Traffic Flow: From experiments to Modeling

Martin Treiber

TU Dresden

0

- Empirics: Stylized facts
- Microscopic and macroscopic models: typical examples:
- Linear stability: Which concepts are relevant for describing traffic flow?
- From the stability diagram to the "dynamic state diagram": Mechanisms for generating the observed spatiotemporal and local phenomena
- Numerical examples: Car-following, CA and macroscopic models with one, two, or three phases ...
- Conclusion: How many traffic "phases" are necessary?

Stylized facts relating to local aspects: scattered flow-density data

Martin Treiber

2. Stylized facts relating to spatiotemporal data

- Downstream front: Fixed or moving upstream with velocity vg
- Upstream front: Noncharacteristic (pos/neg.) velocity
- Internal structures: Moving all with vg
- Amplitude of internal structures grows when moving upstream
- Frequency grows with severety of bottleneck

2(a) The bottlenecks may be diffeent in nature

2(c): To "make a jam", one needs three ingredients ...

- ► Three "ingredients":
- 2. High traffic demand (inflow)
- 3. Spatial inhomogeneity ("bottleneck")
- 4. Perturbation in traffic flow

Summary: Typical spatiotemporal patterns

II Stability: 1. Which types are relevant for traffic flow?

- Three kinds of linear instabilities:
- convective string instability,
- Absolute string instability,
- Absolute local instability.
- Additional nonlinear instabilities (metastability, hysteresis)

Simulate ... (s1=14 m, a=0.6 m/s^2)

2. Collective instabilities: Mathematical and numerical definitions

lim

Linear modes:

Localized perturbation:

$$A_k(x,t) = e^{ikx} e^{\lambda(k)t}$$
$$A(x,0) = \begin{cases} \epsilon & |x - x_c| < \frac{1}{2\rho_0} \\ 0 & \text{otherwise.} \end{cases}$$

Linear string instability: $Re(\lambda(k))>0$ for some k, or

$$\lim_{t \to \infty} \int \mathrm{d}x |A(x,t)| > 0$$

$$\lim_{t \to \infty} \int dx |A(x,t)| = 0 \quad \forall \epsilon < \epsilon_{\rm nl} \qquad \text{for s} \\ ||_{\mathsf{nl}} > 0$$

$$\lim_{t \to \infty} |A(x,t)| = 0$$

For any fixed x

for some ε

Derivation of the criterion for linear string instability

 Local and instantaneous model

$$\frac{\mathrm{d}v_{\alpha}}{\mathrm{d}t} = a_{\mathrm{mic}}\left(s_{\alpha}(t), v_{\alpha}(t), \Delta v_{\alpha}(t)\right)$$

Equations of motion:

$$\dot{x}_{\alpha} = v_{\alpha},$$

$$\dot{v}_{\alpha} = a \underbrace{\left[1 - \left(\frac{v_{\alpha}}{v_{0}}\right)^{\delta} - \left(\frac{s^{*}(v_{\alpha}, \Delta v_{\alpha})}{s_{\alpha}}\right)^{2}\right]}_{\text{Beschleunigung}}$$

$$s^*(v, \Delta v) = \underbrace{s_0}_{\text{Mindest-abstand}} + \underbrace{vT}_{\text{"Sicherheits"-}} + \underbrace{\frac{v\Delta v}{2\sqrt{ab}}}_{\text{dynamischer}}$$

IDM Model Parameters

Example: General macroscopic model

$$\frac{\partial \rho}{\partial t} + V \frac{\partial \rho}{\partial x} = -\rho \frac{\partial V}{\partial x} + D \frac{\partial^2 \rho}{\partial x^2},$$
$$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} = \frac{V_{\rm e}(\rho) - V}{\tau} - \frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}x} + \nu \frac{\partial^2 V}{\partial x^2}$$

Stability conditions for both micro and macro models: Blackboard ...

Stability diagram for several models ...

One and the same model can adopt several stability classes!

Class 1: Maximum flow unstable

- Class 2: Maximum
 flow (meta-)stable,
 (convectively)
 unstable for higher
 densities
- Class 3: Unconditionally stable
- Subclasses a/b: No restabilization/ restabilization for very high densities

Class 1/2/3: a=0.3/0.6/2

3a: Convective instability is really universal!

3c: States for a stability class 2b macroscopic model

3d: Effect of Instationarities at the bottleneck

GKT model

Onramp bottleneck

No variable

part

′h

٧

IDM

t (min)

6

8

Again, this mechanism is universal ...

Alternative mechanism 2 to GP/pinch effect: Offramp - onramp combinations create this phenomenon as well ...

Alternative explanation 1 for the fundamental diagram: Inter-driver heterogeneity

2D fundamental diagram: Alternative explanation 2: Intra-driver heterogeneity

Variance-Driven Time headways (VDT)

+2 types

2D fundamental diagram: Alternative explanation 3: Dynamical instability

Plain IDM (parameters for stability class 2a)

Upstream of on-ramp bottleneck

At bottleneck

Summary : All three alternative factors for the "2D" nature of the fundamental diagram

Conclusions

- The question whether three or five dynamic phases is essentially one of the definition of a "dynamic phase".
- There are several mechanisms to explain the observed spatiotemporal features and the 2D fundamental diagrams with "two-phase" models featuring a unique equilibrium relation.
- In many aspects, the discrepancies between Kerner's approaches and ours are just a result of interpreting things differently.