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Richardson-Kolmogorov cascade

Kolmogorov (1941): E(k) ≈ CKǫ2/3k−5/3

for 1/L ≪ k ≪ 1/η
assuming ǫ, the K.E. dissipation rate per

unit mass, to be (G.I. Taylor 1935)
ǫ = Cǫu

′3/L
with CK and Cǫ indep of Reλ for Reλ ≫ 100

Note: L/η ∼ Re3/4, i.e. L/λ ∼ Reλ

Richardson-Kolmogorov cascade
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LES modelling

Eddy viscosities in LES from
Richardson-Kolmogorov cascade

νt = 2
3C

−3/2
K ǫ1/3k

−4/3
c

where ǫ = Cǫu
′3/L with Cǫ indep of Reλ

νt = 2
3C

−3/2
K C

1/3
ǫ u′L(kcL)−4/3

with universal values of CK
and Cǫ.
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Turbulent jets
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Turbulent wakes
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Homogeneous turbulence

(from Ishihara et al, early/mid 2000s, Japan, Earth
Simulator calculations)
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Some background

WT HT Axisym Jet Plane Jet

u′ U∞(x−x0

Lb
)−p, 1/2 < p < 3/4 U∞(x−x0

Lb
)−1 U∞(x−x0

Lb
)−1/2

Lu Lb(
x−x0

Lb
)q, 0 < q < 1/2 x − x0 x − x0

Axisym Wake Plane Wake Mixing Layer

u′ U∞(x−x0

Lb
)−2/3 U∞(x−x0

Lb
)−1/2 U∞

Lu L
2/3
b (x − x0)

1/3 L
1/2
b (x − x0)

1/2 (x − x0)

Lb: characteristic cross-stream length-scale of inlet (e.g.
mesh or nozzle or bluff body size...)
U∞: characteristic inlet mean flow velocity or mean flow
velocity cross-stream variation
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Some background

WT HT Axisym Jet Plane Jet

Lu/λ Re
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Lu/λ ∼ Reλ in all cases
λ obtained from ǫ ∼ u′3/Lu ∼ νu′2/λ2

Re0 ≡ U∞Lb

ν : inlet Reynolds number
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Decaying H(I)T

Sedov (1944, 1982) and George (1992) found exact
single-scale (self-preserving) solutions of Lin’s equation
∂E(k,t)

∂t = T (k, t) − 2νk2E(k, t).

E.G. It admits exact solutions of the form
E(k, t) = u′2(t)l(t)e(kl(t), i.c./b.c.)
and
T (k, t) = d

dt [u
′2(t)l(t)]τ(kl(t), i.c./b.c.).

(See George 1992; George & Wang 2009.)

These solutions are such that L ∼ l(t) and λ ∼ l(t); hence
L/λ remains constant during decay even though Reλ can
decay fast. This implies L/λ ∼ Re0

λ to be contrasted with the
Richardson-Kolmogorov cascade’s L/λ ∼ Reλ.
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Decay of two-scale cascading H(I)T

The decay of homogeneous isotropic cascading turbulence
is traditionally considered to obey the following constraints:
1. d

dt
3
2u′2 = −ǫ where ǫ ∼ u′3/L –equivalent to L/λ ∼ Reλ.

2. Invariants of the von Kárman-Howarth equation (physical
space equivalent of the Lin equation):
(i) Either the Loitsyansky invariant u′2

∫ +∞

0 r4f(r)dr is
non-zero and Const in time;
(ii) Or the Birkhoff-Saffman invariant

u′2
∫ +∞

0

[

3r2f(r) + r3 ∂f(r)
∂r

]

dr is non-zero and Const in time.

3. u′2f(r, t) ≡< u(x, t)u(x + r, t) > is self-similar at large
enough r, i.e. f(r, t) ≈ f [r/L(t)] if r not too small.
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Invariants of von Kárman-Howarth

∂

∂t
(u′2f) = u′3(

∂k

∂r
+

4k

r
) + 2νu′2(

∂2f

∂r2
+

4

r

∂f

∂r
)

where u′3k(r, t) ≡< u2(x, t)u(x + r, t) >,

IMnn′ ≡ u′2

∫ +∞

0
rM+n′ ∂n′

f(r)

∂rn′
dr+CMnn′u′2

∫ +∞

0
rM+n∂nf(r)

∂rn
dr

are all invariants of the von Kárman-Howarth equation
provided that M > 1, limr→∞(rMk) = 0 and
limr→∞(rM−1f) = 0 and that IMnn′ is well-defined. M = 4 is
the Loitsyansky and M = 2 is the Birkhoff-Saffman inv.
The von Kárman-Howarth equation admits an infinity of
possible finite integral invariants depending on conditions at
infinity.
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Consequences of these invariants

When M > 1 and M 6= 4,
assuming
(i) f(r, t) ≈ aM+1(t)(L(t)/r)M+1 to leading order when
r → ∞
and
(ii) limr→∞(rMk) = 0,

then IMn0 is finite for all n ≥ 1 and its invariance leads to

d

dt
(aM+1L

M+1u′2) = 0.

