DECAYING TURBULENCE: THEORY AND EXPERIMENTS

N.Mazellier, P. Valente & J.C. Vassilicos

Department of Aeronautics and Imperial College London, U.K.

Richardson-Kolmogorov cascade

Kolmogorov (1941): $E(k) \approx C_K \epsilon^{2/3} k^{-5/3}$ for $1/L \ll k \ll 1/\eta$ assuming ϵ , the K.E. dissipation rate per unit mass, to be (G.I. Taylor 1935) $\epsilon = C_{\epsilon} u'^3 / L$ with C_K and C_{ϵ} indep of Re_{λ} for $Re_{\lambda} \gg 100$ Note: $L/\eta \sim Re^{3/4}$, i.e. $L/\lambda \sim Re_{\lambda}$

Richardson-Kolmogorov cascade

LES modelling

Eddy viscosities in LES from Richardson-Kolmogorov cascade $u_t = \frac{2}{3}C_K^{-3/2}\epsilon^{1/3}k_c^{-4/3}$ where $\epsilon = C_{\epsilon}u'^3/L$ with C_{ϵ} indep of Re_{λ}

 $\nu_t = \frac{2}{3} C_K^{-3/2} C_{\epsilon}^{1/3} u' L(k_c L)^{-4/3}$ with universal values of C_K and C_{ϵ} .

Turbulent jets

<u>Jets</u>

Turbulent wakes

FIG. 1.

Homogeneous turbulence

(from Ishihara et al, early/mid 2000s, Japan, Earth Simulator calculations)

Some background

	Axisym Wake	Plane Wake	Mixing Layer
u'	$U_{\infty}(\frac{x-x_0}{L_b})^{-2/3}$	$U_{\infty}(\frac{x-x_0}{L_b})^{-1/2}$	U_{∞}
L_u	$L_b^{2/3}(x-x_0)^{1/3}$	$L_b^{1/2}(x-x_0)^{1/2}$	$(x-x_0)$

 L_b : characteristic cross-stream length-scale of inlet (e.g. mesh or nozzle or bluff body size...)

 U_{∞} : characteristic inlet mean flow velocity or mean flow velocity cross-stream variation

Some background

 λ obtained from $\epsilon \sim u'^3/L_u \sim \nu u'^2/\lambda^2$ $Re_0 \equiv \frac{U_{\infty}L_b}{\nu}$: inlet Reynolds number

Decaying H(I)T

Sedov (1944, 1982) and George (1992) found exact single-scale (self-preserving) solutions of Lin's equation $\frac{\partial E(k,t)}{\partial t} = T(k,t) - 2\nu k^2 E(k,t).$

E.G. It admits exact solutions of the form $E(k,t) = u'^2(t)l(t)e(kl(t), i.c./b.c.)$ and $T(k,t) = \frac{d}{dt}[u'^2(t)l(t)]\tau(kl(t), i.c./b.c.).$ (See George 1992; George & Wang 2009.)

These solutions are such that $L \sim l(t)$ and $\lambda \sim l(t)$; hence L/λ remains constant during decay even though Re_{λ} can decay fast. This implies $L/\lambda \sim Re_{\lambda}^{0}$ to be contrasted with the Richardson-Kolmogorov cascade's $L/\lambda \sim Re_{\lambda}$.

Decay of two-scale cascading H(I)T

The decay of homogeneous isotropic cascading turbulence is traditionally considered to obey the following constraints:

1. $\frac{d}{dt}\frac{3}{2}u'^2 = -\epsilon$ where $\epsilon \sim u'^3/L$ -equivalent to $L/\lambda \sim Re_{\lambda}$.

2. Invariants of the von Kárman-Howarth equation (physical space equivalent of the Lin equation):

(i) Either the Loitsyansky invariant $u'^2 \int_0^{+\infty} r^4 f(r) dr$ is non-zero and Const in time;

(ii) Or the Birkhoff-Saffman invariant

 $u'^2 \int_0^{+\infty} \left[3r^2 f(r) + r^3 \frac{\partial f(r)}{\partial r} \right] dr$ is non-zero and Const in time. 3. $u'^2 f(r,t) \equiv \langle u(x,t)u(x+r,t) \rangle$ is self-similar at large enough r, i.e. $f(r,t) \approx f[r/L(t)]$ if r not too small.

