simple algebras that can be used for
gauging are: su(2), so(2, 3), so(1, 4), sl(8, IR), su(1, 1), su(1, 2), so(1, 3). In this list
only so(1, 3) is a complex Lie algebra. For reasons of simplicity, we ignore the fact
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that so(1, 3) admits a two-parameter family of invariant metrics and fix the invariant
metric of so(1, 3) to be the Cartan–Killing metric.

The gauge Lie algebra can be split into a part on which Ω, (defined in equation
4.5.2) is positive definite, denoted h+, and a part on which Ω is negative definite,
denoted h−. For every simple factor there are two distinct ways how to embed them
into the gauge group. For the noncompact simple algebras hi either ki lies in h+ and
pi in h− or pi lies in h+ and ki in h−. The compact simple Lie algebras hi have to
be embedded either completely in h+ or completely in h−. A semisimple gauging is
determined by the choice of simple factors and the choice of embedding in the gauge
algebra.

Taking into account the different ways to embed the simple groups into the gauge
group, the possible Lie algebras that can be the gauge algebra h are:

so(2, 3) , so(1, 4) , 4 × su(2) , 4 × sl(2, IR) ,

su(2) ⊕ 3 × sl(2, IR) , 2 × su(2) ⊕ 2 × sl(2, IR) ,

2 × su(2) ⊕ so(1, 3) , su(2, 1) ⊕ sl(2, IR) ,

sl(3, IR) ⊕ sl(2, IR) , so(1, 3) ⊕ 2 × sl(2, IR) ,

(4.5.4)

and subalgebras of these algebras. The notation n × hi means the direct sum of n
copies of hi.

4.5.2 Extrema in the SU(1, 1)-Sector

We now wish to find extrema of the potential with respect to the SU(1, 1)-scalars.
The discussion is based on reference [A]. For the SU(1, 1)-scalars we use the parame-
trization 4.1.5.

For every factor hi we denote the structure constants f
(i)
RS

T , the SU(1, 1)-angle αi,
the coupling constants gi and in a similar way we write Φi = eiαiφ1 + e−iαiφ2. The
potential 4.4.1 can be written as a sum over the factors;

V =
∑

i,j

VijR
(ij) +WijI

(ij) , (4.5.5)

where

R(ij) = RegigjΦ∗
i Φj =

gigj

1 − r2
[
cos(αi − αj)(1 + r2) − 2r cos(αi + αj + χ)

]
,

I(ij) = ImgigjΦ∗
i Φj = −gigj sin(αi − αj) .

(4.5.6)

The Vij and Wij contain the structure constants and the fields Za
R and are symmetric,

respectively antisymmetric in the indices ij and are given by:

Vij = 1
4Z

RUZSV
(
ηTW + 2

3Z
TW
)
f

(i)
RST f

(j)
UV W

Wij = 1
36Z

RSTUV W f
(i)
RST f

(j)
UV W

(4.5.7)
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We define:

C± =
∑

i,j

gigj cos(αi ± αj)Vij ,

S+ =
∑

i,j

gigj sin(αi + αj)Vij ,

T− =
∑

i,j

gigj sin(αi − αj)Wij ,

∆ = C2
− − C2

+ − S2
+ , ε = sgnC− .

(4.5.8)

Equipped with these definitions the potential can be written as

V = C−
1 + r2

1 − r2
− 2r

1 − r2
(C+ cosχ− S+ sinχ) − T−. (4.5.9)

The potential only has an extremum in the SU(1, 1)-sector if ∆ > 0 [A]. The
scalars r, χ are at the extremum given by:

cosχ0 =
εC+

√

C2
+ + S2

+

, sinχ0 = − εS+
√

C2
+ + S2

+

, r0 =
|C−| − ∆
√

C2
+ + S2

+

, (4.5.10)

and the value of the potential is given by

V0 = ε∆ − T− . (4.5.11)

The potential at the extremum does not depend on the absolute values of the
αi but on the differences αi − αj . If all αi are the same, we have ∆ = 0 implying
r0 = 1, which lies outside the range of r, and the potential has no extremum. This
result is a generalization of the work Freedman and Schwarz in the pure N = 4 d = 4
supergravity [140].

If ε > 0 the extremum is a minimum[A]. In the limit r → 1 the potential becomes
singular and at the point r = 0 the potential and its derivatives are well defined.

To proceed we need to find an extremum of the potential with respect to the
SO(6, 6)-scalars, such that the conditions ∆ > 0 and ε > 0 are satisfied. In the fol-
lowing we study for different semisimple gaugings what extremum exists and calculate
the value of the potential, ε and ∆ and investigate the stability.

4.5.3 Extrema in the SO(6, 6)-sector

If all αi are the same, no minimum exists in the SU(1, 1)-sector and therefore we
discard all gaugings where the gauge algebra is simple. The gauge algebras so(3, 2)
and so(1, 4) are thus left out of consideration.
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To make a distinction between the two different embeddings for every simple factor
of the gauge algebra, we have the following notation. If the simple factor is embedded
with its compact subalgebra ki into h−, where Ω is negative definite, we denote the
simple factor by hi−. If the simple factor is embedded with its compact part in h+,
where Ω is positive definite, we denote it hi+.

It was shown in reference [A] that the point where Za
R is given by

Za
R = δa

R , R ≤ 6 , Za
R = 0 , 6 < R ≤ 12 , (4.5.12)

corresponds in all cases that are studied to an extremum, if an extremum exists.
Therefore we restrict the analysis to this point. This point corresponds mathemati-
cally to the identity of the manifold SO(6, 6)/SO(6) × SO(6) and the representative
of this point can be chosen to be the identity element of SO(6, 6). Physically this
points corresponds to turning off the matter fields. The point is invariant under
SO(6)-transformations, but not under SO(6, 6)-transformations that are not SO(6)-
transformations since these transformations mix matter fields and supergravity fields.
We refer to this point as Z0.

We split the indices R,S, . . . up in capital letter A,B, . . . from the beginning of
the alphabet running from 1 to 6, and middle-alphabet capitals I, J, . . . running from
7 to 12. With this convention the point Z0 is given by: Za

A = δa
A, Za

I = 0.
The normalization of the generators is chosen such that in the vector representation
|tr(TRTS)| = 2δRS .

In the point Z0 we have the following simplifications:

Vij(Z0) = δij

(

− 1
12

∑

ABC

f
(i)
ABCf

(i)
ABC + 1

4

∑

ABI

f
(i)
ABIf

(i)
ABI

)

,

C−(Z0) =
∑

i

g2
i Vii(Z0) ,

∆(Z0) = 2
∑

i,j

Vii(Z0)Vjj(Z0) (gigj sin(αi − αj))
2
.

(4.5.13)

The functions Vij are thus nonzero only if i = j at the point Z0 and the diagonal
values can be calculated for each simple factor hi. The obtained results are displayed
in table 4.5.2 and the details can be found in reference [B].

In order to check that the point Z0 is a minimum one uses a parametrization of the
Za

R and then differentiate the potential with respect to the parameters and evaluate
at Z0. The result then has to vanish in order for the point Z0 to be an extremum.
To check for stability, one evaluates the second derivatives at Z0 and the matrix of
second derivatives has to be positive definite to be a minimum.

There exist different parameterizations of the Za
R, for example one can take:
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Simple Factor Vii(Z0) Simple Factor Vii(Z0)

so(3)− − 1
2 so(3)+ 0

so(3, 1)− − 1
2 so(3, 1)+

3
2

sl(3, IR)− − 1
2 sl(3, IR)+

15
2

su(2, 1)− −2 su(2, 1)+ 6

su(1, 1)− 0 su(1, 1)+
1
2

Table 4.5.2: The functions Vii at the point Z0.

Za
R = (X, Y )a

R, where X and Y are 6 × 6-matrices given by:

X = 1
2

(
G+G−1 +BG−1 −G−1B −BG−1B

)
,

Y = 1
2

(
G−G−1 −BG−1 −G−1B −BG−1B

)
,

(4.5.14)

in which G is a symmetric 6× 6-matrix and B is an antisymmetric 6× 6-matrix. The
X and Y solve the SO(6, 6)-constraint Za

RηRSZb
S = −δab since XXT − Y Y T = 1.

The independent coordinate one can take to be P ≡ G+B. Every arbitrary3 P can
be decomposed into a symmetric part corresponding to G and an antisymmetric part
corresponding to B.

Working out the derivatives is straightforward but elaborate and not very insight-
ful. Therefore we do not give the full expressions of the first and second derivatives.
In reference [B] the expressions can be found and evaluating at Z0 is easiest done on
a computer.

The results are presented in table 4.5.3. A tachyonic mode corresponds to a mode
with imaginary mass; for every negative eigenvalue of the matrix of second derivatives
there is a tachyonic mode. If tachyonic modes are present the vacuum is instable. In
four cases both the value of the potential and the presence of tachyonic modes in
the matter scalars Za

R depends on the choice of the SU(1, 1)-scalars. In reference
[B] it is shown that for these four cases the value of the potential is positive if no
matter tachyons are present. However, for these four cases C− < 0 and there are
tachyons in the SU(1, 1)-sector. From table 4.5.3 we conclude that the point Z0 does
not correspond to a stable vacuum, neither de Sitter nor anti-de Sitter nor Minkowski
for semisimple gaugings with 6 matter multiplets.

The Vector Fields

We now briefly discuss the masses of the vectors and the signs of the kinetic terms.

3The matrix P is almost arbitrary; the determinant of P + P T cannot be zero.
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Gauging ε0 signV0 Matter Tachyons

SO(2, 1)3+ × SO(3) +1 +1 Y

SO(2, 1)2+ × SO(2, 1)2− +1 +1 Y

SO(3, 1)+ × SO(2, 1)+ × SO(2, 1)− +1 +1 Y

SO(3, 1)2+ +1 +1 Y

SO(3)2+ × SO(3)2− −1 ±1 Y/N

SO(3)− × SO(3)+ × SO(3, 1)− −1 ±1 Y/N

SO(3, 1)2− −1 ±1 Y/N

Sl(3, IR)− × SO(3)− −1 ±1 Y/N

SU(2, 1)+ × SO(2, 1)+ +1 +1 Y

Table 4.5.3: Result of the analysis of semisimple gaugings. Only the gaugings with ∆0 > 0

that give rise to an extremum with respect to the matter scalars at Z0 are listed. The sign

of C− at Z0 is denoted ε0 and the point Z0 is only a minimum with respect to the SU(1, 1)-

scalars if ε0 = +1. If the sign of the potential at Z0 depends on the SU(1, 1)-angles this is

denoted ±1. The third column is used to indicate whether there are tachyonic modes present

in the matter sector; a Y means that tachyons are present and N means no tachyons are

present. If the presence of the tachyonic modes in the matter sector depends on the choice

of the SU(1, 1)-angles we denote Y/N .

In reference [B] it was shown that the vectors associated with noncompact groups
acquire a mass. This is sensible since the noncompact groups do not leave the points
Z0 invariant. Hence the vector fields associated with noncompact gauge groups ac-
quire a mass through a Higgs mechanism.

The vector kinetic term can be found from equation 4.2.56 and the discussion in
section 4.3:

Lvec−kin = −ηRS + 2ZRS

4|Φ(R)|2
FR

µνF
Sµν . (4.5.15)

Evaluating the kinetic term at Z0 gives:

Lvec−kin = − δRS

4|Φ(R)|2
FR

µνF
Sµν . (4.5.16)

Hence there are no wrong-sign kinetic terms and the theory has no ghosts.
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4.6 The Potential with CSO-Gaugings

Most gaugings in field theories involve semisimple gauge groups. The reason is that
the trace in any representation of the gauge group is an invariant symmetric bilinear
form on the Lie algebra and no components of the field strength get projected out
in calculating the kinetic term ∼ TrF 2. But a group manifold reduction of Heterotic
supergravity results in a gauged supergravity with a gauge group that is not semi-
simple [112]. Hence for supergravities even the gauge groups that are not semisimple
are interesting, see e.g. [168–174].

A class of groups that are not semisimple is the class of CSO-groups. The CSO-
groups are contractions of the special orthogonal groups, the SO-groups. In the
following we explain what a CSO-group is and give a theorem that is useful when
considering gaugings with CSO-groups.

4.6.1 The CSO-type Algebras: an Introduction

We define the group CSO(p, q, r) as the connected real Lie group with real Lie algebra
cso(p, q, r). We now show in detail how the Lie algebra cso(p, q, r) is defined.

Consider the Lie algebra so(p, q + r), which has the vector representation as a
faithful representation. In the vector representation the Lie algebra so(p, q+r) admits
a set of basis elements JAB = −JBA, 1 ≤ A,B ≤ p+q+r satisfying the commutation
relation:

[JAB , JCD] = ηBCJAD + ηADJBC − ηACJBD − ηBDJAC , (4.6.1)

where ηAB are the components of the diagonal metric ηp,q+r, with p eigenvalues +1
and q + r eigenvalues −1.

We split the indices A,B, . . . into indices I, J, . . . running from 1 to p + q and
indices a, b, . . . running from p+ q+ 1 to p+ q+ r. The Lie algebra so(p, q+ r) splits
as a vector space direct sum so(p, q + r) = so(p, q) ⊕ V ⊕ Z, where the elements JIJ

span the so(p, q) subalgebra, the elements JIa = −JaI span the subspace V and the
elements Jab span the subalgebra Z. The subspace V consists of r copies of the vector
representation of the subalgebra so(p, q), whereas the subalgebra Z consists of singlet
representations of so(p, q). The commutation relations are schematically given by:

[so(p, q) ,V] ⊂ V , [V ,V] ⊂ Z ⊕ so(p, q) ,

[so(p, q) ,Z] ⊂ 0 , [Z ,V] ⊂ V ,
[so(p, q) , so(p, q)] ⊂ so(p, q) , [Z ,Z] ⊂ Z .

(4.6.2)

We define for any real number ξ a linear map Tξ : so(p, q + r) → so(p, q + r) by
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its action on the subspaces:

x ∈ so(p, q) , Tξ : x 7→ x ,

x ∈ V , Tξ : x 7→ ξx ,

x ∈ Z , Tξ : x 7→ ξ2x .

(4.6.3)

If ξ 6= 0,∞ the map Tξ is a bijection. The maps T0 and T∞ give rise to so-called
contracted Lie algebras.

We define the limits T0(so(p, q)) = s ∼= so(p, q), T0(V) = r and T0(Z) = z. The
Lie algebra cso(p, q, r) is defined as T0(so(p, q + r)). Hence we have cso(p, q, r) =
so(p, q) ⊕ r ⊕ z and the commutation rules are of the form

[s , s] ⊂ s , [r , r] ⊂ z , [s , r] ⊂ r , [r , z] = [s , z] = [z , z] = 0 . (4.6.4)

We mention some special cases and properties. If r = 0 the construction is trivial
and therefore we take r > 0. If p + q = 1 we have s = 0 and if p + q = r = 1 also
z = 0 and we have cso(1, 0, 1) ∼= cso(0, 1, 1) ∼= u(1). If p + q = 2 the Lie algebra s is
abelian and if p+ q > 2 the Lie algebra s is semisimple and the vector representation
is irreducible. Hence if p + q > 2 we have [s, r] ∼= r. If r = 1 we have z = 0 and the
Lie algebra is an Inönü–Wigner contraction. If r > 1 the subalgebra z is nontrivial
and is contained in the center of cso(p, q, r). If the center of a Lie algebra is nonzero,
the adjoint representation is not faithful.

From the construction follows a convenient set of basis elements of cso(p, q, r).
The elements SIJ = −SJI are the basis elements of the subalgebra s, the elements
vIa are the basis elements of r and the elements zab = −zba are the basis elements of
z. The only nonzero commutation relations are:

[SIJ , SKL] = ηJKSIL − ηIKSJL − ηJLSIK + ηILSJK ,

[SIJ , vKa] = ηJKvIa − δIKvJa ,

[vIa, vJb] = ηIJZab .

(4.6.5)

The numbers ηIJ are the elements of the metric ηp,q. The commutation relations
4.6.5 can also be taken as the definition of the Lie algebra cso(p, q, r).

4.6.2 Gaugings with CSO-algebras

Having outlined the construction of CSO-algebras, we now analyze their gaugings.
We first work out the constraint 4.3.2 and investigate how the SU(1, 1)-angles can be
chosen.

As explained in section 4.5.1, the constraint 4.3.2 implies the existence of an
invariant metric Ω on the gauge algebra. Hence for a CSO-type algebra to be a
gauge algebra it has to admit an invariant metric. It turns out that demanding
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invariance and nondegeneracy of a bilinear form Ω on cso(p, q, r) is in all but a few
cases impossible. We state the result in a theorem:

Theorem 4.6.1. The Lie algebra cso(p, q, r) with r > 0 admits an invariant nonde-
generate symmetric bilinear form (i.e. an invariant metric) only if (1) p + q + r = 2
or (2) p+ q + r = 4.

The proof of this theorem is postponed to section 4.8. In the proof we have listed
the most general invariant metrics up to a multiplicative factor for each of the Lie
algebras cso(p, q, r) with p + q + r. From theorem 4.6.1 follows that only 5 cso-type
algebras are interesting for gaugings - cso(1, 0, 1) is abelian and does not give rise
to a potential. Hence the only cso-type Lie algebras that can be used for gauging a
nonabelian algebra are cso(p, q, r) with p+ q + r = 4.

We now turn to the SU(1, 1)-angles. As in section 4.5.1 we investigate the gauge
orbits. For the algebras cso(2, 0, 2), cso(1, 1, 2) the gauge orbit of s, which is one-
dimensional, is s⊕ r and the gauge-orbit of r is r⊕ z. For the algebras cso(3, 0, 1) and
cso(2, 1, 1) the gauge orbit of every element of s is the whole Lie algebra. Finally, for
cso(1, 0, 3) the gauge orbit of each element r is contained in r⊕ z and all gauge orbits
overlap. Hence for all CSO-type algebras under consideration the SU(1, 1)-angles
have to be constant over the whole Lie algebra.

Analogous to the semisimple gaugings, we need at least two factors to have an
extremum in the SU(1, 1)-sector.

To embed a Lie algebra g into the gauge algebra h, the metric Ω has to be diago-
nalized and brought into a form with eigenvalues ±λ and the Lie algebra is split into
the eigenspaces of Ω: g = gλ ⊕ g−λ. There are two inequivalent embeddings: either
g±λ ⊂ h± or g±λ ⊂ h∓. In the first case we denote the embedding of g into the gauge
algebra by g− and in the second case we write g+. Recall that the subspace h± is the
subspace of the gauge algebra on which the metric ηRS is ±1.

In the basis of the Lie algebra where the invariant metric is diagonal with eigen-
values ±λ, the structure constants are calculated, which are then used to evaluate the
potential and its derivatives at Z0. We demonstrate this procedure by an example
below.

