Caratheodory’s extension theorem

DBW

February 7, 2011

These notes are meant as introductory notes on Caratheodory’s extension theorem. The presentation is not completely my own work; the presentation heavily relies on the presentation of Noel Vaillant on http://www.probability.net/WEBcaratheodory.pdf. To make the line of arguments as clear as possible, the starting point is the notion of a ring on a topological space and not the notion of a semi-ring.

1 Elementary definitions and properties

We fix a topological space Ω. The power set of Ω is denoted \(\mathcal{P}(Ω) \) and consists of all subsets of Ω.

Definition 1. A ring on \(Ω \) is a subset \(\mathcal{R} \) of \(\mathcal{P}(Ω) \), such that

(i) \(\emptyset \in \mathcal{R} \)

(ii) \(A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R} \)

(iii) \(A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R} \)

Definition 2. A \(σ \)-algebra on \(Ω \) is a subset \(\Sigma \) of \(\mathcal{P}(Ω) \) such that

(i) \(\emptyset \in \Sigma \)

(ii) \((A_n)_{n∈\mathbb{N}} \in \mathcal{P}(Ω) \Rightarrow \bigcup_n A_n \in \Sigma \)

(iii) \(A \in \Sigma \Rightarrow A^c \in \Sigma \)

Since \(A \cap B = A \setminus (A \setminus B) \) it follows that any ring on \(Ω \) is closed under finite intersections; hence any ring is also a semi-ring. Since \(\bigcap_n A_n = (\bigcup_n A_n)^c \) it follows that any \(σ \)-algebra is closed under arbitrary intersections. And from \(A \setminus B = A \cap B^c \) we deduce that any \(σ \)-algebra is also a ring.

If \((\mathcal{R}_i)_{i∈I} \) is a set of rings on \(Ω \) then it is clear that \(\bigcap_i \mathcal{R}_i \) is also a ring on \(Ω \). Let \(S \) be any subset of \(\mathcal{P}(Ω) \), then we call the intersection of all rings on \(Ω \) containing \(S \) the ring generated by \(S \).

Definition 3. Let \(\mathcal{A} \) be a subset of \(\mathcal{P}(Ω) \). A measure on \(\mathcal{A} \) is a map \(μ : \mathcal{A} → [0, +\infty] \) such that

(i) \(μ(\emptyset) = 0 \)

(ii) If \(A_n ∈ \mathcal{A} \) are disjoint and \(A = \bigcup_n A_n ∈ \mathcal{A} \Rightarrow μ(A) = \sum_n μ(A_n) \).

If \(\mathcal{A} \) is a \(σ \)-algebra, we don’t need to assume that in addition \(\bigcup_n A_n ∈ \mathcal{A} \). By taking all but finitely many \(A_n \) to be the empty set one sees that \(μ(\bigcup_n A_n) = μ(A_1) + \ldots + μ(A_n) \). If \(A ⊂ B \) then \(A \cup (B \setminus A) = B \) and hence \(μ(B) = μ(A) + μ(B \setminus A) \geq μ(A) \).
Definition 4. We call an outer measure on Ω a map $\lambda : \mathcal{P}(\Omega) \to [0, +\infty]$ with

(i) $\lambda(\emptyset) = 0$
(ii) $A \subset B \implies \lambda(A) \leq \lambda(B)$
(iii) $(A_n)_{n \in \mathbb{N}} \in \mathcal{P}(\Omega)$, $\lambda(\cup_n A_n) \leq \sum_n \lambda(A_n)$

By taking all but finitely many A_n to be the empty set one sees that an outer measure is subadditive: $\lambda(A \cup B) \leq \lambda(A) + \lambda(B)$.

2 The interplay between σ-algebras and (outer) measures

Let λ be an outer measure on Ω. We define Σ_{λ} to be the set of all subsets $A \subset \Omega$ such that for any $X \subset \Omega$ we have

$$\lambda(X) = \lambda(X \cap A) + \lambda(X \cap A^c).$$

In other words, Σ_{λ} consists of all subsets $A \subset \Omega$ that cut Ω in two in a good way. Clearly, $\Omega \in \Sigma_{\lambda}$ and by the very form of the definition of Σ_{λ}, we have $A \in \Sigma_{\lambda} \iff A^c \in \Sigma_{\lambda}$. We can now present the following proposition, whose proof is a bit tedious, but which contains loads of information on the exact interplay.

