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d) relative dispersion in turbulence

* Consequences of anomalous diffusion
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A diffusion (transport) process is:

* From a Lagrangian point of view:
A deterministic or stochastic rule for the time evolution
x(0)→ x(t) = Stx(0), e.g.

A x(t + 1) = x(t) + w(t) , w(t) = random variable

B x(t + 1) = f (x(t)) , f (x(t)) = chaotic map

C
dx

dt
= u(x, t) +

√
2D0η , η(t) = white noise

* From an Eulerian point of view:
A rule for the time evolution of the PdF ρ(x, t), e.g. in the case C,
for the incompressible flow ∇ · u = 0, one has the advection
diffusion equation (Fokker-Planck eq.)

∂ρ

∂t
+ (u · ∇)ρ = D0∆ρ .
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The typical scenario: Standard Diffusion

At large scale and asymptotically in time, usually one has the so
called standard diffusion i.e. a Fick’s law holds (just for simplcity
we considere the case < x >= 0)

∂Θ

∂t
=
∑
i ,j

Di ,j
∂2Θ

∂xi∂xj

and a Gaussian behavior.

Θ is the spatial coarse graining of ρ, and Di ,j is the effective
(eddy) diffusion tensor, depending (often in a non trivial way) from
D0 and the field u:

Θ(x, t) ∼ exp − 1

4t

∑
i ,j

xi [D−1]i ,jxj

< xi (t)xj(t) >' 2Di ,j t .
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QUESTIONS

* Is the standard diffusion generic?

* How violate the standard diffusion?

A) For incompressible velocity field ∇ · u = 0, if D0 > 0 one has
standard diffusion if the infrared contribution is not “too large”
(Majda-Avellaneda), i.e.∫

|V(k)|2

k2
dk <∞ (1)

where V(k) is the Fourier transform of u(x).
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B) Standard diffusion is present if the lagrangian correlations decay
fast enough (Taylor), i.e.∫ ∞

0
< vL(t)vL(0) > dt <∞ (2)

where vL(t) is the lagrangian velocity vL(t) = dx(t)/dt.

Anomalous diffusion is, somehow, a pathology: it is necessary
the violate the hypothesis for the validity of central limit theorem.

EXAMPLES OF ANOMALOUS DIFFUSION:
Ex 1: Trasversal diffusion in a random shear (Matheron and de
Marsily): u(x) = (U(y), 0), where U(y) is a spatial random walk;
it is possible to show that

< x(t)2 >∼ t3/2 , ρ(x , t) ∼ 1

t3/4
exp − C

x4

t3
.
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Ex 2: Levy walk
x(t + 1) = x(t) + v(t)

where v(t) is a random variable which can assume two values ±u0

for a duration T given by a random variable whose PdF is
ψ(T ) ∼ T−(α+1).

For α > 2, one has the usual standard diffusion, on the contrary if
α ≤ 2 one has a superdiffusion:

< x2(t) >∼ t2ν

where

ν = 1 , if α < 1 , ν =
(3− α)

2
, if 1 < α < 2 .
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Ex 3: Lagrangian chaos in 2d

dx

dt
=
∂ψ(x , y , t)

∂y
+
√

2D0 η1 ,

dy

dt
= −∂ψ(x , y , t)

∂x
+
√

2D0 η2 ,

where

ψ(x , y , t) = ψ0 sin
(2πx

L
+ B sinωt

)
sin
(2πy

L

)
the term B cosωt represents the lateral oscillation of the rolls.
For B 6= 0 one has chaos (mechanism of the homoclinic
intersection).
The effective diffusion coefficient depends from D0 and ω in a non
trivial way.
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Lagrangian chaos in 2d : D11 vs ω (rescaled), D0/ψ0 = 3× 10−3

(dotted curve); D0/ψ0 = 10−3 (broken curve); D0/ψ0 = 4× 10−4

(full curve).
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Two different ways to have anomalous diffusion

I) In the random shear flow the anomalous diffusion is due to the
violation of (1) i.e. the infrared contributions are dominant.

II) In the Levy walk, the ”violation” of the central theorem is due
to the non integrable long tail of the velocity-velocity correlation
function which determines, for α < 2 (superdiffusion):

< vL(t)vL(0) >∼ t−β , with β < 1 .

The same mechanism is present, for D0 = 0 and special values of
ω, in the Lagrangian chaos in the oscillating rolls.
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Lagrangian chaos in 2d : < x2(t) > vs t, with D0 = 0 and ω = 1.1,
the dashed line indicates t1.3.
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The result in the previous system is non an isolated case.
Such kind of mechanism is rather common in low dimensional
symplectic chaotic systems, e.g. in the standard map

θt+1 = θt + Jt , Jt+1 = Jt + sin(θt+1)

for some peculiar values of K .

The long tail in the correlation function is due to the presence of
(weakly unstable) ballistic trajectories.
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SOME NATURAL QUESTIONS

* Does the value of the scaling exponent ν allow to determine the
shape of ρ(x , t)?

* Is the scaling exponent ν (for < x2(t) >) the unique relevant
quantity?

