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Two Basic Idea:

Weak convergence and Boundary Effects for Energy Dissipation

There is a strong analogy between statistical theory and weak conver-
gence. Statistical theory mean average

1 Average over an ensemble of solutions

2 Average over different values in space or time of the same solution

3 Combine the two above points of view

And there is a belief that these different averages carry the same propert-
ties ( An ergodic theorem , the Taylor hypothesis.)



Weak convergence

Weak convergence involves a family say uν of functions which may not
converge in the usual sense but with moments again any convenient smooth
test fonction x 7→ φ(x) converging:

lim
ε→0

∫
uν(x)φ(x)dx→

∫
uν(x)φ(x)dx

Exemple

uν(x) = sin
x

ν
,∫

(sin
x

ν
)φ(x)dx = ν

∫
(cos

x

ν
)
dφ(x)

dx
dx→ 0 ,

but
∫

(sin
x

ν
)2φ(x)dx→

1

2

∫
dφ(x)

dx
dx ,

and 0 = |uν(x)|2 < (uν(x))2 =
1

2
.



What I want to do

• Will not touch the “Clay problem" and assume the existence of a smooth
solution u(x, t)x ∈ Ω, t ∈ [0, T ] of the Euler with zero normal compo-
nent on the boundary and consider smooth solutions of Navier-Stokes
with the same initial data. Energy estimates are much easier for finite
time dependent problems.

• The time T > 0 is fixed will not touch the issue of simultaneous (dis-
tinguished) limits ν → 0 and T → ∞ , where there are very few
mathematical results. For instance “Enhanced dissipation and invis-
cid damping in the inviscid limit of the Navier-Stokes equations near
the 2D Couette flow" Bedrossian, Masmoudi, Vicol arXiv:1408.4754



• I will use the energy estimate because is the only estimate available .
Therefore only weak convergence is involved and weak convergence
is the deterministic counter part of the statistical approach of turbu-
lence. Both are based on averaging.

• Revisit a basic criteria of Kato To the best of my knowledge this is the
only deterministic scenario where one can relate anomalous dissipa-
tion of energy with appearance of turbulence.

• Underline the consistency of this Kato criteria with several ansatz used
in laminar or turbulent region of a fluid near an obstacle.



The Solenoidale Navier Stokes and Euler Equations in Ω ⊂ Rd, d = 2, d = 3.

The Navier -Stokes equations

∂tuν + (uν · ∇)uν − ν∆uν +∇pν = 0 ,

In Ω× [0, T ] ∇ · uν = 0 ,

On ∂Ω× (0, T ) uν · ~n = 0 , and (uν)τ = 0

uν(x,0) = u(x,0) Re =
UL

νfluide
ν = Re−1 .

The Euler equations

∂tu+ (u · ∇)u+∇p = 0 ,

In Ω× [0, T ] ∇ · uν = 0 ,

On ∂Ω× (0, T ) uν · ~n = 0 ,

uν(x,0) = u(x,0) .



Comments

The name “incompressible" does not seems appropriate. It is not used by
Leray in his founding paper. The reason is that these equations are per-
fectly adapted to the description of the fluctuations of density and tempera-
ture for a compressible fluide if the ratio between the fluctuation of velocity
and the sound speed is small. Small Mach number. But then the only scal-
ing parameter is the Reynolds number. In most practical applications the
Reynolds number is very large (for instance, the Reynolds number is about
100 for the air around a moving bicycle, about 108 for a moving car, and
is of the order of 1012 in climate and meteorological applications). This
naturally suggests to investigate and compare the behavior of the Navier-
Stokes equations , for large values of the Reynolds numbers, to that of
Euler equations, which are obtained formally by substituting Re =∞



The relation between Navier-Stokes and Euler equations is trivial in the
presence of a smooth solution u(x, t) of Euler and in the absence of
boundary effect. In the presence of boundary effects things are much more
complicated.

The obvious difficulty comes from the fact that only the impermeability con-
dition remain for ν → 0 . The relation (uν)τ = 0 does not persist.

Therefore the solution has to become singular near the boundary.

Moreover due to the non linearity of the advection term u · ∇u and the
effect of the pressure such singularities may propagate inside the domain
as it is observed in the wake of an obstacle.

And this turn out to be the most natural effet to generate turbulence (even
for homogenous turbulence far from the boundary).
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Turbulent flow behind a sphere



Wake of an airplane



Grid Generated Homogeneous Turbulence



Energy balance with uν(x,0) = u(x,0)

The ν uniform estimate.