Proposition 5. Let λ be an outer measure on Ω and let Σ_{λ} be as defined above. Then Σ_{λ} is a σ-algebra on Ω.

Proof. After the preliminary remarks preceding the proposition, it only remains to show that Σ_{λ} is closed under finite intersections and unions.

Let $A, B \in \Sigma_{\lambda}$ and let X be any subset of Ω. We have $X \cap A^c = X \cap (A \cap B)^c \cap A^c$ since $(A \cap B)^c \supset A^c$. On the other hand we have $(A \cap B)^c = A^c \cup B^c$ and hence $X \cap (A \cap B)^c \cap A = (X \cap A \cap B^c) \cup (X \cap A \cap A^c) = X \cap A \cap B^c$. Therefore we have $\lambda(X \cap (A \cap B)^c) = \lambda(X \cap (A \cap B)^c \cap A) + \lambda(X \cap (A \cap B)^c \cap A^c) = \lambda(X \cap A^c) + \lambda(X \cap A \cap B^c)$. Now adding $\lambda(X \cap A \cap B)$ and using that $\lambda(X \cap A) = \lambda(X \cap A \cap B) + \lambda(X \cap A \cap B^c)$ one obtains $\lambda(X \cap A \cap B) + \lambda(X \cap (A \cap B)^c) = \lambda(X)$. Hence $A \cap B \in \Sigma_{\lambda}$.

Since $A \cup B = (A^c \cap B^c)^c$ and $A \setminus B = A \cap B^c$ we see that Σ_{λ} is closed under finite unions and the set-theoretic difference. Thus Σ_{λ} is a ring on Ω.

If $A, B \in \Sigma_{\lambda}$ are disjoint and $X \subset \Omega$ then $\lambda(X \cap (A \cup B)) = \lambda(X) - \lambda(X \cap A^c \cap B^c) = \lambda(X) - \lambda(X \cap A^c) - \lambda(X \cap A^c \cap B) = \lambda(X \cap A) + \lambda(X \cap B)$ as $A^c \cap B = B$. Using induction we obtain $\lambda(X \cap \bigcup_{n=1}^N A_n) = \sum_{n=1}^N \lambda(X \cap A_n)$ whenever A_n are in Σ_{λ} and pairwise disjoint.

Now we fix a sequence A_n in Σ_{λ} which are pairwise disjoint and we denote the union $\cup_n A_n$ by A. Furthermore, we fix an arbitrary $X \in \Omega$ and an arbitrary large integer N.

Since $X \cap A^c \subset X \cap (\bigcup_{n=1}^N A_n)^c$ and Σ_{λ} is closed under finite unions we have $\lambda(X \cap A^c) + \lambda(X \cap (\bigcup_{n=1}^N A_n)^c) \leq \lambda(X \cap (\bigcup_{n=1}^N A_n)^c) + \sum_n \lambda(X \cap A_n) = \lambda(X)$. But N is arbitrary in this equation and we can safely let it go to ∞ and obtain

$$\lambda(X \cap A^c) + \sum_n \lambda(X \cap A_n) \leq \lambda(X). \quad (1)$$
On the other hand we have \(\lambda(X) \leq \lambda(X \cap A^c) + \lambda(X \cap A) \), which again by the definition of an outer measure is less or equal \(\lambda(X \cap A^c) + \sum_n \lambda(X \cap A_n) \). Hence using (1) we obtain
\[
\lambda(X) \leq \lambda(X \cap A^c) + \lambda(X \cap A) \leq \lambda(X \cap A^c) + \sum_n \lambda(X \cap A_n) \leq \lambda(X).
\]

It follows that we must equality. From this we conclude that \(\Sigma_\lambda \) is indeed closed under countable unions and, by taking \(X = A \), that \(\lambda(A) = \sum_n \lambda(A_n) \). Therefore the restriction of \(\lambda \) to \(\Sigma_\lambda \) is a measure on \(\Sigma_\lambda \).