In the standard diffusion one has ν = 1/2 and a gaussian feature:

Θ(x , t) ∼ 1

t1/2
exp − C

( x

t1/2

)
,

< |x(t)|q >∼ tq/2
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Naively, in the case of anomalous diffusion, one could guess the
simplest generalization:

Θ(x , t) ∼ 1

tν
Fν
( x

tν

)
, (3)

< |x(t)|q >∼ tqν

where Fν( ) is a suitable function, in the Gaussain case
F1/2(z) = exp − Cz2.

The above scenario is called weak anomalous diffusion:
the exponent ν is sufficient to describe the scaling features, and in
addition the PdF has a scaling shape.
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The existence of anomalous scaling in fully devolved turbulence
(and other phenomena) suggests that a more complex scenario can
appear, namely

< |x(t)|q >∼ tqν(q)

where ν(q) is not constant.
In such a case called strong anomalous diffusion the PdF cannot
have a scaling structure as in (3).

Are there real examples of strong anomalous diffusion?

A first example: Lagrangian Chaos in Rayleigh-Benard convection;
for D0 = 0 for some values of ω, one has ν(q) 6= const.
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Lagrangian chaos in 2d , D0 = 0 and ω = 1.1: ν(q) vs q, the
dashed line corresponds to 0.65q, the dotted line corresponds to
q − 1.04.
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The Lagrangian Chaos in Rayleigh-Benard convection is not an
isolated case of strong anomalous diffusion (Artuso et al, Klages et
al).

Other examples:
* Standard Map
* Levy walks

In particular it rather common the following shape:

qν(q) ' qν(0) , for q < q∗ ,

qν(q) ' q − const. , for q > q∗ .

In some stochastic processes it is possible to derive, the above
shape:
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In presence of strong anomalous diffusion there is not a scaling
structure of the PdF

Lagrangian chaos in 2d , D0 = 0 and ω = 1.1: rescaled PdF:
p(x/tν(0)) vs x/tν(0) for three different times (500, 1000, 2000).
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Even in presence of standard diffusion, i.e. < x2(t) >∼ t,
the scenario can be not trivial

For instance in the Levy walk with α > 2 one has ν(2) = 1/2, but
the PdF does not rescale and ν(q) 6= 1/2 for large values of q
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Levy walk, α = 2.2, rescaled PdF: p(x/tν(2)) vs x/tν(2) for
different times.
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RELATIVE DISPERSION IN TURBULENCE

The classical result of Richardson in the inertial range

< R2(t) >∼ t3

where R(t) = |x1(t)− x2(t)|. Now, a posteriori, the result is a
simple consequence of the Kolmogoriv scaling δv(`) ∼ `1/3.

What about the effect of intermittency for the relative diffusion?
Two possible scenarios:

* Weak anomalous diffusion:

< Rp(t) >∼ t
3
2
p ;
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* Strong anomalous diffusion:

< Rp(t) >∼ tα(p)

with α(p) 6= 3
2 p.

From the multifractal model one has a prediction(Boffetta et al) in
terms of D(h):

α(p) = inf
h

[p + 3− D(h)

1− h

]
. (4)

It is remarkable that, even in presence of intermittency, the
Richardson scaling α(2) = 3 is exact; the (4) has been checked in
synthetic turbulence, where the velocity field is random process
with the proper statio-temporal statistical features (Boffetta et al)
and in direct numerical simulation of the NS equations (Boffetta
and Sokolov).
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CONSEQUENCES OF ANOMALOUS DIFFUSION IN
FRONT PROPAGATION

The simplest reaction-diffusion problem (FKPP): a system with
standard diffusion and a reactive terms:

∂θ

∂t
= D0

∂2

∂x2
θ +

1

τ
f (θ) , (5)

asymptotically one has a front propagation:

θ(x , t) = F (x − vf t)

where F (1) = 1, F (0) = 0 and, if f
′′
< 0, the front speed is

vf = 2
√

D0f ′(0)/τ .
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θ(x , t) ∼ exp
[
− (x − XF (t))

ζ

]
Xf (t) ' vf t , ζ = 8

√
D0τ/f ′(0)

What happen in presence of anomalous diffusion?

For instance we can replace the (5) with

∂θ

∂t
= Lθ +

1

τ
f (θ)

where L is linear operator such that, in absence of the reaction
term, the diffusion is anomalous.
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For the relative diffusion according to Richardson one has

Lθ =
1

rd−1

∂

∂r

(
K (r)rd−1 ∂

∂r
θ
)
, K (r) ∝ r 4/3 .

There is class of systems where, in spite of the presence of the
anomalous diffusion, the front propagation is always standard i.e.
XF (t) ' vf t with a finite vf , and ζ = const.
For instance if ν 6= 1/2 and the PfD has the shape (which holds
for the random shear):

ρ(x , t) ∼ 1

tν
exp − C

( x

tν

) 1
1−ν

the front propagation is standard (Mancinelli et al).
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On the other hand, there are cases where the front propagation
can be non standard, i.e.

θ(x , t) ∼ exp
[
− (x − XF (t))

ζ(t)

]
with

XF (t) ∼ tγ , ζ(t) ∼ tδ with δ = γ − 1 .

For instance in the Richardson diffusion one has

γ = 3 , δ = 2 .
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Front propagation in the Richardon diffusion (and reaction)
equation: XF (t) vs t, in the insect ζ(t) vs t, the lines indicate the
predictions XF (t) ∼ t3, and ζ(t) ∼ t2.
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