1

2

d

dt

∫
Ω
|uν(x, τ)|2dxdτ + ν

∫
Ω
|∇uν|2dx = 0 .∫

Ω

|uν(x, t)|2

2
dx+ ν

∫ t

0

∫
Ω
|∇uν(x, s)|2dxds =

∫
Ω

|u(x,0)|2

2
dx .

uν denotes the weak limit of a subsequence of solutions uν of Navier-
Stokes equations.



Relative estimate:

∂t(uν − u) + uν · ∇uν − u · ∇u− ν∆uν +∇pν −∇p = 0

(uν · ∇uν − u · ∇u, uν − u) = (uν − u, S(u)(uν − u)) ;

S(u) =
∇u+∇tu

2
;

d

dt

1

2
|uν − u|2L2(Ω) + ν

∫
Ω
|∇uν|2dx ≤ |(uν − u, S(u)(uν − u))|

− ν
∫

Ω
(∇uν · ∇u)dx+ν

∫
∂Ω

∂~nuνudσ . The bad term! .

Without boundary uν converges to u in C(0, T ;L2(Ω)) . Otherwise the
situation is much more subtle!!!



About weak convergence:

For any uν weak L∞((0, T ) : L2(Ω)) limit of a sequence of solutions
of Navier-Stokes equations one has has following standard Hilbert type-
properties:

uν ∈ Cweak(0, T ;L2(Ω)) , uν(x,0) = u0(x) ,

in Ω× (0, T ) ∇ · uν = 0 ; on ∂Ω× (0, T ) uν · ~n = 0 ,

∀t > 0
∫

Ω
|uν(x, t)|2dx ≤

∫
Ω
|uν(x, t)|2dx ≤

∫
Ω
|u0(x)|2dx ,

0 ≤ ν
∫ T

0

∫
Ω
|∇xuν(x, t)|2dxdt ≤ 2(

∫
Ω
|u0(x)|2dx−

∫
Ω
|uν(x, T )|2dx) .



The 1983 Kato Theorem.

Theorem the following facts are equivalent:

uν(t)→ u(t) in L2(Ω) uniformly in t ∈ [0, T ] , (1)

uν(t)→ u(t) weakly in L2(Ω) for each t ∈ [0, T ] , (2)

lim
ν→0

ν
∫ T

0

∫
Ω
|∇uν(x, t)|2dxdt = 0 , (3)

lim
ν→0

ν
∫ T

0

∫
Ω∩{d(x,∂Ω)<ν}

|∇uν(x, t)|2dxdt = 0 . (4)

and eventually the fact that for all tangent to the boundary vector field
w(x, t) ∈ D((0, T )× ∂Ω) one has:

lim
ν→0

ν
∫ T

0

∫
∂Ω

∂uν

∂~n
(σ, t)w(σ, t)dσdt = 0 . (5)



The proof: An updated version of the basic result of Kato

(1)⇒ (2) and (3)⇒ (4) trivial.

With the energy conservation for u and∫
Ω
|uν(x, t)|2dx ≤

∫
Ω
|uν(x, t)|2dx ≤

∫
Ω
|u0(x)|2dx

(3) is a consequence of (2).



To deduce that (4) implies (5) , (in the Dirichlet case for sake of simplicity)
construct a family of divergence free vector fields ŵν ∈ C∞(Ω × (0, T ))

with support in {(x, t) ∈ (d(x, ∂Ω) < ν × (0, T ))} which coincides with
w on the boundary and with gradient bounded in L∞ by Cν−1.

Boundary coordinates {(σ, t) ∈ ∂Ω× (0, T ) , s = d(x, ∂Ω)} ,
w ∈ Llip(∂Ω× (0, T )); w · ~n = 0 ;

Θ ∈ D(0,1), Θ(0) = 0 , Θ′(0) = 1 ;

ŵ(x, t) = ∇∧ ((~n(σ) ∧ w(σ, t)νΘ(
s

ν
))

⇒ on ∂Ω ŵ(x, t) = w(x, t)

⇒ In Ω , ∇ · ŵ = 0 , and support ŵ ⊂ {d(x, ∂Ω) < ν} ;

⇒ ‖∇xŵ‖∞ ≤ Cν−1 , sup
t
‖∇xŵ(x, t)‖L2(Ω) ≤ Cν

−1
2 .



Multiplication of the Navier-Stokes equation and integration by part pro-
vides the formula

ν
∫
∂Ω

∂uν

∂~n
(σ, t)w(σ, t)dσ =

ν(∇uν,∇ŵν)L2(Ω) − (uν ⊗ uν,∇ŵν)L2(Ω) + (∂tuν, ŵν)L2(Ω) .

