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The Turbulence Modeling FacilityThe Turbulence Modeling Facility
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This schematic shows a layout of the test section of the facility and 
typical flow.
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22--D simulations do not D simulations do not 
capture the essentialcapture the essential
33--D nature of the flowD nature of the flow
and its unsteadiness.and its unsteadiness.

This plane is a few centimeters upstream of
wall shown above; light-sheet visualization 
of particles in flow.
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This view shows electrically-generated 
“thymol-blue” neutrally buoyant traces 
which outline the downstream eddy.
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Circa 1986Circa 1986 Another student, Chris Freitas, created REMIXS REMIXS [REREcirculating MIXMIXed
Convection SSimulator]. Derived from REBUFFS [UCBerkeley] which used the 
SIMPLE algorithm which iteratively solves all the difference equations together. 
Key new feature here was use of QUICK upstream scheme to remove diffusion in 
first-order upwind schemes. Freitas was first to simulate these vortices. DNS.

Models versus physical laws/first principles, or why models work?
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LES - Resolved LES – Subfilter-scale

Spatial filtering

Models versus physical laws/first principles, or why models work?
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Subfilter-scale (SFS) model importance
• SFS model critical for boundary layers 

– High Reynolds number and rough boundary
– Near-wall energy-containing eddies not resolved

• Error at wall/surface affects entire boundary layer

Models versus physical laws/first principles, or why models work?



Discretized LES Momentum Equation
cf., Carati, et al. (2001)
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εlmn

� ik = Aik +Bik



NE: Numerical error
RSFS: Resolved subfilter-scale

SGS: Subgrid-scale

Splitting up the turbulence
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� ij = Aij +Bij



Dealing with the turbulence terms: Alternatives

1. Ignore the RSFS and just model the SGS : this assumes essentially 
that the filter and grid sizes are the same. Use Smagorinsky formulation 
or dynamic version:

2. Reconstruct the RSFS 
and model SGS by simple or complex model

3. Add wall model:
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1. Reconstruct estimated velocity,     , from the resolved 

velocity, 

2. Substitute       into the SFS stress equation to obtain Bij

van Cittert (1931) iteration

Reconstruction of the subfilter-scale [SFS] 
stress

Recipe to get SFS stress see Chow et al. JAS (2005)
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0-th order: %u*i = %ui
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Gullbrand and Chow (2003) Turbulent channel flow –
effects of reconstruction

(Level 0)

increasing 
reconstruction level
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Why use numerical modeling to study Why use numerical modeling to study 
sediment transport over sediment transport over vortex ripplesvortex ripples??

• The model resolves suspended sediment 
transport which is dominant over vortex ripples.

• The model provides knowledge of the 3D, time-
dependent dynamics which can explain why the 
direction and magnitude of vortex ripple 
transport may be predicted incorrectly from 
pointwise measurements in the field.
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Numerical Methods
Large-eddy Simulation Code (Calhoun & Street, 2001)

-- solves spatially-filtered Navier Stokes equations for 
fluid using a second-order accurate projection method 
(Zang, et al., 1994)

-- solves a spatially-filtered advection-diffusion equation 
with a settling term for sediment (Zedler & Street, 2001)

-- models turbulence with Dynamic Mixed Model (DMM; 
Zang, et. al., 1993)

-- rough boundary & turbulent boundary layer
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Key EquationsKey Equations

3. Sediment concentration (volume fraction)
and settling velocity

1. Continuity

2. Filtered Navier-Stokes

Stress = Smagorinsky eddy viscosity model 
+ 0th order reconstruction model
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Note that we handle turbulent part of the sediment motion with
a mixed model of the same form as for momentum.
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Key EquationsKey Equations
At the bed we use the empirical pickup function suggested by van Rijn:

Boundary Condition: 

At the bed we apply a boundary condition that forces a logarithmic
velocity profile with drag based on the boundary roughness measure
z0 . In addition we augment the near bed eddy viscosity to provide a 
wall model to account for the near bed influence of roughness on
the stress [see Nakayama and Saiko, 2002 and Nakayama et al., 2004]
and the grid anisotropy [high vertical resolution compared to
horizontal] that does not allow small eddies to be properly represented.