We will call \(\Sigma_\lambda \) the \(\sigma \)-algebra related to \(\lambda \).

Now we come to a critical step; we want to associate an outer measure \(\lambda_\mu \) to a given measure \(\lambda \) on some ring \(R \). Of course, we want the restriction of the outer measure \(\lambda_\mu \) to the ring to coincide with the measure \(\mu \).

Let \(R \) be a ring on \(\Omega \) and let \(\mu \) be a measure on \(R \). If \(X \subset \Omega \) is any subset we can cover \(X \) with sets from \(R \) to approximate \(X \) inside \(R \) - we call an \(R \)-cover of \(X \) a countable subset \((A_n) \) of \(R \) with \(X \subset \cup_n A_n \). This leads to the following definition; for any \(X \subset \Omega \) we define \(\lambda_\mu(X) \) to be the infimum of all \(\sum_n \mu(A_n) \) where \((A_n) \) is any countable cover of \(X \) with \(A_n \) in \(R \). We need to check that this is an outer measure.

Proposition 6. The map \(\lambda_\mu : \mathcal{P}(\Omega) \rightarrow [0, +\infty] \) defined in the above paragraph defines an outer measure on \(\Omega \).

Proof. Since \(\emptyset \in R \) we have \(\lambda_\mu(\emptyset) = 0 \). If \(X \subset Y \) are two subsets of \(\Omega \), then any cover of \(Y \) with sets from \(R \) also covers \(X \) and hence \(\lambda_\mu(X) \leq \lambda_\mu(Y) \).

Now let \(X_n \) be any sequence of subsets of \(\Omega \). By the definition of the infimum we can find for each \(\epsilon > 0 \) and for each \(n \) an \(R \)-cover \((A_{n,m}) \) of \(X_n \) such that \(\sum_{m} \mu(A_{n,m}) < \lambda_\mu(X_n) + \frac{\epsilon}{2^n} \). The sets \(A_{n,m} \) form a countable cover of \(X = \cup_n X_n \); we can for example set \(B_1 = A_{1,1} \), \(B_2 = A_{2,1} \), \(B_3 = A_{1,2} \), \(B_4 = A_{2,1} \) and so on, similar to Cantor’s proof of the countability of \(\mathbb{Q} \). But then \(\lambda_\mu(X_n) = \lambda_\mu(\cup_n X_n) \leq \sum_{m} \mu(A_{n,m}) < \sum_n (\lambda_\mu(X_n) + \frac{\epsilon}{2^n}) = \sum_n \lambda_\mu(X_n) + \epsilon \). But \(\epsilon \) was arbitrary and hence \(\lambda_\mu(\cup_n X_n) \leq \sum_n \lambda_\mu(X_n) \).

Proposition 7. The restriction of \(\lambda_\mu \) to \(R \) is \(\mu \).

Proof. For any \(A \in R \) the set \(A \) itself forms a cover and hence \(\lambda_\mu(A) \leq \mu(A) \).

On the other hand, let \((A_n) \) be an \(R \)-cover of \(A \). We define \(B_1 = A_1 \cap A \) and \(B_{n+1} = (A_n \cap A) \cup \cup_{k>n} (A_k \cap A) \) for \(n \geq 1 \). Then clearly \(B_n \in R \), the \(B_n \) are disjoint, \(\cup_n B_n = A \) and \(\mu(B_n) \leq \mu(A_n) \). Since \(\mu \) is a measure on \(R \) we have \(\mu(A) = \sum_n \mu(B_n) \) which is less than or equal to \(\sum_n \mu(A_n) \). Since this holds for any \(R \)-cover of \(A \) we have \(\mu(A) \leq \lambda_\mu(A) \). Therefore equality holds and the proposition is proved.

We will call \(\lambda_\mu \) the outer measure associated to \(\mu \).