Then

(1) lim
ν→0

ν
∫ T

0

∫
{x\d(x,∂Ω)<ν}

|∇uν(x, t)|2dxdt = 0

(2) Poincaré estimate

(3)|∇xŵ|∞ ≤ Cν−1 , sup
t
‖∇xŵ(x, t)‖L2(Ω ≤ Cν

−1
2

⇒ lim
ν→0

ν
∫ T

0

∫
∂Ω

∂uν

∂~n
(σ, t)w(σ, t)dσdt = 0

⇒ lim
ν→0

ν
∫ T

0

∫
∂Ω

∂uν

∂~n
(σ, t)u(σ, t)dσdt = 0 .



with
1

2

d

dt
|uν − u|2L2(Ω) + ν

∫
∂Ω
|∇uν|2dx

≤ |(uν − u, S(u)(uν − u))|+ ν
∫
∂Ω
|∇uν||∇u|dx

+ν
∫
∂Ω

∂~nuνudσ

(5) implies (1) and this concludes the proof.

However cases where the Kato criteria does not apply seems to be the
general situation rather than the exception.

It corresponds to real or numerical observations. It is the most common
way of generating turbulence.



Kato Criteria and d’Alembert paradoxe.

Total force applied by the air on a wing (lift + drag) W ( with Ω = Rd\W )

F = −
∫
∂Ω

p~ndσ .

A simple computation done in the permanent regime, forW ⊂ R3 bounded
shows that if p is given by the Euler equation one has F = 0. This implies
that if motion of the air is given by the Euler equation the plane cannot fly!
The classical “d’Alembert paradoxe." Resolving such paradox was one of
the main motivation for the introduction of the Navier-Stokes equations.

If uν would strongly converge to u same would be true for pν and the
conclusion would be that for ν small enough (which corresponds to realistic
Reynolds numbers) the force exerted on the wing would be arbitrarily small.
Not so good for flying!



Turbulence in the absence of Kato Criteria.

In turbulence theory the word anomalous dissipation of energy refers to the
following anomaly.

lim inf
ν→0

ν
∫ T

0

∫
Ω
|∇uν(x, t)|2dxdt = ε > 0 (6)

always associated to turbulence. Kato criteria is the only statement (in
classical functional analysis ) connecting turbulence and anomalous dissi-
pation of energy.

The non convergence to a smooth solution is equivalent to the anoma-
lous dissipation of energy near at least one neighborhood U of a point
(xtur, ttur) ∈ ∂Ω× [0, T ]such that:

lim inf
ν→0

ν
∫ T

0

∫
x,{d(x,∂Ω)<Cν}∩U

|∇uν(x, t)|2dxdt = ε > 0 (7)

The sequence uν will be turbulent in such region!



Other Local Definitions of Turbulence

If one of the equivalent form of the Kato criteria is not satisfied and in partic-
ular if there exists anomalous energy dissipation the following statements
are also equivalent:

1 uν 6= u in Ω× (0, T )

2 For any n > 0 there is an open set Un ⊂ Rd × (0, T ) such that Un ∩
∂Ω× (0, T ) 6= ∅ and uν /∈ C0,1n(Un ∩Ω× (0, T )) .

3 There is at least one point pturb = (xturb, tturb) ∈ ∂Ω × [0, T ] such
that for any neighborhood U of pturb and any n one has:

sup
ν→0
||uν||

C0,1n(U)
=∞



Local description of high Reynold number flow past an obstacle and Kato Criteria

The above introduction of the turbulent part of the boundary makes a nat-
ural connection with the approach of engineers which for high number
Reynolds flow past an obstacle decompose the boundary in several perti-
nent part involving different scalings and related ansatz.

This construction belongs much more to the art of the engineers than to
the reasoning of a mathematician. Moreover since it involves unstable
phenomena it leads lead to ill posed or at least very unstable problems.

Experiment, numerical simulation and phenomenological argument con-
cern mostly time independent problem. However their counter part for
slowly varying time dependent flow should carry the same structure.

Therefore below I will omit the time variable, but AS A CONCLUSION em-
phasize the similitudes between the scalings involved and the Kato Criteria.



The 3 basic regions

• The Prandlt laminar boundary layer.

• The recirculation laminar boundary layer and the triple deck ansatz.

• The Von-Karman Prandlt turbulent layer.



The Prandlt 1904 Boundary Layer

The first idea Prandlt (1904) (which has been later extended to a huge
class of problems which turn ou tot be less challenging than the original
one..they are often linear) was to represent the solution near the boundary
by parabolic boundary layer

uν ' Uτ(
d(x, ∂Ω)
√
ν

, xτ) +
√
νU~n(

d(x, ∂Ω)
√
ν

, xτ) (8)

This leads to the Prandlt equation.



