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The Wall:

Sullivan et al. (JFM, 2003) demonstrates clearly how, “in the atmospheric
surface layer, the wavelength of the peak in the vertical velocity spectrum
decreases with ... proximity to the surface and this dependence constrains our
ability to perform high-Reynolds-number large-eddy simulation (LES). Near the
ground, the LES filter cutoff is comparable to or larger than spectral peak length
and as a result the subfilter-scale (SFS) fluxes in LES are always significant.”

Indeed, as we approach the surface [the wall] the turbulent energy becomes
entirely subgrid scale. Thus, special model reatment I needed there.
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Themes and an outline.

v" A numerical model can succeed only if the algorithm (1) allows
representation of the “real” flow physics and (2) does not suppress
essential behavior. Example: the “classic” lid-driven cavity flow.

v" A numerical simulation can accurately represent reality even when
the elements of the code are not derived from first principles; both
phenomenological and empirical models can suffice. Example:
sediment transport and evolution of a sandy bed with turbulent flow
beneath water waves [a coastal ocean problem].

v' One can succeed in modeling “real” flows by (1) understanding the
essential features of the flow and (2) specifically incorporating
needed physics into numerical algorithms. Example: subfilter-scale
and subgrid-scale turbulence models for large-eddy simulation
[LES].
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Example: the “classic” lid-driven cavity flow.

Context: Mixing of stratified flows in large water bodies as well
as heat transfers on ribs and cutouts in mechanical-engineering-
scale flows led to a great interest in flow in and around cavities.

In the early days, the turbulent flow in cavities was not
understood and simulators were focusing on two dimensional
flows. Here we got involved with numerical codes that did not
reproduce the flow physics and the influence of walls that totally
changed the flow physics.

The focus here is on the codes and physics; no models are
involved beyond the implicit modeling of finite differences.
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This schematic shows a layout of the test section of the facility and
typical flow.
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This view shows electrically-generated
“thymol-blue” neutrally buoyant traces
which outline the downstream eddy.

2-D simulations do not
capture the essential
3-D nature of the flow
and its unsteadiness.

feseser

This plane is a few centimeters upstream of
wall shown above; light-sheet visualization
of particles in flow.
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Circa 1986 Another student, Chris Freitas, created REMIXS [REcirculating MIXed
Convection Simulator]. Derived from REBUFFS [UCBerkeley] which used the
SIMPLE algorithm which iteratively solves all the difference equations together.
Key new feature here was use of QUICK upstream scheme to remove diffusion in
first-order upwind schemes. Freitas was first to simulate these vortices. DNS.
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TIME OUT
Quick review of our Large-eddy simulation
(LES) approaches
Spatial filtering
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LES - Resolved

LES — Subfilter-scale
Tij = TRSFS T TSGS
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Subfilter-scale (SFS) model importance
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2011

SFS model critical for boundary layers

— High Reynolds number and rough boundary

— Near-wall energy-containing eddies not resolved
Error at wall/surface affects entire boundary layer

g
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Discretized LES Momentum Equation

cf., Carati, et al. (2001)
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Splitting up the turbulence
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Dealing with the turbulence terms: Alternatives

1. Ignore the RSFS and just model the SGS : this assumes essentially
that the filter and grid sizes are the same. Use Smagorinsky formulation

or dynamic version: _ —
— (au,- auj)

/[;" — —21/“115;" = —Vr
/ / a.xj dX;

2. Reconstruct the RSFS  Bjj = u;ll; — u;l;
and model SGS by simple or complex model

3. Add wall model: Tinear-wall — — [Ccﬂ(z) |§‘E¢ df;'
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Reconstruction of the subfilter-scale [SFS]
stress

Recipe to get SFS stress | see Chow et al. JAS (2005)

1. Reconstruct estimated velocity, (* from the resolved

velocity, u

G* =Ui+(-G)*Ui+( =GP *Ui+...

|l

fy *i —3ui -3Ui+Uj —... van Cittert (1931) iteration

2. Substitute Zl,- *into the SFS stress equation to obtain B;

Subfilter-scale stress = u;u; - U; U; 0-th order: 0*; =0
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Gullbrand and Chow (2003) Turbulent channel flow —
effects of reconstruction

0.4

increasing .
reconstruction level
T12

02

Figure 5.11: Profiles of the turbulent stress 75 for the fourth-order (64,49.48) code
with explicit filtering (tophat) and reconstruction. —--—: DSM, —-—: DMM, -——-:
DRMS5, : DRM10, and . DNS. (Level 0)
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Exampple: sediment transport and evolution of a sandy bed with
turbulent flow beneath water waves [a coastal ocean problem].

