Vertical Fluxes of Local Structure Parameters in the Convective Boundary Layer

Andreas Muschinski

Dept. of Electrical and Computer Engineering University of Massachusetts Amherst

"Models versus physical laws/first principles, or why models work?" Wolfgang Pauli Institute (2-4 February, 2011) Vienna, Austria

Overview

(1) Motivation: Problem and hypothesis

(2) Basic theory

(3) Observations

(5) LES [thanks to Peter Sullivan for the data!]

(6) Summary and conclusions

from Bernard Campistron, Laboratoire d'Aerologie, Toulouse, France

from Bernard Campistron, Laboratoire d'Aerologie, Toulouse, France

Upward bias in vertical velocities observed with a sodar in the lower CBL

Fig. 2. Comparison of time series of w and σ_w by sonic anemometer and SODAR in convective conditions averaged over nine clear days during September 2000 at Falkenberg, Germany. A moving average of 30 min was used

Coulter, R. L., and M. A. Kallistratova, 2004: Two decades of progress in SODAR techniques [...]. *Meteorol. Atmos. Phys.*, **85**, 3-19.

Motivation

Problem:

In the convective boundary layer, vertically pointing clear-air Doppler radars and sodars measure mean vertical velocities that are often biased by several tens of cm/s.

Radars: downward biases. Sodars: upward biases.

Hypothesis:

These biases are the result of "intermittency fluxes", that is, vertical fluxes of the local clear-air reflectivity.

Basic theory of Doppler-velocity biases

For vertically pointing clear-air Doppler radars/sodars:

$$v_D = \frac{M_1}{M_0} = \frac{\langle \eta w \rangle}{\langle \eta \rangle},\tag{1}$$

$$\eta = \langle \eta \rangle + \eta', \qquad w = \langle w \rangle + w',$$
(2)

where

 v_D = Doppler velocity for given radar/sodar space-time sampling volume, $w(\mathbf{x}, t) = \text{local}$ and instantaneous vertical wind velocity, $\eta(\mathbf{x}, t) = \text{local}$ and instantaneous volume reflectivity (different for radar vs. sodar), $\langle \cdot \rangle = \text{average over radar's/sodar's space-time sampling volume.}$

That is,

Doppler velocities are reflectivity-weighted radial velocities of the scatterers.

Therefore,

$$v_D = \frac{\langle \eta \rangle \langle w \rangle + \langle \eta' w' \rangle}{\langle \eta \rangle} = \langle w \rangle + \Delta w, \qquad (3)$$

where

$$\Delta w = \frac{\langle \eta' w' \rangle}{\langle \eta \rangle} \tag{4}$$

is the **bias** of the vertical Doppler velocity.

Note that $\langle \eta' w' \rangle$ may be interpreted as a turbulent clear-air reflectivity flux.

It is known that η is proportional to the refractive-index structure parameter,

$$C_n^2(\mathbf{x}) = \frac{\left\langle [n(\mathbf{x} + \mathbf{r}/2) - n(\mathbf{x} - \mathbf{r}/2)]^2 \right\rangle}{r^{2/3}},$$
(5)

where n is the refractive index:

$$\eta(\mathbf{x},t) = 0.38 C_n^2(\mathbf{x},t) \lambda^{-1/3},$$
(6)

(Tatarskii 1961), where λ is the EM or sound wavelength.

Note that the reflectivity flux $\langle \eta' w' \rangle$ is a third-order turbulence statistic.

Microwave clear-air refractive index fluctuations:

$$n' = a_1 T' + bq',\tag{7}$$

where $a_1 = a_1(T, q, p)$ and b = b(T, q, p) are known functions of the mean values of temperature T, specific humidity q and pressure p.

Microwave refractive-index structure parameter:

$$C_n^2 = a_1^2 C_T^2 + a_1 b C_{Tq} + b^2 C_q^2.$$
(8)

For **acoustic** propagation:

$$n' = a_2 T',\tag{9}$$

where $a_2 = a_2(T, p)$ is another known function.

Therefore, the **acoustic** refractive-index structure parameter is

$$C_n^2 = a_2^2 C_T^2. (10)$$

Now, let the structure parameters C_T^2 , C_{Tq} and C_q^2 be random variables in space and time: $C_T^2 = \langle C_T^2 \rangle + (C_T^2)'$, $C_{qT}^2 = \langle C_{qT}^2 \rangle + (C_{qT}^2)'$, and $C_q^2 = \langle C_q^2 \rangle + (C_q^2)'$.

Clear-air radar bias of vertical Doppler velocity (long dwell times):

$$\Delta w = a_1^2 \frac{\left\langle \left(C_T^2\right)' w'\right\rangle}{\left\langle C_T^2\right\rangle} + a_1 b \frac{\left\langle \left(C_{qT}\right)' w'\right\rangle}{\left\langle C_{qT}\right\rangle} + b^2 \frac{\left\langle \left(C_q^2\right)' w'\right\rangle}{\left\langle C_q^2\right\rangle}.$$
(11)

In the troposphere, often $|bq'| \gg |a_1T'|$, such that the third term dominates:

$$\Delta w = \Delta w_q = b^2 \frac{\left\langle \left(C_q^2\right)' w'\right\rangle}{\left\langle C_q^2\right\rangle}.$$
(12)

Clear-air sodar bias of vertical Doppler velocity (long dwell times):

$$\Delta w = \Delta w_T = a_2^2 \frac{\left\langle \left(C_T^2\right)' w'\right\rangle}{\left\langle C_T^2\right\rangle}.$$
(13)

Mixed layer (BAO Aug 2007)

Local CT2 (time series) r = 4 m, z = 100 m AGL, T = 3 h

Local CT2 (histogram) r = 4 m, z = 100 m AGL, T = 3 h

Local CT2 vs. w (scatterplot) r = 4 m, z = 100 m AGL, T = 3 h

Upward w bias (due to CT2 intermittency flux) r = 4 m, z = 100 m AGL, T = 3 h, 10-min averages

Summary and Conclusions

The in-situ turbulence data (sonics) confirm the hypothesized correlation between CT2 and w.

The LES data confirm the hypothesized correlation (1) between (1) CT2 and w and (2) between Cq2 and w.

In-situ observations and LES data confirm the hypothesis that Doppler velocity biases can be qualitatively and quantitatively explained by reflectivity fluxes (or "intermittency fluxes").

Conclusions

For more than 10 years, researchers have reported upward biases in Doppler sodar w observations and downward biases in clear-air Doppler radar w observations (magnitude tens of cm/s).

These observations can be explained by(1) surface-driven upward fluxes of CT2(2) entrainment-driven downward fluxes of Cq2.

In the future, measurements of the "biases" could be used to measure additional CBL statistics.