This proves a precise version of the principle of
permanence of large eddies.
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None or one or two invariants

For conditions at infinity such that the Birkhoff-Saffman
invariant is not infinite, either none or only one or only two
invariants are finite.
Assuming that there exists a number Mf ≥ 2 for which
limr→∞(rMf+1f) = aMf+1L

Mf+1 6≡ 0 and a number Mg for
which limr→∞(rMk) = 0 for any M in the interval
2 ≤ M < Mg but limr→∞(rMk) 6= 0 for any M ≥ Mg, then we
have the following four possibilities.
(1) Mf/Mg > 1, min(Mf ,Mg) < 4: no finite invariants
(2) Mf/Mg > 1, min(Mf ,Mg) ≥ 4: Loitsyansky invariant
(3) Mf/Mg ≤ 1, min(Mf ,Mg) < 4: d

dt(aMf+1L
Mf+1u′2) = 0

(4) Mf/Mg ≤ 1, min(Mf ,Mg) > 4: d
dt(aMf+1L

Mf+1u′2) = 0

and Loitsyansky. If min(Mf ,Mg) = 4 only Loitsyansky.
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None or one or two invariants
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Implications for self-preserving decay

George (1992) exact single-scale solutions of the von
Kárman-Howarth equation:
f(r, t) = f [r/l(t)] and k(r, t) = b(ν, u′

0, l0, t − t0)κ[r/l(t)]

Solvability conditions (α > 0, c > 0):

u′2(t) = u′

0
2
[

1 + cν
l2
0

(t − t0)
]

−2α/c
and l2(t) = l20 + cν(t − t0)

(1) Mf/Mg > 1, min(Mf ,Mg) < 4: any α and c.
(2) Mf/Mg > 1, min(Mf ,Mg) ≥ 4: 2α/c = 5/2

(3) Mf/Mg ≤ 1, min(Mf ,Mg) < 4: 2α/c = (Mf + 1)/2 and
lies between 3/2 and 5/2 as 2 ≤ Mf < 4

(4) Mf/Mg ≤ 1, min(Mf ,Mg) > 4: self-preserving George
solutions impossible. If Mf = 4 then 2α/c = 5/2
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Implications for cascading decay

Decay of homogeneous isotropic cascading turbulence:
(i) d

dt
3
2u′2 = −ǫ where ǫ ∼ u′3/L –equivalent to L/λ ∼ Reλ.

(ii) f(r, t) ≈ f [r/L(t)] if r not too small.
(iii) Implications of von Kárman-Howarth invariants:
(1) Mf/Mg > 1, min(Mf ,Mg) < 4: open.
(2) Mf/Mg > 1, min(Mf ,Mg) ≥ 4:

u′2(t) = u′

0
2 [1 + c(t − t0)]

−10/7 and

L(t) = L2
0 [1 + c(t − t0)]

−2/7

(3) Mf/Mg ≤ 1, min(Mf ,Mg) < 4:
u′2(t) = u′

0
2 [1 + c(t − t0)]

−n where n = 2(Mf + 1)/(Mf + 3)

lies between 6/5 and 10/7 as 2 ≤ Mf < 4.

L(t) = L0 [1 + c(t − t0)]
−2/(Mf+3).

(4) Mf/Mg ≤ 1, min(Mf ,Mg) > 4: large-scale self-similarity
impossible. If Mf = 4 then (2).
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Summary

Decay of two-scale (inner and outer) homogeneous
isotropic cascading turbulence:
u′2(t) = u′

0
2 [1 + c(t − t0)]

−n

where n lies between 6/5 = 1.2 and 10/7 = 1.43.

Decay of self-preserving single-scale homogeneous
isotropic turbulence:

u′2(t) = u′

0
2
[

1 + cν
l2
0

(t − t0)
]

−2α/c

where 2α/c lies between 3/2 = 1.5 and 5/2 = 2.5.
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Summary

There exist asymptotic behaviours at infinity of the double
and triple velocity correlation functions which are a priori
possible and for which no finite invariant of the von
Kárman-Howarth equation exists. In this case, it is
unknown what sets the exponents n and 2α/c.

There exist asymptotic behaviours at infinity of the double
and triple velocity correlation functions which are a priori
possible and for which no self-preserving and no
large-scale self-similar decays of homogeneous isotropic
turbulence are possible.
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Wind tunnels

0.912m2 width; test section 4.8m; max speed 45m/s;
background turbulence ≈ 0.25%.

0.462m2 width; test section ≈ 4.0m; max speed 33m/s;
background turbulence ≈ 0.4%.
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Df = 2, σ = 25% fractal square grids

and equal Meff ≈ 2.6cm, Lmax ≈ 24cm, Lmin ≈ 3cm, N = 4,
T = 0.46m.

