

From Experiments to Modeling (II) ("those scaring data")

Peter Wagner Institute of Transport Systems German Aerospace Centre Berlin-Adlershof

What this presentation is all about

- → data,
- → data,
- → and data!
- I will try to avoid ANY theory (where ever possible), and especially ANY model.

Theory: Fundamental diagram (FD)

- ✓ You have seen it over and over by now: the fundamental diagram.
- ✓ Theoreticians love it in its flow q versus density k version, depicted here:
- practioneers prefer speed v
 versus flow q (q and k can
 be measured, k mostly not)
- sometimes, another
 k-surrogate named
 occupancy is used
- this function is a fiction:
 it is difficult to map it out
 completely with real data
- → has an interpretation

Empirics: Fundamental diagram

Note: there will be a conference celebrating FD's 75 birthday in July 2008

The first fundamental diagram

Some fifty years later...

Micro-macro connection in the FD

- ✓ traffic flow q, traffic speed v and density k have microscopic counterparts
- ✓ traffic flow: basically it's the expectation value of the inverse gross headway τ , so:

- \checkmark where t_i is the passing time of the i-th vehicle
- the density k is just the expectation value of the spatial distances; strictly, the following equation is valid only under stationary conditions

$$\checkmark \quad k = \left\langle \frac{1}{x_{i-1} - x_i} \right\rangle_{t \in [a,b]} = \left\langle \frac{1}{v_{i-1}\tau_i + \ell_i} \right\rangle_{t \in [a,b]} \quad \text{with } x_{i-1} = x_i + v_{i-1}\tau_i + \ell_i$$

but note: in a jam, vehicles move strange, and loop detectors cannot be trust entirely

Loop detectors

- most of the data we have at hand are measured by so called loop induction devices;
- these are complex machines themselves, they measure something that has some relation to reality (at least we hope for that it has)

Fitting the FD

functions to fit the FD – that's a kind of almost magical business, to find the REAL function which "explains" an FD (from a recently submitted paper)

Deutsches Zentrum DLR für Luft- und Raumfahrt e.M. in der Helmholtz-Gemeinschaft

Interpretation

the interpretation of the FD is that it is the EQUILIBRIUM curve of an underlying microscopic car following dynamics:

$$\vec{v}_{i} = f(x_{i} - x_{i-1}, v_{i}, v_{i-1})$$

$$\dot{v}_{i} = 0 \implies \langle v(k) \rangle = g\left(k = \left\langle \frac{1}{x_{i} - x_{i-1}} \right\rangle\right) = g(k)$$

 $v_i = v_{i-1}$ must hold

- (Remark I: to me, the FD for a very long time was simply a plot of q versus k; not more, but no less.)
- (Remark II: this equation explains why Boris Kerner created such a fuss by stating that this equilibrium relationship is a fiction)
- (Remark III: remark I explains, why a lot of people were watching this discussion with a certain bewilderness what the heck do they discuss about this stuff so long and engaged?)

Zooooming in

- Martin Treiber has demonstrated a lot of data on spatio-temporal patterns; I will go into the opposite direction
- I love disaggregate data!. So, lets do a "microscopic FD";
- however, this mass of data has to be organized in some manner, so instead of the big scatter plots look at distributions

0.8 0.7 0.6 0.5

[s/qə/] b

0.3

0.2

0.2

0.6

k/k_{jam} [1]

0.8

Probabilistic microscopic FD – p(q,k)

plots are taken from J. Kienzle, Analyse von Einzelfahrzeugdaten, Diploma thesis, University Stuttgart, 2001.

Aggregation

- of course, if one computes for any density k the average flow q, one can compute a function q(k)
- ✓ big question: under which assumptions is this a valid process?
 - → stationarity
 - p(q; k=fixed) should be at least mono-modal, otherwise the mean value does not make sense
- the second point is not critical, albeit the distribution is VERY broad
- the first one seems very hard, so far I haven't seen anything convincing yet
- plot is from
 Cassidy, TRB 32, 49 (1998)

