Extreme Vortex States and the Hydrodynamic Blow-Up Problem (Probing Fundamental Bounds in Hydrodynamics Using Variational Optimization Methods)

Bartosz Protas¹ and Diego Ayala^{1,2}

¹Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada URL: http://www.math.mcmaster.ca/bprotas

²Department of Mathematics University of Michigan, Ann Arbor, MI, USA

Funded by Early Researcher Award (ERA) and NSERC Computational Time Provided by SHARCNET

Collaborators

Charles Doering (University of Michigan)

 Dmitry Pelinovsky (McMaster University)

Agenda

Sharpness of Estimates as Optimization Problem

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Bounds for 2D Navier-Stokes Problem

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Bounds for 3D Navier-Stokes Problem

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Navier-Stokes equation $(\Omega = [0, L]^d, d = 2, 3)$

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla p - \nu \Delta \mathbf{v} = \mathbf{0}, & \text{in } \Omega \times (0, T] \\ \nabla \cdot \mathbf{v} = 0, & \text{in } \Omega \times (0, T] \\ \mathbf{v} = \mathbf{v}_0 & \text{in } \Omega \text{ at } t = 0 \\ \text{Boundary Condition} & \text{on } \Gamma \times (0, T] \end{cases}$$

2D Case

 Existence Theory Complete — smooth and unique solutions exist for arbitrary times and arbitrarily large data

- Weak solutions (possibly nonsmooth) exist for arbitrary times
- Classical (smooth) solutions (possibly nonsmooth) exist for finite times only
- Possibility of "blow-up" (finite-time singularity formation)
- One of the Clay Institute "Millennium Problems" (\$ 1M!) http://www.claymath.org/millennium/Navier-Stokes.Equations

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Navier-Stokes equation $(\Omega = [0, L]^d, d = 2, 3)$

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p - \nu \Delta \mathbf{v} = \mathbf{0}, & \text{in } \Omega \times (0, T] \\ \nabla \cdot \mathbf{v} = 0, & \text{in } \Omega \times (0, T] \\ \mathbf{v} = \mathbf{v}_0 & \text{in } \Omega \text{ at } t = 0 \\ \text{Boundary Condition} & \text{on } \Gamma \times (0, T] \end{cases}$$

2D Case

 Existence Theory Complete — smooth and unique solutions exist for arbitrary times and arbitrarily large data

- Weak solutions (possibly nonsmooth) exist for arbitrary times
- Classical (smooth) solutions (possibly nonsmooth) exist for finite times only
- Possibility of "blow-up" (finite-time singularity formation)
- One of the Clay Institute "Millennium Problems" (\$ 1M!) http://www.claymath.org/millennium/Navier-Stokes.Equations

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Navier-Stokes equation $(\Omega = [0, L]^d, d = 2, 3)$

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p - \nu \Delta \mathbf{v} = \mathbf{0}, & \text{in } \Omega \times (0, T] \\ \nabla \cdot \mathbf{v} = 0, & \text{in } \Omega \times (0, T] \\ \mathbf{v} = \mathbf{v}_0 & \text{in } \Omega \text{ at } t = 0 \\ \text{Boundary Condition} & \text{on } \Gamma \times (0, T] \end{cases}$$

2D Case

 Existence Theory Complete — smooth and unique solutions exist for arbitrary times and arbitrarily large data

- Weak solutions (possibly nonsmooth) exist for arbitrary times
- Classical (smooth) solutions (possibly nonsmooth) exist for finite times only
- Possibility of "blow-up" (finite-time singularity formation)
- One of the Clay Institute "Millennium Problems" (\$ 1M!) http://www.claymath.org/millennium/Navier-Stokes.Equations

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Navier-Stokes equation $(\Omega = [0, L]^d, d = 2, 3)$

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p - \nu \Delta \mathbf{v} = \mathbf{0}, & \text{in } \Omega \times (0, T] \\ \nabla \cdot \mathbf{v} = 0, & \text{in } \Omega \times (0, T] \\ \mathbf{v} = \mathbf{v}_0 & \text{in } \Omega \text{ at } t = 0 \\ \text{Boundary Condition} & \text{on } \Gamma \times (0, T] \end{cases}$$

2D Case

 Existence Theory Complete — smooth and unique solutions exist for arbitrary times and arbitrarily large data

- Weak solutions (possibly nonsmooth) exist for arbitrary times
- Classical (smooth) solutions (possibly nonsmooth) exist for finite times only
- Possibility of "blow-up" (finite-time singularity formation)
- One of the Clay Institute "Millennium Problems" (\$ 1M!) http://www.claymath.org/millennium/Navier-Stokes_Equations

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Navier-Stokes equation $(\Omega = [0, L]^d, d = 2, 3)$

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p - \nu \Delta \mathbf{v} = \mathbf{0}, & \text{in } \Omega \times (0, T] \\ \nabla \cdot \mathbf{v} = 0, & \text{in } \Omega \times (0, T] \\ \mathbf{v} = \mathbf{v}_0 & \text{in } \Omega \text{ at } t = 0 \\ \text{Boundary Condition} & \text{on } \Gamma \times (0, T] \end{cases}$$

2D Case

 Existence Theory Complete — smooth and unique solutions exist for arbitrary times and arbitrarily large data

- Weak solutions (possibly nonsmooth) exist for arbitrary times
- Classical (smooth) solutions (possibly nonsmooth) exist for finite times only
- Possibility of "blow-up" (finite-time singularity formation)
- One of the Clay Institute "Millennium Problems" (\$ 1M!) http://www.claymath.org/millennium/Navier-Stokes.Equations

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Navier-Stokes equation $(\Omega = [0, L]^d, d = 2, 3)$

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p - \nu \Delta \mathbf{v} = \mathbf{0}, & \text{in } \Omega \times (0, T] \\ \nabla \cdot \mathbf{v} = 0, & \text{in } \Omega \times (0, T] \\ \mathbf{v} = \mathbf{v}_0 & \text{in } \Omega \text{ at } t = 0 \\ \text{Boundary Condition} & \text{on } \Gamma \times (0, T] \end{cases}$$

2D Case

 Existence Theory Complete — smooth and unique solutions exist for arbitrary times and arbitrarily large data

- Weak solutions (possibly nonsmooth) exist for arbitrary times
- Classical (smooth) solutions (possibly nonsmooth) exist for finite times only
- Possibility of "blow-up" (finite-time singularity formation)
- One of the Clay Institute "Millennium Problems" (\$ 1M!) http://www.claymath.org/millennium/Navier-Stokes_Equations

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

What is known? — Available Estimates

$$\mathcal{E}(t) riangleq \int_{\Omega} |oldsymbol{
abla} imes oldsymbol{v}|^2 \, d\Omega \qquad (= \|oldsymbol{
abla} oldsymbol{v}\|_2^2)$$

Smoothness of Solutions ⇐⇒ Bounded Enstrophy (Foias & Temam, 1989)

 $\max_{t\in[0,T]}\mathcal{E}(t)<\infty\quad \ref{eq:temperature}$

Can estimate dE(t)/dt using the momentum equation, Sobolev's embeddings, Young and Cauchy-Schwartz inequalities, ...
 REMARK: incompressibility not used in these estimates

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

What is known? — Available Estimates

$$\mathcal{E}(t) riangleq \int_{\Omega} |oldsymbol{
abla} imes oldsymbol{v}|^2 \, d\Omega \qquad (= \|oldsymbol{
abla} oldsymbol{v}\|_2^2)$$

► Smoothness of Solutions \iff Bounded Enstrophy (Foias & Temam, 1989)

$$\max_{t\in[0,T]}\mathcal{E}(t)<\infty\quad \ref{eq:total_states}$$

Can estimate dE(t)/dt using the momentum equation, Sobolev's embeddings, Young and Cauchy-Schwartz inequalities, ...
 REMARK: incompressibility not used in these estimates

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

What is known? — Available Estimates

$$\mathcal{E}(t) riangleq \int_{\Omega} |oldsymbol{
abla} imes oldsymbol{v}|^2 \, d\Omega \qquad (= \|oldsymbol{
abla} oldsymbol{v}\|_2^2)$$

► Smoothness of Solutions \iff Bounded Enstrophy (Foias & Temam, 1989)

• Can estimate $\frac{d\mathcal{E}(t)}{dt}$ using the momentum equation, Sobolev's embeddings, Young and Cauchy-Schwartz inequalities, ...

• REMARK: incompressibility not used in these estimates ...

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

What is known? — Available Estimates

$$\mathcal{E}(t) riangleq \int_{\Omega} |oldsymbol{
abla} imes oldsymbol{v}|^2 \, d\Omega \qquad (= \|oldsymbol{
abla} oldsymbol{v}\|_2^2)$$

Can estimate dE(t)/dt using the momentum equation, Sobolev's embeddings, Young and Cauchy-Schwartz inequalities, ...

▶ REMARK: incompressibility not used in these estimates

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{C^2}{\nu} \mathcal{E}(t)^2$$

- Gronwall's lemma and energy equation yield $\forall_t \ \mathcal{E}(t) < \infty$
- smooth solutions exist for all times

► 3D Case:

2D Case.

$$\frac{d\mathcal{E}(t)}{dt} \le \frac{27C^2}{128\nu^3}\mathcal{E}(t)^3$$

- corresponding estimate not available ...
- ▶ upper bound on *E*(*t*) blows up in finite time

$$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{E}(0)^2}{
u^3}t}}$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

$$rac{d\mathcal{E}(t)}{dt} \leq rac{\mathcal{C}^2}{
u}\mathcal{E}(t)^2$$

- Gronwall's lemma and energy equation yield $\forall_t \ \mathcal{E}(t) < \infty$
- smooth solutions exist for all times
- ► 3D Case:

2D Case.

$$\frac{d\mathcal{E}(t)}{dt} \le \frac{27C^2}{128\nu^3}\mathcal{E}(t)^3$$

- corresponding estimate not available ...
- ▶ upper bound on *E*(*t*) blows up in finite time

$$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{E}(0)^2}{
u^3}t}}$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

ľ

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{C^2}{\nu} \mathcal{E}(t)^2$$

- Gronwall's lemma and energy equation yield $\forall_t \ \mathcal{E}(t) < \infty$
- smooth solutions exist for all times

► 3D Case:

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{27C^2}{128\nu^3}\mathcal{E}(t)^3$$

- corresponding estimate not available ...
- upper bound on $\mathcal{E}(t)$ blows up in finite time

$$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{E}(0)^2}{
u^3}t}}$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{C^2}{\nu} \mathcal{E}(t)^2$$

- Gronwall's lemma and energy equation yield $\forall_t \ \mathcal{E}(t) < \infty$
- smooth solutions exist for all times

3D Case:

2D Case.

