The group ISO(1,1)

Dennis

November 18, 2008

Abstract

Some generalalities on ISO(1,1) are discussed.

The group ISO(1,1) is the group of affine metric-preserving and orientation preserving transformations of the plane \mathbb{R}^2 , with the hyperbolic metric η of signature +- given by

$$\eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Explicitly, we get a faithfull (defining) representation of the form

$$ISO(1,1) = \left\{ \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \mid A \in SO(1,1), b \in \mathbb{R}^2 \right\}$$

Thus, we see that topologically we have $ISO(1,1) = SO(1,1) \times \mathbb{R}^2$. Since \mathbb{R}^2 is simply connected, we can answer the question about the kind of connectedness of ISO(1,1) by looking at SO(1,1) solely. But the group SO(1,1) is the group of real 2×2 matrices

$$\begin{pmatrix} u & v \\ s & t \end{pmatrix}$$

with

$$u^2 - s^2 = 1$$
, $uv - st = 0$, $tu - sv = 1$, $v^2 - t^2 = -1$. (1)

Solving eqns.(1) directly in \mathbb{R}

Wo we may take $u = \sigma \cosh \alpha$ and $s = \sinh \alpha$, where $\sigma = \pm 1$ and $\alpha \in \mathbb{R}$. Similarly, we can take $t = \tau \cosh \beta$ and $v = \sinh \beta$. But then from uv - st = 0 we obtain

$$\cosh \alpha \sinh \beta - \sigma \tau \sinh \alpha \cosh \beta = \sinh(\beta - \sigma \tau \alpha) = 0$$

which implies $\alpha = \sigma \tau \beta$. And then from ut - sv = 1 we get

 $\cosh \alpha \cosh(\tau \sigma \alpha) - \tau \sigma \sinh \alpha \sinh(\tau \sigma \alpha) = \cosh(\alpha - \alpha \tau \sigma) = 1,$

which implies $\tau \sigma = 1$ and thus all SO(1, 1) matrices are of the form:

$$\begin{pmatrix} \sigma \cosh \alpha & \sinh \alpha \\ \sinh \alpha & \sigma \cosh \alpha \end{pmatrix} = \sigma \begin{pmatrix} \cosh(\sigma \alpha) & \sinh(\sigma \alpha) \\ \sinh(\sigma \alpha) & \cosh(\sigma \alpha) \end{pmatrix}, \quad \sigma = \pm 1.$$

The topology

Topologically, we have $SO(1,1) \cong \mathbb{R} \sqcup \mathbb{R}$ and thus $ISO(1,1) \cong \mathbb{R}^3 \sqcup \mathbb{R}^3$ (disjoint union) and thus we have that ISO(1,1) is not simply connected. It is not even connected. Note that indeed, if a matrix of the given parametrization (with only $\cosh \alpha$ and $\operatorname{not} - \cosh \alpha$ and thus the SO(1,1) matrix has 11-component > 0) is in ISO(1,1) then also minus that matrix is in ISO(1,1), but we can not reach it with the parametrization, unless we use two real lines... and thus the sign σ . And thus ISO(1,1) is not connected. However, the connected component containing the identity is simply connected. We can thus write $ISO(1,1) = ISO(1,1)^+ \sqcup ISO(1,1)^-$, where $ISO(1,1)^+$ is the identity component and $ISO(1,1)^-$ is reached by applying the matrix $-\mathbb{1}_{2\times 2}$ to $ISO(1,1)^+$.

Some more algebra

Introducing the variables X = u - s, Y = u + s, Z = t - v and W = t + v we can rewrite (1) as

$$XY = 1, \quad ZW = 1, \quad XW = YZ, \quad WX + YZ = 2.$$
 (2)

We can now look for solutions in any commutative (and associative) ring with 1 and with characteristic not equal to 2. Since X, Y, W, Zall have to be invertible we get from the first two equations of (2) that $X = Y^{-1}$ and $W = Z^{-1}$. Using this in the third equation of (2) we obtain $X^2 = Z^2$, and hence $Z = WX^2$. Note that concluding $X = \pm Z$ might be wrong as in general X + Z can be a zerodivisor of X - Z. Multiplying the fourth equation of (2) with X we obtain

$$2X = WX^2 + XYZ = Z + Z = 2Z$$

and thus X = Z. Since X is invertible, we immediately obtain W = Y. Hence the solutions of (2) are parameterized by the hyperbola XY = 1, which is the affine line without the zero.

Now we can look again at the original problem and see that SO(1, 1) is as a real manifold nothing more than the hyperbola, which is disconnected. Looking at the complexification something happens, as then the algebraic variety XY = 1 in \mathbb{C} becomes connected. Furthermore, compactifying by adding the point in infinity, we get the variety $XY = Z^2$, which is noting more that the image of $\mathbb{P}^1 \times \mathbb{P}^1$ under the Segre embedding.