Invariants of von Kárman-Howarth

$$\frac{\partial}{\partial t}(u'^2 f) = u'^3(\frac{\partial k}{\partial r} + \frac{4k}{r}) + 2\nu u'^2(\frac{\partial^2 f}{\partial r^2} + \frac{4}{r}\frac{\partial f}{\partial r})$$

where $u'^3k(r,t) \equiv \langle u^2(x,t)u(x+r,t) \rangle$,

$$I_{Mnn'} \equiv u'^2 \int_0^{+\infty} r^{M+n'} \frac{\partial^{n'} f(r)}{\partial r^{n'}} dr + C_{Mnn'} u'^2 \int_0^{+\infty} r^{M+n} \frac{\partial^n f(r)}{\partial r^n} dr$$

are all invariants of the von Kárman-Howarth equation provided that M > 1, $\lim_{r\to\infty} (r^M k) = 0$ and $\lim_{r\to\infty} (r^{M-1}f) = 0$ and that $I_{Mnn'}$ is well-defined. M = 4 is the Loitsyansky and M = 2 is the Birkhoff-Saffman inv. The von Kárman-Howarth equation admits an infinity of possible finite integral invariants depending on conditions at infinity.

Consequences of these invariants

When M > 1 and $M \neq 4$, assuming (i) $f(r,t) \approx a_{M+1}(t)(L(t)/r)^{M+1}$ to leading order when $r \to \infty$ and (ii) $\lim_{r\to\infty} (r^M k) = 0$,

then I_{Mn0} is finite for all $n \ge 1$ and its invariance leads to

$$\frac{d}{dt}(a_{M+1}L^{M+1}u'^2) = 0.$$

This proves a precise version of the principle of permanence of large eddies.

None or one or two invariants

For conditions at infinity such that the Birkhoff-Saffman invariant is not infinite, either none or only one or only two invariants are finite.

Assuming that there exists a number $M_f \ge 2$ for which $\lim_{r\to\infty} (r^{M_f+1}f) = a_{M_f+1}L^{M_f+1} \not\equiv 0$ and a number M_g for which $\lim_{r\to\infty} (r^M k) = 0$ for any M in the interval $2 \le M < M_g$ but $\lim_{r\to\infty} (r^M k) \ne 0$ for any $M \ge M_g$, then we have the following four possibilities.

(1) $M_f/M_g > 1$, $min(M_f, M_g) < 4$: no finite invariants (2) $M_f/M_g > 1$, $min(M_f, M_g) \ge 4$: Loitsyansky invariant (3) $M_f/M_g \le 1$, $min(M_f, M_g) < 4$: $\frac{d}{dt}(a_{M_f+1}L^{M_f+1}u'^2) = 0$ (4) $M_f/M_g \le 1$, $min(M_f, M_g) > 4$: $\frac{d}{dt}(a_{M_f+1}L^{M_f+1}u'^2) = 0$ and Loitsyansky. If $min(M_f, M_g) = 4$ only Loitsyansky.

None or one or two invariants

Implications for self-preserving decay

George (1992) exact single-scale solutions of the von Kárman-Howarth equation:

f(r,t) = f[r/l(t)] and $k(r,t) = b(\nu, u'_0, l_0, t - t_0)\kappa[r/l(t)]$

Solvability conditions ($\alpha > 0$, c > 0):

 $u'^{2}(t) = u'_{0}^{2} \left[1 + \frac{c\nu}{l_{0}^{2}}(t-t_{0}) \right]^{-2\alpha/c}$ and $l^{2}(t) = l_{0}^{2} + c\nu(t-t_{0})$ (1) $M_{f}/M_{g} > 1$, $min(M_{f}, M_{g}) < 4$: any α and c. (2) $M_{f}/M_{g} > 1$, $min(M_{f}, M_{g}) \ge 4$: $2\alpha/c = 5/2$ (3) $M_{f}/M_{g} \le 1$, $min(M_{f}, M_{g}) < 4$: $2\alpha/c = (M_{f} + 1)/2$ and lies between 3/2 and 5/2 as $2 \le M_{f} < 4$ (4) $M_{f}/M_{g} \le 1$, $min(M_{f}, M_{g}) > 4$: self-preserving George solutions impossible. If $M_{f} = 4$ then $2\alpha/c = 5/2$