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{27C^2}{128\nu^3}\mathcal{E}(t)^3$$

- corresponding estimate not available
- ▶ upper bound on *E*(*t*) blows up in finite time

$$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{C}\mathcal{E}(0)^2}{
u^3}t}}$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

$$rac{d\mathcal{E}(t)}{dt} \leq rac{\mathcal{C}^2}{
u}\mathcal{E}(t)^2$$

- Gronwall's lemma and energy equation yield $\forall_t \ \mathcal{E}(t) < \infty$
- smooth solutions exist for all times

3D Case:

2D Case.

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{27C^2}{128\nu^3}\mathcal{E}(t)^3$$

► corresponding estimate not available
 ► upper bound on E(t) blows up in finite time

$$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{C}\mathcal{E}(0)^2}{
u^3}t}}$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

$$rac{d\mathcal{E}(t)}{dt} \leq rac{\mathcal{C}^2}{
u}\mathcal{E}(t)^2$$

- Gronwall's lemma and energy equation yield $\forall_t \ \mathcal{E}(t) < \infty$
- smooth solutions exist for all times

3D Case:

2D Case.

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{27C^2}{128\nu^3}\mathcal{E}(t)^3$$

- corresponding estimate not available
- upper bound on $\mathcal{E}(t)$ blows up in finite time

$$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{C}\mathcal{E}(0)^2}{
u^3}t}}$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

$$rac{d\mathcal{E}(t)}{dt} \leq rac{C^2}{
u} \mathcal{E}(t)^2$$

- Gronwall's lemma and energy equation yield $\forall_t \ \mathcal{E}(t) < \infty$
- smooth solutions exist for all times

3D Case:

2D Case.

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{27C^2}{128\nu^3}\mathcal{E}(t)^3$$

- corresponding estimate not available
- upper bound on $\mathcal{E}(t)$ blows up in finite time

$$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{C}\mathcal{E}(0)^2}{
u^3}t}}$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Problem of Lu & Doering (2008), I

Can we actually find solutions which "saturate" a given estimate?

• Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^3$ at a *fixed* instant of time t

$$\max_{\mathbf{v}\in H^1(\Omega), \, \nabla \cdot \mathbf{v}=0} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_0$

where

$$rac{d\mathcal{E}(t)}{dt} = -
u \|\mathbf{\Delta}\mathbf{v}\|_2^2 + \int_{\Omega} \mathbf{v}\cdot \mathbf{\nabla}\mathbf{v}\cdot \mathbf{\Delta}\mathbf{v}\,d\Omega$$

• \mathcal{E}_0 is a parameter

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Problem of Lu & Doering (2008), I

- Can we actually find solutions which "saturate" a given estimate?
- Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^3$ at a *fixed* instant of time t

$$\max_{\mathbf{v}\in H^1(\Omega), \ \mathbf{\nabla}\cdot\mathbf{v}=0} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_0$

where

$$\frac{d\mathcal{E}(t)}{dt} = -\nu \|\mathbf{\Delta v}\|_2^2 + \int_{\Omega} \mathbf{v} \cdot \nabla \mathbf{v} \cdot \mathbf{\Delta v} \, d\Omega$$

 \triangleright \mathcal{E}_0 is a parameter

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Problem of Lu & Doering (2008), I

- Can we actually find solutions which "saturate" a given estimate?
- Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^3$ at a *fixed* instant of time t

$$\max_{\mathbf{v}\in H^{1}(\Omega), \, \nabla\cdot\mathbf{v}=0} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_{0}$

where

$$rac{d\mathcal{E}(t)}{dt} = -
u \|\mathbf{\Delta}\mathbf{v}\|_2^2 + \int_{\Omega} \mathbf{v}\cdot \mathbf{\nabla}\mathbf{v}\cdot \mathbf{\Delta}\mathbf{v}\,d\Omega$$

 \triangleright \mathcal{E}_0 is a parameter

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Problem of Lu & Doering (2008), I

- Can we actually find solutions which "saturate" a given estimate?
- Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^3$ at a *fixed* instant of time t

$$\max_{\mathbf{v}\in H^{1}(\Omega), \, \mathbf{\nabla}\cdot\mathbf{v}=0} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_{0}$

where

$$rac{d\mathcal{E}(t)}{dt} = -
u \|\mathbf{\Delta}\mathbf{v}\|_2^2 + \int_{\Omega} \mathbf{v}\cdot \mathbf{\nabla}\mathbf{v}\cdot \mathbf{\Delta}\mathbf{v}\,d\Omega$$

• \mathcal{E}_0 is a parameter

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Problem of Lu & Doering (2008), I

- Can we actually find solutions which "saturate" a given estimate?
- Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^3$ at a *fixed* instant of time t

$$\max_{\mathbf{v}\in H^{1}(\Omega), \, \nabla \cdot \mathbf{v}=0} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_{0}$

where

$$rac{d\mathcal{E}(t)}{dt} = -
u \|\mathbf{\Delta}\mathbf{v}\|_2^2 + \int_\Omega \mathbf{v}\cdot \mathbf{\nabla}\mathbf{v}\cdot \mathbf{\Delta}\mathbf{v}\,d\Omega$$

• \mathcal{E}_0 is a parameter

Sharpness of Estimates as Optimization Problem

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Problem of Lu & Doering (2008), II

Sharpness of Estimates as Optimization Problem

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Problem of Lu & Doering (2008), II

vorticity field (top branch)

► How about solutions which saturate <u>dt</u> ≤ cE(t)³ over a <u>finite</u> time window [0, T]?

$$\max_{\mathbf{v}_0 \in H^1(\Omega), \, \nabla \cdot \mathbf{v} = 0} \mathcal{E}(T)$$

subject to $\mathcal{E}(0) = \mathcal{E}_0$

where

$$\mathcal{E}(t) = \int_0^t \frac{d\mathcal{E}(\tau)}{d\tau} d\tau + \mathcal{E}_0$$

• \mathcal{E}_0 and T are parameters

▶ In principle doable, but will try something simpler first ...

► How about solutions which saturate <u>dt</u> ≤ cE(t)³ over a <u>finite</u> time window [0, T]?

$$\max_{\mathbf{v}_0 \in H^1(\Omega), \, \nabla \cdot \mathbf{v} = 0} \mathcal{E}(T)$$

subject to $\mathcal{E}(0) = \mathcal{E}_0$

where

$$\mathcal{E}(t) = \int_0^t rac{d\mathcal{E}(au)}{d au} \, d au + \mathcal{E}_0$$

• \mathcal{E}_0 and T are parameters

▶ In principle doable, but will try something simpler first ...

► How about solutions which saturate <u>dt</u> ≤ cE(t)³ over a <u>finite</u> time window [0, T]?

$$\max_{\mathbf{v}_0 \in H^1(\Omega), \, \nabla \cdot \mathbf{v} = 0} \mathcal{E}(T)$$

subject to $\mathcal{E}(0) = \mathcal{E}_0$

where

$$\mathcal{E}(t) = \int_0^t rac{d\mathcal{E}(au)}{d au} \, d au + \mathcal{E}_0$$

• \mathcal{E}_0 and T are parameters

▶ In principle doable, but will try something simpler first ...

► How about solutions which saturate <u>dt</u> ≤ cE(t)³ over a <u>finite</u> time window [0, T]?

$$\max_{\mathbf{v}_0 \in H^1(\Omega), \, \nabla \cdot \mathbf{v} = 0} \mathcal{E}(T)$$

subject to $\mathcal{E}(0) = \mathcal{E}_0$

where

$$\mathcal{E}(t) = \int_0^t rac{d\mathcal{E}(au)}{d au} \, d au + \mathcal{E}_0$$

• \mathcal{E}_0 and T are parameters

In principle doable, but will try something simpler first ...

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	
1D Burgers finite–time	$max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\tfrac{L}{4}\right)^2 \left(\tfrac{1}{\pi^2\nu}\right)^{4/3}\mathcal{E}_0\right]^3$	
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	
2D Navier–Stokes finite–time	$max_{t>0}\mathcal{P}(t)\leq\left[\mathcal{P}_0^{1/2}+rac{C_2}{4 u^2}\mathcal{K}_0^{1/2}\mathcal{E}_0 ight]^2$	
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	YES Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{E}(0)^2}{ u^3}t}}$	

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Question #1 ("small")

Sharpness of *instantaneous* estimates (at some *fixed* t)

 $\max_{\mathbf{u}} \frac{d\mathcal{E}}{dt} \qquad (1D, 3D)$ $\max_{\mathbf{u}} \frac{d\mathcal{P}}{dt} \qquad (2D)$

• Question #2 ("big")

Sharpness of *finite-time* estimates (at some time window [0, T], T > 0)

$$\max_{\mathbf{u}_{0}} \left[\max_{t \in [0, T]} \mathcal{E}(t) \right] \qquad (1D, 3D)$$
$$\max_{\mathbf{u}_{0}} \left[\max_{t \in [0, T]} \mathcal{P}(t) \right] \qquad (2D)$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Question
$$#1$$
 ("Small")

Sharpness of *instantaneous* estimates (at some *fixed* t)

$$\max_{\mathbf{u}} \frac{d\mathcal{E}}{dt} \qquad (1D, 3D)$$
$$\max_{\mathbf{u}} \frac{d\mathcal{P}}{dt} \qquad (2D)$$

E(0)

 QUESTION #2 ("BIG")
 Sharpness of *finite-time* estimates (at some time window [0, T], T > 0)

$$\max_{\mathbf{u}_{0}} \left[\max_{t \in [0,T]} \mathcal{E}(t) \right] \qquad (1D,3D)$$
$$\max_{\mathbf{u}_{0}} \left[\max_{t \in [0,T]} \mathcal{P}(t) \right] \qquad (2D)$$

 Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem
 Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results

 Finite-Time Bounds in 1D Burgers Problem

PROBLEM I

INSTANTANEOUS AND FINITE-TIME BOUNDS FOR GROWTH OF ENSTROPHY IN 1D BURGERS PROBLEM

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Burgers equation $(\Omega = [0,1], u : \mathbb{R}^+ \times \Omega \to \mathbb{R})$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = 0 \qquad \text{in } \Omega$$
$$u(x) = \phi(x) \qquad \text{at } t = 0$$
Periodic B.C.

