The group $\operatorname{ISO}(1,1)$

Dennis

November 18, 2008

Abstract

Some generalalities on $\operatorname{ISO}(1,1)$ are discussed.

The group $\operatorname{ISO}(1,1)$ is the group of affine metric-preserving and orientation preserving transformations of the plane \mathbb{R}^{2}, with the hyperbolic metric η of signature +- given by

$$
\eta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Explicitly, we get a faithfull (defining) representation of the form

$$
I S O(1,1)=\left\{\left.\left(\begin{array}{cc}
A & b \\
0 & 1
\end{array}\right) \right\rvert\, A \in S O(1,1), b \in \mathbb{R}^{2}\right\} .
$$

Thus, we see that topologically we have $\operatorname{ISO}(1,1)=S O(1,1) \times \mathbb{R}^{2}$. Since \mathbb{R}^{2} is simply connected, we can answer the question about the kind of connectedness of $\operatorname{ISO}(1,1)$ by looking at $S O(1,1)$ solely. But the group $S O(1,1)$ is the group of real 2×2 matrices

$$
\left(\begin{array}{ll}
u & v \\
s & t
\end{array}\right)
$$

with

$$
\begin{equation*}
u^{2}-s^{2}=1, \quad u v-s t=0, \quad t u-s v=1, \quad v^{2}-t^{2}=-1 . \tag{1}
\end{equation*}
$$

Solving eqns.(1) directly in \mathbb{R}

Wo we may take $u=\sigma \cosh \alpha$ and $s=\sinh \alpha$, where $\sigma= \pm 1$ and $\alpha \in \mathbb{R}$. Similarly, we can take $t=\tau \cosh \beta$ and $v=\sinh \beta$. But then from $u v-s t=0$ we obtain

$$
\cosh \alpha \sinh \beta-\sigma \tau \sinh \alpha \cosh \beta=\sinh (\beta-\sigma \tau \alpha)=0
$$

which implies $\alpha=\sigma \tau \beta$. And then from $u t-s v=1$ we get

$$
\cosh \alpha \cosh (\tau \sigma \alpha)-\tau \sigma \sinh \alpha \sinh (\tau \sigma \alpha)=\cosh (\alpha-\alpha \tau \sigma)=1,
$$

which implies $\tau \sigma=1$ and thus all $S O(1,1)$ matrices are of the form:

$$
\left(\begin{array}{cc}
\sigma \cosh \alpha & \sinh \alpha \\
\sinh \alpha & \sigma \cosh \alpha
\end{array}\right)=\sigma\left(\begin{array}{cc}
\cosh (\sigma \alpha) & \sinh (\sigma \alpha) \\
\sinh (\sigma \alpha) & \cosh (\sigma \alpha)
\end{array}\right), \quad \sigma= \pm 1 .
$$

The topology

Topologically, we have $S O(1,1) \cong \mathbb{R} \sqcup \mathbb{R}$ and thus $I S O(1,1) \cong \mathbb{R}^{3} \sqcup$ \mathbb{R}^{3} (disjoint union) and thus we have that $I S O(1,1)$ is not simply connected. It is not even connected. Note that indeed, if a matrix of the given parametrization (with only $\cosh \alpha$ and not $-\cosh \alpha$ and thus the $S O(1,1)$ matrix has 11 -component >0) is in $\operatorname{ISO}(1,1)$ then also minus that matrix is in $\operatorname{ISO}(1,1)$, but we can not reach it with the parametrization, unless we use two real lines... and thus the sign σ. And thus $\operatorname{ISO}(1,1)$ is not connected. However, the connected component containing the identity is simply connected. We can thus write $\operatorname{ISO}(1,1)=\operatorname{ISO}(1,1)^{+} \sqcup \operatorname{ISO}(1,1)^{-}$, where $\operatorname{ISO}(1,1)^{+}$is the identity component and $\operatorname{ISO}(1,1)^{-}$is reached by applying the matrix $-\mathbb{1}_{2 \times 2}$ to $\operatorname{ISO}(1,1)^{+}$.

Some more algebra

Introducing the variables $X=u-s, Y=u+s, Z=t-v$ and $W=t+v$ we can rewrite (1) as

$$
\begin{equation*}
X Y=1, \quad Z W=1, \quad X W=Y Z, \quad W X+Y Z=2 . \tag{2}
\end{equation*}
$$

We can now look for solutions in any commutative (and associative) ring with 1 and with characteristic not equal to 2 . Since X, Y, W, Z all have to be invertible we get from the first two equations of (2) that $X=Y^{-1}$ and $W=Z^{-1}$. Using this in the third equation of (2) we obtain $X^{2}=Z^{2}$, and hence $Z=W X^{2}$. Note that concluding $X= \pm Z$ might be wrong as in general $X+Z$ can be a zerodivisor of $X-Z$. Multiplying the fourth equation of (2) with X we obtain

$$
2 X=W X^{2}+X Y Z=Z+Z=2 Z
$$

and thus $X=Z$. Since X is invertible, we immediately obtain $W=$ Y. Hence the solutions of (2) are parameterized by the hyperbola $X Y=1$, which is the affine line without the zero.

Now we can look again at the original problem and see that $S O(1,1)$ is as a real manifold nothing more than the hyperbola, which is disconnected. Looking at the complexification something happens, as then the algebraic variety $X Y=1$ in \mathbb{C} becomes connected. Furthermore, compactifying by adding the point in infinity, we get the variety $X Y=Z^{2}$, which is noting more that the image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ under the Segre embedding.