4.6.3 Analysis of cso(3, 0, 1) ⊕ cso(3, 0, 1)-Gaugings

The invariant metric and commutation relations of cso(3, 0, 1) is given by equations
4.8.13 and 4.8.12 in section 4.8. We use the same notation as in section 4.8. The
metric 4.8.13 has eigenvalues λ±(a) = 1

2 (a ±
√
a2 + 4), each with multiplicity three.

The eigenvectors with eigenvalues λ+ are λ+ti +vi. The eigenvectors with eigenvalues
λ− are λ−ti + vi.

We define

T+
i = λ+ti + vi , T−

i = λ+

λ−
(λ+ti + vi) , (4.6.6)
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from which we find Ω(T±
i , T

±
j ) = ±δij(λ3

+ + λ+) and Ω(T+
i , T

−
j ) = 0 so Ω is in the

required form. If we use the indices 1 ≤ a, b, . . . ≤ 3 for the generators T+
1 , T+

2 , T+
3

and the indices 1 ≤ α, β, . . . ≤ 3 for the generators T−
1 , T−

2 , T−
3 , we find after a

suitable rescaling the structure constants:

fab
c = (λ2

+ + 2)ǫabc , fab
α = ǫabα ,

faα
β = λ2

+ǫaαβ , fαβ
γ = −(2λ2

+ + 1)ǫαβγ ,
(4.6.7)

where ǫxyz is the three-dimensional totally antisymmetric alternating symbol.

The embedding of the generators T±
i into the gauge algebra, with generators Ti,can

be done as follows. For the gauging CSO(3, 0, 1)− ⊗ CSO(3, 0, 1)− we take T−
i = Ti

and T+
i = Ti+6 with for the first subgroup and T−

i = T3+i and T+
i = Ti+9 with

i = 1, 2, 3 for the second subgroup. For the gauging CSO(3, 0, 1)+⊗CSO(3, 0, 1)+ we
take T+

i = Ti and T−
i = Ti+6 for the first subgroup and T+

i+3 = Ti and T−
i = Ti+9 for

the second subgroup. Finally, for the gauging CSO(3, 0, 1)+ ⊗CSO(3, 0, 1)− we take
T+

i = Ti and T−
i = Ti+6 for the CSO(3, 0, 1)+ subgroup and T+

i+3 = Ti and T−
i = Ti+9

for the CSO(3, 0, 1)− subgroup. One checks that with the chosen embeddings the
tensors fRS

T ηUT are totally antisymmetric in R, S and U . Hence the structure
constants satisfy 4.3.2. For example, for the gauging CSO(3, 0, 1)+ ⊗ CSO(3, 0, 1)+
one finds the tensors:

f
(1)
ABC = −(λ+(a1)2 + 2)δ123ABC , f

(2)
ABC = −(λ+(a2)2 + 2)δ456ABC ,

f
(1)
ABI = λ+(a1)2δ123AB(I−6) , f

(2)
ABI = λ+(a2)2δ456AB(I−6) ,

f
(1)
AIJ = δ789(A+6)IJ , f

(2)
AIJ = δ10,11,12

(A+6)IJ ,

f
(1)
IJK = −(2λ+(a1)2+)δ789IJK , f

(2)
IJK = −(2λ+(a2)2 + 1)δ10,11,12

IJK ,

(4.6.8)

where 1 ≤ A,B, . . . ≤ 6 are the indices for h− and 7 ≤ I, J, . . . ≤ 12 are the indices
for h+ and δijk

abc is the totally antisymmetric Kronecker delta, see appendix A.

The value of V (Z0) is the same for both CSO(3, 0, 1)+ and CSO(3, 0, 1)− and
given by:

V (Z0)ij = − 1
2δij(a2

i + 6)λ+(ai)
2 . (4.6.9)

From 4.6.9 follows that for the gaugings CSO(3, 0, 1)⊗CSO(3, 0, 1) we have C−(Z0) <
0 and ∆(Z0) > 0. Hence an extremum in the SU(1, 1)-sector exists and is a maximum,
that is, unstable.

In reference [B] general formulas are given for calculating the first derivatives of
the potential at Z0 with respect to 36 independent parameters Pab with 1 ≤ a, b ≤ 6,
describing the SO(6, 6)/SO(6) × SO(6)-coset. These general formulas can be sum-
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marized as:

∂V

∂Pab
(Z0) =

2
√

∆(Z0)

∑

ij

∂Vii

∂Pab
(Z0)V (Z0)jja

2
ij −

∑

ij

aij
∂Wij

∂Pab
(Z0) ,

∂Vii

∂Pab
(Z0) =

∑

BJ

f
(i)
(a+6)BJf

(i)
bBJ , (4.6.10)

∂Wij

∂Pab
(Z0) =

1

12
ǫbBCDEF

[

f
(i)
(a+6)BCf

(j)
DEF − (i↔ j)

]

,

where aij = gigj sin(αi − αj). Applying the formulas 4.6.10 we find that not all
derivatives of the potential vanish at Z0 unless aij = 0. Hence the point Z0 is not
an extremum with respect to the SO(6, 6)-scalars when an extremum exists for the
SU(1, 1)-scalars.

From the above we can draw a conclusions. The free parameters in the invariant
metric give rise to inequivalent embeddings and different potentials, potentially with
different properties.

In reference [E] the question whether other CSO-gauging gives rise to a stable de
Sitter vacuum is treated in more generality.

4.7 Extensions

The search for stable de Sitter vacua as presented in the previous section can be
extended in a few directions. We briefly comment on the possible extensions.

The number of matter multiplets can be chosen to be different. From the dimen-
sional reduction of Heterotic supergravity over a torus one obtains a theory with 28
abelian vector fields, since only the abelian subalgebra of the Yang–Mills gauge group
survives. Therefore it seems natural to take 22 matter multiplets. This extension
allows for gauging other semisimple groups, for example G2-gaugings.

The analysis of section 4.5 ignored the existence of a two-parameter family of
invariant metrics on so(1, 3). The two parameters can be captured in an overall
scaling parameter and an angle θ. The overall scaling is unimportant, while the angle
θ gives physical effects. The value of C−(Z0) and ∆(Z0) can be tuned with the θ’s
of all so(1, 3) subalgebras of the gauge algebra but even whether a potential has an
extremum in Z0 depends on θ. It needs to be investigated what all consequences are
of the angle θ.

The analysis of section 4.6 is incomplete since not all gaugings using CSO-gaugings
are investigated. Performing a group manifold reduction of Heterotic supergravity one
obtains a gauged supergravity with a gauge group that is not semisimple [112]; from a
reduction over an SU(2)×SU(2)-manifold the gauge group is a CSO-group[C]. This
motivates the study of CSO-gaugings, which is performed in [E].
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In this line of thinking, one can even try using other nonsemisimple groups than
the CSO-groups. The nonsemisimple groups are not classified, which impedes a
systematic analysis. However, the nonsemisimple Lie algebras have a simple structure;
due to a theorem of Lev́ı (see e.g. [76]) every Lie algebra g is the direct vector space
sum of a semisimple subalgebra l and a solvable ideal s. It follows that the adjoint
action of l on s is a representation of the semisimple Lie algebra l. The representations
of semisimple Lie algebras are direct sums of irreducible representation, which are
classified for the semisimple Lie algebras. This suggests that fixing a number N , one
can construct using representation theory of semisimple Lie algebras all nonsemisimple
Lie algebras with dimension up to N . The drawback of this programme is that
the number of possibilities grows rapidly with N . The nonsemisimple gaugings can
provide interesting phenomena, but a complete discussion seems not feasible.

An extension in another direction is given by the recent developments following
from the work of de Wit, Samtleben and Trigiante [175–177]. They found a scheme
that enables a more systematic treatment of maximal gauged supergravities, on which
the work of Schön and Weidner on gauged N = 4 supergravity is based. The idea
can be explained as follows. In constructing a gauged supergravity one first finds the
ungauged version of the theory, writes down the action and symmetry-variations of
the fields and tries to gauge a subgroup of the global-symmetry group, to get local
interactions. However, one generality is lost due to the writing down of the action:
one needs to choose which gauge fields are electric and which are magnetic. In five
dimensions the situation is clear, since any massless two-form can be traded for a
massless gauge vector by dualization. Hence by choosing a symplectic gauge one
looses generality. This loss can be restored by first introducing the local interaction
by gauging and afterwards choosing a symplectic gauge. One therefore introduces
for every gauge field a magnetic dual and auxiliary tensor fields and then gauges a
subgroup of the global-symmetry group. The equations of motion of the auxiliary
tensors and extra gauge fields can be solved for to achieve a gauged supergravity
theory.

For N = 4 supergravity this programme has been worked out by Schön and
Weidner [146] and the most general gauging is then described by parameters fαKLM

and ξαM , where α = 1, 2 and 1 ≤ K,L,M ≤ 6 + n, which have to satisfy a set
of linear and quadratic equations. The gaugings in this thesis correspond to the
gaugings with ξαM = 0. The gaugings with ξαM 6= 0 are physically inequivalent to
those with ξαM = 0. Unfortunately, both the authors of [146] and this thesis have
not yet managed to solve the equations for ξαM and fαKLM if ξαM 6= 0 in the general
case.
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4.8 Proof of Theorem 4.6.1

The proof consists of two parts. In the first part we prove for all but the CSO-
algebras listed in 4.6.1 that no invariant metric exists. We do this by assuming a
bilinear form Ω is invariant and then prove it is degenerate. In the second part we
give for CSO-algebras listed in 4.6.1 the invariant metrics.

The first part uses the concepts of isotropic subspaces and Witt-indices. For
a bilinear symmetric form B on a real vector space V , an isotropic subspace is a
subspace W of V on which B vanishes. A maximal isotropic subspace is an isotropic
subspace with a maximal dimension; any other subspace with a larger dimension is
not isotropic. One can show that all isotropic subspaces are related by a nonsingular
linear transformation; one therefore speaks of the maximal isotropic subspace. The
dimension of the maximal isotropic subspace is the Witt-index of the pair (B, V ) and
is denoted mW .

If B is nondegenerate and the dimension of V is n, one can always choose a basis
in which B has the matrix form

B =





1p×p 0
0 0 1r×r

0 1r×r 0



 , for p, r with p+ 2r = n . (4.8.1)

This clearly shows that the Witt-index is r. Hence we have the inequality: mW ≤
[n/2].

If the center z is nonzero we have [r, r] = z, that is, for every z ∈ z there are
v, w ∈ r such that [v, w] = z. Hence if z, z′, with z = [v, w] and v, w ∈ r, we have
Ω(z, z′) = Ω([v, w], z′) = Ω(v, [w, z′]) = 0 and hence the center z is contained in the
maximal isotropic subspace. Hence if the dimension of z exceeds half the dimension
of the Lie algebra, any invariant symmetric bilinear form is necessarily degenerate.

Part I

We split part I in six different cases. For every case we assume an invariant symmetric
bilinear form Ω exists and prove degeneracy. We use the same decomposition as in
section 4.6.1, g = s ⊕ r ⊕ z, with g a CSO-type Lie algebra, and the commutation
relations 4.6.5, which we for convenience list again:

[SIJ , SKL] = ηJKSIL − ηIKSJL − ηJLSIK + ηILSJK

[SIJ , vKa] = ηJKvIa − δIKvJa

[vIa, vJb] = ηIJZab .

(4.8.2)

cso(p, q, r) with p+ q > 2 and r > 1
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We have [s, s] = s, [r, r] = z and [s, r] = r. We prove that z is perpendicular to the
whole algebra with respect to Ω, which implies that Ω is degenerate.

The center z is perpendicular to itself since it is nonzero and thus defines an
isotropic subspace. For every v ∈ r there are j ∈ s and w ∈ r such that [j, w] = v.
Hence for such v and z ∈ z we have Ω(v, z) = Ω([j, w], z) = Ω(j, [w, z]) = 0 and Ω is
zero on z × r. Since s is semisimple a similar argument shows that Ω is zero on z × s

and then z is orthogonal to the whole Lie algebra with respect to Ω.

cso(p, q, r) with p+ q = 1 and r > 3

We have s = 0 and dim r = r and dim s = r(r−1)/2. The dimension of the center,
which is contained in the maximal isotropic subspace, becomes too large for Ω to be
nondegenerate if r(r− 1)/2 > r(r+ 1)/4. It follows that if r > 3 there is no invariant
metric.

cso(p, q, r) with p+ q = 1 and r = 2

From the commutation relations 4.8.2 we see that we can choose a basis e, f, z
such that the only nonzero commutator is [e, f ] = z. We have Ω(z, z) = 0, but
also Ω(e, z) = Ω(e, [e, f ]) = Ω([e, e], f) = 0. Similarly Ω(z, f) = 0 and thus z is
perpendicular to the whole algebra and Ω is degenerate.

cso(p, q, r) with p+ q = 2 and r = 1

The Lie algebras cso(1, 1, 1) and cso(2, 0, 1) have zero center and hence [r, r] = 0.
For every x ∈ r there are y ∈ r and A ∈ s such that x = [A, y]. Therefore we have
for such x, y,A and v ∈ r : Ω(x, v) = Ω([A, y], v) = Ω(A, [y, v]) = 0. Thus r is an
isotropic subspace of dimension 2, whereas the dimension of the Lie algebra is 3.

cso(p, q, r) with p+ q = 2 and r > 2

We choose a basis {j, ea, fa, zab}, where j ∈ s, ea, fa ∈ r and zab = −zba ∈ z and
1 ≤ a, b ≤ r. In terms of the basis elements in 4.8.2 we have j = J12, ea = v1a,
f = v2a. The only nonzero commutation relations are

[j, ea] = fa , [j, fa] = σea , [fa, fb] = σzab [ea, eb] = zab , (4.8.3)

where σ = +1 for cso(1, 1, r) and σ = −1 for cso(2, 0, r).
From the commutation relations 4.8.3 one deduces that the subspace spanned by

the elements ea and zab defines an isotropic subspace of dimension r(r + 1)/2. The
dimension of this isotropic subspace exceeds half the dimension of the Lie algebra if
r > 2.

cso(p, q, r) with p+ q > 3 and r = 1
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The Lie algebras in this class have zero center and hence [r, r] = 0. We have
r = [s, r], s = [s, s] and s is semisimple. It follows that Ω is zero on r × r and Ω
coincides with the Cartan–Killing metric of s on s × s. Hence we are interested in Ω
on r × s.

From 4.8.2 we see that we can choose a basis {SIJ , vI}, where 1 ≤ I, J ≤ p + q,
and the only nonzero commutation relations are:

[SIJ , SKL] = ηJKSIL − ηIKSJL − ηJLSIK + ηILSJK

[SIJ , vK ] = ηJKvI − δIKvJ .
(4.8.4)

We define ΩIJK = Ω(vI , SJK) = −ΩIKJ . Invariance requires Ω([SIJ , vK ], SLM ) =
−Ω(vK , [SIJ , SLM ]), from which we obtain:

ηJKΩILM − ηIKΩKLM = −ηJLΩKIM − ηIMΩKJL + ηILΩKJM + ηJMΩKIL . (4.8.5)

Contracting equation 4.8.5 with ηIKηJL we obtain:

ηIJΩIJK = 0 ,∀K . (4.8.6)

Contracting 4.8.5 with ηIK and using 4.8.6 we find:

−(p+ q)ΩIJK = ΩIJK + ΩKIJ + ΩJIK . (4.8.7)

Writing out 4.8.7 three times with the indices cyclically permuted and adding the
three expressions we find the result:

(p+ q − 3) (ΩIJK + ΩJKI + ΩKIJ ) = 0 . (4.8.8)

Since we assumed p+ q > 3 the cyclic sum of ΩIJK has to vanish.
Using the relation [SIJ , v

J ] = vI , where no sum is taken over the repeated index
J and where vJ = ηJKvK , and requiring Ω([SIJ , v

J ], SKL) = −Ω(vJ , [SIJ , SKL]) we
obtain:

ΩIJK + ΩJIK + ΩKJI = 0 . (4.8.9)

Combining 4.8.9 and the vanishing of the cyclic sum we see that ΩIJK = 0. Hence
the subspace r is orthogonal to the whole Lie algebra with respect to Ω and Ω is
degenerate. This concludes part I.

Part II

We now give for the Lie algebras listed in 4.6.1 the most general invariant metric up
to a multiplicative constant.

The Lie algebra cso(1, 0, 1) is abelian and hence any metric is invariant.
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For the Lie algebras cso(2, 0, 2) and cso(1, 1, 2) we use the ordered basis β =
{j, e1, e2, f1, f2, z} with the only nonzero commutation relations

[j, ea] = fa , [j, fa] = σea , [fa, fb] = σz , [ea, eb] = z , (4.8.10)

where σ = +1 for cso(1, 1, 2) and σ = −1 for cso(2, 0, 2).

In the basis β the invariant metric can be written in matrix form as:

Ω =











a 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0











, a ∈ IR , (4.8.11)

for both cso(1, 1, 2) and cso(2, 0, 2). The eigenvalues are −1,−1,+1,+1, 1
2 (a+

√
a2 + 4),

1
2 (a−

√
a2 + 4) and the signature is + + + −−−.

For the Lie algebras cso(2, 1, 1) and cso(3, 0, 1) we use the ordered basis β =
{t1, t2, t3, v1, v2, v3} such that the commutation relations are

[ti, tj ] = ǫijkη
kltl , [ti, vj ] = ǫijkη

klvl, [vi, vj ] = 0 , (4.8.12)

where ǫijk is the three-dimensional alternating symbol and ηij is the inverse of η1,2

for cso(2, 1, 1) and the inverse of η3,0 for cso(3, 0, 1). The matrix ηp,q is diagonal with
p eigenvalues +1 and q eigenvalues −1.

With respect to the ordered basis β the invariant metric is given by

Ω =

(
aη η
η 0

)

, (4.8.13)

where each entry is a 3 × 3-matrix. The eigenvalues are λ± = 1
2 (a ±

√
a2 + 4), both

with multiplicity three and the signature is −−− + ++.

For the Lie algebra cso(1, 0, 3) we use the ordered basis β = {v1, v2, v3, z1, z2, z3}
such that the commutation relations are

[vi, vj ] = 1
2ǫijkzk , [vi, zj ] = [zi, zj ] = 0 , (4.8.14)

where a summation is understood for every repeated index. The invariant metric is
given in matrix form with respect to the basis β by:

Ω =

(
A3×3 13×313×3 0

)

, (4.8.15)
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where A3×3 is an undetermined 3 × 3-matrix. Since detΩ = −1 there are no null
vectors. We use an LU-decomposition to find

det (Ω − λ16×6) = −λ3det
(

A− (λ− 1

λ
)1) . (4.8.16)

Hence if µ1, µ2, µ3 are the eigenvalues of A, then λi = 1
2

(

µi ±
√

µ2
i + 4

)

, are the

eigenvalues of Ω. Hence the signature is + + + −−−.



Chapter 5

Conclusions, Discussion and

Developments

In this chapter we summarize and discuss the important conclusions and try to give
directions for future developments. In particular we try to answer the questions posed
in the introduction. As to be expected from a thesis about a small piece of a big jigsaw
puzzle, there is not a single clear conclusion. Therefore we gather the main results
that are presented in the thesis.