- ----

Solutions smooth for all times

Questions of sharpness of enstrophy estimates still relevant

$$\frac{d\mathcal{E}(t)}{dt} \le \frac{3}{2} \left(\frac{1}{\pi^2 \nu}\right)^{1/3} \mathcal{E}(t)^{5/3}$$

Best available finite-time estimate

$$\max_{t \in [0,T]} \mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2 \nu}\right)^{4/3} \mathcal{E}_0 \right]^3 \underset{\mathcal{E}_0 \to \infty}{\longrightarrow} C_2 \mathcal{E}_0^3$$
Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Burgers equation $(\Omega = [0, 1], u : \mathbb{R}^+ \times \Omega \to \mathbb{R})$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = 0 \qquad \text{in } \Omega$$
$$u(x) = \phi(x) \qquad \text{at } t = 0$$

Periodic B.C.

Enstrophy :
$$\mathcal{E}(t) = \frac{1}{2} \int_0^1 |u_x(x,t)|^2 dx$$

Solutions smooth for all times

Questions of sharpness of enstrophy estimates still relevant

$$\frac{d\mathcal{E}(t)}{dt} \le \frac{3}{2} \left(\frac{1}{\pi^2 \nu}\right)^{1/3} \mathcal{E}(t)^{5/3}$$

$$\max_{t \in [0,T]} \mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2 \nu}\right)^{4/3} \mathcal{E}_0 \right]^3 \underset{\mathcal{E}_0 \to \infty}{\longrightarrow} C_2 \mathcal{E}_0^3$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Burgers equation $(\Omega = [0, 1], u : \mathbb{R}^+ imes \Omega o \mathbb{R})$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = 0 \qquad \text{in } \Omega$$
$$u(x) = \phi(x) \qquad \text{at } t = 0$$

Periodic B.C.

Enstrophy : $\mathcal{E}(t) = \frac{1}{2} \int_0^1 |u_x(x, t)|^2 dx$

Solutions smooth for all times

Questions of sharpness of enstrophy estimates still relevant

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{3}{2} \left(\frac{1}{\pi^2 \nu}\right)^{1/3} \mathcal{E}(t)^{5/3}$$

$$\max_{t \in [0,T]} \mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2 \nu}\right)^{4/3} \mathcal{E}_0 \right]^3 \underset{\mathcal{E}_0 \to \infty}{\longrightarrow} C_2 \mathcal{E}_0^3$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Burgers equation $(\Omega = [0, 1], u : \mathbb{R}^+ imes \Omega o \mathbb{R})$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = 0 \qquad \text{in } \Omega$$
$$u(x) = \phi(x) \qquad \text{at } t = 0$$

Periodic B.C.

Enstrophy : $\mathcal{E}(t) = \frac{1}{2} \int_0^1 |u_x(x, t)|^2 dx$

Solutions smooth for all times

Questions of sharpness of enstrophy estimates still relevant

$$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2
u}
ight)^{1/3} \mathcal{E}(t)^{5/3}$$

$$\max_{t \in [0,T]} \mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2 \nu}\right)^{4/3} \mathcal{E}_0 \right]^3 \underset{\mathcal{E}_0 \to \infty}{\longrightarrow} C_2 \mathcal{E}_0^3$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

• Burgers equation $(\Omega = [0, 1], u : \mathbb{R}^+ imes \Omega o \mathbb{R})$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} = 0 \qquad \text{in } \Omega$$
$$u(x) = \phi(x) \qquad \text{at } t = 0$$

Periodic B.C.

Enstrophy : $\mathcal{E}(t) = \frac{1}{2} \int_0^1 |u_x(x, t)|^2 dx$

Solutions smooth for all times

Questions of sharpness of enstrophy estimates still relevant

$$\frac{d\mathcal{E}(t)}{dt} \leq \frac{3}{2} \left(\frac{1}{\pi^2 \nu}\right)^{1/3} \mathcal{E}(t)^{5/3}$$

$$\max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2\nu}\right)^{4/3} \mathcal{E}_0\right]^3 \underset{\mathcal{E}_0 \to \infty}{\longrightarrow} C_2 \mathcal{E}_0^3$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Finite-time Estimates — a different approach without explicit time-integration of instantaneous estimates

Spectral Properties of Solutions of Burgers Equation with Small Dissipation

Andrei Biryuk Functional Analysis and Its Applications. Vol. 35., no 1., 2001.

1 Introduction

This present paper concerns the initial value problem for the one dimensional (dim x = 1) parabolic equation of Burgers type:

$$\frac{\partial}{\partial t}u + \frac{\partial}{\partial x}f(u) = \delta u_{xx} , \qquad (1.1)$$

with the initial state

$$u(0, x) = u_0(x)$$
, (1.2)

Still unclear whether the resulting finite-time estimate is (much) sharper ...

Finite-time Estimates — a different approach without explicit time-integration of instantaneous estimates

Spectral Properties of Solutions of Burgers Equation with Small Dissipation

Andrei Biryuk Functional Analysis and Its Applications. Vol. 35., no 1., 2001.

1 Introduction

This present paper concerns the initial value problem for the one dimensional (dim x = 1) parabolic equation of Burgers type:

$$\frac{\partial}{\partial t}u + \frac{\partial}{\partial x}f(u) = \delta u_{xx} , \qquad (1.1)$$

with the initial state

$$u(0, x) = u_0(x)$$
, (1.2)

 Still unclear whether the resulting finite-time estimate is (much) sharper ...

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

"Small" Problem of Lu & Doering (2008), I

• Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^{5/3}$ at a *fixed* instant of time t

$$\max_{u \in H^{1}(\Omega)} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_{0}$

where

$$\frac{d\mathcal{E}(t)}{dt} = -\nu \left\| \frac{\partial^2 u}{\partial x^2} \right\|_2^2 + \frac{1}{2} \int_0^1 \left(\frac{\partial u}{\partial x} \right)^3 d\Omega$$

 \triangleright \mathcal{E}_0 is a parameter

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

"Small" Problem of Lu & Doering (2008), I

• Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^{5/3}$ at a *fixed* instant of time t

$$\max_{\substack{u \in H^{1}(\Omega)}} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_{0}$

where

$$\frac{d\mathcal{E}(t)}{dt} = -\nu \left\| \frac{\partial^2 u}{\partial x^2} \right\|_2^2 + \frac{1}{2} \int_0^1 \left(\frac{\partial u}{\partial x} \right)^3 d\Omega$$

 \triangleright \mathcal{E}_0 is a parameter

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

"Small" Problem of Lu & Doering (2008), I

• Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^{5/3}$ at a *fixed* instant of time t

$$\max_{u \in H^{1}(\Omega)} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_{0}$

where

$$\frac{d\mathcal{E}(t)}{dt} = -\nu \left\| \frac{\partial^2 u}{\partial x^2} \right\|_2^2 + \frac{1}{2} \int_0^1 \left(\frac{\partial u}{\partial x} \right)^3 d\Omega$$

• \mathcal{E}_0 is a parameter

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

"Small" Problem of Lu & Doering (2008), I

• Estimate $\frac{d\mathcal{E}(t)}{dt} \leq c\mathcal{E}(t)^{5/3}$ at a *fixed* instant of time t

$$\max_{u \in H^{1}(\Omega)} \frac{d\mathcal{E}(t)}{dt}$$

subject to $\mathcal{E}(t) = \mathcal{E}_{0}$

where

$$\frac{d\mathcal{E}(t)}{dt} = -\nu \left\| \frac{\partial^2 u}{\partial x^2} \right\|_2^2 + \frac{1}{2} \int_0^1 \left(\frac{\partial u}{\partial x} \right)^3 d\Omega$$

• \mathcal{E}_0 is a parameter

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

"Small" Problem of Lu & Doering (2008), II

instantaneous estimate is sharp

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

"Small" Problem of Lu & Doering (2008), II

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Finite-Time Optimization Problem (I)

Statement

 $\max_{\phi \in H^1(\Omega)} \mathcal{E}(T)$ subject to $\mathcal{E}(t) = \mathcal{E}_0$

T, \mathcal{E}_0 — parameters

Optimality Condition

$$\forall_{\phi'\in H^1} \qquad \mathcal{J}'_{\lambda}(\phi;\phi') = -\int_0^1 \frac{\partial^2 u}{\partial x^2}\Big|_{t=T} u'\Big|_{t=T} dx - \lambda \int_0^1 \frac{\partial^2 \phi}{\partial x^2}\Big|_{t=0} u'\Big|_{t=0} dx$$

 λ — Lagrange multiplier

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Finite-Time Optimization Problem (I)

Statement

 $\max_{\phi \in H^1(\Omega)} \mathcal{E}(T)$ subject to $\mathcal{E}(t) = \mathcal{E}_0$

T, \mathcal{E}_0 — parameters

Optimality Condition

$$\forall_{\phi'\in H^1} \qquad \mathcal{J}'_{\lambda}(\phi;\phi') = -\int_0^1 \frac{\partial^2 u}{\partial x^2}\Big|_{t=T} u'\Big|_{t=T} dx - \lambda \int_0^1 \frac{\partial^2 \phi}{\partial x^2}\Big|_{t=0} u'\Big|_{t=0} dx$$

 λ — Lagrange multiplier

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Finite-Time Optimization Problem (II)

Gradient Descent

$$\phi^{(n+1)} = \phi^{(n)} - \tau^{(n)} \nabla \mathcal{J}(\phi^{(n)}), \qquad n = 1, \dots,$$

$$\phi^{(0)} = \phi_0,$$

Step size $\tau^{(n)}$ found via arc minimization

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Finite-Time Optimization Problem (II)

Gradient Descent

$$\phi^{(n+1)} = \phi^{(n)} - \tau^{(n)} \nabla \mathcal{J}(\phi^{(n)}), \qquad n = 1, \dots,$$

$$\phi^{(0)} = \phi_0,$$

where $\nabla \mathcal{J}$ determined from *adjoint system* via H^1 Sobolev preconditioning

$$-\frac{\partial u^*}{\partial t} - u\frac{\partial u^*}{\partial x} - \nu\frac{\partial^2 u^*}{\partial x^2} = 0 \quad \text{in } \Omega$$
$$u^*(x) = -\frac{\partial^2 u}{\partial x^2}(x) \text{ at } t = 7$$

Periodic B.C.