T

T
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Numerical Domain

λ = 2.25 m

H = 0.65 m

W = 1 m

Domain Size: 
4.5m L x 0.65m H x 1 m  W 

(258 x 50 x 98 points)

h = 0.225 m

Note: Terrain-following mapped grid
at bottom.
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Wave & Sediment Parameters

Wave Parameters:
T = 10 s 

Umax = 1.5 m/s
Orb. Amp. ~ 2-3 m

Sediment Parameters: [sand]
d = 200 μm

ρ = 2650 kg/m3

ws = 2.4 cm/s
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Spanwise Vorticity VisualizationSpanwise Vorticity Visualization

3 February 
2011

Models versus physical laws/first principles, or why models work?



24

Vortex Suspension of Sediment
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Streamwise 
vortex structures 
identified by the 

λ2 method

ThreeThree--dimensional featuresdimensional features
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Sediment concentrationsSediment concentrations

Vortices colored by concentrationVortices colored by concentration
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Shear stress on wavy bedShear stress on wavy bed

3 February 
2011

Models versus physical laws/first principles, or why models work?



28

IsoIso--contourscontours
of sedimentof sediment

concentrationconcentration
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Overview of set up for evolution of ripples from a flat 
bed

Hydrodynamics (e.g. Zang et al., 1993, 1994; Cui & Street, 2001, 2004)

Sediment transport (e.g. Zedler & Street, 2001, 2006; Chou & Fringer, 2008)

Bed elevation model (Chou & Fringer, 2009)

Density stratification 
of the sediment-
water mixture

Sediment deposition 
and erosion

Diffusion term to model 
gravity-induced avalanche 
flow

Sub-grid scale stress and flux 
in LES 

Requires modeling 
sediment pick-up !!

Chou & Fringer, 2009



Bed elevation model

Sediment pick-up: 

where 
Non-dimensional 
parameters

Bed shear stress

Local geometric effects

Flat-bed critical non-dim. shear stress



Currents 
(Unidirectional 
flow, Uc)

Oscillatory 
Tray (waves, 
Uw)

2 m

4 m

160 m

L = 0.6 m

W = 0.24 m 

H = 0.15 m

Uw ~ 0.42 ms-1

T = 8 s

Uc ~ 0.0 ms-1, 0.08 ms-1, 0.30 ms-1

ReH ~ 40,000-50,000 

Periodic BC’s in horizontal 

Resolution: 320 x 128 x 96

x (m)

y 
(m

)

t = 292 T
f

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.05

0.1

0.15

0.2

−0.165

−0.16

−0.155

−0.15

−0.145

−0.14

Simulation Setup

Lacy. et al., 2007 
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Mixed model strategy

Replace SGS eddy viscosity model to allow:
Near-wall SGS anisotropy

By adding more physics and merging this with 
reconstruction! Recall: 

3 February 
2011

Models versus physical laws/first principles, or why models work?
34

� ij = Aij +Bij Focus on Aij



Subgrid-scale stress equation Aij
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This is easy to generate in usual way [e.g., as done with RANS] by adding 
and subtracting momentum equations multiplied by the appropriate velocity.



The Linear Algebraic Subgrid Scale Model
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Pressure Redistribution modeled by use of Launder, Reece, Rodi (1975) equations.

Aij: SGS Stress Models



Implementation

• Use Advanced Regional Prediction System [ARPS]

• Simulation is of neutral boundary flow; similar to several 
others for comparison [e.g., Andren et al (1994), Chow et 

al (2005), Ludwig et al (2009), Porté-Agel et al (2000), 
Sullivan et al (1994), etc.]

• 32 m x 32 m x 37.5 m [avg,10 m in vertical at ground] grid

• 1.3 km x1.3 km x 1.5 km domain
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• Follows log law 
– much better than Smagorinsky
– about the same as DWL

• Provides proper SGS anisotropy near the 
wall

LASS assessment in neutral BL 
simula.

Enriquez et al. (2010)
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A new mixed model

LASS + Reconstruction

LASS alone does better than eddy viscosity 
models;

provides near-wall SGS anisotropies

LASS with Reconstruction: Provides backscatter 
of energy; will it improve compliance to the log 
law and yield better high-wavenumber velocity 
components?
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Log Law Assessment
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Energy Spectra
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