Goal: to demonstrate that a numerical simulation can accurately
represent reality even when the elements of the code are not derived
from first principles; both phenomenological and empirical models can
suffice.

We look at two cases:
First, to get a feeling for the flow: oscillating flow over
sinusoidal waves in a closed channel, called flow over, so-called,

vortex ripples.
Second, the real-time evolution of ripples on a flat bed in a channel.
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Why use numerical modeling to study
sediment transport over vortex ripples?

 The model resolves suspended sediment
transport which is dominant over vortex ripples.

 The model provides knowledge of the 3D, time-
dependent dynamics which can explain why the
direction and magnitude of vortex ripple
transport may be predicted incorrectly from
pointwise measurements in the field.
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Numerical Methods

Large-eddy Simulation Code (Calhoun & Street, 2001)

-- solves spatially-filtered Navier Stokes equations for
fluid using a second-order accurate projection method
(Zang, et al., 1994)

-- solves a spatially-filtered advection-diffusion equation
with a settling term for sediment (Zedler & Street, 2001)

-- models turbulence with Dynamic Mixed Model (DMM;
Zang, et. al., 1993)

-- rough boundary & turbulent boundary layer
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Key Equations
1. Continuity

Stress = Smagorinsky eddy viscosity model
+ 0" order reconstruction model

2. Filtered Navier-Stokes Ty = U, — "ﬂiﬁj

3. Sediment concentration (volume fraction)
and settling velocity

10v 0.01(s — Ded®\
W-:“"“‘E'[(l + (v2 )2 ) — l]_

Note that we handle turbulent part of the sediment motion with
a mixed model of the same form as for momentum.
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Key Equations

At the bed we use the empirical pickup function suggested by van Rijn:
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Boundary Condition: —=-=

1.5
9 — 8{;,. - } 0.6 U.GdU.R
P = 0.00033 ( - ) (s )Mg for 8>6, (5a)
or vT
P=0Q for 8<9, (5b)
where 68 = 7,/(p, — p)gd = Shields parameter, based on the
139£t0_rn__shear stress T,; and 0. = critical Shields parameter.

At the bed we apply a boundary condition that forces a logarithmic
velocity profile with drag based on the boundary roughness measure

Z, . In addition we augment the near bed eddy viscosity to provide a
wall model to account for the near bed influence of roughness on

the stress [see Nakayama and Saiko, 2002 and Nakayama et al., 2004]
and the grid anisotropy [high vertical resolution compared to

horizontal] that does not allow small eddies to be properly represented.




Numerical Domain

Domain Size:
45mLx0.6MmMHX1Im W ‘ -
(258 x 50 x 98 points)

H=0.65m
=0.225m
A=2.25m
W =1 m Note: Terrain-following mapped grid
at bottom.
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Wave & Sediment Parameters

Wave Parameters:
T=10s
Umax = 1.5 m/s
Orb. Amp. ~2-3m
Sediment Parameters: [sand]
d =200 um
p = 2650 kg/m?3
w,= 2.4 cm/s
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Spanwise Vorticity Visualization
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Vortex Suspension of Sediment
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Three- dm(nsmnal featur/es )

Streamwise

vortex structures

identified by the
A, method
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Shear stress on wavy bed

vortex_ripples_tau
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Iso-contours
of sediment
concentration

vortex_ripples_isosed
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Overview of set up for evolution of ripples from a flat

bed
Hydrodynamics (e.g. Zang et al., 1993, 1994; Cui & Street, 2001, 2004)

U
O
D A (A a 1 S _ Density stratification
( _ i) + (ﬂ: i) == 5z ( 1= e 1-.?) J- 1P r,lr’lg <“— of the sediment-
ot Sm O Po Obm water mixture
+ o ( pmﬂ‘j_ — i I Sub grid scale stress and flux
E}Em ﬂfﬂ in LES

Sediment transport (e.g. Zedler & Street, 2001, 2006; Chou & Fringer, 2008)

(a)t=843T
dCc  OC(U,y — Windis)  OF Y A
ot + D6 = o5,
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s
Bed elevation model (Chou & Fringer, 2009) ' (b)t_'ﬁm T’ '
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flow Chou & Fringer, 2009



Sediment pick-up

where

Bed elevation model

B

V(s — 1)gdy

|

aD*PT 6 =4,

] otherwise

a=000033, 3 =03 andy =15 yan Rijn [1993]

D* =dp[(s — Dg/v2"® =

T = (E - Hc:;""{gc
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Simulation Setup

L=0.6m
Currepts _ W=024m
160 i (Unidirectionaj
! flow, U,) H=0.15m
| U, ~ 0.42 ms-1
|
¢ T=8s

U.~ 0.0 ms-, 0.08 ms-t, 0.30 ms-?
Re,, ~ 40,000-50,000

BC’s in horizontal
<€

Oscillatory
Tray (waves, S e
u,) X
Lacy. et al., 207 (8 @
= (R S ) e
4 m 005 01 015 0.2 025 XO(.ri) 035 04 045 05 055
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t= 0.0250T; isosurface: C = 0.001 volume fraction
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3 February

Example: subfilter-scale and subgrid-scale turbulence
models for large-eddy simulation [LES].