Step size $\tau^{(n)}$ found via *arc minimization*

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Finite-Time Optimization Problem (II)

Gradient Descent

$$\phi^{(n+1)} = \phi^{(n)} - \tau^{(n)} \nabla \mathcal{J}(\phi^{(n)}), \qquad n = 1, \dots,$$

$$\phi^{(0)} = \phi_0,$$

where $\nabla \mathcal{J}$ determined from *adjoint system* via H^1 Sobolev preconditioning

$$-\frac{\partial u^*}{\partial t} - u\frac{\partial u^*}{\partial x} - \nu\frac{\partial^2 u^*}{\partial x^2} = 0 \quad \text{in } \Omega$$
$$u^*(x) = -\frac{\partial^2 u}{\partial x^2}(x) \text{ at } t = 7$$

Periodic B.C.

• Step size $\tau^{(n)}$ found via arc minimization

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Final Two parameters:
$$T$$
 , \mathcal{E}_0 $(
u = 10^{-3})$

▶ Optimal initial conditions corresponding to initial guess with wavenumber m = 1 (local maximizers)
 Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem
 Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results

 Finite-Time Bounds in 1D Burgers Problem

Final Two parameters:
$$T$$
 , \mathcal{E}_0 $(
u = 10^{-3})$

 Optimal initial conditions corresponding to initial guess with wavenumber m = 1 (local maximizers)

Fixed $\mathcal{E}_0 = 10^3$, different *T*

 Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem
 Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Final Two parameters:
$$T$$
 , \mathcal{E}_0 $(
u = 10^{-3})$

 Optimal initial conditions corresponding to initial guess with wavenumber m = 1 (local maximizers)

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem

Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

B. Protas & D. Ayala

Extreme Vortices & the Blow-Up Problem

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

▶ Sol'ns found with initial guesses $\phi^{(m)}(x) = \sin(2\pi mx)$, m = 1, 2, ...

• Change of variables leaving Burgers equation invariant $(L \in \mathbb{Z}^+)$:

 $x = L\xi, \ (x \in [0, 1], \ \xi \in [0, 1/L]), \qquad \tau = t/L^2$

 $v(\tau,\xi) = Lu(x(\xi), t(\tau)), \qquad \qquad \mathcal{E}_{v}(\tau) = L^{4}\mathcal{E}_{u}\left(\frac{1}{L}\right)$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

► Sol'ns found with initial guesses $\phi^{(m)}(x) = \sin(2\pi mx), m = 1, 2, ...$

• Change of variables leaving Burgers equation invariant $(L \in \mathbb{Z}^+)$:

$$\begin{split} & x = L\xi, \ (x \in [0,1], \ \xi \in [0,1/L]), \qquad \tau = t/L^2 \\ & v(\tau,\xi) = Lu(x(\xi),t(\tau)), \qquad \qquad \mathcal{E}_v(\tau) = L^4 \mathcal{E}_u\left(\frac{t}{L^2}\right) \end{split}$$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Solutions for m = 1 and m = 2, after rescaling

• Using initial guess: $\phi^{(0)}(x) = \sin(2\pi mx)$, m = 1, or m = 2

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Solutions for m = 1 and m = 2, after rescaling

► Using initial guess: $\phi^{(0)}(x) = \epsilon \sin(2\pi mx) + (1 - \epsilon) \sin(2\pi nx), \ m \neq n, \ \epsilon > 0$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Solutions for m = 1 and m = 2, after rescaling

► Using initial guess: $\phi^{(0)}(x) = \epsilon \sin(2\pi mx) + (1 - \epsilon) \sin(2\pi nx), \ m \neq n, \ \epsilon > 0$

Regularity Problem for Navier-Stokes Equation Research Program and Earlier Results Finite-Time Bounds in 1D Burgers Problem

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	YES Lu & Doering (2008)
1D Burgers finite–time	$max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2\nu}\right)^{4/3}\mathcal{E}_0\right]^3$	No Ayala & P. (2011)
2D Navier–Stokes instantaneous	$\frac{\frac{d\mathcal{P}(t)}{dt} \leq -\left(\frac{\nu}{\mathcal{E}}\right)\mathcal{P}^{2} + \mathcal{C}_{1}\left(\frac{\mathcal{E}}{\nu}\right)\mathcal{P}}{\frac{d\mathcal{P}(t)}{dt} \leq \frac{\mathcal{C}_{2}}{\nu}\mathcal{K}^{1/2}\mathcal{P}^{3/2}}$	
2D Navier–Stokes finite–time	$max_{t>0}\mathcal{P}(t)\leq\left[\mathcal{P}_0^{1/2}+rac{C_2}{4 u^2}\mathcal{K}_0^{1/2}\mathcal{E}_0 ight]^2$	
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	YES Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{E}(0)^2}{ u^3}t}}$	

 Sharpness of Estimates as Optimization Problem
 Bounds on Palinstrophy Growth

 Bounds for 2D Navier-Stokes Problem
 Optimization Problems

 Bounds for 3D Navier-Stokes Problem
 Computational Approach & Results

PROBLEM II

Instantaneous Bounds for Growth of Palinstrophy in 2D Navier-Stokes Problem

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	YES Lu & Doering (2008)
1D Burgers finite–time	$max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2\nu}\right)^{4/3}\mathcal{E}_0\right]^3$	NO Ayala & P. (2011)
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	
2D Navier–Stokes finite–time	$ ext{max}_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + rac{C_2}{4 u^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 ight]^2$	
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	YES Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{E}(0)^2}{ u^3}t}}$	

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	YES Lu & Doering (2008)
1D Burgers finite–time	$max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2\nu}\right)^{4/3}\mathcal{E}_0\right]^3$	NO Ayala & P. (2011)
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	
2D Navier–Stokes finite–time	$ ext{max}_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + rac{C_2}{4 u^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 ight]^2$	
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	YES Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{E}(0)^2}{ u^3}t}}$	

▶ 2D VORTICITY EQUATION IN A PERIODIC BOX $(\omega = \mathbf{e}_z \cdot \boldsymbol{\omega})$

$$\begin{aligned} \frac{\partial \omega}{\partial t} + J(\omega, \psi) &= \nu \Delta \omega \quad \text{where } J(f, g) = f_x g_y - f_y g_x \\ - \Delta \psi &= \omega \end{aligned}$$

Enstrophy uninteresting in 2D flows (w/o boundaries)

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}\omega^{2}\,d\Omega=-\nu\,\int_{\Omega}(\boldsymbol{\nabla}\omega)^{2}\,d\Omega<0$$

• Evolution equation for the vorticity gradient $\boldsymbol{\nabla}\omega$

$$\frac{\partial \boldsymbol{\nabla} \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \boldsymbol{\nabla} \boldsymbol{\omega} = \boldsymbol{\nu} \Delta \boldsymbol{\nabla} \boldsymbol{\omega} + \underbrace{\boldsymbol{\nabla} \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \mathbf{u}}_{\text{"STRETCHING" TERM}}$$

▶ 2D VORTICITY EQUATION IN A PERIODIC BOX $(\omega = \mathbf{e}_z \cdot \boldsymbol{\omega})$

$$\begin{aligned} \frac{\partial \omega}{\partial t} + J(\omega, \psi) &= \nu \Delta \omega \quad \text{where } J(f, g) = f_x g_y - f_y g_x \\ - \Delta \psi &= \omega \end{aligned}$$

Enstrophy uninteresting in 2D flows (w/o boundaries)

$$rac{1}{2}rac{d}{dt}\int_{\Omega}\omega^2\,d\Omega=-
u\,\int_{\Omega}(oldsymbol{
abla}\omega)^2\,d\Omega<0$$

• Evolution equation for the vorticity gradient $\boldsymbol{\nabla}\omega$

$$\frac{\partial \boldsymbol{\nabla} \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \boldsymbol{\nabla} \boldsymbol{\omega} = \boldsymbol{\nu} \Delta \boldsymbol{\nabla} \boldsymbol{\omega} + \underbrace{\boldsymbol{\nabla} \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \mathbf{u}}_{\text{"STRETCHING" TERM}}$$
▶ 2D VORTICITY EQUATION IN A PERIODIC BOX $(\omega = \mathbf{e}_z \cdot \boldsymbol{\omega})$

$$\begin{aligned} \frac{\partial \omega}{\partial t} + J(\omega, \psi) &= \nu \Delta \omega \quad \text{where } J(f, g) = f_x g_y - f_y g_x \\ - \Delta \psi &= \omega \end{aligned}$$

Enstrophy uninteresting in 2D flows (w/o boundaries)

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}\omega^2\,d\Omega=-\nu\,\int_{\Omega}(\boldsymbol{\nabla}\omega)^2\,d\Omega<0$$

- Evolution equation for the vorticity gradient ${oldsymbol
abla} \omega$

$$\frac{\partial \boldsymbol{\nabla} \boldsymbol{\omega}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \boldsymbol{\nabla} \boldsymbol{\omega} = \nu \Delta \boldsymbol{\nabla} \boldsymbol{\omega} + \underbrace{\boldsymbol{\nabla} \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \mathbf{u}}_{\text{"STRETCHING" TERM}}$$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Palinstrophy

$$\mathcal{P}(t) \triangleq \int_{\Omega} (\boldsymbol{\nabla} \omega(t, \mathbf{x}))^2 \, d\Omega = \int_{\Omega} (\boldsymbol{\nabla} \Delta \psi(t, \mathbf{x}))^2 \, d\Omega$$

Also of interest — Kinetic Energy

$$\mathcal{K}(t) \triangleq \int_{\Omega} \mathbf{u}(t, \mathbf{x})^2 \, d\Omega = \int_{\Omega} (\mathbf{\nabla} \psi(t, \mathbf{x}))^2 \, d\Omega$$