We have shown how the degrees of freedom that result from a group manifold
reduction of a six-form gauge field can be analyzed using the cohomology of Chevalley
and Eilenberg. No degrees of freedom are lost since a group manifold has Euler
characteristic zero. In the same analysis we showed that all compact connected Lie
groups of dimension smaller than seven are products of SO(3), SU(2) and U(1).

We have shown a technique to find the global symmetry group of a dimensionally
reduced ten-dimensional supergravity. The technique is an extension of the work of
Pope and Lü [114]. Although the result is generally known, the technique is new and
explains how the coset structure of the scalars arises when one goes down in dimen-
sions. We have however not investigated what happens when the higher-dimensional
theory already has scalars that parameterize a coset.

We have found no stable vacuum for semisimple gaugings of N = 4 super-
gravity coupled to 6 vector multiplets at the identity point of the scalar manifold
SO(6, 6)/SO(6) × SO(6). The identity point of a coset G/K is that point that is
identified with the compact subgroup K of G. For many gaugings the identity point
corresponds to an extremum of the scalar potential.

We have ignored one aspect in the semisimple gauging of N = 4 supergravity
coupled to 6 vector multiplets. There exists a two-parameter family of invariant
metrics on so(1, 3). We leave it for future research to discuss whether this allows
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stable vacua at the identity point of SO(6, 6).
We have shown that the only the CSO-groups that can be a subgroup of the gauge

group in N = 4 supergravity are CSO(p, q, r) with p+ q + r = 4. We have shown in
the same section that there is a straightforward way to investigate the CSO-gaugings
by working out how the adjoint representation of a cso-algebra can be embedded
in the vector representation of so(6, 6). It is worth remarking that the only CSO-
groups and SO-groups that can be used for gauging N = 8 are the CSO(p, q, r) with
p+ q + r = 8 [170–172,178–184].

The CSO-groups are just one family of nonsemisimple groups. To the knowledge
of the author there is no special reason to gauge CSO-groups or semisimple groups
in N = 4 supergravity. Hence gauging a group in N = 4 is always ad hoc; why
not another group? Since the number of coupled vector multiplets is arbitrary, the
dimension of the gauged group is arbitrary. This makes the search for stable de Sitter
vacua in N = 4 supergravities by gauging different groups a bit like a lottery.

The above mentioned conclusions are the main conclusions that we wish the reader
who wants to remember something, remembers. We now turn to the questions posed
in the Introduction. We give the answers, if any are found, in the same order as the
questions are listed.

-1- The role of the SU(1, 1)-angles is still obscure. Their presence breaks a few
symmetries. Firstly, in the ungauged supergravity the global symmetry SO(6, n)
is broken. Secondly, in the gauged theory the symmetry group of the potential
is broken from an O(6) to an SO(6) in presence of the SU(1, 1)-angles. We have
not obtained the SU(1, 1)-angles by a toroidal or group manifold dimensional
reduction. Although the SU(1, 1)-angles can be seen as a subset of the full set
of parameters that determine a gauging of N = 4 supergravity [146], this does
not fix a higher-dimensional origin.

-2- A Lie group G can be used to gauge N = 4 supergravity if and only if its
Lie algebra g admits an invariant metric with n+ positive eigenvalues and n−
negative eigenvalues such that min(n−,n+) ≤ 6.

-3- The answer is already known in the literature, see [185], and can be summarized
as follows. If the scalars in a supergravity parameterize a coset G/K, the kinetic
term is determined by the invariant metric on G/K. The invariant metric is
invariant and Riemannian only if K is the maximal compact subgroup of G.
Note that we cannot divide out the noncompact subgroup since the noncompact
part is not a subgroup. Hence the only coset G/K that does not give rise to
ghosts for the scalars is the coset where K is the maximal compact subgroup of
G.

-4- If no fluxes are present the isometry group of the internal manifold of a dimen-
sional reduction is a subgroup of the global symmetry group. This can be seen
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by performing a dimensional reduction of the isometries acting on the fields.
The gauge symmetries that are present in the higher-dimensional theory can
give rise to an enlarged symmetry group. For example, when a theory with
a two-form gauge field present is reduced over SU(2) the symmetry group is
enlarged from SU(2) to CSO(3, 0, 1).

When fluxes are taken into account, the full isometry group is in general no
longer a symmetry of the theory. In the general case the symmetry group is
smaller. A dimensional reduction with fluxes gives rise to a gauged supergravity,
in which the global symmetry group of the ungauged theory is broken to a
smaller local symmetry group.

-5- The last question is the hardest to answer. The fate of string/supergravity
theories is simply not known. The richness of the theories is so large that many
more years are needed to get an overview of the interplay between string theories
and supergravity theories and their solutions.

In the year 2007 the LHC will start looking for supersymmetry. If supersymme-
try is found, this will be a great triumph for string/supergravity theory and will
motivate more intensive research. If supersymmetry is not found, this still does
not mean supersymmetry does not exist since the energies above which super-
symmetry has to be seen, depend strongly on the models and scenarios that are
used. However, if supersymmetry is not found, superstrings and supergravities
will become a more outback area of physics, isolated from the other physical
disciplines. It does not mean that string/supergravity theories are useless, to
the contrary, we have learned much (theoretical) physics and mathematics while
investigating them.

We wish to conclude this final chapter by posing some questions for future research:

-a- Can dimensional reductions that are not Kaluza–Klein reductions, such as orb-
ifold reductions, give rise to parameters in a lower-dimensional theory that re-
semble the SU(1, 1)-angles?

-b- If one performs a toroidal reduction of a theory that has coset scalars, what
coset do the lower-dimensional scalars parameterize?

-c- Can statements be made about global properties of the scalar potential of N = 4
supergravity coupled to n vector multiplets, such as the existence of global or
local minima?

-d- Can the potential of N = 4 supergravity drive the present-day acceleration of
the universe?

-e- Can general solutions to the parameters ξαM and fαKLM of [146] that determine
the most general gauging of N = 4 supergravity be found?
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Some of these question may find an answer easily, others might never be answered.
And there are many other questions of course, but as always in science, posing the
right questions is harder than giving an answer to a given question.



Appendix A

Conventions

A.1 General Notation

[p] : the greatest integer smaller than p.
µ, ν, . . . : curved space-time indices; indices w.r.t. a coordinate basis.
α, β, . . . : curved indices for internal space, as used in dimensional reductions.
a, b, . . . : flat space-time indices; indices w.r.t. an orthonormal frame.
m,n, . . . : flat indices for internal space, as used in dimensional reductions.

X̂ : a higher-dimensional X, where X can be anything; fields, coordinates, indices.
X[abcd...] : antisymmetrization with weight one; X[a1...ap] = 1

p! (Xa1...ap
± other permutations).

δ
a1...ap

b1...bp
: antisymmetric Kronecker symbol; δ

a1...ap

b1...bp
= δa1

b1
· · · δap

bp
± other permutations

LX : the Lie derivative along the vector field X.

Einstein Convention

The Einstein convention is used throughout the text; any index that appears twice
in a expression is summed over if it appears once as upper index and once as a lower
index. Occasionally additional summation signs are used. An index that appears
twice as upper index or twice as lower index is not summed over unless otherwise
stated.

A.2 Differential Geometry Conventions

A manifold is generically denoted by M, its tangent space by TM and the dual
of a vector space V is denoted by V ∗. A (p, q)-tensor is a multilinear map from
TM× · · · × TM
︸ ︷︷ ︸

q times

to TM× · · · × TM
︸ ︷︷ ︸

p times

. Multilinearity means that if f1, . . . , fq are
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functions and X1, . . . ,Xq are vector fields and T is a (p, q)-tensor, then

T (f1X1, . . . , fqXq) = f1 . . . fqT (X1, . . . ,Xq) . (A.2.1)

Therefore the covariant derivative ∇ is not a tensor, but ∇∧∇ is.

A.2.1 Forms

For clearness we have tried to write down all ∧-symbols where this was possible
without making an unreadable format. The exterior derivative is written as d. If ω
is a p-form we sometimes make this explicit by writing ω(p). We use the following
conventions for forms:

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ , (A.2.2a)

ω(p) = 1
p!ωµ1...µp

dxµ1 ∧ . . . dxµp , (A.2.2b)

dω(p) = 1
p!∂νωµ1...µp

dxν ∧ dxµ1 ∧ . . . dxµp , (A.2.2c)

ω(p) ∧ χ(q) = υ(p+q) ⇒ υµ1...µp+q
= (p+q)!

p!q! ω[µ1...µp
χµp+1...µp+q ] . (A.2.2d)

We define a vector-valued p-form on M as an element of the tensor product of the
space of p-forms and a vector space V . Thus any vector-valued form Ω can be written
as Ω = va ⊗ ωa where ωa are forms on M and va are vectors in a vector space V .

A.2.2 Metric, Levi–Civitá and Hodge dual

The Minkowski metric ηab has signature (− + + + . . .). The Levi–Civitá object
is written ǫ̃µ1...µp

and takes values 0,±1. It is totally antisymmetric and we have
ǫ0123... = +1. The Levi–Civitá tensor is written ǫµ1...µp

and is defined using the
vielbeins ea

µ;

ǫµ1...µp
= ea1

µ1
· · · eap

µp
ǫ̃a1...ap

= det(ea
µ)ǫ̃µ1...µp

, (A.2.3)

and hence takes values 0,±det(ea
µ). The Levi–Civitá tensor transforms as a tensor

under general coordinate transformations and indices can be raised and lowered using
the metric gµν = ea

µe
b
νηab. When there is no relation with a space-time (for example

with groups) and no confusion is possible, the notation ǫabcd... is also used for the
Levi–Civitá symbol, which also goes under the name of completely antisymmetric
alternating symbol.

The Hodge dual of a p-form ω(p) on an n-dimensional space-time is an (n−p)-form
υ(n−p) defined by

υµ1...µn−p
= 1

p!ǫµ1...µn−p

ν1...νpων1...νp
, (A.2.4)

and denoted by ⋆ω(p).
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A.2.3 Convenient Formulae

δRµν
ab(ω) = Dµδων

ab − Dνδωµ
ab , (A.2.5a)

Dµ (eEµ
a ) = −eEµ

dE
ν
aτµν

d , (A.2.5b)

Dµ

(

eEµ
[aE

ν
b]

)

= −e
(

Eµ
dE

λ
[aE

ν
b] + 1

2E
ν
dE

µ
[aE

λ
b]

)

τµλ
d , (A.2.5c)

Dµ

(

eEµ
[aE

ν
bE

λ
c]

)

= −e
(

Eµ
dE

σ
[aE

ν
bE

λ
c] + 1

2E
ν
dE

µ
[aE

σ
b E

λ
c]

+ 1
2E

λ
dE

µ
[aE

ν
bE

σ
c]

)

τµσ
d , (A.2.5d)

⋆ω(p) ∧ ζ(p) = 1
p!

√−gωµ1...µp
ζµ1...µp , (A.2.5e)

1√−g
∂µ

(√−g V µ
)

= ∇µV
µ = ∂µV

µ + Γ µ
µνV

ν , (A.2.5f)

ǫµ1...µpλ1...λd−p
ǫµ1...µpν1...νd−p = − p!δ

ν1...νd−p

λ1...λd−p
, (A.2.5g)

LX(Y µ∂µ) = [X,Y ] = (Xν∂νY
µ − Y ν∂νX

µ)∂µ , (A.2.5h)

LX(ωµdxµ) = (Xν∂νωµX
ν∂µων)dxµ , (A.2.5i)

(LXg)µν = Xρ∂ρgµν +Xρ∂µgρν +Xρ∂νgµρ . (A.2.5j)

Weyl Rescalings

Weyl rescalings are rescalings of the metric. Under a rescaling of the metric gµν 7→
g′µν = e2αφgµν , where α is a number and φ is a space-time function, the Ricci scalar
transforms as R[g] 7→ R′[g′], where in d dimensions we have

R′[g′] = e−2αφ
(
R[g] − α2(d− 1)(d− 2)∂µφ∂

µφ− 2α(d− 1)�φ
)
. (A.2.6)

Note that
√−g′ = eαdφ.

A.3 Group Theoretical Conventions

In our conventions an inner product is always positive definite and nondegenerate,
whereas a metric is symmetric and nondegenerate and need not be positive definite.

If A : V → V is a linear transformation in a vector space V and 〈, 〉 denotes an
inner product, then the Hermitian conjugate of A, denoted A† is defined as 〈u,Av〉 =
〈A†u, v〉 for all u, v ∈ V . If we equip V with an orthonormal basis {ei}n

i=1 with
respect to which A has the components Aij , we have (A†)ij = A∗

ji. With respect to
the orthonormal basis we define the transpose of A, being the linear transformation
AT defined by (AT )ij = Aji. It is important to note that the Hermitian conjugate is
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defined with respect to an inner product whereas the transpose is defined with respect
to a basis.

Groups are denoted by Roman letters starting with a capital. The associated
Lie algebra uses the same letters but small and in Gothic style. We mention a few
important groups and their Lie algebras:

(1) GL(n; IR): The Lie group of all invertible real n× n-matrices. The Lie algebra
is denoted for gl(n; IR) and contains all n × n matrices. Similar for GL(n;C)
and gl(n;C).

(2) SL(n; IR): The subgroup of GL(n; IR) in which all n × n-matrices have unit
determinant. The Lie algebra is denoted sl(n; IR) and consists of all real traceless
n× n-matrices. Similar for SL(n;C) and sl(n,C).

(3) SO(p, q): The subgroup of GL(p+q; IR) where the matrices O satisfy OT ηp,qO =
ηp,q and detO = 1, where ηp,q is defined by:

(1p×p 0
0 −1q×q

)

. (A.3.1)

The Lie algebra is denoted by so(p, q) and consist of all real (p + q) × (p + q)-
matrices X satisfying XT ηp,q + ηp,qX = 0.

(4) U(n): The subgroup of GL(n;C) of which the elements preserve the standard
inner product on Cn: U ∈ U(n) ⇔ 〈Uv,Uw〉 = 〈v, w〉, ∀v, w ∈ Cn. This
implies U†U = UU† = 1. The Lie algebra of U(n) is denoted u(n) and consists
of the anti-Hermitian complex n× n matrices.

(5) The group SU(n) is a subgroup of U(n) where the matrices have unit deter-
minant. The Lie algebra is denoted su(n) and consists of the traceless anti-
Hermitian complex n× n matrices.

(6) The group Sp(n, IR) (Sp(n,C)) is the subgroup of GL(2n, IR) (GL(2n,C) re-
spectively) leaving the matrix Jn invariant, where:

Jn ≡
(

0 1n×n

−1n×n 0

)

. (A.3.2)

The group Sp(p, q) is the defined as

Sp(p, q) =
{
X ∈ Sp(p+ q,C)|X†Qp,qX = Qp,q

}
,

where Qp,q =

(
ηp,q 0
0 ηp,q

)

,
(A.3.3)

and can thus be seen as the cross section of Sp(p+ q,C) with U(2p, 2q).
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A.3.1 Pauli Matrices

The three standard Pauli matrices are denoted σi, i = 1, 2, 3 and are given by

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. (A.3.4)

They satisfy the fundamental relations

σiσj = δij1+ iǫijkσk , {σi, σj} = 2δij ,

[σi, σj ] = 2iǫijkσk , σ†
i = σi ,

Trσi = 0 , Trσiσj = 2δij .

(A.3.5)

A.3.2 Representations of su(4) and SU(4)

The Lie algebra su(4) is 15-dimensional, simple and corresponds in the Dynkin clas-
sification to A3. It is isomorphic to so(6), which corresponds to D3 in the Dynkin
classification.

The vector representation is carried by C4, the space of all four-dimensional com-
plex vectors. We equip C4 with the standard inner product 〈v, w〉 =

∑

i(v
i)∗wi. The

matrices A = (Ai
j) representing elements of su(4) satisfy

〈Av,w〉 + 〈v,Aw〉 = 0 ⇔ A† +A = 0 , TrA = 0 . (A.3.6)

The vector representation is the defining representation of su(4).
We use the following notation for complex vectors; the vector vi with index down

is obtained from vi by complex conjugation vi = (vi)∗. Note that from the point of
view of the vector representation, the vectors vi are co-vectors and are in the dual
space (C4)∗. For general su(4)-tensors we state that all upper indices go down and
all lower indices go up with complex conjugation; (Ai

j)∗ = Ai
j . The inner product

〈, 〉 can then be rewritten as 〈v, w〉 = viw
i and the requirement that a matrix A is

anti-Hermitian can be written as Ai
j = −Aj

i.
The vector representation, denoted 4, can be conjugated, i.e. one can view the

complex vectors vi as carriers of the representation. The conjugated representation
is denoted 4̄ and a matrix A = (Ai

j) in the 4 representation acts in the conjugated
representation as Ā : vi 7→ Ai

jvj . The representations 4 and 4̄ are not equivalent,
that is, there is no matrix U such that Ā = UAU−1.

By taking tensor products of the 4 and 4̄ representation and decomposing these
products into irreducible representations, one obtains all irreducible representations
of su(4). A way to do this is to use Young tableaus (see e.g. [186] for an introduction
to Young tableaus).

The vector representation 4 is in terms of Young tableaus represented by a single
box, whereas the 4̄ representation is represented by a column of 3 boxes. The tensor
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product of 4 and 4 can be shown to give: 4⊗4 = 6⊕10. The product of the vector and
co-vector representation should contain the adjoint, since the matrices A = (Ai

j) are
contained in this product, and indeed 4⊗ 4̄ = 1⊕15, and the 15 representation is the
adjoint representation. The singlet representation 1 in the decomposition corresponds
to the trace.

The 6 is a real representation, which means that it is equivalent to the conjugated
representation, 6̄ = 6. The vectors in this representation are antisymmetric rank two
tensors T ij = −T ji. If Ai

j denotes an anti-Hermitian traceless 4×4-matrix, then T ij

transforms as

T ij 7→ Ai
kT

kj +Aj
kT

ik = (Ai
kδ

j
l + δi

kA
j
l)T

kl . (A.3.7)

The representations of the group SU(4) can be obtained by exponentiating the
representations of the algebra su(4). The notation for the representations is the same,
which causes no misunderstandings since every representation of the Lie algebra can
be exponentiated to a representation of the Lie group and by going to the derived
representation one goes from any group representation to a Lie algebra representation.

The 6− representation of SU(4)

The fields φij as introduced in section 2.4.2 are in the 6− representation of SU(4).
We now explain what this means.

The matrices in the vector representation of SU(4) satisfy UU† = U†U = 1 and
have unit determinant. With our conventions on complex four vectors this can be
translated to

U i
jUk

j = δi
k , ǫijklU

i
aU

j
bU

k
cU

l
d = ǫabcd , (A.3.8)

where ǫabcd is the completely antisymmetric alternating symbol; ǫabcd = +(−)1 if abcd
is an even (respectively odd) permutation of 1234 and otherwise it is zero.