So we now have two constructions; given a ring and a measure on it we can construct an outer measure. Given an outer measure we can construct a \(\sigma \)-algebra such that the
restriction of the outer measure to the \(\sigma \)-algebra is a measure on the \(\sigma \)-algebra. So it seems feasible that we can construct a measure on a \(\sigma \)-algebra starting from a ring with a measure on it. That this really works and that all things work out nicely is the content of Caratheodory’s theorem.

3 Caratheodory’s theorem: Statement and Proof

Lemma 8. Let \(R \) be a ring on \(\Omega \) and let \(\mu \) be a measure on \(R \). Let \(\lambda \) be the outer measure associated to \(\mu \). Let \(\Sigma \) be the \(\sigma \)-algebra related to \(\lambda \). Then \(R \in \Sigma \).

Proof. Let \(A \) be an element of \(R \) and let \(X \) be any subset of \(\Omega \). Since \(\lambda \) is an outer measure on \(\Omega \) we have \(\lambda(X) = \lambda((X \cap A) \cup (X \cap A^c)) \leq \lambda(X \cap A) + \lambda(X \cap A^c) \).

Now let \((A_n)_{n \in \mathbb{N}} \) be any \(R \)-cover of \(X \). Then the \(A_n \cap A \) form an \(R \)-cover of \(X \cap A \) and the \(A_n \cap A^c \) form an \(R \)-cover of \(X \cap A^c \). Hence we have that \(\lambda(X \cap A) + \lambda(X \cap A^c) \leq \sum_n \mu(A_n \cap A) + \sum_n (A_n \cap A^c) = \sum_n \mu(A_n) \), where the last step follows from the fact that \(\mu \) is a measure and hence \(\mu(C \cup D) = \mu(C) + \mu(D) \). Since the inequality holds for any \(R \)-cover of \(X \) we need \(\lambda(X \cap A) + \lambda(X \cap A^c) \leq \lambda(X) \). We thus need equality; for any \(X \subset \Omega \) we have \(\lambda(X) = \lambda(X \cap A) + \lambda(X \cap A^c) \), or in other words \(A \in \Sigma \) and since \(A \) was an arbitrary element of \(R \) the lemma is proved.

Remark 9. Any ring generates a \(\sigma \)-algebra; one simply enlarges the ring with countable unions. Or, the \(\sigma \)-algebra generated by the ring \(R \) is the intersection of all \(\sigma \)-algebras that contain \(R \). Therefore the above lemma shows that the \(\sigma \)-algebra generated by \(R \) is contained in \(\Sigma \).

Now we come to Caratheodory’s theorem:

Theorem 10. Let \(R \) be a ring on \(\Omega \) and let \(\mu \) be a measure on \(R \). Then there exists a measure \(\mu' \) on the \(\sigma \)-algebra generated by \(R \) such that the restriction of \(\mu' \) to \(R \) coincides with \(\mu \).

Proof. Let \(\lambda \) be the outer measure on \(\Omega \) associated to \(\mu \). Let \(\Sigma \) be the \(\sigma \)-algebra associated to \(\lambda \). Then by lemma 8 the \(\sigma \)-algebra generated by \(R \) is contained in \(\Sigma \). Hence \(\lambda \) restricts to a measure on the \(\sigma \)-algebra generated by \(R \). By proposition 7 this restriction of \(\lambda \) to \(R \) coincides with \(\mu \).

Example 11. Let \(\Omega \) be the real line. Then the open intervals generate a \(\sigma \)-algebra \(\Sigma \). For any open interval \((a, b)\) with \(a < b \) we can put \(\mu((a, b)) = b - a \). Then there exists a measure \(\mu' \) on \(\Sigma \) such that \(\mu'((a, b)) = b - a \). Indeed, for countable unions of disjoint intervals we can define \(\mu(\cup_{n=1}^{\infty} (a_n, b_n)) = \sum_{n=1}^{\infty} (b_n - a_n) \). Hence \(\mu \) does give rise to a measure on the ring generated by all intervals.