Poincaré's inequality

$$\mathcal{K} \leq (2\pi)^{-2} \, \mathcal{E} \leq (2\pi)^{-2} \, \mathcal{P}$$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Palinstrophy

$$\mathcal{P}(t) \triangleq \int_{\Omega} (\boldsymbol{\nabla} \omega(t, \mathbf{x}))^2 \, d\Omega = \int_{\Omega} (\boldsymbol{\nabla} \Delta \psi(t, \mathbf{x}))^2 \, d\Omega$$

Also of interest — Kinetic Energy

$$\mathcal{K}(t) \triangleq \int_{\Omega} \mathbf{u}(t, \mathbf{x})^2 \, d\Omega = \int_{\Omega} (\mathbf{\nabla} \psi(t, \mathbf{x}))^2 \, d\Omega$$

Poincaré's inequality

$$\mathcal{K} \leq (2\pi)^{-2} \mathcal{E} \leq (2\pi)^{-2} \mathcal{P}$$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Palinstrophy

$$\mathcal{P}(t) \triangleq \int_{\Omega} (\boldsymbol{\nabla} \omega(t, \mathbf{x}))^2 \, d\Omega = \int_{\Omega} (\boldsymbol{\nabla} \Delta \psi(t, \mathbf{x}))^2 \, d\Omega$$

Also of interest — Kinetic Energy

$$\mathcal{K}(t) \triangleq \int_{\Omega} \mathbf{u}(t, \mathbf{x})^2 \, d\Omega = \int_{\Omega} (\mathbf{\nabla} \psi(t, \mathbf{x}))^2 \, d\Omega$$

Poincaré's inequality

$$\mathcal{K} \leq (2\pi)^{-2} \mathcal{E} \leq (2\pi)^{-2} \mathcal{P}$$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Estimates for the Rate of Growth of Palinstrophy

$$\frac{d\mathcal{P}(t)}{dt} = \int_{\Omega} J(\Delta\psi,\psi) \Delta^2\psi \, d\Omega - \nu \, \int_{\Omega} (\Delta^2\psi)^2 \, d\Omega \quad \triangleq \mathcal{R}_{\mathcal{P}}(\psi)$$

Using Poincaré's inequality (may not be sharp)

$$\frac{d\mathcal{P}(t)}{dt} \leq \frac{C}{\nu}\mathcal{P}^2,$$

$$\max_{t>0} \mathcal{P}(t) \le \left[\mathcal{P}_0^{1/2} + \frac{C_2}{4\nu^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 \right]^2 \qquad (\text{Ayala, 2012})$$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Estimates for the Rate of Growth of Palinstrophy

$$\frac{d\mathcal{P}(t)}{dt} = \int_{\Omega} J(\Delta\psi,\psi) \Delta^2\psi \, d\Omega - \nu \, \int_{\Omega} (\Delta^2\psi)^2 \, d\Omega \quad \triangleq \mathcal{R}_{\mathcal{P}}(\psi)$$

$$\frac{d\mathcal{P}(t)}{dt} \leq -\left(\frac{\nu}{\mathcal{E}}\right)\mathcal{P}^2 + C_1\left(\frac{\mathcal{E}}{\nu}\right)\mathcal{P} \qquad \text{(Doering \& Lunasin, 2011)}$$

Using Poincaré's inequality (may not be sharp)

$$\frac{d\mathcal{P}(t)}{dt} \leq \frac{C}{\nu}\mathcal{P}^2,$$

$$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + \frac{C_2}{4\nu^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 \right]^2 \qquad (\text{Ayala, 2012})$$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Estimates for the Rate of Growth of Palinstrophy

$$\frac{d\mathcal{P}(t)}{dt} = \int_{\Omega} J(\Delta\psi,\psi) \Delta^2\psi \, d\Omega - \nu \, \int_{\Omega} (\Delta^2\psi)^2 \, d\Omega \quad \triangleq \mathcal{R}_{\mathcal{P}}(\psi)$$

$$\frac{d\mathcal{P}(t)}{dt} \leq -\left(\frac{\nu}{\mathcal{E}}\right)\mathcal{P}^2 + \mathcal{C}_1\left(\frac{\mathcal{E}}{\nu}\right)\mathcal{P} \qquad \text{(Doering \& Lunasin, 2011)}$$
$$\frac{d\mathcal{P}(t)}{dt} \leq \frac{\mathcal{C}_2}{\nu}\mathcal{K}^{1/2}\mathcal{P}^{3/2} \qquad \text{(Ayala, 2012)}$$

Using Poincaré's inequality (may not be sharp)

$$\frac{d\mathcal{P}(t)}{dt} \leq \frac{C}{\nu}\mathcal{P}^2,$$

$$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + \frac{C_2}{4\nu^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 \right]^2 \qquad (\text{Ayala, 2012})$$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Estimates for the Rate of Growth of Palinstrophy

$$\frac{d\mathcal{P}(t)}{dt} = \int_{\Omega} J(\Delta\psi,\psi) \Delta^2\psi \, d\Omega - \nu \, \int_{\Omega} (\Delta^2\psi)^2 \, d\Omega \quad \triangleq \mathcal{R}_{\mathcal{P}}(\psi)$$

$$\frac{d\mathcal{P}(t)}{dt} \leq -\left(\frac{\nu}{\mathcal{E}}\right)\mathcal{P}^{2} + \mathcal{C}_{1}\left(\frac{\mathcal{E}}{\nu}\right)\mathcal{P} \qquad \text{(Doering \& Lunasin, 2011)} \\
\frac{d\mathcal{P}(t)}{dt} \leq \frac{\mathcal{C}_{2}}{\nu}\mathcal{K}^{1/2}\mathcal{P}^{3/2} \qquad \text{(Ayala, 2012)}$$

Using Poincaré's inequality (may not be sharp)

$$\frac{d\mathcal{P}(t)}{dt} \leq \frac{C}{\nu}\mathcal{P}^2,$$

$$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + \frac{C_2}{4\nu^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 \right]^2 \qquad (\text{Ayala, 2012})$$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Estimates for the Rate of Growth of Palinstrophy

$$\frac{d\mathcal{P}(t)}{dt} = \int_{\Omega} J(\Delta\psi,\psi) \Delta^2\psi \, d\Omega - \nu \, \int_{\Omega} (\Delta^2\psi)^2 \, d\Omega \quad \triangleq \mathcal{R}_{\mathcal{P}}(\psi)$$

$$\frac{d\mathcal{P}(t)}{dt} \leq -\left(\frac{\nu}{\mathcal{E}}\right)\mathcal{P}^{2} + C_{1}\left(\frac{\mathcal{E}}{\nu}\right)\mathcal{P} \qquad \text{(Doering \& Lunasin, 2011)}$$
$$\frac{d\mathcal{P}(t)}{dt} \leq \frac{C_{2}}{\nu}\mathcal{K}^{1/2}\mathcal{P}^{3/2} \qquad \text{(Ayala, 2012)}$$

Using Poincaré's inequality (may not be sharp)

$$\frac{d\mathcal{P}(t)}{dt} \leq \frac{C}{\nu}\mathcal{P}^2,$$

$$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + \frac{C_2}{4\nu^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 \right]^2 \qquad (\text{Ayala, 2012})$$

• Maximum Growth of
$$rac{d\mathcal{P}(t)}{dt}$$
 for fixed $\mathcal{E}_0 > 0, \mathcal{P}_0 > (2\pi)^2 \mathcal{E}_0$

$$\max_{\psi\in\mathcal{S}_{\mathcal{P}_0,\mathcal{E}_0}} \mathcal{R}_{\mathcal{P}_0}(\psi) \quad \text{where} \quad$$

$$\mathcal{S}_{\mathcal{P}_{0},\mathcal{E}_{0}} = \left\{ \psi \in \mathcal{H}^{4}(\Omega) : egin{array}{c} rac{1}{2} \int_{\Omega} (oldsymbol{
abla} \Delta \psi)^{2} \, d\Omega = \mathcal{P}_{0} \ rac{1}{2} \int_{\Omega} (\Delta \psi)^{2} \, d\Omega = \mathcal{E}_{0} \end{array}
ight\}$$

• Maximum Growth of $\frac{d\mathcal{P}(t)}{dt}$ for fixed $\mathcal{K}_0 > 0, \mathcal{P}_0 > (2\pi)^4 \mathcal{K}_0$

 $\max_{\psi \in \mathcal{S}_{\mathcal{P}_0,\mathcal{K}_0}} \mathcal{R}_{\mathcal{P}_0}(\psi) \quad \text{where} \quad$

$$\mathcal{S}_{\mathcal{P}_0,\mathcal{K}_0} = \left\{ \psi \in H^4(\Omega) : egin{array}{c} rac{1}{2} \int_\Omega (oldsymbol{
abla} \Delta \psi)^2 \, d\Omega = \mathcal{P}_0 \ rac{1}{2} \int_\Omega (oldsymbol{
abla} \psi)^2 \, d\Omega = \mathcal{K}_0
ight)
ight.$$

• Maximum Growth of
$$rac{d\mathcal{P}(t)}{dt}$$
 for fixed $\mathcal{E}_0 > 0, \mathcal{P}_0 > (2\pi)^2 \mathcal{E}_0$

$$\max_{\psi\in\mathcal{S}_{\mathcal{P}_0,\mathcal{E}_0}} \mathcal{R}_{\mathcal{P}_0}(\psi) \quad \text{where} \quad$$

$$\mathcal{S}_{\mathcal{P}_{0},\mathcal{E}_{0}}=\left\{\psi\in \mathcal{H}^{4}(\Omega): egin{array}{c} rac{1}{2}\int_{\Omega}(oldsymbol{
abla}\Delta\psi)^{2}\,d\Omega=\mathcal{P}_{0}\ rac{1}{2}\int_{\Omega}(\Delta\psi)^{2}\,d\Omega=\mathcal{E}_{0}\ \end{array}
ight\}$$

• Maximum Growth of $\frac{d\mathcal{P}(t)}{dt}$ for fixed $\mathcal{K}_0 > 0, \mathcal{P}_0 > (2\pi)^4 \mathcal{K}_0$

