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Adaptive methods for approximation

Given f ∈ X define a sequence of approximations
fj ∈ Sj ⊂ X for j = 0, 1, 2, ....

The space Sj+1 is chosen from a (fixed) variety of
finite dimensional spaces after fj is found.

We require nj < nj+1 where nj is the dimension of Sj.

In most of the cases Sj ⊂ Sj+1.

The decision about Sj+1 is made based upon the
information how fj approximates f .

Coarsening in AdaptiveFinite Element Methods – p. 2/40



Adaptive methods for approximation II

Usually, Sj = span{ψj,k : k = 1, ..., nj} .

Certain functionals Φj,m(f, fj) are used to indicate
to what extent adding some set Ψj,m of new basic
functions might contribute to the improvement of the
approximation.

In many cases Φj,m is a local error indicator, and∑

m

Φj,m(f, fj) relates to the error ‖f − fj‖.

In the PDE settings “local” means only that it is a local
quantity but not necessarily that Φj,m gives a bound
for the local error.
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Goal

Find methods that realize optimal balance
between accuracy and resources.

• adaptive methods – make decisions during the computations

• sparse representations

• complexity ! information content

Can we derive theoretical estimates about the performance?
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Example: A Toy Problem

Target function: f ∈ L∞[0, 1]

Piecewise constant approximation on N intervals: f̃N

Error measured in L∞[0, 1]

Linear Approximation

f ′ ∈ L∞[0, 1] ⇒ ‖f − f̃N‖∞ ≤ N−1 ‖f ′‖∞

Nonlinear Approximation

f ′ ∈ L1[0, 1] ⇒ ‖f − f̃N‖∞ ≤ N−1 ‖f ′‖1

‖u‖1 :=

1∫

0

|u(x)|dx ‖u‖∞ := sup
x∈[0,1]

|u(x)|

Coarsening in AdaptiveFinite Element Methods – p. 5/40



Linear vs Nonlinear Approximation

Linear Approximation SN :=



f̃ :

f̃ - piecewise constant, N pieces,

fixed breakpoints
{

k
N

}N

k=0





0 1
N

2
N

. . . N−1
N

1

Nonlinear Approximation ΣN :=



f̃ :

f̃ - piecewise constant, N pieces,

arbitrary breakpoints {xk}
N−1
k=1





0 x1 x2 . . . xN−1 1
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Approximation of Functions

Universal set Ψ = {ψλ}λ∈Λ? with index set Λ?

Linear Approximation: f̃ =
∑

λ∈Λ

cλψλ Λ is fixed.

for a given set Λ with #Λ = N find constants cλ
so that ‖f − f̃‖ is as small as possible

Nonlinear Approximation: f̃ =
∑

λ∈Λ

cλψλ Λ can vary.

find a set Λ ⊂ Λ? with #Λ ≤ N and constants cλ
so that ‖f − f̃‖ is as small as possible

Data organization Ã structure of Λ ⊂ Λ?
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Topography of smoothness spaces

1/p 1/q=1/p+t/d

s

s+t O(NO(N -t/d

Linear Nonlinear

(Slope d)

pL  spaces

X : measurement of the error

p(s derivatives in L  )

s
C   spaces

Embedding
in X

No embedding 
in X

  )   )-t/d
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Nonlinear Adaptive Approximation

Dyadic Intervals : λ =
[

k
2j ,

k+1
2j

]
Associated Tree

0 1
4

3
8

1
2 1

[1/2,1] [0,1/2] 

[0,1] 

[0,1/4] [1/4,1/2] 

[3/8,1/2] [1/4,3/8] 

[5/16,3/8] [1/4,5/16] 

[11/32,3/8] [5/16,11/32] 
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Wavelet Representations

Featured Applications: Image Compression (JPEG 2000) and Numerical PDE

wavelet representation – the infinite index set is a tree Λ? = T ?

f =
∑

λ∈Λ?

fλψλ

best N -term approximation

σN (f)X := inf
Λ⊂Λ?, #Λ≤N

∥∥∥∥∥f −
∑

λ∈Λ

fλψλ

∥∥∥∥∥
X

best N -term tree approximation

στ
N (f)X := inf

T is a subtree of T ?, #T≤N

∥∥∥∥∥f −
∑

λ∈T

fλψλ

∥∥∥∥∥
X
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N -term vs Tree Approximation