This system is not always well posed (even for arbitrarily small time). A
serie of sufficient conditions for the well posedness (in particular for the
time dependent problem for short time) have been proposed: Some sim-
ple configuration like the shear flow or the rotating flow as above, some
analyticity hypothesis, some monotonicity hypothesis or a mixture of both
cf. Kukavica, Masmoudi, Vicol and Wong Arix.org 2014. for recent results
and updated references.



The Triple Deck Ansatz

In the permanent regime the first break down of the Prandlt representation
appears when xτ 7→ uτ(xτ , x~n) cease to be monotonic and in particular
at at a separation point x∗ ∈ ∂Ω characterized by:

∂~nuτ(x− x∗) '
√
|x− x∗|

cf Landau and for a complete proof in the stationary regime near a half line
Dalibar and Masmoudi (work in progress).

However the fluid may remain laminar after this point in some neighbor-
hood V of a part of the boundary.

Hence to describe this structure in some neighborhood V of the boundary
a refined analysis of the Prandlt boundary layer {x, d(x, ∂Ω) <

√
ν} has

been proposed by Stewartson K. (1974). It carries the name of triple deck.



The Triple Deck Interpretation with the Porthmouth



1 In the Upper Deck {x\
√
ν < d(x, ∂Ω)} ∩ V the solution is described

by the Euler flow.

2 In the Lower Deck {x\ 0 < d(x, ∂Ω) < ν
5
8} ∩ V} the solution is de-

scribed by the above Prandlt boundary laye ansatz.

3 In Middle Deck {ν
5
8 < d(x, ∂Ω) <

√
ν} ∩ V which connects the two

above regions the following scaling is proposed.

uν(x) ' (ν
1
8Uτ(

d(x, ∂Ω)

ν
5
8

,
xτ

ν
3
8

), ν
3
8U~n(

d(x, ∂Ω)

ν
5
8

,
xτ

ν
3
8

)) (9)



Prandlt Boundary layer , the Triple Deck and Kato criteria

Observe that both the Prandlt boundary layer ansatz and the triple deck
ansatz describe the fluide in a region at the distance

√
ν of the boundary.

Moreover if these two ansatz would give an accurate description of fluid uν
all around the boundary then one would have (explicit computation!)

ν
∫
{x,\d(x,∂Ω)<ν

1
2}
|∇uν(x, , t)|2dxdt ≤ Cν

1
2 → 0 (10)

In agreement with the Kato criteria and with the figure below that would
describe convergence toward a laminar regime with recirculation.



Laminar regime with recirculation

1
! ! !" 

Laminar regime

Prandlt Boundary layer Recirculation and TripleDeck ansatz.



The Prandlt -Von Karman 1932 turbulent layer

Since convergence to a smooth solution is not expected , a turbulent bound-
ary layer for uν should be present in general around some part of the
boundary.

The only thing available is a description based on experiment, numerical
analysis and dimension analysis. It is the Von Karman-Prandlt turbulent
layer (1932) . It provides an ansatz for the tangential component of the
velocity uτ(x~n, xτ) in the layer

Bturbulent = {x, d(x,Ω) < ν} ∩W

withW denoting a neighborhood of a part of the boundary .



Appearance of turbulent layer and wake

y

x

U'

d(x)
turbulentlaminar

xcr

laminar to
turbulent
transition

edge of boundary layer
free stream

!

Prandlt boundary layer
Wake



The Prandlt -Von Karman 1932 turbulent layer and Kato criteria

On ∂Ω ∩W the quantity

u∗ =
√
ν∂~nuτ (11)

which has the dimension of a velocity, is assumed to be of the order of
unity.

Then in Bturbulent one has:

uτ(x~n, xτ) = u∗Uτ(s) , s = u∗
x~n
ν

(12)

with Uτ(s) an intrinsic function of the “number " s . With phenomenological
argument this function is almost linear for 0 < s < 20 and given by a
Prandlt -Von Karman wall law

Uτ(s) = κ log s+ β for 20 < s < 100 . (13)



However either with (11) which implies that

ν∂~n(uτ)|∂Ω ≥ α > 0

or with (13) which implies

ν
∫
{x,\d(x,∂Ω)<ν

1
2}
|∇uν(x, , t)|2dx ≥ ε > 0 (14)

one observes that the existence of such boundary layer is consistent with
the fact that uν does not converge to u or is not in C0,α (for any α ) in some
neighborhood of a part of the boundary.

And of course this is necessary for the appearance of a turbulent wake.