 $\max_{\psi\in\mathcal{S}_{\mathcal{P}_0,\mathcal{K}_0}} \mathcal{R}_{\mathcal{P}_0}(\psi)$ where

$$\mathcal{S}_{\mathcal{P}_{0},\mathcal{K}_{0}} = \left\{ \psi \in H^{4}(\Omega) : \begin{array}{c} \frac{1}{2} \int_{\Omega} (\boldsymbol{\nabla} \Delta \psi)^{2} \, d\Omega = \mathcal{P}_{0} \\ \frac{1}{2} \int_{\Omega} (\boldsymbol{\nabla} \psi)^{2} \, d\Omega = \mathcal{K}_{0} \end{array} \right\}$$

► Small Palinstrophy Limit: $\mathcal{P}_0 \to (2\pi)^2 \mathcal{E}_0$ $\tilde{\varphi}_0 = \underset{\varphi \in \mathcal{S}_0}{\arg \max} \mathcal{R}_0(\varphi), \quad \mathcal{R}_0(\varphi) = -\nu \int_{\Omega} (\Delta^2 \varphi)^2 \, d\Omega,$ $\mathcal{S}_0 = \left\{ \varphi \in H^4(\Omega) : \frac{1}{2} \int_{\Omega} (\nabla \Delta \psi)^2 \, d\Omega = \frac{(2\pi)^2}{2} \int_{\Omega} (\Delta \psi)^2 \, d\Omega \right\}$

• Optimizers: Eigenfunctions of the Laplacian $(ilde{arphi}_0 \in \operatorname{Ker}(\Delta))$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

► Small Palinstrophy Limit: $\mathcal{P}_0 \to (2\pi)^2 \mathcal{E}_0$ $\tilde{\varphi}_0 = \underset{\varphi \in S_0}{\arg \max} \mathcal{R}_0(\varphi), \quad \mathcal{R}_0(\varphi) = -\nu \int_{\Omega} (\Delta^2 \varphi)^2 d\Omega,$

$$\mathcal{S}_{0} = \left\{ \varphi \in \mathcal{H}^{4}(\Omega) : \frac{1}{2} \int_{\Omega} (\boldsymbol{\nabla} \Delta \psi)^{2} \, d\Omega = \frac{(2\pi)^{2}}{2} \int_{\Omega} (\Delta \psi)^{2} \, d\Omega \right\}$$

• Optimizers: Eigenfunctions of the Laplacian $(\tilde{\varphi}_0 \in \text{Ker}(\Delta))$

Extreme Vortices & the Blow-Up Problem

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Numerical Solution of Maximization Problem

Discretization of Gradient Flow

$$rac{d\psi}{d au} = - oldsymbol{
abla}^{H^4} \mathcal{R}_
u(\psi), \qquad \qquad \psi(0) = \psi_0$$

• Gradient in $H^4(\Omega)$ (via variational techniques)

 $\begin{bmatrix} \mathsf{Id} - L^8 \Delta^4 \end{bmatrix} \nabla^{H^4} \mathcal{R}_{\nu} = \nabla^{L_2} \mathcal{R}_{\nu} \qquad \text{(Periodic BCs)}$ $\nabla^{L_2} \mathcal{R}_{\nu}(\psi) = \Delta^2 J(\Delta \psi, \psi) + \Delta J(\psi, \Delta^2 \psi) + J(\Delta^2 \psi, \Delta \psi) - 2\nu \Delta^4 \psi$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Numerical Solution of Maximization Problem

Discretization of Gradient Flow

$$\begin{aligned} \frac{d\psi}{d\tau} &= -\boldsymbol{\nabla}^{H^4} \mathcal{R}_{\nu}(\psi), \qquad \qquad \psi(0) = \psi_0 \\ \psi^{(n+1)} &= \psi^{(n)} - \Delta \tau^{(n)} \, \boldsymbol{\nabla}^{H^4} \mathcal{R}_{\nu}(\psi^{(n)}), \qquad \psi^{(0)} = \psi_0 \end{aligned}$$

• Gradient in $H^4(\Omega)$ (via variational techniques)

 $\begin{bmatrix} \mathsf{Id} - L^8 \Delta^4 \end{bmatrix} \nabla^{H^4} \mathcal{R}_{\nu} = \nabla^{L_2} \mathcal{R}_{\nu} \qquad \text{(Periodic BCs)}$ $\nabla^{L_2} \mathcal{R}_{\nu}(\psi) = \Delta^2 J(\Delta \psi, \psi) + \Delta J(\psi, \Delta^2 \psi) + J(\Delta^2 \psi, \Delta \psi) - 2\nu \Delta^4 \psi$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Numerical Solution of Maximization Problem

Discretization of Gradient Flow

$$\begin{split} \frac{d\psi}{d\tau} &= -\boldsymbol{\nabla}^{H^4} \mathcal{R}_{\nu}(\psi), \qquad \qquad \psi(0) = \psi_0 \\ \psi^{(n+1)} &= \psi^{(n)} - \Delta \tau^{(n)} \, \boldsymbol{\nabla}^{H^4} \mathcal{R}_{\nu}(\psi^{(n)}), \qquad \psi^{(0)} = \psi_0 \end{split}$$

• Gradient in $H^4(\Omega)$ (via variational techniques)

 $\begin{bmatrix} \mathsf{Id} - L^8 \Delta^4 \end{bmatrix} \nabla^{H^4} \mathcal{R}_{\nu} = \nabla^{L_2} \mathcal{R}_{\nu} \qquad \text{(Periodic BCs)}$ $\nabla^{L_2} \mathcal{R}_{\nu}(\psi) = \Delta^2 J(\Delta \psi, \psi) + \Delta J(\psi, \Delta^2 \psi) + J(\Delta^2 \psi, \Delta \psi) - 2\nu \Delta^4 \psi$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Numerical Solution of Maximization Problem

Discretization of Gradient Flow

$$\begin{split} \frac{d\psi}{d\tau} &= -\boldsymbol{\nabla}^{H^4} \mathcal{R}_{\nu}(\psi), \qquad \qquad \psi(0) = \psi_0 \\ \psi^{(n+1)} &= \psi^{(n)} - \Delta \tau^{(n)} \, \boldsymbol{\nabla}^{H^4} \mathcal{R}_{\nu}(\psi^{(n)}), \qquad \psi^{(0)} = \psi_0 \end{split}$$

• Gradient in $H^4(\Omega)$ (via variational techniques)

 $\begin{bmatrix} \mathsf{Id} - L^8 \Delta^4 \end{bmatrix} \nabla^{H^4} \mathcal{R}_{\nu} = \nabla^{L_2} \mathcal{R}_{\nu} \qquad \text{(Periodic BCs)}$ $\nabla^{L_2} \mathcal{R}_{\nu}(\psi) = \Delta^2 J(\Delta \psi, \psi) + \Delta J(\psi, \Delta^2 \psi) + J(\Delta^2 \psi, \Delta \psi) - 2\nu \Delta^4 \psi$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Maximizers with Fixed $(\mathcal{K}_0, \mathcal{P}_0)$

Estimate: $\frac{d\mathcal{P}(t)}{dt} \leq \frac{C_2}{\nu} \mathcal{K}_0^{1/2} \mathcal{P}_0^{3/2}$

B. Protas & D. Ayala

Extreme Vortices & the Blow-Up Problem

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Maximizers with Fixed $(\mathcal{K}_0, \mathcal{P}_0)$

Estimate: $\frac{d\mathcal{P}(t)}{dt} \leq \frac{C_2}{\nu} \mathcal{K}_0^{1/2} \mathcal{P}_0^{3/2}$

B. Protas & D. Ayala Extreme Vortio

Extreme Vortices & the Blow-Up Problem

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Maximizers with Fixed $(\mathcal{K}_0, \mathcal{P}_0)$

Estimate: $\frac{d\mathcal{P}(t)}{dt} \leq \frac{C_2}{\nu} \mathcal{K}_0^{1/2} \mathcal{P}_0^{3/2}$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Maximizers with Fixed $(\mathcal{E}_0, \mathcal{P}_0)$ Estimate: $\frac{d\mathcal{P}(t)}{dt} \leq -(\frac{\nu}{\mathcal{E}_0})\mathcal{P}_0^2 + C_1(\frac{\varepsilon_0}{\nu})\mathcal{P}_0$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

$\begin{array}{l} \text{Maximizers with Fixed } \left(\mathcal{E}_{0}, \mathcal{P}_{0}\right) \\ \text{Estimate:} \quad \frac{d\mathcal{P}(t)}{dt} \leq -\left(\frac{\nu}{\mathcal{E}_{0}}\right) \mathcal{P}_{0}^{2} + C_{1}\left(\frac{\mathcal{E}_{0}}{\nu}\right) \mathcal{P}_{0} \end{array}$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

$\begin{array}{ll} \text{Maximizers with Fixed } \left(\mathcal{K}_{0}, \mathcal{P}_{0}\right) \\ \text{Finite-Time Estimate:} & \max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_{0}^{1/2} + \frac{C_{0}}{4\nu^{2}} \mathcal{K}_{0}^{1/2} \mathcal{E}_{0}\right]^{2} \end{array}$

 $\begin{array}{ll} & & \mathcal{P}_0\text{-constraint} \\ & & - & \{\mathcal{K}_0, \mathcal{P}_0\}\text{-constraint} \end{array}$

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	YES Lu & Doering (2008)
1D Burgers finite–time	$max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2\nu}\right)^{4/3}\mathcal{E}_0\right]^3$	No Ayala & P. (2011)
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	[YES] Ayala & P. (2013)
2D Navier–Stokes finite–time	$max_{t>0}\mathcal{P}(t)\leq\left[\mathcal{P}_0^{1/2}+rac{\mathcal{C}_2}{4 u^2}\mathcal{K}_0^{1/2}\mathcal{E}_0 ight]^2$	[YES] Ayala & P. (2013)
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	$ m Y_{ES}$ Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1 - 4rac{\mathcal{E}(0)^2}{ u^3}t}}$	

Bounds on Palinstrophy Growth Optimization Problems Computational Approach & Results

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	YES Lu & Doering (2008)
1D Burgers finite–time	$max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2\nu}\right)^{4/3}\mathcal{E}_0\right]^3$	No Ayala & P. (2011)
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	[YES] Ayala & P. (2013)
2D Navier–Stokes finite–time	$max_{t>0}\mathcal{P}(t)\leq\left[\mathcal{P}_0^{1/2}+rac{\mathcal{C}_2}{4 u^2}\mathcal{K}_0^{1/2}\mathcal{E}_0 ight]^2$	[YES] Ayala & P. (2013)
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	$ m Y_{ES}$ Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1-4rac{\mathcal{E}(0)^2}{ u^3}t}}$???