The transformation of an antisymmetric two tensor T ij in the 6 representation of
SU(4) reads:

T ij 7→ U i
kU

j
lT

kl , (A.3.9)

which is the exponentiated version of A.3.7 and in which U is a 4 × 4 SU(4) matrix.
The clue is that the representation 6 is a representation over the complex numbers;

one is allowed to build complex linear combinations of antisymmetric two-tensors. But
since the 6 representation is real, one can restrict to a real subspace by imposing a
suitable reality constraint, which is preserved under the SU(4) transformations. The
suitable constraint turns out to be self-duality or equivalently, anti-self-duality.

An antisymmetric two-tensor is called self-dual if

1
2ǫijklT

kl = Tij = (T ij)∗ , (A.3.10)
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and anti-self-dual if
1
2ǫijklT

kl = −Tij = −(T ij)∗ . (A.3.11)

The unimodularity (having unit determinant) of the 4×4 SU(4)-matrices ensure that
(anti-) self-duality is maintained under SU(4) transformations.

Since we have

T ij = 1
2

(
T ij + 1

2ǫ
ijklTkl

)
+ 1

2

(
T ij − 1

2ǫ
ijklTkl

)
, (A.3.12)

every antisymmetric two tensor can be written uniquely as the sum of an anti-self-dual
and a self-dual part.

The (anti-) self-dual two-tensors form a real vector space; taking real linear combi-
nations preserves the constraints A.3.11 and A.3.10. But if T ij is self-dual, then iT ij

is anti-self-dual, hence taking complex combinations destroys the duality properties.
With 6+ (6−) we denote the real vector space of all antisymmetric self-dual (anti-

self-dual) two-tensors contained in the 6 representation of SU(4). We can write:

6 = 6+ ⊕IR 6− , (A.3.13)

where the subscript IR reminds us of the fact that we are dealing with two real vector
spaces; we have written a complex vector space as a direct sum of two real vector
spaces.

Looking at A.3.13 one might feel suspicious since 6 + 6 = 12 6= 6, however this
is wrong counting. The representation 6 comprises a complex six-dimensional vector
space, which has real dimension 12, and both the representations 6± comprise a
six-dimensional real vector space.

For the representation 6− one can find a convenient basis in terms of ’t Hooft
symbols (Ga)ij = (Ga)ij∗. Since they are rank two tensors we can represent them by
matrices (but they are not!) and a convenient basis is:

(G1)ij =







0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0







ij

, (G2)ij =







0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0







ij

,

(G3)ij =







0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0







ij

, (G4)ij =







0 i 0 0
−i 0 0 0

0 0 0 i
0 0 −i 0







ij

,

(G5)ij =







0 0 i 0
0 0 0 −i

−i 0 0 0
0 i 0 0







ij

, (G6)ij =







0 0 0 i
0 0 i 0
0 −i 0 0

−i 0 0 0







ij

.

(A.3.14)
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The ’t Hooft symbols satisfy

(Ga)ij(Gb)
ij = 4δab , (A.3.15a)

(Ga)ik(Gb)
kj + (Gb)ik(Ga)kj = −2δj

i δab , (A.3.15b)

(Ga)im1
(Gb)

m1m2(Gc)m2m3
(Gd)m3m4(Ge)m4m5

(Gf )m5j = iδj
i ǫabcdef . (A.3.15c)

Since the ’t Hooft symbols form a complete basis, any element φij of 6− can uniquely
be written as φij =

∑

a Za(Ga)ij , with φij(Ga)ij = φij(Ga)ij = 4Za ∈ IR. Hence we
have the relations:

1
2

6∑

a=1

(Ga)ij(Ga)kl = δk
i δ

l
j − δk

j δ
l
i

1
2

6∑

a=1

(Ga)ij(Ga)kl = −ǫijkl.

(A.3.16)

If we write φij =
∑

a Za(Ga)ij then under a SU(4) transformation, the Za form
the components of a vector in the vector representation of SO(6) ∼= SU(4)/Z2.

Taking a look at equation A.3.15b one can already guess that there must be
a relation between the ’t Hooft symbols and the spinor representation of SO(6).
Introducing the matrices

Γa =

(
0 i(Ga)ij

i(Ga)ij 0

)

, (A.3.17)

which are seen to satisfy ΓaΓb + ΓbΓa = 2δab18×8, one concludes that the ’t Hooft
symbols provide us with an explicit representation of the spinor representation of
SO(6). In appendix C we mention more on the spinor representation of SO(6).



Appendix B

Some Lie Group and Lie

Algebra Theory

In this appendix we review some group theoretical aspects that are used throughout
the thesis. Since we cannot cover the whole subject of Lie groups and Lie algebras
in every detail we refer the reader to the existing vast amount of literature on finite-
group theory, Lie groups and Lie algebras. Though finite groups are little used in this
thesis, they are conceptually easier and more important, they share many properties
with Lie groups. For introductions in finite-group theory we refer to [186, 187]. For
introductions into Lie groups and Lie algebras we refer to [73, 188–190] and to the
appendices of many books on particle physics. Books on Lie groups and Lie algebras
that go a little beyond an introduction are for example [76,93,94,113,191,192].

B.1 Basic Definitions and Properties

A Lie group G is a smooth manifold that has a group structure; there is a product · :
G×G→ G, satisfying: (1) there is an identity element e ∈ G such that a ·e = e ·a = a
∀a ∈ G, (2) for every a ∈ G there is an element a−1 ∈ G such that a·a−1 = a−1 ·a = e,
(3) a · (b ·c) = (a ·b) ·c, ∀a, b, c ∈ G, (4) the product and the map a 7→ a−1 are smooth.
It is an easy exercise to deduce that the identity element is unique. The product
symbol · is often omitted.

A (Lie) subgroup H of G is a submanifold of G that is a group. Thus for all
a, b ∈ H ⊂ G we have ab ∈ H and a−1 ∈ H. In particular, every subgroup contains
the identity element.

A Lie group is abelian if ab = ba, ∀a, b ∈ G. Every abelian Lie group of dimension
n is diffeomorphic to IRp × Tn−p.
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A Lie group is compact if it is compact as a manifold. Compact groups are
special since one can integrate over them.

The tangent space of a group G at the identity element e can be identified with
the Lie algebra g of G but the Lie algebra also admits a more algebraic definition.
We use the algebraic approach to define Lie algebras. For the relation of a group to
its Lie algebra we refer to the literature mentioned in the beginning of this appendix.

Although a Lie algebra need not be finite-dimensional, we restrict to the finite-
dimensional Lie algebras. For an introduction into infinite-dimensional Lie algebras
see e.g. [193]. A finite-dimensional Lie algebra g is a finite-dimensional vector space
over a field IK (we only consider IK = Q, IR or C) with a bilinear product [, ] : g×g →
g satisfying: (1) [a, a] = 0, ∀a ∈ g, (2) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0. From (1)
follows [a, b] = −[b, a]. Note that the product [, ] is non-associative due to the identity
(2), which is called the Jacobi identity. If for the field IK we take IK = IR (IK = C)
the Lie algebra is called a real (complex) Lie algebra. An example of a real Lie algebra
is gl(N, IR), the set of all N ×N matrices with real entries equipped with the product
[a, b] = ab− ba, where ab denotes the ordinary matrix product of a and b. The reader
not familiar with Lie algebras is encouraged to check the following statements for the
Lie algebra gl(N, IR).

A (Lie) subalgebra h of g is a vector subspace of g that is a Lie algebra; we have
[h, h] ⊂ h. For example, the real upper triangular N ×N -matrices form a subalgebra
gl(N, IR)+ of gl(N, IR).

An ideal i of g is a subalgebra of g satisfying [i, g] ⊂ i. If i is an ideal in g we can
form the coset Lie algebra g/i and every element in g/i is of the form a + i where
a ∈ g. The coset Lie algebra g/i is indeed a Lie algebra;

[x+ i, y + i] = [x, y] + i , ∀x, y ∈ g . (B.1.1)

If x′ = x+ i1, y
′ = y + i2 with i1, i2 ∈ i we have [x′ + i, y′ + i] = [x′, y′] + i = [x, y] + i

so that the product is well defined.
The derived subalgebra g′ of a Lie algebra g is the subalgebra g′ = [g, g]. It is

easy to check that g′ is a subalgebra and an ideal.
The center of a Lie algebra g is the subalgebra of all elements that commute

with every other element and is denoted Z(g). If k and h are subalgebras of g, the
centralizer of k in h consists of those elements of h that commute with every element
of k and is denoted Zh(k).

A Lie group is reductive if the Lie algebra g is such that for every ideal a there
exists another ideal b such that g = a ⊕ b. This implies that for a reductive group
the Lie algebra is of the form g = [g, g] ⊕ Z(g) [94]. It is proved in section 3.4.2 that
every compact group is reductive.

A Lie algebra g is abelian if the derived subalgebra vanishes; [g, g] = 0. The
Lie algebra of an abelian Lie group is an abelian Lie algebra and vice versa. An
abelian subalgebra is called a torus and the largest abelian subalgebra is called a
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maximal torus. This definition is sensible since the Lie algebra is assumed to be
finite-dimensional and since one can prove that two different maximal tori are related
by an isomorphism.

As remarked before, the tangent space of a group at the identity can be identified
with the Lie algebra. For matrix Lie groups, the Lie algebra is obtained by differenti-
ating the Lie group elements with respect to the coordinates on the Lie group. From
the Lie algebra one obtains the Lie group elements in a neighborhood of the origin, i.e.
the identity, by exponentiation, which is a well-defined operation for matrices (when
one restricts to a neighborhood sufficiently close to the identity). If we choose an
element x ∈ g, then the abelian subgroup X of G given by X = {exp(tx)|t ∈ I ⊂ IR},
where I is that interval on which exp(tx) is well defined, is clearly connected. It
follows that exponentiating the Lie algebra elements defines a map from the Lie al-
gebra to the component of G that is connected to the identity, called the identity

component and denoted G0.

Let g0 = g and for k > 0 put gk+1 = [gk, gk]. The series
{
g0, g1, . . .

}
is a series of

ideals. If for finite n the series terminates, that is gn = 0, then the Lie algebra g is
solvable. For example, the Lie algebra gl(N, IR)+ is solvable.

We define the following series of ideals of a Lie algebra g: {g0, g1, . . .} by g0 = g

and if k > 0, gk+1 = [g, gk]. The reader is warned that we now use lower indices
instead of the upper indices used to define solvable Lie algebras; gk 6= gk in general.
If the series {gk}k≥0 terminates for a finite n the Lie algebra g is said to be nilpotent.

A Lie algebra g is called simple if it is nonabelian and the only ideals are g and
the trivial subalgebra {0}. Since g′ is an ideal we have g′ = g if g is simple.

A Lie algebra is semisimple if it contains no solvable ideals. Every semisimple Lie
algebra g is the direct sum of simple subalgebras: g = g1 ⊕ . . .⊕ gk and [gi, gj ] = 0 if
i 6= j and g′j = gj , hence g′ = g. In particular, every simple Lie algebra is semisimple.

A derivation on a Lie algebra is a linear map D : g → g satisfying D([a, b]) =
[D(a), b] + [a,D(b)] ∀a, b ∈ g. The set of all derivations on g can be made into a Lie
algebra by defining [D1,D2] = D1 ◦ D2 − D2 ◦ D1 and this Lie algebra is denoted
Der(g). For any a ∈ g we can define a derivation called the adjoint of a by defining
ada : b 7→ [a, b]. The adjoint maps form a Lie algebra, ada◦adb−adb◦ada = ad([a, b]).
All derivations that can be written as the adjoint map of an element of g are called
inner derivations. For semisimple Lie algebras all derivations are inner derivations. A
derivation that is not inner is called outer.

The Cartan–Killing form B : g×g → C is defined as B(x, y) = trad(adx◦ady).
It is a theorem due to Cartan that the Cartan–Killing form is nondegenerate if and
only if the Lie algebra is semisimple. Note that a bilinear form B is nondegenerate if
and only if from B(u, x) = 0, ∀x ∈ g, it follows that u = 0. The Cartan–Killing form
is an invariant bilinear form on g; B([a, b], c) +B(b, [a, c]) = 0.

If the Cartan–Killing form is (strictly) negative definite a Lie algebra is called
compact. Thus only semisimple Lie algebras can be compact. The Lie group gener-
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ated by a compact Lie algebra is compact, but not vice versa.
A Lie algebra homomorphism, or just short homomorphism, from a Lie algebra

g to a Lie algebra k is a linear map φ : g → k such that φ([a, b]) = [φ(a), φ(b)], ∀a, b ∈ g.
If i is an ideal in g then the projection π : g → g/i, which maps a ∈ g to a + i, is a
homomorphism. If a homomorphism is one-to-one it is called an isomorphism. If an
isomorphism maps g to g itself it is called an automorphism.

It is often useful to think of a Lie algebra as a set of matrices satisfying some
commutation relations. The rigorous justification is due to Ado’s Theorem, which
states that every finite-dimensional Lie algebra is isomorphic to a Lie algebra of
matrices. In other words, every finite-dimensional Lie algebra over the field IK is a
subalgebra of gl(N, IK) for some N .

The Lie group G has a natural action on its Lie algebra g, called the Adjoint

action (written with capital A). For g ∈ G we write Adg : x 7→ Adg(x) x ∈ g and the
linear map Adg is an automorphism. For matrix groups A ∈ G acts on the matrix
b ∈ g as AdA : b 7→ AbA−1, i.e. by conjugation. Due to Ado’s theorem we can
always denote the Adjoint action of the group on its Lie algebra by a conjugation:
Adg(x) = U(g)xU(g)−1 for a matrix U(g) associated with the Adjoint action of g ∈ G.
Hence the map Adg is a Lie algebra homomorphism for every g ∈ G.

B.2 Representations

A representation of a Lie algebra g is a pair (ρ, V ) consisting of a vector space
V , often called the module or g-module, and a homomorphism ρ : g → End(V),
where End(V) denotes the Lie algebra of all linear maps from V to V with product
[a, b] = a ◦ b − b ◦ a, a, b ∈ End(V). A similar definition holds for a representation
of a Lie group, but then End(V) has to be replaced by GL(V ), the Lie group of
all nonsingular matrices acting on V . In the remainder we are most concerned with
Lie algebra representations but most results and definitions have a straightforward
analogue for Lie group representations.

A representation is called faithful if the homomorphism ρ : g → End(V) has
a trivial kernel; ρ(x) = 0 ⇔ x = 0. Ado’s Theorem equivalently states that every
finite-dimensional Lie algebra admits a finite-dimensional faithful representation.

A representation (ρ, V ) is reducible if there is a nontrivial proper subspace W ⊂
V such that ρ(g)W ⊂W ; W is called an invariant subspace. A representation (ρ, V )
is fully reducible if for any invariant subspace W there is an invariant subspace
W ′ such that V = W ⊕W ′. A representation (ρ, V ) is irreducible if there is no
proper nontrivial invariant subspace. Hence if (ρ, V ) is an irreducible representation
and x ∈ V is a nonzero vector, then x + ρ(g)x = V as vector spaces, i.e. the whole
module can be obtained from one single vector. For semisimple Lie algebras every
finite-dimensional representation is fully reducible. If ρ is a representation of g then
Kerρ is an ideal, and hence for simple g either the representation is trivial or faithful.
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Irreducible representations are often not denoted as a pair, but just with either ρ
or with V . In mathematical literature one often denotes an irreducible representation
with the homomorphism ρ, whereas in physics literature one uses the vector space V .

Important examples of representations are given by ad : g → Endg and Ad :
G → GL(g), where the first is a Lie algebra representation and the second is a
representation of the Lie group G associated with the Lie algebra g. If g is simple,
these representations are irreducible and faithful.

If ρ is a representation of a connected Lie group G with Lie algebra g we define
the derived representation dρ of g as follows:

g ∈ G, g = expX ⇒ ρ(g) = exp dρ(X) . (B.2.1)

The dimensions of the modules associated with ρ and dρ are the same. The derived
representation can thus be obtained by ‘differentiating’ the representation ρ.

Two representations (ρ, V ) and (ρ′, V ′) of a Lie algebra g are equivalent if there
is a nonsingular map S : V → V ′ such that ρ′(x) = Sρ(x)S−1 for all x ∈ g. Schur’s

Lemma consists of two parts; the first part states that if for two irreducible represen-
tations (ρ, V ) and (ρ′, V ′) there exists a map T : V → V ′ such that T ◦ρ(x) = ρ′(x)◦T
for all x ∈ g, then either T ≡ 0 or T is nonsingular and the representations are equiv-
alent. The second part states that if for an irreducible representation (ρ, V ) there
exist a matrix C that commutes with all representing matrices ρ(x), x ∈ g, then C is
a multiple of the identity.

If (ρ, V ) and (ρ′, V ′) are two representations of the Lie algebra g, then the tensor

product (ρ⊗ρ′, V ⊗V ′) of the two representations is defined by the following action
of a Lie algebra element x ∈ g on an element v ⊗ w of V ⊗ V ′:

(ρ⊗ ρ′)(x)(v⊗w) = ρ(x)v⊗w+ v⊗ ρ′(x)w = (ρ(x)⊗1+1⊗ ρ′(x))(v⊗w) (B.2.2)

One checks that B.2.2 indeed defines a representation.
If (ρ,V ) is a representation of g then the trace in V is an invariant form on g by

the cyclic property of the trace. We now prove the claim made in section 4.5.1 that
up to multiplicative constant, there is only one invariant metric on a complex simple
Lie algebra.

Suppose ρ is an irreducible complex representation of g with module V . Then we
define the representation ρ̃ of g in the dual space V ∗ of V by

∀x ∈ g, ω ∈ V ∗, v ∈ V : (ρ̃(x)ω)(v) = −ω(ρ(x)v) . (B.2.3)

This defines a representation and furthermore, ρ̃ is an irreducible representation.
Suppose that B is any bilinear form on V . The bilinear form induces a map

from V to V ∗, denoted β by: if v, w ∈ V then βv(w) = B(v, w). B is invariant if
B(ρ(x)v, w) = −B(v, ρ(x)w) for all v, w ∈ V and x ∈ g. If B is invariant, we have
the identity

(β ◦ ρ(x))(v) = (ρ(x) ◦ β)(v) . (B.2.4)
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Hence any invariant bilinear form B induces an intertwining map from V to V ∗. By
Schurs’ lemma either B ≡ 0 or there exists a basis of elements e1, e2, . . . in V such
that B(ei, ej) = δij .

When we consider the adjoint representation it follows that for simple complex
Lie algebras there is up to a multiplicative constant just one single invariant metric
that can be put into diagonal form with eigenvalues +1. (QED)

From the claim one can prove that for a semisimple complex Lie algebra g consist-
ing of n simple ideals, the space of invariant forms on g is n-dimensional; the trace in
any representation is completely fixed by giving n proportionality factors.

B.3 Classification of Complex Simple Lie Algebras

To understand the classification of real simple Lie algebras in section B.4 it is useful
to understand the classification of complex simple Lie algebras. We therefore briefly
review the classification of complex simple Lie algebras.