BUT tr = 2.5, 5.0, 8.5, 13.0, 17.0
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Comparison with regular grid turbulence
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Streamwise turbulence intensity
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Wake-interaction length-scale
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(b) 

(u′/U)/(u′/U)peak versus x/x∗ where L0 =
√

t0x∗

xpeak ≈ 0.5x∗

u′/U ∼ exp(−Bx/x∗) where x > xpeak; B ≈ 2.06.
In agreement with Seoud & V 19, 105108 (2007).
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Homogeneity wherex > xpeak
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From inhomogeneity to homogeneity
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From inhomogeneity to homogeneity
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Statistical homogeneity atx > xpeak
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Statistical homogeneity atx > xpeak
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From non-isotropy to near-isotropy

xpeak helps collapse u′/v′ as fct of x
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Statistical local isotropy atx > xpeak
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From non-gaussianity to gaussianity

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

u 
/ u

’

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

x [m]

u 
/ u

’

(a) 

(b) 

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

u / u’
P

ro
b(

u 
/ u

’)

x/x
*
 ≈ 0.2

x/x
*
 ≈ 0.7

(c) 

Note that Su and Fu are close to 0 and 3 respectively at
x > xpeak.

– p. 31



Lu/λ and Reλ
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Lu/λ versusReλ and Re0
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Self-preserving single-scale spectra

In homogeneous region x > xpeak,
∂E(k,t)

∂t = T (k, t) − 2νk2E(k, t).

Admits exact solutions of the form
E(k, t) = u′2(t)l(t)f(kl(t), Re0, ∗) and
T (k, t) = d

dt(u
′2(t)l(t))g(kl(t), Re0, ∗). (See George PoF 4,

2192, 1992; George & Wang PoF 21, 025108, 2009.)

These solutions are all such that L = α(Re0, ∗)l(t) and
λ = β(Re0, ∗)l(t), hence L/λ remains constant during decay
but can nevertheless depend on Re0.

One particular such solution is such that l is itself constant
during decay and u′2 decays exponentially, close to what is
observed. Such solutions are such that the ratio of outer (L)
to inner (λ) length-scales is constant during decay even
though Reλ decays fast. As observed! – p. 34



Self-preserving energy spectrum

Eu(kx, x) = u′2(x)Luf(kxLu, Re0)
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One fractal square grid and three different x positions
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Self-preserving energy spectrum
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One x/x∗ position and three different fractal square grids
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Energy spectrum’sRe0 dependence

Eu(kx, x) = u′2(x)Lu(kxLu)−p for 1 < kxLu < Re
3/4
0
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p increases with Re0, perhaps towards 5/3 – p. 37



Longer streamwise fetch

From 0.5 < x/x∗ < 1.0 to 0.5 < x/x∗ < 1.5
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No universality of model constants

Consider for the fun of it the k-epsilon model equation for
decaying homogeneous isotropic turbulence:

d
dtǫ = −2

3Cǫ2ǫ
2/u′2

where the decay exponent is equal to 1/(Cǫ2 − 1).

Hence, Cǫ2 ≈ 1.8 (close to standard value) for RG and AG,
but Cǫ2 ≈ 1.4 for FSG.

However, the more important point is the suggestion that
there may be at least two different classes of decaying
homogeneous turbulence: a two-scale cascading type of
decaying turbulence and a single-scale self-preserving type
of decaying turbulence. This is a more serious hit on
universality....but the possibility exists at this stage of
considering “universality classes”.....
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Two classes of small-scale turbulence?
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Two classes of small-scale turbulence?

A self-preserving/single-scale class where (assuming 5/3)

(i) Eu(kx) ∼ (u′3

Lu
)2/3k

−5/3
x for 1 ≪ kxLu ≪ Re

3/4
0

(ii) Lu/λ ∝ Re
1/2
0 but independent of x in the decay region

where Reλ decays fast. Decoupling between Lu/λ and Reλ.
(iii) Fast turbulence decay, decay exponents around 2.5

And the K41 class where (assuming asymptotic 5/3)

(i) Eu(kx) ∼ (u′3

Lu
)2/3k

−5/3
x ∼ ǫ2/3k

−5/3
x for 1 ≪ kxLu ≪ Re

3/2
λ .

(iii) Lu/λ ∼ Reλ locally at every x in the decay region.
(iv) Slow turbulence decay, decay exponents around 1.3.

What does this mean for LES modeling?
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And two final thoughts...

1. Possibilities to passively design/manage
bespoke small-scale turbulence for various
applications?
2. What if turbulence in various cases in
nature and engineering appears as a
mixture of such different classes? How do
we model it then?

This talk in papers
JCV, Phys. Lett A 375, 1010 (2011)
N. Mazellier & JCV, PoF 20, 075101 (2010)
P. Valente & JCV, preprint submitted December 2010
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