Implications for cascading decay

Decay of homogeneous isotropic cascading turbulence: (i) $\frac{d}{dt}\frac{3}{2}u'^2 = -\epsilon$ where $\epsilon \sim u'^3/L$ –equivalent to $L/\lambda \sim Re_{\lambda}$. (ii) $f(r,t) \approx f[r/L(t)]$ if r not too small. (iii) Implications of von Kárman-Howarth invariants: (1) $M_f/M_q > 1$, $min(M_f, M_q) < 4$: open. (2) $M_f/M_q > 1$, $min(M_f, M_q) \ge 4$: $u'^{2}(t) = u'_{0}^{2} \left[1 + c(t - t_{0})\right]^{-10/7}$ and $L(t) = L_0^2 [1 + c(t - t_0)]^{-2/7}$ (3) $M_f/M_q \leq 1$, $min(M_f, M_q) < 4$: $u'^{2}(t) = u_{0}'^{2} \left[1 + c(t - t_{0})\right]^{-n}$ where $n = 2(M_{f} + 1)/(M_{f} + 3)$ lies between 6/5 and 10/7 as $2 \le M_f < 4$. $L(t) = L_0 \left[1 + c(t - t_0)\right]^{-2/(M_f + 3)}$ (4) $M_f/M_q \leq 1$, $min(M_f, M_q) > 4$: large-scale self-similarity impossible. If $M_f = 4$ then (2).

Summary

Decay of two-scale (inner and outer) homogeneous isotropic cascading turbulence:

$$u'^{2}(t) = u'_{0}^{2} [1 + c(t - t_{0})]^{-n}$$

where *n* lies between $6/5 = 1.2$ and $10/7 = 1.43$.

Decay of self-preserving single-scale homogeneous isotropic turbulence:

$$u'^{2}(t) = u'_{0}^{2} \left[1 + \frac{c\nu}{l_{0}^{2}}(t - t_{0}) \right]^{-2\alpha/c}$$

where $2\alpha/c$ lies between $3/2 = 1.5$ and $5/2 = 2.5$.

Summary

There exist asymptotic behaviours at infinity of the double and triple velocity correlation functions which are a priori possible and for which no finite invariant of the von Kárman-Howarth equation exists. In this case, it is unknown what sets the exponents n and $2\alpha/c$.

There exist asymptotic behaviours at infinity of the double and triple velocity correlation functions which are a priori possible and for which no self-preserving and no large-scale self-similar decays of homogeneous isotropic turbulence are possible.

Wind tunnels

 0.91^2m^2 width; test section 4.8m; max speed 45m/s; background turbulence ≈ 0.25 %.

 0.46^2m^2 width; test section $\approx 4.0m$; max speed 33m/s; background turbulence ≈ 0.4 %.

$D_f = 2, \sigma = 25\%$ fractal square grids

and equal $M_{eff} \approx 2.6 cm$, $L_{max} \approx 24 cm$, $L_{min} \approx 3 cm$, N = 4, T = 0.46 m. BUT $t_r = 2.5, 5.0, 8.5, 13.0, 17.0$

p. 20

Comparison with regular grid turbulence

Streamwise turbulence intensity

Wake-interaction length-scale

 $(u'/U)/(u'/U)_{peak}$ versus x/x_* where $L_0 = \sqrt{t_0 x_*}$ $x_{peak} \approx 0.5 x_*$

 $u'/U \sim \exp(-Bx/x_*)$ where $x > x_{peak}$; $B \approx 2.06$. In agreement with Seoud & V 19, 105108 (2007).

Homogeneity where $x > x_{peak}$

From inhomogeneity to homogeneity

Mean flow and turbulence intensity profiles at $x \approx 0.02x_*$ ($x \approx 7M_{eff}$) and $x \approx 0.15x_*$ ($x \approx 53M_{eff}$).

From inhomogeneity to homogeneity

Statistical homogeneity at $x > x_{peak}$

From Seoud & V PoF, 2007.

Statistical homogeneity at $x > x_{peak}$

From Seoud & V PoF, 2007.

From non-isotropy to near-isotropy

x_{peak} helps collapse u'/v' as fct of x

From Hurst & V PoF, 2007; T = 0.46m tunnel with $U_{\infty} = 10$ m/s.

Statistical local isotropy at $x > x_{peak}$

From Seoud & V PoF, 2007: $K_1 \equiv 2 < (\frac{\partial u}{\partial x})^2 > / < (\frac{\partial v}{\partial x})^2 >$ as function of Re_{λ} at locations (x, y) downstream from $t_r = 17$ fractal grid where $x \ge 2x_{peak}$ and y = 0, 3, 6cm. Local isotropy implies $K_1 = 1$.