Let B be a subalgebra of the complex Lie algebra g. The normalizer of B,
denoted N(B) is the subalgebra of g containing all elements x ∈ g satisfying [x,B] ⊂
B. A subalgebra h is called a Cartan subalgebra of g if (1) h is nilpotent and (2) h is
self-normalizing; N(h) = h. Up to isomorphism there is just one Cartan subalgebra.

If g is semisimple the Cartan subalgebra h coincides with the maximal torus in g.
The Cartan–Killing form is nondegenerate on h× h. The dimension of h is called the
rank of the Lie algebra and we generically denote it by r.

Since the elements of h commute, it is possible to simultaneously diagonalize the
elements of adh and to decompose the Lie algebra into the eigenspaces. Reading off an
eigenvalue corresponding to a particular eigenvector gives rise to a linear functional
on h. We now formalize the idea; a nonzero linear functional α on h is a root if the
subspace gα defined by

gα = {x ∈ g|[h, x] = α(h)x} (B.3.1)

is nonzero. The roots form a subset ∆ of the dual h∗ of the Cartan subalgebra. The
eigenspace decomposition reads:

g = h ⊕
⊕

α∈∆

gα . (B.3.2)

The decomposition B.3.2 is called a root-decomposition.
The set ∆ is called a root system and it has the following properties

(1) The roots in ∆ span the whole of h∗.

(2) If α ∈ ∆ then −α ∈ ∆.

(3) The root system ∆ is reduced; if α ∈ ∆ the only multiples of α in ∆ are 0 and
±α
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(4) α ≡ 0 ⇔ gα = h.

(5) If α, β and α+ β are roots, then [gα, gβ ] ⊂ gα+β . If α, β are roots but α+ β is
no root, then [gα, gβ ] = 0.

(6) The eigenspaces gα for α 6= 0 are one-dimensional.

(7) If α, β ∈ ∆ and α+ β 6= 0, then the Cartan–Killing form vanishes on gα × gβ .

Since the roots span the space h∗ and the Cartan–Killing form is nondegenerate
on h there is for every α ∈ ∆ a unique element hα ∈ h such that for all k ∈ h

α(k) = B(k, hα) . (B.3.3)

Thus there is a one-to-one relation with the roots and the elements of the Cartan
subalgebra, which we use to give ∆ a symmetric bilinear form 〈, 〉:

α, β ∈ ∆ : 〈α, β〉 = B(hα, hβ) . (B.3.4)

Since 〈, 〉 is not positive definite, it does not define an inner product. Later we will
make it into an inner product on a real subspace of h.

Using a fixed basis {h1, . . . , hr} in h we can introduce an ordering in ∆. We call
a root α positive if the first nonzero number in the series α(h1), . . . , α(hr) is greater
than zero. The set of positive roots is called ∆+. A root is either positive or negative.
A root is called simple if it is positive and it is not the sum of two other positive roots.
The set of simple roots is called Π. The number of simple roots equals the rank of
the Lie algebra. We denote the simple roots by αi for i = 1, . . . , r; Π = {α1, . . . , αr}.
For the set of simple roots one can prove

(1) The simple roots αi are linearly independent and span h∗.

(2) For αi, αj ∈ Π: 〈αi, αj〉 ≤ 0.

(3) If αi and αj are simple roots, then αi − αj is no root.

(4) Every positive root is a sum of simple roots with nonnegative integer coefficients:
α ∈ ∆+; α =

∑

i niαi with ni nonnegative integers.

(5) We define the real subspace h∗
0 by h∗

0 = ⊕r
i=1IRαi, i.e. h∗

0 is the real vector
space spanned by the simple root vectors. The bilinear symmetric form 〈, 〉 on
∆ restricts to a positive definite real symmetric bilinear form on h∗

0 and hence
defines an inner product on h∗

0. Thus the simple root vectors span a real vector
space with the Euclidean inner product 〈, 〉.
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Let us now fix a nonzero root α ∈ ∆. Then there exist eα ∈ gα, fα ∈ g−α and
hα ∈ h such that

[eα, fα] = hα , [hα, eα] = 2eα , [hα, fα] = −2fα . (B.3.5)

The Lie algebra spanned by the elements eα, fα, hα is isomorphic to sl(2,C) ∼= su(2)C
for which all representations are known and treated in most quantum mechanics
textbooks. Now let us fix a second root β and consider the string of roots Sαβ ≡
{β + kα|k = 0,±1,±2, . . . ;β + kα ∈ ∆}. Since we assumed g to be finite, the string
is finite and the root space {gγ |γ ∈ Sαβ} associated with the string Sαβ forms a repre-
sentation of sl(2,C). Analyzing these strings for the simple roots and the associated
sl(2,C)-representations gives the structure of the simple complex Lie algebras.

The Cartan matrix Aij is defined as follows:

Aij = 2
〈αi, αj〉
〈αj , αj〉

. (B.3.6)

One can deduce the following properties of the Cartan matrix1:

(1) Aii = 2 and if i 6= j Aij ≤ 0.

(2) Aij is an integer, and if i 6= j then Aij = 0,−1,−2,−3.

(3) The determinant of Aij is positive; detAij > 0.

(4) We can introduce Lie algebra elements ei, fi and hi for every simple root αi

such that:

[hi, hj ] = 0 , [hi, ej ] = Ajiej , no sum,

[ei, fj ] = δijhi , [hi, fj ] = −Ajifj , no sum.
(B.3.7)

(5) From the Cartan matrix one can deduce all commutation relations and from the
elements [ei1 [. . . [eip−1

, eip
] . . .]] for p ≥ 1 one obtains all positive root generators

of the Lie algebra g. Similarly every negative root generator can be written as
a linear sum of the elements [fi1 [. . . [fip−1

, fip
] . . .]] for p ≥ 1.

The classification of complex simple Lie algebras is thus complete if one can classify
all Cartan matrices or equivalently all simple root systems Π. An elegant way of doing
this and presenting the result is by using Dynkin diagrams. A Dynkin diagram is
constructed by using for every simple root a ‘blob’ that is connected by a number of
lines. The number of lines between blob i and j equals AijAji and thus the number

1It is here that one uses the properties of the sl(2,C)-representations
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of lines is minimally 0 if 〈αi, αj〉 = 0 and maximally 3. If AijAji > 1 the simple roots
αi and αj have different lengths;

〈αi, αi〉
〈αj , αj〉

=
Aji

Aij
, (B.3.8)

and in these cases an arrow is drawn on the lines connecting blob i and j pointing in
the direction of the longer root.

From the properties of the Cartan matrix one deduces rules for a Dynkin diagram
to be a valid Dynkin diagram. Using these rules one can pictorially classify all complex
simple Lie algebras by classifying all valid Dynkin diagrams. We do not give the rules
but display the result in table B.3.1.

There are four infinite series of Lie algebras; (1) the An-series, which consists of
the sl(n− 1,C)-algebras, (2) the Bn-series consisting of the so(2n+ 1)C-algebras, (3)
the Cn-series comprising the sp(n,C)-algebras and the (4) Dn-series, which consists
of the so(2n)C-algebras. But besides the four ‘classical Lie algebras’ there are five
exceptional algebras; g2, f4, e6, e7, e8. This finishes our discussion on the classification
of complex simple Lie algebras.

Table B.3.1: Dynkin Diagrams of the Complex Simple Lie Algebras

Dynkin Diagram Name

α1 α2 αr−1 αr
Ar: sl(r − 1,C) ∼= su(r − 1,C)

α1 α2 αr−1 αr
Br: so(2r + 1)C

α1 α2 αr−1 αr
Cr: sp(r,C)

α1 αl−2

αl−1

αl

Dr: so(2r)C
Continued on next page
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Table B.3.1: continued

Dynkin Diagram Name

e6

e7

e8

f4

g2

B.4 Classification of Real Simple Lie Algebras

We now discuss the classification of real simple Lie algebras. The classification of real
simple Lie algebras is used in chapter 3. We do not prove the statements and refer
to [94,113] for the proofs.

A real form of a complex semisimple Lie algebra gc is a real semisimple Lie
algebra g such that gc

∼= (gc)IR ≡ g ⊕IR ig, where the subscript IR on the ⊕-sign
indicates that the direct sum is a direct sum of real vector spaces and hence only real
combinations of the two summands can be taken. A nice way to think of a real form
of a complex Lie algebra is by comparing it with a real line in C; every line through
the origin in C defines a real vector subspace and there are an infinite number of such
subspaces all related by rotation. For Lie algebras there are an infinite number of
real forms, but if we count two real forms that are isomorphic as one, there are only
a finite number of real forms for every complex semisimple Lie algebra.
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If g is a real simple Lie algebra, then for the complexification gc there are two
options: (1) gc = s ⊕ s where s is a simple complex Lie algebra, (2) gc is simple
as a complex Lie algebra. An example of the first option is provided by so(1, 3);
so(1, 3)C = so(3)C⊕so(3)C. On the other hand, if gc is a complex simple Lie algebra,
then every real form is a simple real Lie algebra. Therefore classifying all real forms
of simple complex Lie algebras gives a classification of all simple real Lie algebras.

Having written gc as a real Lie algebra gr = (gc)IR we see that gr admits an involu-
tive (i.e. squaring to one) automorphism that in gc acts as complex conjugation. This
motivates the introduction of a more general and abstract involutive automorphism
called the Cartan involution. A Cartan involution of a real semisimple Lie algebra
g is an involutive automorphism θ : g → g such that the bilinear form Bθ defined by
Bθ(x, y) ≡ −B(x, θy), is positive definite, where B(, ) is the Cartan–Killing form.

The bilinear form Bθ is symmetric and that the adjoint of adX with respect to
Bθ is given by −adθX;

Bθ(adX(Y ), Z) = Bθ(Y, (adX)†(Z)) ⇔ (adX)† = −adθX . (B.4.1)

Since θ is involutive, the Lie algebra splits into a positive eigenspace k, and a
negative eigenspace p, such that θ|k = +1, θp = −1 and g = k ⊕ p. Since θ is a
homomorphism, θ introduces a Z2-grading in g:

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (B.4.2)

The eigenspace k is thus a Lie subalgebra on which the Cartan–Killing form is negative
definite. From equations B.4.2 it follows that the Cartan–Killing form vanishes on
k × p and hence is nondegenerate when restricted to either p or k.

With every real form g we can associate a coset G/K by taking G to be the simply
connected group G with Lie algebra g and K to be the maximal compact subgroup
of G with Lie algebra k. The coset G/K is a symmetric space and the tangent space
at any point is isomorphic to p. The inner product Bθ gives G/K a Riemannian
structure.

The action of the Cartan involution can be extended to the group G. Let g ∈ G,
then g = expX for some (unique) X ∈ g and write X = log g. Then the generalized

transpose of g is denoted g# and defined by

g# = exp(−θ log g) . (B.4.3)

When restricted to the subgroup K, the action of # is the same as inverting; if k ∈ K
then k#k = kk# = e. The push-forward of # is −θ.

The elements of adp are Hermitian linear operators with respect to Bθ. Hence g

admits an eigenspace decomposition with respect to a maximal torus a in p similar
to the root space decomposition of a complex Lie algebra with respect to its Cartan
subalgebra. The elements of a are called the noncompact Cartan generators. For µ in
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a∗ we define the subspace gµ = {x ∈ g|[A, x] = µ(A)x,∀A ∈ a} and a nonzero element
µ of a∗ for which gµ is nonzero is called a restricted root. The set of restricted roots
is denoted Σ. The eigenspace decomposition of g with respect to a reads:

g = g0 ⊕
⊕

λ∈Σ

gλ , g0 = a ⊕ Zk(a) , (B.4.4)

where Zk(a) denotes the centralizer of a in k, i.e. the set of all elements k that commute
with a.

The restricted roots have some properties that are similar to those of the roots of
the complex simple Lie algebras:

(1) The restricted roots in Σ span a subspace of h∗.

(2) µ ∈ Σ ⇔ −µ ∈ Σ.

(3) If µ, ν and µ+ ν are restricted roots, then [gµ, gν ] ⊂ gµ+ν . If µ, ν are restricted
roots but µ+ ν is no restricted root, then [gµ, gν ] = 0.

(4) If µ is a restricted root then the only multiples of µ that can also be restricted
roots are ±2µ, ±1µ and ± 1

2µ, but if 2µ is a restricted root, then 1
2µ is not a

restricted root and vice versa.

(5) If µ, ν ∈ ∆ and µ− ν 6= 0, then the inner product Bθ vanishes on gµ × gν .

(6) The inner product Bθ vanishes on a × Zk(a) and is nondegenerate on a.

(7) The dimension of the root space gµ, called the multiplicity of µ, can exceed 1;
m(µ) ≡ dim gµ ≥ 1.

Although the properties are similar, important differences occur; especially properties
(4) and (7) are important differences.

Since Bθ and B are nondegenerate on a there exists for every µ ∈ Σ a unique
nonzero Aµ ∈ a such that B(Aµ, A) = µ(A) for all A ∈ a. Hence we can define an
inner product on Σ through 〈µ, ν〉 = B(Aµ, Aν).

The set of restricted roots can be given an ordering > in a similar way as the roots
of a complex simple Lie algebra. The set of positive restricted roots with respect to
this ordering is denoted Σ+. A restricted root is simple if it is positive and it is not
the sum of two other positive restricted roots. We denote the set of simple restricted
roots by Σ0. If we denote l = dim a then there are l simple restricted roots λi that
span a∗. For the simple restricted roots one can define the integer-valued Cartan

matrix Aij = 2
〈λi,λj〉
〈λj ,λj〉 and draw a Dynkin diagram in an analogous way as for the

simple roots of a simple complex Lie algebra.
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We define n =
⊕

µ∈Σ+ gµ. The subalgebra n is nilpotent and the subalgebra a⊕ n

is solvable. The Iwasawa decomposition of a real simple Lie algebra reads:

g = k ⊕ a ⊕ n. (B.4.5)

The Iwasawa decomposition provides us with a parametrization of the coset G/K
through G/K ∼= exp a exp n. Due to this parametrization the dilatonic coupling vec-
tors of section 3.3.2 are identified with the positive restricted roots.

The simple real Lie algebras can be classified using the above concepts plus some
other material, which is not needed to understand the text in this thesis and which
is therefore omitted in this appendix. To characterize a real form uniquely we need
to specify the Dynkin diagram for Σ0 (or equivalently the Cartan matrix) and the
multiplicities m(λi) and m(2λi) for all simple restricted roots λi ∈ Σ0. In table B.4.1
we present the Dynkin diagrams of the set of simple restricted roots for all possible
simple real algebras g that are not of the form g̃ ⊕IR ig̃ and give the associated
maximally noncompact coset G/K, where G is the simply connected real Lie group
with Lie algebra g and K is the maximal compact subgroup of G with Lie algebra k.
Table B.4.1 is of use for recognizing the coset structure of the scalars in dimensionally
reduced supergravity theories as explained in section 3.3.2.

The multiplicities m(λi) and m(2λi) for the simple restricted roots are presented
in table B.4.2 for the simple real Lie algebras. The labelling of the simple restricted
roots as in table B.4.1 is also used in table B.4.2. The number r is the rank of the
complexified Lie algebra.

Table B.4.1: Restricted root diagrams and associated cosets G/K.

Restricted Root Diagram Type

λ1 λ2 λr−1 λr
AI :SL(n; IR)/SO(n)

l = r = n − 1

λ2 λ4 λ2l−2 λ2l
AII :SU∗(2n)/Sp(n)

l = 2r − l = n − 1

λ1 λ2 λr−1 λr

AIII :SU(p, q)/S(Up × Uq)

l = min(p, q), r = p + q − 1

If 2 ≤ l ≤ r/2

Continued on next page
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Table B.4.1: continued

Restricted Root Diagram Type

λ1 λ2 λr−1 λr
If r = 2l − 1

λ1
AIV :SU(n, 1)/SU(n)

l = r + 1 = n

λ1 λl
BI : SO(p,q)

SO(p)×SO(q)
; p + q odd

2 ≤ l = min(p, q) ≤ r

λ1
BII :SO(2p, 1)/SO(2p)

l = 1, r = p

λ1 λ2 λr−1 λr
CI :Sp(n, IR)/U(n)

l = r = n

λ2 λ4 λ2l

CII : Sp(p,q)
Sp(p)×Sp(q)

l = min(p, q)

If 1 ≤ l ≤ 1
2
(r − l)

λ2 λ4 λ2l If 2 ≤ l = r/2

λ1 λ2 λr−1 λr

DI : SO(p,q)
SO(p)×SO(q)

, p + q even

l = min(p, q);

If 2 ≤ l ≤ r − 2

Continued on next page



B.4 Classification of Real Simple Lie Algebras 139

Table B.4.1: continued

Restricted Root Diagram Type

λ1 λ2 λr−1 λr
If r = l + 1.

λ1 λl−2

λl−1

λl

If r = l.

λ1
DII :SO(2r−1,1)

SO(2r−1)
, r 6= 3

l = 1

λ2 λ4 λ2l

DIII :SO∗(2n)
U(n)

l = [n/2]

If r = 2l

λ2 λ4 λ2l If r = 2l + 1

EI :E6(6)/Sp(4).

l = r = 6

λ2 λ4 λ3 λ1
EII :

E6(2)

SU(6)×SU(2)
.

l = 4

λ2 λ1
EIII :

E6(−14)

SO(10)×U(1)
.

l = 2

Continued on next page
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Table B.4.1: continued

Restricted Root Diagram Type

λ1 λ6
EIV :

E6(−24)

F4
.

l = 2

EV :E7(7)/SU(8).

l = r = 7

λ1 λ3 λ4 λ6
EVI :

E7(−5)

SO(12)×SU(2)
.

l = 4

λ1 λ6 λ7
EVII :

E7(−25)

E6×U(1)
.

l = 3

EVIII :E8(8)/SO(16).

l = r = 8

λ8 λ7 λ6 λ1
EIX :

E8(−24)

E7×SU(2)
.

l = 4

FI :
F4(4)

Sp(3)×SU(2)
.

r = l = 4

λ1
FII :F4(−20)/SO(9).

l = 1

Continued on next page



B.4 Classification of Real Simple Lie Algebras 141

Table B.4.1: continued

Restricted Root Diagram Type

G:
G2(2)

SU(2)×SU(2)
.

l = r = 2

Table B.4.2: Multiplicities of the restricted simple roots

Type mλi
m2λi

AI ∀i 1 0
AII ∀i 4 0
AIII ; 2 ≤ l ≤ r

2 i < l 2 0
i = l 2(r − 2l + 1) 1

AIII ; r = 2l − 1 i < l 2 0
i = l 1 0

AIV 2(r − 1) 1
BI i < l 1 0

i = l 2(r − l) + 1 0
BII ∀i 2r − 1 0
CI ∀i 1 0
CII ; 1 ≤ l ≤ 1

2 (r − 1) i < 2l 4 0
i = 2l 4(r − 2l) 3

CII ; 2 ≤ l = 1
2r i < 2l 4 0

i = 2l 3 0
DI ; 2 ≤ l ≤ r − 2 i < l 1 0

i = l 2(r − l) 0
DI ; l = r − 1 i < l 1 0

i = l 2 0
DI ; l = r ∀i 1 0
DII ∀i 1 0
DIII ; r = 2l i < 2l 4 0

i = 2l 1 0
DIII ; r = 2l + 1 i < 2l 4 1
EI ∀i 1 0
EII i = 2, 4 1 0

i = 1, 3 2 0
EIII i = 1 8 1

i = 2 6 0
Continued on next page
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Table B.4.2: continued

Type mλ m2λ

EIV ∀i 8 0
EV ∀i 1 0
EVI i = 1, 3 1 0

i = 2, 4 4 0
EVII i = 1, 6 8 0

i = 7 1 0
EVIII ∀i 1 0
EIX i = 1, 6 8 0

i = 7, 8 1 0
FI ∀i 1 0
FII ∀i 8 7
GI ∀i 1 0

B.5 Elements of Geometry on Compact Lie Groups

In this section we briefly review some differential geometry on semisimple compact
Lie groups that is used in section 3.4. Some concepts are already explained in the
thesis and hence are not repeated here or only briefly. We prove little and the reader
interested in the proofs is referred to the literature [5,6,8,113,118]. In the end of this
section when we discuss cohomological properties of compact Lie groups, we give a few
easy and (hopefully) insightful examples for the reader not familiar with cohomology
on compact Lie groups.