One can succeed in modeling “real” flows by (1)
understanding the essential features of the flow and
(2) specifically incorporating needed physics into
numerical algorithms.

Examination of the linear algebraic subgrid-scale
stress [LASS] model, combined with
reconstruction of the subfilter-scale stress, for
large-eddy simulation of the neutral atmospheric
boundary layer.

ARPS mesoscale nonhydrostatic code run in LES
incompressible flow mode.

Models versus physical laws/first principles, or why models work?




Mixed model strategy

Replace SGS eddy viscosity model to allow:
Near-wall SGS anisotropy

By adding more physics and merging this with
reconstruction! Recall:

—_——

~ ==

——~—— — —
~ A~

Subg r?é—scale Subfiltgr-scale

L = Aij T Bij Focus on A,
w
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Subgrid-scale stress equation A,

This is easy to generate in usual way [e.g., as done with RANS] by adding
and subtracting momentum equations multiplied by the appropriate velocity.

d :
48R Eep) s BRI T AL

+ PrBHBH'J’Hﬂr% Pt%@es?ﬁ%r?ercﬁg’c%%‘é'ﬂn
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The Linear Algebraic Subgrid Scale Model

A SGS Stress

Models

%f_/

_ o0 - od,
0= _Ajk—,_Aik—j
GXk 8Xk
ProEuT:tion
-, 5
I, = (A ——eé
'e 3

Dissipation

+I1.

Pressure Redistribution

-~
Slow Pressure Strain

- C, (P,.j - %Pé,j) —csé§,j -C

2

D; - gPéij

Rapid Pre;fsure Strain

T 2 =
+( (A -2 80,)+ P,.j—C7D,.j+cseS,.j)f(z)

-

Wall Effects

(= 90, — ad,)
PU=_L ika—l+Ajka J
K X
P=1'Dii
2
§U=KGU,+%\
Lox, " ox;)
(- o0, - ad,)
Dij=_L ika—k+Ajka—k)
j j
OZAg f
29 ifz<z,
f(h) = z ¢
0 ifz=z,.
§=1.12§15A;;1
z, =4Ax

Pressure Redistribution modeled by use of Launder, Reece, Rodi (1975) equations.
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Implementation

. Use Advanced Reiona Prediction ystem [ARPS]

e Simulation is of neutral boundary flow; similar to several
others for comparison [e.g., Andren et al (1994), Chow et
al (2005), Ludwig et al (2009), Porte-Agel et al (2000),
Sullivan et al (1994), etc.] B

e 32mx 32mx 37.5 m[avg,10 m in vertical at ground] grid

e 1.3 km x1.3 km x 1.5 km domain

:t J3ainv {nx L NY, N2 )

:: rhostrinx,ny,nz)
:: defsqlnx,ny,nz)
:: taulllnx,ny,nz)
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assessment in neutra

Enriquez et al. (2010)
* Follows log law

— much better than Smagorinsky
— about the same as DWL

* Provides proper SGS anisotropy near the
wall
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A new mixed model

LASS + Reconstruction

LASS alone does better than eddy viscosity
models;
provides near-wall SGS anisotropies

Y

LASS with Reconstruction: Provides backscatter
of energy; will it improve compliance to the log
law and yield better high-wavenumber velocity
components?

3 February
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Log Law Assessment
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Energy Spectra
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Conclusions.

v" A numerical model can succeed if the algorithm (1) allows
representation of the “real” flow physics and (2) does not suppress
essential behavior. Example: the “classic” lid-driven cavity flow.

v" A numerical simulation can accurately represent reality even when
the elements of the code are not derived from first principles; both
phenomenological and empirical models can suffice. Example:
sediment transport and evolution of a sandy bed with turbulent flow
beneath water waves [a coastal ocean problem].

v' One can succeed in modeling “real” flows by (1) understanding the
essential features of the flow and (2) specifically incorporating
needed physics into numerical algorithms. Example: subfilter-scale
and subgrid-scale turbulence models for large-eddy simulation
[LES].

v Models can clarify and elucidate the physics and produce
accurate predictions.
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