N -term Approximation Tree Approximation
f̃ =

∑

λ∈Λ

cλψλ #Λ ≤ N f̃ =
∑

λ∈τ

cλψλ #τ ≤ N

Λ can be any set τ must be a tree
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Best Tree Approximation

Approximation class

As
X :=

{
f ∈ X : ‖f‖As

X
:= sup

N
Nsστ

N (f)X <∞

}

Theorem [Cohen, Daubechies, Dahmen, DeVore]
compact embedding Ã tree approximation is optimal

e.g. X = W t(Lq) – functions in IRd with t derivatives in Lp

W t+sd(Lq) ⊂ As
W t(Lp) if

1

q
< s+

1

p

U – unit ball in W t+sd(Lq)

sup
f∈U

στ
N (f)X ≤ C sup

f∈U

σN (f)X
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Smoothness spaces for tree approximation
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Advantages of Tree Approximation

an efficient encoding of indices λ

in image compression Ã embedded zero-trees

locally refined meshes ! trees

allows fast access to the potential additions

still essentially optimal convergence rates and optimal
complexity rates
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What could be improved?

for f ∈ U ⊂ As
X the estimate is only for the whole

class U (i.e. worst case scenario)

the goal is to achieve instance optimality

‖f − f̃‖X ≤ const στ
N (f)X

? choose the largest coefficients and complete to a tree
Ã not good – too greedy

? examine all casesÃ complexity exponential in N

the complexity of the algorithm should be linear in N
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Adaptive Finite Element Methods

Convergence of AFEM:

¦ I. Babuška and M. Vogelius [1984]
• rates of convergence in the univariate case.

¦ W. Dörfler [1996]
¦ P. Morin, R. Nochetto, and K. Siebert [2000]
• convergence – complexity in terms of the number of iterations

¦ P. B., W. Dahmen, and R. DeVore [2004]
• sparsity check ! coarsening step
• optimal convergence rates and complexity of the algorithm

¦ R. Stevenson [2006]
• shows optimal convergence rates without the coarsening step
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Estimate – Mark – Refine – Solve

The usual adaptive strategy for solving PDEs

(1) start with an initial partition

(2) estimate the global error via local error indicators

(3) if the error is smaller than ε, then STOP

(4) mark triangles for refinement

(5) refine and complete the triangulation

(6) solve the discrete problem and go to (2)

• the marking strategy is often based on bulk chasing
which guarantees that the sum of the local errors for the
marked cells is an essential part of the global error.
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Basic Properties of Standard AFEM

guarantied error reduction after each loop

the rate of convergence cannot be optimal, if the
approximate solution ũ is not sparse at every step

optimal asymptotic rates can be maintained, if the
bulk constant θ is controlled in such a way that
ũ remains asymptotically sparse

the solution u ∈ As
X has to show its asymptotic

behavior even for small N

no instance optimality feasible

Approximation class As
X :=

{
u ∈ X : ‖u‖As

X
:= sup

N

Nsστ
N (u)X <∞

}
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AFEM with Coarsening

(1) start with an initial partition

(2) calculate error indicators and mark triangles for
refinement

(3) refine and complete the triangulation

(4) calculate error indicators and check the global error

(5) if the error is larger than ε, then coarsen the
triangulation and continue with (2)

(6) stop

Remarks:
• the refinement strategy guarantees an error reduction by
a constant factor α
• the coarsening increases the error at most α/2 times.
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Coarsening

Calculate error indicators ηE to receive a partition
P with global error indicator Φ = Φ(P ) which gives a
global error estimate

|||u− ũP ||| ≤ Φ

Use TREE ALGORITHM on the already known ũP to find
uN which is defined on a coarser a partition P ′,
approximates ũP with an error ε ≤ Φ/2,
and is near best (near optimal), i.e.

|||u− uN ||| ≤ C2 inf
#P ′≤N/c1

inf
v∈SP ′

|||u− v|||
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AFEM Theorem

Theorem 1 For any function f ∈ H−1(Ω) and any ε > 0, the
AFEM algorithm produces a partition P for which

Φ(P ) ≤ ε.