Zooming in: a first glimpse on vehicle / vehicle interaction

Zooming in even more

- what does the driver do?
- something can be learned even from freeway data (really!),
- however, equipped vehicles are more convenient to find out what's going on here
- either in a quite simple manner (DGPS equipped vehicles on a track)
- ✓ or, much more elaborate:
 - → DLR's ViewCar (R),
 - driving simulator (care needed!)

a guided tour through the microscopic data zoo...
...which may help building better models

Driving relation: distance versus speed

(another microscopic fundamental diagram)

- this is test track data, the color denote different drivers (20 min of driving are plotted here);
- → but freeway data (would) look similar
- of course, drivers are different, but even a single driver has a lot of different 'parameters'
- (e.g. preferred time headway,...)
- of course it makes sense to discuss this again in terms of probability distributions

Probability distribution in speed/headway (flow versus speed microscopic FD)

- ✓ these are data from a German freeway A3
- \checkmark and it is a first approach to understand the interaction between vehicles
- as has been stated already, the acceleration of a vehicle depends on the interaction to the lead car
 - ✓ on speed difference
 - → and distance
 - may other things

$$\checkmark \dot{v}_i = f(x_i - x_{i-1}, v_i, v_{i-1})$$

jammed flow T ~ 1/v

Distribution of headways p(T)

- what to expect for p(T)? Since T>0, it could be a log-normal distribution
- or a generalization of the Poisson distribution, which avoids to small distances (named Gamma or Pearson III)
- ➤ However it seems, that it's something different

Distribution of speed differences

- a specific pattern in the distribution of speed differences they are definitely not normally distributed:
- → $p(\Delta v) \propto \exp(-\lambda |\Delta v|)$ (Laplace distribution)

$p(\Delta v)$ versus speed itself

distribution of speed differences versus speed itself: this tells us something about the interaction between two vehicles:

To see even more, we have to go beyond the loop detectors

The action points

- ✓ ViewCar data (6 subjects on a rural road), gas pedal a(t)
- → 71036 of 75778 data-pts: $\delta a = 0$, where

Equilibrium?

- → with such a behavior, it is quite unlikely to find any fixed point or equilibrium behavior in the simple sense $\dot{v}_i = 0$
- the jumps have been named action points already in 1963 by Todosiev, who was first to observe this behavior
- ✓ it is typically for human control action (have seen it in other occasions):
 - \checkmark don't do anything, until you are forced to
 - ✓ if you do, do it sloppy (see below)
 - (completely different from how a automatic driver would handle this issue – they do it like a differential equation)
- however, the main modeling work in research during the past 40 years has ignored this observation – may be, it can be tackled as a kind of noise?
- once you know this, you see it immediately even in the distance versus velocity difference phase space of car following

Oscillations in (Δv , Δx)

stabilization

- ...and this means, that we have at least an explanation for the scatter apart from that's due to different drivers;
- \checkmark it is of a purely dynamical origin
- big question (I do not know yet): does this stabilize traffic flow, or is it finally the cause of any break-down?

Analyzing action-points

- Iook for their distribution (again) in time and phase-space
- exponential distribution in time-difference between action-points seem to be drawn randomly, as if the driver decides in any smallest timestep "should I change acceleration or not" with some prob. p
- ✓ distribution in phase-space seems "flat" → action-points can happen anywhere, and positive and negative points are only slightly different

Finally, the acceleration itself

 again, no clear and no deterministic behavior can be seen

Acceleration in phase space

and acceleration noise

DER für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Acceleration distribution in a small phase-space interval

in der Helmholtz-Gemeinschaft

Folie 30 Peter Wagner, From Experiments to Modeling (II), 7. May 2008

Model, which model?

- of course, it is not too difficult to construct models with the features described above;
- ✓ but do we really believe, that human behavior can be that random?

Finally, after all...

- it is amazing, that this microscopic chaos (which nevertheless has its laws & rules) finally averages out to the patterns demonstrated e.g. in Martin's (Treiber) talk
- → but does it really?
- → and, what always puzzled me:
- ✓ one can see the patterns,
- ✓ they look differently,
- putting again the magnifying glass on and look into vehicle's behaviour: is there a measurable difference between red and green? (apart from speed)

Thanks for listening

Peter Wagner Institute of Transport Systems_{acceleration a [m/s²]} German Aerospace Centre Berlin-Adlershof