A group acts on itself in two ways; by left multiplication La : g 7→ ag for
a, g ∈ G and right multiplication Ra : g 7→ ga for a, g ∈ G. A vector field X is
left-invariant if (La∗X)ag = Xag and right-invariant if (Ra∗X)ag = Xag, where
La∗ (Ra∗) is the push-forward of La (Ra) and Xp denotes the vector field X at p.

The tangent space of the identity TGe is isomorphic to the Lie algebra of G, which
we denote by g. Let us fix a basis of vectors t1, . . . , tn for TGe. We define for each ta
a vector field τa by putting (τa)x = Lx∗ta for any x ∈ G. The vector fields τa are left-
invariant. On the other hand, a left-invariant vector field is completely determined
by its value at the identity. Hence the left-invariant vector fields are in one-to-one
correspondence with the Lie algebra.

The Lie bracket between two left-invariant forms is again left-invariant, which
implies that there should be constants Cab

c such that

[τa, τb] = Cab
cτc . (B.5.1)

A left-invariant p-form ω(p) satisfies L∗
gω

(p)
ga = ω

(p)
a where L∗

g is the pull-back of
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Lg. Suppose we define a basis {s1, . . . , sn} of g∗ such that si(tj) = δi
j . But TG∗

e
∼= g∗

and hence we can identify with every sa a one-form at the identity (σa)0. For any
other g ∈ G we define (σa)g = Lg−1∗(σa)0 and hence the σa are globally defined left-
invariant one-forms dual to the left-invariant vector fields τb satisfying σa(τb) = δa

b .
They satisfy the Maurer–Cartan equation

dσa + 1
2Cbc

aσb ∧ σc = 0 . (B.5.2)

The algebra of left-invariant forms is finite-dimensional and generated by the left-
invariant one-forms over IR; every left-invariant p-form ω(p) can be written as ω(p) =

ω
(p)
a1...apσ

a1 ∧ . . . ∧ σap where the ω
(p)
a1...ap are real constants.

A left-invariant metric g on G satisfies g(Lh∗X,Lh∗Y )|ha = g(X,Y )|a for all
vector fields X,Y and all h, a ∈ G. If we take any positive-definite metric η on
g ∼= TGe, the metric η can be extended to a left-invariant metric g on G by putting:

g = ηabσ
a ⊗ σb, ηab = η(ta, tb) . (B.5.3)

A similar discussion holds for a right-invariant metric and if G is simple, the only
left-invariant metric that is also right-invariant is the one where the metric η is pro-
portional to the Cartan–Killing metric of g.

A left-invariant (right-invariant) vector-field translates right-translations (left-trans-
lations). Under an infinitesimal left-translation a field Φ varies as δΦ = LXΦ, where
LX denotes the Lie derivative along X and X = ǫaXa is a right-invariant vector field.
Hence an alternative way of stating left-invariance is that the Lie derivative along a
right-invariant vector field vanishes. Since left-multiplication and right-multiplication
commute, the commutator of a left-invariant vector field with a right-invariant vector
field vanishes. This is consistent with the invariance of the vector fields, since the
variation under an infinitesimal left-translation of a left-invariant vector field XL is
given by 0 = δXL = LYR

(XL) = [YR,XL] for a right-invariant vector field YR.
On a compact Lie group there is up to multiplicative constant a unique bi-invariant

integration measure µ:
∫

G

dµ(x)f(ax) =

∫

G

dµ(x)f(xa) =

∫

G

dµ(x)f(x) . (B.5.4)

The measure µ is called the Haar measure. Since µ′ = σ1∧. . .∧σn, where n = dimG,
is a left-invariant form of maximal rank we can take µ′ to be the integration measure.
If we define µ = µ′/

∫

G
σ1 ∧ . . . ∧ σn then the volume of G is normalized to 1 with

respect to the measure µ.
If the Lie group G is equipped with the bi-invariant metric we have for any p-form

on G:
Lg∗ ⋆ ω

(p) = ⋆Lg∗ω
(p) . (B.5.5)

Hence if ω is left-invariant then also ⋆ω.
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A form ω is closed if dω = 0 and exact if there is a form λ such that ω = dλ.
Any exact form is also closed.

We call Λp the space of all p-forms on G and Λ = ⊕n
p=0Λp the exterior algebra

with product ∧. Every Λp is a vector space. Within each Λp we define two subspaces:
Ωp is the subspace of all closed p-forms and Zp is the space of all exact p-forms. We
have Zp ⊂ Ωp since d2 = 0.

We define an equivalence relation ∼ in Ωp by ω ∼ η if ω − η = dλ with λ ∈ Λp−1;
i.e. two closed p-forms are equivalent if they differ an exact p-form. The vector space
obtained by dividing out this equivalence relation is called the pth cohomology

class and denoted Hp;

Hp ≡ Ωp

Zp
. (B.5.6)

We define the cohomology algebra H by H = ⊕n
p=0H

p and equip H with the
product ∧.

The pth Betti number is the dimension of the real vector space Hp and is
denoted bp; bp = dimIRH

p. The Betti numbers are so-called topological invariants2.
If one changes the manifold M in a smooth way - that is, no cutting and pasting
allowed - then the Betti numbers stay the same. As an example, a tea cup has the
same Betti numbers as a donut, since one can deform a tea cup in a continuous way
to a donut. But a solid sphere cannot be deformed in a continuous way into a donut,
since to get the ear of the cup we need to pinch a hole in the solid sphere.

From the Betti numbers one calculates the Euler characteristic:

χ =

n∑

r=0

(−1)rbr . (B.5.7)

The Euler characteristic is also a topological invariant.
Due to a theorem of Hopf and Poincaré the Euler characteristic of a compact

manifold vanishes if there exists a nowhere vanishing vector field. Since a compact
Lie group admits a set of nowhere vanishing vector fields by means of the left-invariant
vector fields τa (they are nowhere vanishing because the duals σb exist) it has vanishing
Euler characteristic.

On a compact n-dimensional manifold the rth and (n − r)th Betti numbers are
related by Poincaré duality: br = bn−r. Thus odd-dimensional compact manifolds
always have vanishing Euler characteristic.

If a compact Lie group G is connected we have b0 = bn = 1. A zero-form with van-
ishing exterior derivative is given by a constant, but if the manifold is not connected,
then on every connected piece the constant may take different values.

The theorem of Chevalley and Eilenberg states that in calculating the Betti
numbers on a compact Lie group one can restrict to the left-invariant forms. That is,

2Note that we are using a broad definition of geometry; geometry in our sense also includes
topological aspects.
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the cohomology algebra of Λ(G), which is infinite-dimensional, gives the same Betti
numbers as the cohomology algebra generated by the left-invariant forms, which is
finite-dimensional.

As an example, we calculate the Betti numbers of SU(2). We choose a basis
{t1, t2, t3} of su(2) such that the structure constants are given by [ta, tb] = ǫabctc.
Since SU(2) is connected we have b0 = b3 = 1. To obtain b1 we take a left-invariant
one-form ω = ωaσ

a with constant ωa. Demanding that it is closed gives: ωaǫabc = 0,
from which it follows that ωa = 0 and hence Ω1 = 0 and thus b2 = b1 = 0.

As another example we extend this result and show that on any compact semi-
simple Lie group the first Betti number always vanishes. Suppose ω = ωaσ

a is closed,
then ωaCbc

a = 0 for all b, c. It follows that ω, seen as a linear functional on the Lie
algebra g, vanishes on the derived algebra [g, g]. But for semisimple Lie groups the
derived algebra coincides with the Lie algebra: g = [g, g] and hence ωa = 0 and hence
Ω1 = 0. Hence b1 = bn−1 = 0.

To calculate the Betti numbers of the Cartesian product of two compact manifolds
M and N one uses the Künneth formula:

bk(M ×N) =
∑

p+q=k

bp(M)bq(N) . (B.5.8)

As an example, we calculate the Betti numbers of an n-torus Tn, which is the
Cartesian product of n circles. The Betti numbers of a circle are easily found using
Poincaré duality and connectedness of S1: b0 = b1 = 1. Hence we find

bk(Tn) =
∑

m1+...+mn=k;mi=0,1

1 =

(
n

k

)

. (B.5.9)

Every compact group is reductive (a proof is given in section 3.4.2) and hence the
Lie algebra is of the form: g = [g, g] ⊕ Z(g) where Z(g) is the center. The center
corresponds precisely to the toroidal directions of G; exp g ∼= U(1)dim Z(g)×exp([g, g]).
Using this it is not too hard to prove that for a compact group G we have b1 =
dimZ(g).

From the Künneth formula it follows that the Euler characteristic of the product
of two compact manifolds is simply the product of the Betti numbers:

∑

k=0

(−1)kbk(M ×N) =
∑

k

∑

p+q=k

(−1)p+qbp(M)bq(N) = χ(M)χ(N) . (B.5.10)

Since the Euler characteristic of a circle vanishes (b0 − b1 = 1 − 1 = 0), the Euler
characteristic of an n-torus vanishes. This is in agreement with the fact that an n-
torus is isomorphic to the compact Lie group U(1)n, which admits n nowhere vanishing
left-invariant vector fields.





Appendix C

Spinors and Clifford Algebras

In this appendix we give a short summary on general spinor representations and give
a few specific properties of spinors of SO(1, 9), SO(1, 3) and SO(6) together with the
conventions we used for spinors and Γ-matrices. This appendix is based on [33, 45].
Some finite-group theory is used; the reader not familiar with the theory of finite
groups is referred to the literature, e.g. [186,187].

C.1 General Spinor Representations

In essence, spinors are nothing more than the vectors in specific representations of the
Lie algebras so(p, q) or, equivalently, of the Lie groups SO(p, q). These representations
are called spinor representations and they cannot be obtained from tensor products
of the fundamental representation. The fields that are described by spinors are called
fermions. To obtain spinor representations we first construct representations of the
Clifford algebra, from which we can extract the spinor representations.

C.1.1 Clifford Algebra Representations

In a flat space-time1 with signature (t, s), where s ( t ) denotes the number of positive
(negative) eigenvalues of the metric ηab, the Clifford algebra is an algebra generated
by d = s+ t objects Γa, called generators, with the multiplication rule:

ΓaΓb + ΓbΓa = 2ηab . (C.1.1)

We restrict ourselves first to space-times with signature (0, s+ t), since multiplying t
generators Γa’s by i we obtain a Clifford algebra for signature (t, s).

1We first develop the theory for flat space-times and later make the link with curved space-times.



148 Spinors and Clifford Algebras

A (complex) representation of the Clifford algebra is provided once we have a
(complex) matrix representation for every generator Γa such that C.1.1 is satisfied.
By multiplying these matrices the whole representation is generated.

In a first step we build a finite group from the generators, since then we can
apply the well-known representation theory of finite groups. To this end, we first
introduce some notation: Γa1...ap

is zero unless the ai are all different and in then
Γa1...ap

= Γa1
· · ·Γap

2. The generators Γa generate the finite group Cd with elements:

Cd = {±1,±Γµ,±Γµ1µ2
, . . . ,±Γµ1...µd

} . (C.1.2)

The product between two elements of Cd is again in Cd and is completely determined
by the relation C.1.1. The number of elements in Cd, called the order of Cd and
denoted #Cd, is given by

#Cd = 2

d∑

p=0

(
d

p

)

= 2d+1 . (C.1.3)

Before we go into more detail we need to choose whether d is even or odd.

d Even

The number of inequivalent irreducible representations of a finite group equals the
number of conjugacy classes. For even d the conjugacy classes of Cd are found to be

[+1], [−1], [Γa], [Γa1a2
], . . . , [Γa1...ad

] , (C.1.4)

giving 2d + 1 inequivalent irreducible representations of Cd.

Now we prove the following lemma (it is little proved in the literature, hence we
provide a simple proof).

Lemma C.1.1. The number of inequivalent irreducible one-dimensional representa-
tions of a finite groupG is given by the orderG divided by the order of the commutator
subgroup Com(G), which is by definition generated by the elements aba−1b−1, for all
a, b ∈ G.

Proof. Since gaba−1b−1g−1 = gag−1gbg−1(gag−1)−1(gbg−1)−1 the commutator sub-
group is a self-conjugate subgroup: gCom(G)g−1 = Com(G), ∀g ∈ G. Hence
G/Com(G) is a group. The elements of G/Com(G) are the equivalence classes defined
in G by g ∼ h if and only if there is a ∈ Com(G) such that g = ah.

2It is sometimes convenient to think of Γaa...ap as the antisymmetrized product, but then we
need to sum products, which is not defined in a group.
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Take two elements x, y ∈ G/Com(G): xy ∼ xyy−1x−1yx ∼ yx and henceG/Com(G)
is an abelian group. Hence all irreducible representations are one-dimensional3. Since
G/Com(G) is abelian, the number of conjugacy classes in G/Com(G) equals the order
ofG/Com(G). Therefore there are #(G/Com(G)) = #G/#Com(G) one-dimensional
inequivalent irreducible representations of G/Com(G). The lemma is thus proved if
we have proved that there is a one-to-one correspondence between the irreducible
representations of G/Com(G) and the one-dimensional irreducible representations of
G.

Let ρ be an irreducible representation of G/Com(G). Then it is one-dimensional
and we can extend it to an irreducible one-dimensional representation of G (it is
irreducible since it is one-dimensional) if we put ρ = 1 on Com(G). But if we
have a one-dimensional irreducible representation σ of G then automatically we have
σ(aba−1b−1) = 1. Thus σ = 1 on Com(G) and σ is an irreducible representation of
G/Com(G).

For Cd we have Com(Cd) = {−1,+1} and thus there is precisely one irreducible
representation of Cd that is not one-dimensional and we denote it ρs(Cd). For spinor
representations we do not need the one-dimensional representations and hence we
discard them.

To get the dimension n of ρs(Cd) we use that for a finite group G we have #G =
∑

ρ(nρ)2, where nρ is the dimension of the representation ρ and the sum is over all
inequivalent irreducible representations. For Cd we have

2d+1 = 2d · 12 + n2 ⇒ n = 2(d/2) . (C.1.5)

As an aside, for d = 2 one finds n = 2 and the representation is generated by two
out of the three Pauli matrices. The reader is motivated to check the statements of
section C.1.2 for this Clifford algebra.

d Odd

The conjugacy classes are now given by:

[+1], [−1], [Γa], . . . , [Γa1...ad−1
], [Γa1...ad

], [−Γa1...ad
] . (C.1.6)

Hence there are 2d + 2 irreducible inequivalent representations. We have Com(Cd) =
{−1,+1} and hence there are 2 inequivalent irreducible representations of dimension
greater than one. The element Γ12···d commutes with every other element and accord-
ing to Schur’s lemma is diagonal, so we write Γ12···d = c1 and we have Γ12···d−1 = cΓd,

3The reader is warned that this statement follows from Schurs’ Lemma, which only holds for
complex representations.
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which can be squared to give:

(Γ12···d−1)2 = (−1)
d(d−1)

2 = (−1)
d−1
2 = c2 . (C.1.7)

The second equality follows since d is odd. Hence if d = 1(mod4) we have c = ±1 and
if d = 3(mod4) we have c = ±i. The two choices correspond to the two inequivalent
irreducible representations of dimension greater than one. So, in odd dimensions, the
last matrix Γd is given by a multiple of the product of the others, which form a Clifford
algebra for d′ = d − 1, which is even. Hence the Clifford algebra representations are
obtained from the unique Clifford algebra in one dimension lower and hence the

dimension of the representation is n = 2
d−1
2 . So for any dimension (odd or even) we

have n = 2[
d
2 ].

C.1.2 Properties of Clifford Algebra Representations

We now briefly turn to some special properties of the Clifford algebra representations
while focussing on the case d even, since the case d odd is quickly recovered from the
Clifford algebra representation of one dimension lower. We focus on zero (t = 0) and
one (t = 1) time-like directions, i.e. on space-time signatures (0, d) and (1, d − 1),
since these are of special interest to us. For t = 1 the direction a = 1 correspond to
the time-like direction, hence (Γ1)2 = −1.

For a finite group every representation is equivalent to a unitary representation
and hence we may assume the Γ-matrices to be unitary. From relation C.1.1 we have:

Γ†
a = Γa , t = 0 ,

Γ†
a = Γ1ΓaΓ1 , t = 1 .

(C.1.8)

The matrices4 ΓT
a and −ΓT

a also represent the Clifford algebra and hence by
uniqueness of the representation ρs(Cd) there should be matrices C± such that

ΓT
a = C+ΓaC

−1
+ , −ΓT

a = C−ΓaC
−1
− . (C.1.9)

The matrices C± are called charge conjugation matrices5.
The matrices C± have symmetry and unitarity properties that are independent of

a choice of basis and using a particular basis one can show (see e.g. [45]):

CT
± = (−1)

d(d∓2)
8 C± , C†

±C± = 1 . (C.1.10)

Using equation C.1.10 one can obtain the symmetry properties of CΓa1...ap

6.

4The matrix representing Γa are also denoted Γa to avoid clumsy notation.
5The choice of name is not very satisfactory. See also [45].
6The Γ-matrices itself have no definite symmetry properties.
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The matrices ±Γ∗
a also represent the Clifford algebra and hence by uniqueness of

the representation ρs(Cd) there should be matrices B± such that

Γ∗
a = B+ΓaB

−1
+ , −Γ∗

a = B−ΓaB
−1
− . (C.1.11)

Since Γ∗
a = (Γ†)T we have:

ΓaC
−1
± B± = C−1

± B±Γa , t = 0 ,

B−1
∓ (C±Γ1)

T
Γa = ΓaB

−1
∓ (C±Γ1)

T
, t = 1 .