 Sharpness of Estimates as Optimization Problem Bounds for 2D Navier-Stokes Problem Bounds for 3D Navier-Stokes Problem
 Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

PROBLEM III

INSTANTANEOUS BOUNDS FOR GROWTH OF ENSTROPHY IN 3D NAVIER-STOKES PROBLEM

(PRELIMINARY RESULTS)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Relevant Estimates

	Best Estimate	Sharp?
1D Burgers instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{3}{2} \left(rac{1}{\pi^2 u} ight)^{1/3} \mathcal{E}(t)^{5/3}$	YES Lu & Doering (2008)
1D Burgers finite–time	$max_{t\in[0,T]}\mathcal{E}(t) \leq \left[\mathcal{E}_0^{1/3} + \left(\frac{L}{4}\right)^2 \left(\frac{1}{\pi^2\nu}\right)^{4/3}\mathcal{E}_0\right]^3$	No Ayala & P. (2011)
2D Navier–Stokes instantaneous	$rac{d\mathcal{P}(t)}{dt} \leq -\left(rac{ u}{\mathcal{E}} ight)\mathcal{P}^2 + \mathcal{C}_1\left(rac{\mathcal{E}}{ u} ight)\mathcal{P} \ rac{d\mathcal{P}(t)}{dt} \leq rac{\mathcal{C}_2}{ u}\mathcal{K}^{1/2}\mathcal{P}^{3/2}$	[YES] Ayala & P. (2013)
2D Navier–Stokes finite–time	$\max_{t>0} \mathcal{P}(t) \leq \left[\mathcal{P}_0^{1/2} + rac{\mathcal{C}_2}{4 u^2} \mathcal{K}_0^{1/2} \mathcal{E}_0 ight]^2$	[YES] Ayala & P. (2013)
3D Navier–Stokes instantaneous	$rac{d\mathcal{E}(t)}{dt} \leq rac{27C^2}{128 u^3}\mathcal{E}(t)^3$	YES Lu & Doering (2008)
3D Navier–Stokes finite–time	$\mathcal{E}(t) \leq rac{\mathcal{E}(0)}{\sqrt{1 - 4rac{\mathcal{E}(0)^2}{ u^3}t}}$???

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Rate of Growth of Enstrophy

$$\frac{d\mathcal{E}}{dt} = -\nu \int_{\Omega} |\Delta \mathbf{u}|^2 \, d\mathbf{x} + \int_{\Omega} \mathbf{u} \cdot \nabla \mathbf{u} \cdot \Delta \mathbf{u} \, d\mathbf{x} \triangleq \mathcal{R}_{\mathcal{E}_0}(\mathbf{u})$$

Best available instantaneous upper bound

$$\frac{d\mathcal{E}}{dt} \leq \frac{C}{\nu^3} \mathcal{E}^3$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Rate of Growth of Enstrophy

$$\frac{d\mathcal{E}}{dt} = -\nu \int_{\Omega} |\Delta \mathbf{u}|^2 \, d\mathbf{x} + \int_{\Omega} \mathbf{u} \cdot \nabla \mathbf{u} \cdot \Delta \mathbf{u} \, d\mathbf{x} \triangleq \mathcal{R}_{\mathcal{E}_0}(\mathbf{u})$$

Best available instantaneous upper bound

$$\frac{d\mathcal{E}}{dt} \leq \frac{C}{\nu^3} \mathcal{E}^3$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Rate of Growth of Enstrophy

$$\frac{d\mathcal{E}}{dt} = -\nu \int_{\Omega} |\Delta \mathbf{u}|^2 \, d\mathbf{x} + \int_{\Omega} \mathbf{u} \cdot \nabla \mathbf{u} \cdot \Delta \mathbf{u} \, d\mathbf{x} \triangleq \mathcal{R}_{\mathcal{E}_0}(\mathbf{u})$$

Best available instantaneous upper bound

$$\frac{d\mathcal{E}}{dt} \leq \frac{C}{\nu^3} \mathcal{E}^3$$

$$\max_{t \ge 0} \mathcal{E}(t) \le \frac{\mathcal{E}_0}{\sqrt{1 - \frac{4C_3}{\nu^3}\mathcal{E}_0^2 t}}$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Rate of Growth of Enstrophy

$$\frac{d\mathcal{E}}{dt} = -\nu \int_{\Omega} |\Delta \mathbf{u}|^2 \, d\mathbf{x} + \int_{\Omega} \mathbf{u} \cdot \nabla \mathbf{u} \cdot \Delta \mathbf{u} \, d\mathbf{x} \triangleq \mathcal{R}_{\mathcal{E}_0}(\mathbf{u})$$

Best available instantaneous upper bound

$$\frac{d\mathcal{E}}{dt} \leq \frac{C}{\nu^3} \mathcal{E}^3$$

$$egin{aligned} \max_{t\geq 0}\mathcal{E}(t) &\leq rac{\mathcal{E}_0}{\sqrt{1-rac{4C_3}{
u^3}\mathcal{E}_0^2t}}\ rac{1}{\mathcal{E}(0)} - rac{1}{\mathcal{E}(t)} &\leq rac{27}{(2\pi
u)^4}\left[\mathcal{K}(0) - \mathcal{K}(t)
ight] \end{aligned}$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

▶ Single Constraint: maximum rate of growth $\frac{d\mathcal{E}(t)}{dt}$ for fixed $\mathcal{E}_0 > 0$

 $\max_{\textbf{u}\in\mathcal{S}_{\mathcal{E}_0}} \quad \mathcal{R}_{\mathcal{E}_0}(\textbf{u}) \quad \text{where} \quad$

 $\mathcal{S}_{\mathcal{E}_0} = \left\{ \mathbf{u} \in H^2(\Omega) : \nabla \cdot \mathbf{u} = \mathbf{0}, \ \mathcal{E}(\mathbf{u}) = \mathcal{E}_0 \right\}$

• Two Constraints: maximum rate of growth $\frac{d\mathcal{E}(t)}{dt}$ for fixed $\mathcal{E}_0 > 0$ and $\mathcal{K}_0 < (2\pi)^{-2}\mathcal{E}_0$

 $\max_{oldsymbol{u}\in\mathcal{S}_{\mathcal{K}_0},arepsilon_0}}\mathcal{R}_{\mathcal{E}_0}(oldsymbol{u})$ where

 $\mathcal{S}_{\mathcal{K}_0,\mathcal{E}_0} \ = \left\{ \mathbf{u} \in H^2(\Omega) : \nabla \cdot \mathbf{u} = \mathbf{0}, \ \mathcal{K}(\mathbf{u}) = \mathcal{K}_0, \ \mathcal{E}(\mathbf{u}) = \mathcal{E}_0 \right\}$

 Numerical solution via discretized gradient flow (required resolutions up to 512³)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

▶ Single Constraint: maximum rate of growth $\frac{d\mathcal{E}(t)}{dt}$ for fixed $\mathcal{E}_0 > 0$

 $\max_{\textbf{u}\in\mathcal{S}_{\mathcal{E}_0}} \quad \mathcal{R}_{\mathcal{E}_0}(\textbf{u}) \quad \text{where} \quad$

 $\mathcal{S}_{\mathcal{E}_0} = \left\{ \mathbf{u} \in H^2(\Omega) : \nabla \cdot \mathbf{u} = \mathbf{0}, \ \mathcal{E}(\mathbf{u}) = \mathcal{E}_0 \right\}$

• Two Constraints: maximum rate of growth $\frac{d\mathcal{E}(t)}{dt}$ for fixed $\mathcal{E}_0 > 0$ and $\mathcal{K}_0 < (2\pi)^{-2}\mathcal{E}_0$

 $\max_{\mathbf{u}\in\mathcal{S}_{\mathcal{K}_{0},\mathcal{E}_{0}}} \mathcal{R}_{\mathcal{E}_{0}}(\mathbf{u}) \text{ where}$

 $\mathcal{S}_{\mathcal{K}_0,\mathcal{E}_0} = \left\{ \mathbf{u} \in H^2(\Omega) : \nabla \cdot \mathbf{u} = 0, \ \mathcal{K}(\mathbf{u}) = \mathcal{K}_0, \ \mathcal{E}(\mathbf{u}) = \mathcal{E}_0 \right\}$

 Numerical solution via discretized gradient flow (required resolutions up to 512³)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

▶ Single Constraint: maximum rate of growth $\frac{d\mathcal{E}(t)}{dt}$ for fixed $\mathcal{E}_0 > 0$

 $\underset{\textbf{u}\in\mathcal{S}_{\mathcal{E}_{0}}}{\text{max}}\quad \mathcal{R}_{\mathcal{E}_{0}}(\textbf{u}) \quad \text{where} \quad$

 $\mathcal{S}_{\mathcal{E}_0} = \left\{ \mathbf{u} \in H^2(\Omega) : \nabla \cdot \mathbf{u} = \mathbf{0}, \ \mathcal{E}(\mathbf{u}) = \mathcal{E}_0 \right\}$

• Two Constraints: maximum rate of growth $\frac{d\mathcal{E}(t)}{dt}$ for fixed $\mathcal{E}_0 > 0$ and $\mathcal{K}_0 < (2\pi)^{-2}\mathcal{E}_0$

 $\max\limits_{oldsymbol{u}\in\mathcal{S}_{\mathcal{K}_0,\mathcal{E}_0}} ~~\mathcal{R}_{\mathcal{E}_0}(oldsymbol{u})$ where

 $\mathcal{S}_{\mathcal{K}_0,\mathcal{E}_0} = \left\{ \mathbf{u} \in H^2(\Omega) : \nabla \cdot \mathbf{u} = 0, \ \mathcal{K}(\mathbf{u}) = \mathcal{K}_0, \ \mathcal{E}(\mathbf{u}) = \mathcal{E}_0 \right\}$

 Numerical solution via discretized gradient flow (required resolutions up to 512³)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Extreme Vortex States for $\mathcal{E}_0 \rightarrow 0$ (single constraint)

▶ In the limit $\mathcal{E}_0 \rightarrow 0$ optimal states found analytically

 \implies div-free eigenfunctions of vector Laplacian (3 branches)