From non-gaussianity to gaussianity

Note that S_u and F_u are close to 0 and 3 respectively at $x > x_{peak}$.

L_u/λ and Re_λ

L_u/λ versus Re_λ and Re_0

 L_u/λ indep of Re_λ but $L_u/\lambda \propto Re_0^{1/2}$?

Self-preserving single-scale spectra

In homogeneous region $x > x_{peak}$, $\frac{\partial E(k,t)}{\partial t} = T(k,t) - 2\nu k^2 E(k,t).$

Admits exact solutions of the form $E(k,t) = u'^2(t)l(t)f(kl(t), Re_0, *)$ and $T(k,t) = \frac{d}{dt}(u'^2(t)l(t))g(kl(t), Re_0, *)$. (See George PoF 4, 2192, 1992; George & Wang PoF 21, 025108, 2009.)

These solutions are all such that $L = \alpha(Re_0, *)l(t)$ and $\lambda = \beta(Re_0, *)l(t)$, hence L/λ remains constant during decay but can nevertheless depend on Re_0 .

One particular such solution is such that *l* is itself constant during decay and u'^2 decays exponentially, close to what is observed. Such solutions are such that the ratio of outer (*L*) to inner (λ) length-scales is constant during decay even though Re_{λ} decays fast. As observed!

Self-preserving energy spectrum

One fractal square grid and three different x positions

Self-preserving energy spectrum

One x/x_* position and three different fractal square grids

Energy spectrum's Re_0 **dependence**

 $E_u(k_x, x) = u'^2(x)L_u(k_xL_u)^{-p}$ for $1 < k_xL_u < Re_0^{3/4}$

One x/x_* position, one fractal square grid, three different Re_0 p increases with Re_0 , perhaps towards 5/3

Longer streamwise fetch

From $0.5 < x/x_* < 1.0$ to $0.5 < x/x_* < 1.5$

Decay exponents: from 1.21 to 1.72 for RG and AG (Mydlarski & Warhaft '96); from 2.36 to 2.57 for FSG by various ways to fit

– p. 38

No universality of model constants

Consider for the fun of it the k-epsilon model equation for decaying homogeneous isotropic turbulence:

 $\frac{d}{dt}\epsilon = -\frac{2}{3}C_{\epsilon_2}\epsilon^2/u'^2$ where the decay exponent is equal to $1/(C_{\epsilon_2} - 1)$.

Hence, $C_{\epsilon_2} \approx 1.8$ (close to standard value) for RG and AG, but $C_{\epsilon_2} \approx 1.4$ for FSG.

However, the more important point is the suggestion that there may be at least two different classes of decaying homogeneous turbulence: a two-scale cascading type of decaying turbulence and a single-scale self-preserving type of decaying turbulence. This is a more serious hit on universality....but the possibility exists at this stage of considering "universality classes".....

Two classes of small-scale turbulence?

Two classes of small-scale turbulence?

A self-preserving/single-scale class where (assuming 5/3) (i) $E_u(k_x) \sim (\frac{u'^3}{L_u})^{2/3} k_x^{-5/3}$ for $1 \ll k_x L_u \ll Re_0^{3/4}$ (ii) $L_u/\lambda \propto Re_0^{1/2}$ but independent of x in the decay region where Re_λ decays fast. Decoupling between L_u/λ and Re_λ . (iii) Fast turbulence decay, decay exponents around 2.5

And the K41 class where (assuming asymptotic 5/3) (i) $E_u(k_x) \sim (\frac{u'^3}{L_u})^{2/3} k_x^{-5/3} \sim \epsilon^{2/3} k_x^{-5/3}$ for $1 \ll k_x L_u \ll Re_{\lambda}^{3/2}$. (iii) $L_u/\lambda \sim Re_{\lambda}$ locally at every x in the decay region. (iv) Slow turbulence decay, decay exponents around 1.3.

What does this mean for LES modeling?

And two final thoughts...

1. Possibilities to passively design/manage bespoke small-scale turbulence for various applications?

2. What if turbulence in various cases in nature and engineering appears as a mixture of such different classes? How do we model it then?

This talk in papers

JCV, Phys. Lett A 375, 1010 (2011)

N. Mazellier & JCV, PoF 20, 075101 (2010)

P. Valente & JCV, preprint submitted December 2010