(C.1.12)

Using Schur’s lemma we see that C−1
± B± and B−1

∓ (C±Γ1)
T

must be diagonal for
t = 0 respectively t = 1. Since B± is defined up to a phase, we can choose:

B± = C± , t = 0 ,

BT
± = C∓Γ1 , t = 1 .

(C.1.13)

Since C± and Γ1 are unitary, so are B±. From the unitarity of B± and the above
equations one concludes:

B±B
∗
± = (−1)

d(d∓2)
8 1 , t = 0 ,

B±B
∗
± = ∓(−1)

d(d±2)
8 1 , t = 1 .

(C.1.14)

The chirality matrix is important for the discussion on spinor representations. In
d dimensions the chirality matrix is denoted Γd+1 and defined by:

Γd+1 = (−i)
d
2 Γ1 · · ·Γd , t = 0 ,

Γd+1 = (−i)
d+2
2 Γ1 · · ·Γd , t = 1 .

(C.1.15)

In odd dimensions Γd+1 is proportional to the identity. But in even dimensions it
has the important properties that it (1) is Hermitian Γ†

d+1 = Γd+1, (2) squares to
one (Γd+1)2 = 1 - so it is also unitary - (3) anticommutes with all generators of the
Clifford algebra; ΓµΓd+1 = −Γd+1Γµ.

We conclude this section on the properties of the Clifford algebra by discussing
the Clifford algebra in curved space-times. The Γ-matrices Γµ for a curved space-
time are obtained from the Minkowskian Γ-matrices Γa by contracting with vielbeins:
Γµ = ea

µΓa. The curved index µ on Γµ can be raised with the inverse metric gµν . The
matrices Γµ1...µp

thus transform as tensors under general coordinate transformations.
The Minkowskian Γ-matrices Γa transform under local Lorentz transformations, but
how we discuss in the next section.
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C.1.3 Introducing the Spinors

Given a representation of the Clifford algebra in d dimensions, we can form the 1
2d(d−

1) elements Σab = 1
2Γab, which satisfy

[Σab,Σcd] = ΣabΣcd − ΣcdΣab = ηbcΣad + ηadΣbc − ηacΣbd − ηbdΣac . (C.1.16)

Hence the elements Σab form a representation of the Lie algebra so(d) if t = 0 or
so(1, d − 1) if t = 1. This representation might be reducible so we investigate how
reducible this representation is and split this representation into irreducibles. The
‘vectors’ in these (irreducible) representations are called (irreducible) spinors and one
can prove that no tensor product of any number of vector representations of so(d) or
so(1, d) gives a spinor representation. Even more, one can prove that by taking tensor
products of the vector and spinor representations, one obtains all representations of
the Lie algebra so(d) or so(1, d− 1) (see e.g. [76]).

There are two conditions to be imposed on a spinor to render irreducibility. The
first condition is a chirality condition while the second condition is a reality condition.

We first discuss how to obtain the irreducible spinors by applying the above men-
tioned conditions and then discuss some properties of spinors and their bilinears.
Again it is assumed that d is even and we only make a few statements about odd d.

Chiral Fermions

The matrix Γd+1 commutes with all generators Σµν and hence the spinors can be
decomposed into eigenspinors of Γd+1. Since Γd+1 squares to one its eigenvalues
are ±1 and we can form the projection operators P± = 1

2 (1 ± Γd+1). The spinor
space V splits into two subspaces V± of equal dimension and with zero intersection;
V = V+ ⊕ V− and Γd+1|V±

= ±1.
If a fermion satisfies Γd+1ψ = ψ we call it a fermion of positive chirality and if

Γd+1ψ = −ψ we call it a fermion of negative chirality.
In odd dimensions the matrix Γd+1 is a multiple of the identity and thus every

spinor has the same chirality.
A chiral fermion - i.e. a fermion of definite chirality - has to be massless. This

can be seen as follows. The Dirac equation for a spin 1/2 spinor ψ with mass m is

(Γµg
µν∂ν −m1)ψ = 0 . (C.1.17)

Acting on equation C.1.17 with Γd+1 and using {Γµ,Γd+1} = 0 gives

(Γµg
µν∂ν +m1)ψ = 0 , (C.1.18)

and hence mψ = 0, which can only be satisfied for a nontrivial fermion if m = 0.
Chiral fermions (spinors) are also called Weyl fermions (spinors).
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Majorana Fermions

The spinor representations are by construction complex (since we used Schurs’ Lemma
to obtain the representations of the group Cd). Let us investigate the possibility to
obtain real representations. We look for a condition of the form ψ∗ = Lψ for some
matrix L. We now prove that L should be a multiple of B±.

The condition ψ∗ = Lψ should be invariant under the transformations ψ 7→ Γµνψ,
which implies that B−1

± L commutes with all the Γµν . However, the Γµν do not
generate the whole group Cd (for even d) and we cannot use Schurs’ Lemma directly.
But the Γµν generate the Lie subalgebra so(1, d − 1) for t = 1 and so(d) for t = 0.
Hence we can use Schurs’ Lemma applied to the spinor representation and acting on
irreducible spinors the matrix B−1

± L should render scalar multiplication: B−1
± Lψ =

αψ for a complex number α. This proves the claim and so we put

ψ∗ = αB±ψ . (C.1.19)

Demanding ψ∗∗ = ψ gives |α|2B±B∗
± = 1 and hence using C.1.14 we have |α| = 1

and B±B∗
± = 1. This thus puts restrictions on the choice of B± and even on space-

time dimensions and signatures. For example, if d = 4 and t = 0 we have B±B∗
± = −1

and no reality condition can be imposed on the spinors.

If it is possible to impose C.1.19 the spinor space V splits into two real subspaces.
A spinor satisfying ψ∗ = αB+ψ is called a Majorana spinor and the field it describes
is a Majorana fermion and likewise, the spinors satisfying ψ∗ = αB−ψ are called
pseudo-Majorana spinors and they describe pseudo-Majorana fermions.

A pseudo-Majorana fermion is necessarily massless since taking the complex con-
jugate of C.1.17 we obtain:

0 =
(
−B−Γµ∂

µB−1
− −m1)B−ψ = −B− (Γµ∂

µ +m1)ψ . (C.1.20)

Hence mψ = 0 and for nontrivial ψ this implies m = 0.

Now let us comment on the complex number α. Its value can be fixed using
physical arguments; one can fix α by demanding that the action is Hermitian or that
the supersymmetry algebra gives rise to a positive definite Hamiltonian. In this thesis
we mainly deal with Minkowskian signatures and α can be fixed to be +i following
the discussion in Appendix A of [45].

In odd dimensions one uses the representation of the Clifford algebra of one di-
mension less. The last Γ-matrix is given by Γd = cΓ012...d−1, where c is determined
up to a sign by (Γd)2 = 1 and thus depends on t and d. But we have either c = ±i or
c = ±1. Using Γ∗

d = c∗B±Γ012...d−1B
−1
± one sees that in odd dimension we can either

work with B+ if c = ±1 or with B− if c = ±i.
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Majorana–Weyl Spinors

Sometimes it is possible to impose both a reality condition and a chirality condition.
Hence we require ψ = P±ψ and ψ∗ = αB±ψ. Consistency requires B±P± = (P±)∗B±.
Using C.1.15 and the fact that we are working with d even, we obtain

Γ∗
d+1 = (−1)

d
2B±Γd+1B

−1
± , t = 0 ,

Γ∗
d+1 = (−1)

d+2
2 B±Γd+1B

−1
± , t = 1 .

(C.1.21)

We see that the chirality condition and the reality condition can only imposed simul-
taneously if d/2 is even for t = 0 and if d+2

2 for t = 1, but the reality constraint
(B±B∗

± = 1) and chirality constraint (d even) still have to be satisfied too. A spinor
that is both (pseudo-) Majorana and Weyl, is called a Majorana–Weyl spinor.

When Majorana–Weyl spinors exist, both B+ and B− can be used to impose the
reality condition C.1.19. One can show that the choice of B± can be traded for the
choice of B∓ by simply redefining α (see e.g. [45]).

Dirac and Majorana Conjugates

In space-times with signature t = 1, the most interesting for our purposes, one defines
the Dirac conjugate ψ̄D of a spinor ψ by

ψ̄D ≡ ψ†Γ1α
−1 . (C.1.22)

The Majorana conjugate ψ̄M is defined as

ψ̄M = ψTC± . (C.1.23)

Hence the reality condition C.1.19 can be rephrased as ψ̄M = ψ̄D.

Counting Degrees of Freedom

We now show briefly how the count on-shell degrees of freedom for fermions in space-
times with signature t = 1. As usual, to count degrees of freedom we ignore any
interactions and consider a freely moving particle.

Suppose ψ describes a spin 1/2 fermion and ψ satisfies the massless Dirac equa-
tion: Γµ∂

µψ = 0. We choose a frame in which the particle has momentum kµ =
(E,E, 0, . . . , 0), which is a null-vector; k2 = 0. In momentum-space the Dirac equa-
tion reads −EΓ1(1− Γ1Γ2)ψ = 0. But 1

2 (1− Γ1Γ2) is a projection operator and we
have 1 = 1

2 (1−Γ1Γ2) + 1
2 (1+ Γ1Γ2) so that the equation of motion projects out half

of the off-shell degrees of freedom for a massless fermion.
Now consider a massive spin 1/2 fermion λ satisfying (Γµ∂

µ − m1)λ = 0. We
can go to the rest frame in which the momentum reads kµ = (m, 0, . . . , 0). The
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Dimension c(d) pM,M,W,MW
2 0 MW
4 2 M or W
6 4 W
8 8 pM or W
10 8 MW
12 32 M or W

Table C.1.1: Properties of spin 1/2 fermions in even space-times with signature t = 1. The

on-shell degrees of freedom are called c(d) and pM , M , W and MW mean pseudo-Majorana,

Majorana, Weyl and Majorana–Weyl respectively.

Dirac equation in momentum-space reads (imΓ1 −m1)λ = 0. Again we recognize in
1
2 (1− iΓ1) a projection operator that precisely splits the spinor space in two parts of
equal size since 1 = 1

2 (1− iΓ1) + 1
2 (1+ iΓ1). Hence also the massive Dirac equation

projects out half of the off-shell degrees of freedom.
Now we need to know the off-shell degrees of freedom for a spin 1/2 fermion.

But this is just the number of independent real components of a spinor. Since the
representation ρs(Cd) of the Clifford algebra for even d is of complex dimension 2d/2,
an unconstrained spinor has 2 ·2d/2 real components. A Weyl fermion and a (pseudo-
)Majorana fermion thus have 2d/2 real components for even d. A Majorana–Weyl
fermion thus has 1

22d/2 real components. For even d we present the on-shell degrees
of freedom, denoted c(d), in table C.1.3.

Local Lorentz Transformations

The local Lorentz transformations are already described briefly in section 2.1.2. We
now provide some extra details.

We fix t = 1, take a = 1 to be the time-like direction and we take for the space-like
directions the indices i, j, k, . . . to run from 2 to d. For the collective of tangent space
indices we take the indices a, b, . . . running from 1 to d. The Σ1i are Hermitian while
the Σij are anti-Hermitian.

A fermion ψ transforms under infinitesimal local Lorentz transformation as

δψ = ωabΣabψ , (C.1.24)

where ωab = −ωba parameterize the local Lorentz transformations and can depend
on the space-time coordinates.

The Dirac conjugate transforms as

δψ̄D = −ψ̄Dω
abΣab . (C.1.25)
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Hence ψ̄Dχ is Lorentz-invariant.
The Γ-matrices are linear transformations in the spinor space and hence if we ro-

tate the spinors ψ 7→ Uψ the Γ-matrices should transform as matrices: Γa 7→ UΓaU
−1.

But the Γ-matrices Γa are not just matrices; they also transform as co-vectors under
local Lorentz transformations. Hence under an infinitesimal local Lorentz transfor-
mation with parameters ωab the Γ-matrices should transform both as a matrix and
as a co-vector, that is, as follows

δΓa = ωcd (Jcd)
a

bΓ
b + ωcdΣcdΓa − Γaω

cdΣcd , (C.1.26)

where the Jcd are the matrices in the vector representation of so(1, d−1) as defined in
section 2.1.2: (Σcd)a

b = δa
c ηdb − δa

dηbc. Using this explicit expression and the identity
ΓabΓc = Γabc − ηbcΓa + ηacΓb the above expression for the variation of the matrix Γa

vanishes; δΓa = 0.
From the transformation rules of the spinors and the Γ-matrices under local

Lorentz transformations we see that the bilinear ψ̄DΓa1...ap
b1...bq

χ transforms as a
(p, q)-tensor under local Lorentz transformations.

The group generated by the Σab is not the group SO(1, d − 1) but its double
cover, which is called Spin(1, d − 1). More generally, for space-time signatures (t, s)
the generators Σab generate the double cover of SO(t, s), which is called Spin(t, s).

Grassmann Numbers

Fermions are fields that describe particles with half-integer spin. Fermions should
obey Pauli statistics and this implies that the components of a fermion should be
Grassmann numbers, i.e. anticommuting numbers. Writing spinorial indices down,
we thus have ψαχβ = −χβψα.

Taking Hermitian conjugates of products of Grassmann numbers a and b is defined
by (ab)† = b†a†, whereas complex conjugation is defined by (ab)∗ = a∗b∗.

For Majorana fermions one writes ψ̄ = ψ̄D and we have:

ψ̄Γµ1...µp
χ =

∑

α,β

ψα

(
C±Γµ1...µp

)

αβ
χβ . (C.1.27)

Using C.1.10 we obtain

(
C±Γµ1...µp

)T
= (±1)p(−1)

p(p−1)
2 (−1)

d(d∓2)
8 C±Γµ1...µp

, (C.1.28)

from which it follows that

ψC±Γµ1...µp
χ = −(±1)p(−1)

p(p−1)
2 (−1)

d(d∓2)
8 χC±Γµ1...µp

ψ . (C.1.29)

The extra minus sign is due to the Grassmanian nature of the spinors. Equation
C.1.29 implies that, in a given dimension and for a fixed choice of C±, for some values
of p the bilinears ψ̄Γµ1...µp

ψ vanish when using Majorana fermions.
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Fierz Rearrangements

Given the nontrivial representation ρs(Cd) of the Clifford algebra, the set of matrices

{1,Γµ,Γµ1µ2
, . . . ,Γµ1...µd

} (C.1.30)

form a set of 2d matrices that are linearly independent and form a basis for the set
of complex 2d/2 × 2d/2-matrices. Let us prove this claim.

First we observe that TrΓµ = −TrC−ΓC−1
− = −TrΓ and thus TrΓµ = 0. Using

the cyclic property of the trace we see that TrΓµ1...µp
vanishes for even p ≥ 2;

TrΓµ1...µp
= TrΓµ2...µpµ1

= (−1)p−1TrΓµ1...µp
. (C.1.31)

Now take p odd and use TrX = TrXT for any matrix X to obtain:

TrΓµ1...µp
= (−1)pTrC−Γµp...µp

C−1
− = −TrΓµp...µ1

, (C.1.32a)

TrΓµ1...µp
= TrC+Γµp...µ1

C−1
+ = TrΓµp...µp

. (C.1.32b)

But we should have C.1.32a=C.1.32b and thus TrΓµ1...µp
= 0 for all p > 0. Hence we

have the identity

TrΓµ1...µp
Γν1...νq = (−1)[

p
2 ]δp,qδ

ν1...νq
µ1...µp

Tr1 . (C.1.33)

Where we used (−1)
p(p−1)

2 = (−1)[
p
2 ]. The identity C.1.33 implies that all Γµ1...µp

are linearly independent; if
∑
cµ1...µp

Γµ1...µp
has to vanish then by taking trace with

Γν1...νq
the coefficient cν1...ν1

has to vanish and hence all coefficients cµ1...µp
vanish.

Since there are 2d of the matrices Γµ1...µp
they form a complete basis for the 2d/2×2d/2-

matrices.

The bilinear ψχ̄ is a linear transformation mapping a spinor λ to the spinor (χ̄λ)ψ
and hence is a matrix and can thus be expanded in terms of the Γµ1...µp

where the
coefficients are found by taking appropriate traces. If we write

ψχ̄ =
∑

cµ1...µpΓµ1...µp
, (C.1.34)

we have

cµ1...µp =
1

2d/2

(−1)[p/2]

p!
Tr(ψχ̄Γµ1...µp) = − 1

2d/2

(−1)[p/2]

p!
χ̄Γµ1...µpψ . (C.1.35)

An equation of this kind is called a Fierz rearrangement or a Fierz identity.
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C.2 Spinor Representation of so(1, 3)

In Minkowski space-times it is often conventional to let the space-time indices run
from 0 to d− 1 and to take µ = 0 to be the time-like direction.

From the previous section we obtain: B±B∗
± = ±1CT

± = −C± and no Majorana–
Weyl fermions exist. One can choose which charge conjugation matrix to work with.
When discussing four-dimensional supergravities we have chosen to work with C−
and with B+ = (−C−Γ0)T = −C−Γ0. Often the suffixes + and − have then been
dropped.

The matrices CΓµ1...µp
are symmetric for p = 1, 2 and antisymmetric for p = 0, 3, 4.

Hence for Majorana fermions ψ, χ we have the following swop identities:

ψ̄Γµ1...µp
χ = (−1)

[
p+1
2

]

χ̄Γµ1...µp
ψ . (C.2.1)

The chirality matrix Γ5 = iΓ0123 satisfies: ΓT
5 = CΓ5C

−1 and Γ∗
5 = CΓ5C

−1.
Hence Γ5 is indeed Hermitian.

An explicit representation is found by putting:

Γ0 = iσ1 ⊗ 1 , Γ1 = σ2 ⊗ 1 ,
Γ3 = σ3 ⊗ σ1 , Γ4 = σ3 ⊗ σ2 ,

(C.2.2)

where the σi are the standard Pauli matrices and 1 is the 2 × 2 unit matrix. In this
representation we have Γ5 = σ3 ⊗ σ3, which is given explicitly by

Γ5 =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1






. (C.2.3)

Since Γ5 is diagonal, this basis is sometimes called a chiral representation.
There exists a real representation given by:

Γ0 = iσ2 ⊗ 1 , Γ1 = σ3 ⊗ 1 ,
Γ3 = σ1 ⊗ σ1 , Γ4 = σ1 ⊗ σ3 .

(C.2.4)

C.3 Spinor Representation of so(6)

In d-dimensional space-times with Euclidean signature t = 0 it is conventional to let
the space-time indices run from 1 to d.