• Case (a): Largest value of $d\mathcal{E}/dt$

Case (c): Taylor-Green vortex (Taylor & Green 1937)

B. Protas & D. Ayala Extreme Vortices & the Blow-Up Problem

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Extreme Vortex States for $\mathcal{E}_0 \rightarrow 0$ (single constraint)

► In the limit $\mathcal{E}_0 \to 0$ optimal states found analytically \implies div-free eigenfunctions of vector Laplacian (3 branches)

(a) $|\mathbf{k}|^2 = 1$ (b) $|\mathbf{k}|^2 = 2$

(c) $|\mathbf{k}|^2 = 3$

• Case (a): Largest value of $d\mathcal{E}/dt$

Case (c): Taylor-Green vortex (Taylor & Green 1937)
Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Extreme Vortex States for $\mathcal{E}_0 \rightarrow 0$ (single constraint)

► In the limit $\mathcal{E}_0 \to 0$ optimal states found analytically \implies div-free eigenfunctions of vector Laplacian (3 branches)

(a) $|\mathbf{k}|^2 = 1$ (b) $|\mathbf{k}|^2 = 2$ (c) $|\mathbf{k}|^2 = 3$

- Case (a): Largest value of $d\mathcal{E}/dt$
- Case (c): Taylor-Green vortex (Taylor & Green 1937)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Extreme Vortex States for $\mathcal{E}_0 \rightarrow 0$ (single constraint)

► In the limit $\mathcal{E}_0 \to 0$ optimal states found analytically \implies div-free eigenfunctions of vector Laplacian (3 branches)

(a) $|\mathbf{k}|^2 = 1$ (b) $|\mathbf{k}|^2 = 2$ (c) $|\mathbf{k}|^2 = 3$

- Case (a): Largest value of $d\mathcal{E}/dt$
- Case (c): Taylor-Green vortex (Taylor & Green 1937)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Single-constraint maximizers $\tilde{\mathbf{u}}_{\mathcal{E}_0}$ (Lu & Doering 2008)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Single-constraint maximizers $\tilde{\mathbf{u}}_{\mathcal{E}_0}$ (Lu & Doering 2008)

Two-constraint maximizers
$$ilde{f u}_{{\cal K}_0,{\cal E}_0}\;({\cal K}_0=1)$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

Time evolution of $\tilde{\mathbf{u}}_{\mathcal{E}_0}$ (single constraint: $\mathcal{E}_0 = 100$)

(a) single constraint ($\mathcal{E}_0 = 60$)

- extreme (instantaneously optimal) states $\tilde{\mathbf{u}}_{\mathcal{E}_0}$,
- - Taylor-Green vortex
- _ . _ Kida-Pelz vortex

(a) single constraint ($\mathcal{E}_0 = 60$)

(b) two constraints ($\mathcal{K}_0 = 1$, $\mathcal{E}_0 = 64$)

- extreme (instantaneously optimal) states $\tilde{u}_{\mathcal{E}_0}$, $\tilde{u}_{\mathcal{K}_0,\mathcal{E}_0}$
- - Taylor-Green vortex
- . _ Kida-Pelz vortex

$$rac{1}{\mathcal{E}(0)} - rac{1}{\mathcal{E}(t)} \leq C \left[\mathcal{K}(0) - \mathcal{K}(t)
ight]$$

$$rac{1}{\mathcal{E}(0)} - rac{1}{\mathcal{E}(t)} \leq C \, \left[\mathcal{K}(0) - \mathcal{K}(t)
ight]$$

$$\begin{split} \frac{d\mathcal{E}}{dt} &\leq C' \, \mathcal{E}^3 \quad \Longrightarrow \quad \frac{1}{\mathcal{E}(0)} - \frac{1}{\mathcal{E}(t)} \leq C \, \left[\mathcal{K}(0) - \mathcal{K}(t) \right] \\ &\implies \quad \max_{t \geq 0} \mathcal{E}(t) \leq \frac{\mathcal{E}(0)}{1 - C \, \mathcal{K}(0) \mathcal{E}(0)}, \quad C, C' - \text{numerical fit} \end{split}$$

$$\begin{split} \frac{d\mathcal{E}}{dt} &\leq C' \, \mathcal{E}^3 \quad \Longrightarrow \quad \frac{1}{\mathcal{E}(0)} - \frac{1}{\mathcal{E}(t)} \leq C \, \left[\mathcal{K}(0) - \mathcal{K}(t) \right] \\ &\implies \quad \max_{t \geq 0} \mathcal{E}(t) \leq \frac{\mathcal{E}(0)}{1 - C \, \mathcal{K}(0) \mathcal{E}(0)}, \quad C, C' - \text{numerical fit} \end{split}$$

B. Protas & D. Ayala Extreme Vortices & the Blow-Up Problem

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Found extreme vortex states in 2D and 3D saturating the worst-case mathematical bounds (although, in contrast to some recent studies in 3D, e.g., Bustamante & Brachet 2012, Kerr et al. 2013, 2014, the Reynolds numbers are small).
- ► Identified regions in the initial data phase-space {K₀, E₀} for which global regularity is guaranteed.
- So far, no evidence of blow-up in 3D, although due to small Reynolds numbers, the results are not conclusive.
- Need to solve the optimization problem on *finite* time windows, i.e.,

$$\max_{\mathbf{u}_0} \mathcal{E}(T)$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Found extreme vortex states in 2D and 3D saturating the worst-case mathematical bounds (although, in contrast to some recent studies in 3D, e.g., Bustamante & Brachet 2012, Kerr et al. 2013, 2014, the Reynolds numbers are small).
- ► Identified regions in the initial data phase-space {K₀, E₀} for which global regularity is guaranteed.
- So far, no evidence of blow-up in 3D, although due to small Reynolds numbers, the results are not conclusive.
- Need to solve the optimization problem on *finite* time windows, i.e.,

$$\max_{\mathbf{u}_0} \mathcal{E}(T)$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Found extreme vortex states in 2D and 3D saturating the worst-case mathematical bounds (although, in contrast to some recent studies in 3D, e.g., Bustamante & Brachet 2012, Kerr et al. 2013, 2014, the Reynolds numbers are small).
- ► Identified regions in the initial data phase-space {K₀, E₀} for which global regularity is guaranteed.
- So far, no evidence of blow-up in 3D, although due to small Reynolds numbers, the results are not conclusive.
- Need to solve the optimization problem on *finite* time windows, i.e.,

$$\max_{\mathbf{u}_0} \mathcal{E}(T)$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Found extreme vortex states in 2D and 3D saturating the worst-case mathematical bounds (although, in contrast to some recent studies in 3D, e.g., Bustamante & Brachet 2012, Kerr et al. 2013, 2014, the Reynolds numbers are small).
- ► Identified regions in the initial data phase-space {K₀, E₀} for which global regularity is guaranteed.
- So far, no evidence of blow-up in 3D, although due to small Reynolds numbers, the results are not conclusive.
- ▶ Need to solve the optimization problem on *finite* time windows, i.e.,

$$\max_{\mathbf{u}_0} \mathcal{E}(T)$$

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Why do two-constraint optimizers exhibit a larger finite-time growth in 2D, but not in 3D? (finite *Re* effect?)
- Regularity problem for 3D Euler equation.
- Singularity formation in "active scalar" equations (fractional Burgers equation, surface quasi-geostrophic equation, etc.).
- Extreme behavior in the presence of noise.
- Extreme states with more complex structure: simultaneously maximize R_{E₀}(u) and helicity H(u) (via multiobjective optimization)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Why do two-constraint optimizers exhibit a larger finite-time growth in 2D, but not in 3D? (finite *Re* effect?)
- Regularity problem for 3D Euler equation.
- Singularity formation in "active scalar" equations (fractional Burgers equation, surface quasi-geostrophic equation, etc.).
- Extreme behavior in the presence of noise.
- Extreme states with more complex structure: simultaneously maximize R_{E0}(u) and helicity H(u) (via multiobjective optimization)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Why do two-constraint optimizers exhibit a larger finite-time growth in 2D, but not in 3D? (finite *Re* effect?)
- Regularity problem for 3D Euler equation.
- Singularity formation in "active scalar" equations (fractional Burgers equation, surface quasi-geostrophic equation, etc.).
- Extreme behavior in the presence of noise.
- Extreme states with more complex structure: simultaneously maximize R_{E₀}(u) and helicity H(u) (via multiobjective optimization)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Why do two-constraint optimizers exhibit a larger finite-time growth in 2D, but not in 3D? (finite *Re* effect?)
- Regularity problem for 3D Euler equation.
- Singularity formation in "active scalar" equations (fractional Burgers equation, surface quasi-geostrophic equation, etc.).
- Extreme behavior in the presence of noise.
- Extreme states with more complex structure: simultaneously maximize R_{E₀}(u) and helicity H(u) (via multiobjective optimization)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

- Why do two-constraint optimizers exhibit a larger finite-time growth in 2D, but not in 3D? (finite *Re* effect?)
- Regularity problem for 3D Euler equation.
- Singularity formation in "active scalar" equations (fractional Burgers equation, surface quasi-geostrophic equation, etc.).
- Extreme behavior in the presence of noise.
- Extreme states with more complex structure: simultaneously maximize R_{E0}(u) and helicity H(u) (via multiobjective optimization)

Bounds on Enstrophy Growth & Optimization Problems Extreme Vortex States Discussion

References

 L. Lu and C. R. Doering, "Limits on Enstrophy Growth for Solutions of the Three-dimensional Navier-Stokes Equations" *Indiana University Mathematics Journal* 57, 2693–2727, 2008.

- D. Ayala and B. Protas, "On Maximum Enstrophy Growth in a Hydrodynamic System", *Physica D* 240, 1553–1563, 2011.
- D. Ayala and B. Protas, "Maximum Palinstrophy Growth in 2D Incompressible Flows: Instantaneous Case", *Journal of Fluid Mechanics* 742 340–367, 2014.
- D. Ayala and B. Protas, "Vortices, Maximum Growth and the Problem of Finite-Time Singularity Formation", *Fluid Dynamics Research (Special Issue for IUTAM Symposium on Vortex Dynamics)*, **46**, 031404, 2014.
- D. Ayala and B. Protas, "Extreme Vortex States and the Growth of Enstrophy in 3D Incompressible Flows", (in preparation), 2014.