From section C.1 one finds that for the spinor representation of so(6) we have:
CT

± = ∓C±, B±B∗
± = ∓1 and no Majorana–Weyl fermions exist.
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A nice representation can be given explicitly in terms of the ’t Hooft symbols
introduced in section A.3.2:

Γa =

(
0 i(Ga)ij

i(Ga)ij 0

)

. (C.3.1)

The Γ-matrices defined in this way satisfy Γ∗
a = ΓT

a and the symmetric charge conju-
gation matrix C− is found to be given by:

C− = B− =

(
0 δij

δij 0

)

. (C.3.2)

The chirality matrix is found to be

Γ7 = iΓ123456 =

(
δi

j 0
0 −δij

)

, (C.3.3)

which satisfies ΓT
7 = −C±Γ7C

−1
± .

C.4 Spinor Representation of so(1, 9)

From section C.1 one finds that for the spinor representation of so(1, 9) we have:
CT

± = ±C±, B±B∗
± = 1 and Majorana–Weyl fermions exist.

We have the following symmetry properties:

(C−Γµ1...µp
)T = −(−1)

p(p+1)
2 C−Γµ1...µp

,

(C+Γµ1...µp
)T = (−1)

p(p−1)
2 C+Γµ1...µp

.

(C.4.1)

We have chosen to work with C− for spinors in ten dimensions and the Majorana
conjugate is defined by ψ̄ = ψTC−.

Since PT
± = C−P∓C

−1
− the bilinear ψ̄Γµ1·µp

χ vanishes when (1) ψ and χ have the
same chirality and p is even or when (2) ψ and χ have different chirality and p is odd.

Since the fermions are Majorana–Weyl, an appropriate basis of matrices for per-
forming Fierz transformations is given by

{P±,ΓµP±,ΓµνP±,ΓµνρP±,ΓµνλρP±,ΓµνλρσP±} . (C.4.2)

We have TrP± = 16. For example, if ψ and χ both have positive chirality we have

χψ̄ = − 1
16 ψ̄ΓµχΓµP− − 1

64 ψ̄ΓµνλχΓµνλP− − 1
1920 ψ̄ΓµνλρσχΓµνλρσP− . (C.4.3)



160 Spinors and Clifford Algebras

Some useful identities are

TrΓµ1···µpΓν1·νp
= 16δ

µ···µp

ν···νp
,

ΓµΓρΓµ = −8Γρ ,

ΓµνΓρΓν = 7ΓρΓµ − 16δρ
µ ,

ΓµΓν1···ν5
Γµ = 0 .

(C.4.4)

Using the Γ-matrices of so(1, 3) and so(6) the Γ-matrices of so(1, 9) can be con-
structed by taking direct products. To this purpose we write the so(1, 3) Γ-matrices
with small γ and we write the so(6) Γ-matrices with Greek capital Γ, while writing
capital hatted Γ’s for the so(1, 9) Γ matrices. The matrices Γ̂ can be represented by

Γ̂µ = γµ ⊗ 1 , µ = 0, 1, 2, 3

Γ̂µ = γ5 ⊗ Γµ , µ = 4, . . . , 9 .
(C.4.5)

The charge conjugation matrix C = C
(10)
− of so(1, 9) can be taken to be given in

terms of the so(1, 3) and so(6) charge conjugation matrices C
(4)
− and C

(6)
− respectively

through:

C = C
(4)
− ⊗ C

(6)
− . (C.4.6)

One checks that C is antisymmetric and that we have

(γµ ⊗ 1)
T

= −C(4)
− ⊗ C

(6)
− · γµ ⊗ 1 · (C

(4)
− ⊗ C

(6)
− )−1 = γT

µ ⊗ 1 ,
(γ5 ⊗ Γµ)

T
= −C(4)

− ⊗ C
(6)
− · γ5 ⊗ Γµ · (C

(4)
− ⊗ C

(6)
− )−1 = γT

5 ⊗ ΓT
µ ,

(C.4.7)

where we used γT
5 = C

(4)
− γ5C

(4)−1
− .

Similarly for the so(1, 9) B+-matrix, denoted B, one finds

B = −CΓ̂0 = C
(4)
− ⊗ C

(6)
− · γ0 ⊗ 1 = B

(4)
+ ⊗B

(6)
− , (C.4.8)

from which it follows that

BB∗ = 1 , BT = B , BC∗B = C . (C.4.9)

We finish this discussion on so(1, 9) spinors by mentioning a few on the spinors of
so(1, 10) since they are of interest for eleven-dimensional supergravity.

In eleven dimensions there are clearly no Weyl fermions, but there are Majo-
rana fermions. The swopping properties are the same as in ten dimensions. This
is due to the fact that the eleven-dimensional spinor representations are similar to
ten-dimensional spinor representation, and hence one can use the same charge conju-
gation matrix. The eleventh Γ-matrix is given by plus or minus the ten-dimensional
chirality matrix. The choice for plus or minus corresponds to the two inequivalent
representations of the Clifford algebra in eleven dimensions.
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Nederlandse Samenvatting

Dit proefschrift behandelt enkele aspecten van zogeheten vierdimensionale N = 4 su-
pergravitatie theorieën en daarbij wordt de nadruk gelegd op de rol die symmetrieën
spelen. In de hieronder volgende tekst zal ik kort proberen uit te leggen wat de hier-
voor genoemde zin betekent en kort uitleggen welke onderzoekingen in het proefschrift
staan beschreven.

De theoretische natuurkunde probeert de natuur om ons heen op een quantitatieve
manier zo correct mogelijk te beschrijven en voorspellingen te doen. Een belangrijk
ingrediënt hierbij is wiskunde, de taal voor het doen van berekeningen. Om op een
correcte manier een voorspelling te kunnen doen (bijvoorbeeld, voorspellen hoe zwaar
een elektron is), is het natuurlijk van belang dat de wiskunde erachter kloppend is; er
mogen niet voor een bepaalde grootheid twee of meerdere antwoorden zijn, maar ook
is het onwenselijk dat het antwoord volledig onzinnig is. Er moet uit de theorie op
eenduidige manier één quantitatief zinvol antwoord volgen. Wiskundige consistentie
is dus een belangrijke eis voor natuurkundige theorieën. Voor een leek klinkt het mis-
schien iets als een ver-van-mijn-bed show, want hoe krijg je nu ergens twee antwoorden
uit een theorie, of hoe kan een antwoord nou niet zinvol zijn? De natuurkunde heeft
in ieder geval de laatste honderd jaar laten zien dat zulke situaties voorkomen. Som-
mige grootheden bleken verkeerd voorspeld te kunnen worden; uit sommige theorieën
volgde namelijk dat het elektron oneindig zwaar zou zijn - hier bleek het probleem
vooral daarin te liggen dat de natuurkunde achter de massa van het elektron nog niet
correct begrepen was. Wiskundige consistentie is dus niet gegarandeerd, maar moet
geverifieerd worden! Dit is de reden waarom binnen de theoretische natuurkunde en
dus ook in dit proefschrift veel aandacht aan de wiskunde wordt besteed.

De theoretische natuurkunde is de afgelopen honderd jaar in een stroomversnelling
terecht gekomen. Einstein ontwikkelde de theorieën van speciale en algemene relativi-
teitstheorie in het begin van de twintigste eeuw. Met deze theorieën werd onze huidige
visie op ruimte en tijd bepaald; ruimte en tijd waren niet langer statische altijd aan-
wezige entiteiten, maar werden dynamische objecten, die konden veranderen volgens
nauwkeurig beschreven regels. Ook werd in de twintigste eeuw de quantummechanica
ontwikkeld, die fundamenteel nieuwe inzichten opleverde over de kleinste bouwstenen
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van de natuur, de elementaire deeltjes, zoals het elektron. Na de ontwikkeling van
de quantumveldentheorie, die gezien kan worden als een huwelijk tussen speciale re-
lativiteitstheorie en quantummechanica, was het mogelijk om het Standaardmodel te
formuleren.

Het Standaardmodel beschrijft eigenschappen van de elementaire deeltjes en de
wisselwerkingen tussen de elementaire deeltjes en is een hoeksteen geworden in de
hedendaagse natuurkunde. Volgens het model zijn er twee typen deeltjes, bosonen en
fermionen, en deze twee typen hebben duidelijk verschillende eigenschappen. De voor-
spellingen van het Standaardmodel werden in de beginjaren geplaagd door (wiskundi-
ge en natuurkundige) inconsistenties, maar deze konden uiteindelijk worden opgelost1

en de quantitatieve antwoorden behoren tot de waarden die het meest nauwkeurig ex-
perimenteel zijn geverifieerd binnen de gehele natuurwetenschappen.

Met de komst van het Standaardmodel is de natuurkunde nog niet af. Om maar
eens één van de grootste tekortkomingen te noemen, het model bevat niet de zwaarte-
kracht, de kracht die ons aan de aarde vastbindt. Om de zwaartekracht in te bouwen
in het Standaardmodel blijkt geen gemakkelijke opgave te zijn. Vele natuurkundi-
gen denken dan ook dat er fundamenteel nieuwe ideeën nodig zijn om een theorie te
maken die zowel dezelfde voorspellingen kan doen als het Standaardmodel alsmede
de zwaartekracht bevatten. Een kanshebber om zo’n nieuw idee te zijn is de snaren-
theorie. De snarentheorie heeft als aanname dat de fundamentele deeltjes niet een
punt zijn, maar een dimensie hebben; de fundamentele deeltjes worden voorgesteld
als kleine ééndimensionale objecten, de snaren. Het blijkt dat de snarentheorie op een
natuurlijke wijze zwaartekracht bevat. Een bijzondere eigenschap van snarentheorie
is dat er alleen wiskundige consistentie is als de theorie leeft in tien dimensies. Dit
klinkt misschien eerst als een reden om de theorie meteen af te keuren, maar er zijn
manieren om zes dimensies ‘weg te moffelen’, zodat er effectief vier over blijven, drie
ruimtelijke en een tijdsachtige (zie ook hieronder en hoofdstuk 3 van dit proefschrift).
Er blijken vijf verschillende manieren te zijn om snarentheorie consistent te formule-
ren in tien dimensies. Deze ontdekking wierp eerst een smet op het ambitieuze plan
om een ‘theorie van alles’ te vinden, want een theorie van alles zou toch uniek moeten
zijn? Echter, in de jaren negentig van de afgelopen eeuw werd duidelijk dat de vijf
verschillende snarentheorieën via dualiteiten waren verbonden.

Een praktisch nadeel van de snarentheorie is dat het doen van berekeningen erg
lastig is. De complexiteit is zo groot dat veel moeilijke wiskunde nodig is voor zelfs
de kleinste berekeningen. Echter door een lage-energie limiet te nemen kun je een
theorie bouwen die dan niet meer de echte snarentheorie is, maar wel een goede
benadering onder bepaalde omstandigheden, namelijk bij energieën die laag genoeg
zijn. In deze benaderingen is het gemakkelijker om berekeningen te doen. Na het
nemen van deze lage-energie limiet vind je als resultaat een supergravitatie theorie.

1De Nederlanders Gerard ’t Hooft en Martinus Veltman hebben hieraan bijgedragen en ontvingen
hiervoor in 1999 de Nobelprijs.
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Een supergravitatie theorie is een klassieke veldentheorie die zowel zwaartekracht
bevat als supersymmetrie. De laatstgenoemde eigenschap, de supersymmetrie, zegt
dat er een symmetrie is in de theorie die fermionen en bosonen in elkaar overvoert.
De eis dat een theorie zwaartekracht en supersymmetrie bevat blijkt restrictief te zijn.
In tien dimensies zijn vijf verschillende consistente supergravitatie theorieën (ik reken
hier Romans type IIA supergravitatie niet mee omdat deze ‘massief’ is; zie hoofdstuk
2), precies in overeenkomst met de vijf consistente snarentheorieën.

Door deze tiendimensionale supergravitatie theorieën te zetten op een geometrie
X4×Y6, waarbij Y6 een zesdimensionale compacte ruimte is en X4 een nog nader te be-
palen vierdimensionale ruimte, die de rol moet gaan spelen van onze vierdimensionale
ruimtetijd, verkrijgt men vierdimensionale theorieën. Deze constructie heet dimen-
sionele reductie en hoofdstuk 3 van dit proefschrift is gewijd aan deze constructie.
Men kan ook direkt in vier dimensies beginnen met het construeren van een theorie
die zwaartekracht en supersymmetrie bevat. Op deze manier zijn er twee verschil-
lende manieren om vierdimensionale supergravitatie theorieën te verkrijgen en het
lijkt natuurlijk te veronderstellen dat er een één-op-één relatie zou moeten zijn tussen
deze twee constructies. Echter, de theorieën die in vier dimensies zijn geconstrueerd
bevatten enkele eigenschappen die nog niet zijn begrepen vanuit een tiendimensionaal
oogpunt, zoals de zogenaamde SU(1, 1)-hoeken.

De eis van supersymmetrie bepaalt veel eigenschappen van een theorie; de struc-
tuur ligt grotendeels vast. Des te meer supersymmetrie - de hoeveelheid wordt uit-
gedrukt in een positief geheel getal N ; in vier dimensies 0 ≤ N ≤ 8 -, des te minder
vrijheden er zijn in de theorie. Supersymmetrie legt ook andere symmetrieën op aan
een theorie. Door deze symmetrieën goed te begrijpen kunnen veel eigenschappen
van een supergravitatie theorie begrepen worden.

Het begrip symmetrie wordt vaak intüıtief goed begrepen; als we een cirkel om
zijn middelpunt draaien ziet de cirkel er nog steeds hetzelfde uit en als we een vierkant
spiegelen om een van zijn diagonalen ziet het vierkant er hetzelfde uit. De symme-
trie beschreven voor de cirkel is een voorbeeld van een continue symmetrie, de hoek
waarover men roteert, kan op een continue wijze gevarieerd worden. De symmetrie
beschreven voor het vierkant is een voorbeeld van een discrete symmetrie, er kan niet
een beetje gespiegeld worden, of men spiegelt wel, of niet. De wiskunde om sym-
metrieën te beschrijven heet groepentheorie en hierin maakt men onderscheid tussen
discrete groepen, die discrete symmetrieën beschrijven, en Lie groepen, die continue
symmetrieën begrijpen. In dit proefschrift ligt de nadruk op de continue symmetrieën
en derhalve is een gedetailleerde appendix toegevoegd over de theorie van Lie groepen.

In dit proefschrift wordt groepentheorie vooral gebruikt om de scalaire sector van
N = 4 supergravitatie theorieën te analyseren. De scalairen in een theorie bepalen in
grote mate wat voor soort ‘vacua’ de theorie heeft. Een vacuüm van een theorie is een
oplossing van een theorie voor lege ruimte zonder materie erin. Men zou dus kunnen
zeggen dat in dit proefschrift voornamelijk lege ruimte is onderzocht. In een eerste
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lezing lijkt dat niet zo interessant, maar lege ruimte is overal om ons heen; het heelal
is voornamelijk leeg, maar ook het menselijk lichaam bestaat voornamelijk uit lege
ruimte - de afstand tussen het elektron en het proton in het waterstof-atoom is erg
veel groter dan de doorsnede van het elektron of proton. Lege ruimte kan namelijk
door de aanwezigheid van de scalairen2 en de daarmee geassocieerde energie gekromd
zijn. De kromming van de lege ruimte in het heelal bepaalt hoe snel het heelal uitdijt.

Het merendeel van de astronomische waarnemingen doet ons concluderen dat het
heelal een begin heeft gehad waarin de kromming van de ruimte erg sterk, de tem-
peratuur erg hoog en de dichtheid erg hoog was. In deze periode dijde het heelal
hard uit, als bij een explosie. Dit hete en knallende begin wordt ook wel de Big Bang
genoemd. Na deze periode koelde het heelal af en dijde het uit en na verloop van
tijd werden er sterrenstelsel en planeten gevormd. Men zou verwachten dat het heelal
steeds langzamer zou gaan expanderen, maar recente astronomische waarnemingen
tonen aan dat dat niet het geval is. Ten eerste, om in overeenstemming te zijn met
waarnemingen moet er na de Big Bang nog ergens een periode zijn geweest waarin
het heelal versneld uitdijde en ten tweede, het heelal blijkt nu alweer te versnellen.
Deze versnelde expansie, ook wel inflatie genoemd, van het heelal kan men onder an-
dere verklaren door te veronderstellen dat er scalairen zijn die bijdragen aan de totale
energie in het heelal. Zodoende kunnen scalairen de uitdijing aandrijven. Nu geeft
het Standaardmodel weinig kandidaten voor de scalairen die de versnelde uitdijing
kunnen aandrijven, maar snarentheorie voorspelt een plethora aan scalairen. Dit is
één van de motivaties geweest om de scalairen van N = 4 supergravitatie en de scalar
potentiaal te onderzoeken.

Een versnelde uitdijing van het heelal is mogelijk in N = 4 supergravitatie als de
scalairen in een minimum van de potentiaal zitten waar de waarde van de potentiaal
positief is. Zo’n vacuüm oplossing heet dan een de Sitter vacuüm. Binnen een grote
klasse van mogelijke scalar potentialen in N = 4 supergravitatie hebben we gezocht
naar de Sitter vacua en hebben er geen gevonden. Hoewel dit het een en ander
uitsluit, is het niet mogelijk om te beweren dat N = 4 supergravitatie geen de Sitter
oplossingen toestaat. In artikel [E] hebben we een andere mogelijkheid beschreven
om een versneld uitdijend heelal te krijgen binnen N = 4 supergravitaties, namelijk
via zogenaamde scaling solutions. We vonden een stabiele scaling solution waarin
het heelal noch versneld noch vertraagd uitdijde; bij de gevonden oplossing is de
uitdijingsnelheid constant.

Hoewel we geen oplossingen met een versneld uitdijende heelal hebben gevonden,
is er wel het een en ander duidelijk geworden over de structuur van de scalar poten-
tialen in N = 4 supergravitaties. Natuurlijk zijn er nog vele vragen over; N = 4
supergravitaties bieden nog voldoende mogelijkheden voor toekomstig onderzoek.

Middels bovenstaande tekst hoop ik te hebben uitgelegd dat het gebruik maken

2Van scalairen kun je geen sterren of planeten bouwen en worden daarom soms niet tot materie
gerekend, daarom noemt men lege ruimte waarin scalairen zitten nog steeds leeg.
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van de symmetrieën van een theorie er veel aspecten kunnen worden begrepen. In
dit proefschrift is de theorie die onder de loep is genomen vierdimensionale N = 4
supergravitatie. Ik heb ook geprobeerd in het kort een indruk te geven waar de
symmetrieën, en dus de groepentheorie, gebruikt is. Hiermee hoop ik dan in ieder
geval de titel van dit proefschrift te hebben uitgelegd.





Acknowledgements

In the following I would like to thank some persons that have contributed to the
proces of writing of this thesis and to the wonderful time I had as a Ph.D.-student.
Of course, I cannot be complete, there are more persons than mentioned below that
have positively supported me in some way; my apologies to the forgotten or omitted.

I would like to thank Mees de Roo for supervising me and guiding me through the
world of theoretical high-energy physics. In this respect I also thank Eric Bergshoeff as
a guide on the road to become a good scientist. For cooperating with me I would like
to thank: Mario Trigiante, Sudhakar Panda, Martijn Eenink, Wissam Chemissany,
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