If s > 0 and u ∈ Ȧs, and f ∈ Ās, then

#(P ) ≤ #(P0) + C(s)(‖f‖
1/s

Ās + ‖u‖
1/s

Ȧs
)ε−1/s

with C(s) > 0 a constant depending only on s and the initial
partition P0. Moreover, The number of computations used in
producing P does not exceed

C(s)(#(P0) + ‖f‖
1/s

Ās + ‖u‖
1/s

Ȧs
)ε−1/s.
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Comments

The theorem is formulated in the framework of the result of
Cohen, Dahmen, and DeVore [2001,2002] about rates of
convergence for wavelet based adaptive methods:
If the solution u can be approximated (using complete knowledge of u) in the energy

norm by an n-term wavelet expansion to accuracy O(n−s), n→ ∞, then the adaptive

method will do the same using only knowledge of u gained through the adaptive iteration.

the coarsening step gives optimal individual performance

the actual coarsening of the mesh should be performed
only if ũ is not sparse.

sparsity is a necessary condition for optimal performance

the complexity of the sparsity check is approximately the
same as the calculation of error indicators
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Example - solution

two types of singularities: in the center and near the boundary
• the theoretical value for θ is small
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Example - performance of the algorithms

100 101 102 103 104

100

Nr of Nodes

Estimated Energy Error

bulk chasing with θ = 10−2 > 200 iterations
AFEM with sparsity check 16 iterations
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Near Best Approximation

Best Approximation σN(f ) := inf
g∈ΣN

‖f − g‖

There exist absolute constants c1, C2 > 0 such that

‖f − f̃N‖ ≤ C2 σc1N(f ) for any N and f .

For a given smoothness space Bs and for any f ∈ Bs

we have σN (f) = O(N−s) and ‖f − f̃N‖ = O(N−s) .
There might be functions f /∈ Bs for which σN (f) = O(N−s) .

Approximation Class As :=
{
f : ∃C σN (f) ≤ CN−s

}

For any f ∈ As we have ‖f − f̃N‖ = O(N−s) .
The constant C might depend on f . Usually, the estimates are

proven for N > N0 where N0 can be large.
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Optimal Rate vs. Near Best

There is an important difference between an approximation
that has optimal rate and a near best approximation. In
general, "rate" means a number r for which f ∈ Ar and
therefore the complexity should be N = O(ε−

1

r ) with
ε = σN (f). For example, if

N ³ ε−
1

r | log ε|β ,

then f ∈ Ar for any r ∈ (0, k) regardless of the value of
β > 0. However, it should be clear that the constants in this
asymptotic rates differ a lot in cases β = 1 and β = 1000.
Thus, aiming for the rates only would force us to anticipate
the possibility to have very large constants in the second
case. At the same time, it would not make a difference for
the near best approximation.
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Near Best Approximation - comments

It is not only the question of computing f̃N . One have
to get the information about f , as well.

It is not realistic to expect a practical solution to handle
infinite possibilities. Therefore, we want to examine
adaptive procedures that have finitely many varieties for
any fixed N . In Tree Approximation the number of
possible N -term bases is exponential on N .

We want to have an algorithm that finds the near best
tree approximation for O(N) steps, i.e. checking only
this number of bases.

We want the complexity constant c1 and
the approximation constant C2 to be close to 1.
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Trees

T ? – an infinite rooted tree called the master tree

a node ∆ of T ? may have different number of children

L(T ) the set of leaf nodes of a subtree T of T ?

proper subtree T ! partition

T contains the root node of T ?

if a node ∆ ∈ T has a child ∆′ ∈ T , then all of the
children (from T ?) of ∆ are also in T

In some cases we may require more properties for the proper trees
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Trees – example
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Error Functionals

a functional e : node ∆ ∈ T ? → error e(∆) ≥ 0

total error E(T ) :=
∑

∆∈L(T )

e(∆).

Subadditivity
For any node ∆ ∈ T ? if C(∆) is the set of its children, then

∑

∆′∈C(∆)

e(∆′) ≤ e(∆) (1)

Weak Subadditivity
∃ C0 ≥ 1 such that for any ∆ ∈ T ? and
for any finite subtree T∆ ⊂ T ? with root node ∆

∑

∆′∈L(T∆)

e(∆′) ≤ C0 e(∆) (2)
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The Idea of Tree Approximation

Initially, for all of the root nodes of T ? we define ẽ(∆) = e(∆).
Then, for each child ∆j , j = 1, . . . ,m(∆) of ∆

ẽ(∆j) := q(∆) :=

m(∆)∑

j=1

e(∆j)

e(∆) + ẽ(∆)
ẽ(∆). (3)

Note that ẽ is constant on the children of ∆.

It is useful to define the penalty terms p(∆j) :=
e(∆j)

ẽ(∆j)
The main property we shall need for ẽ is

m(∆)∑

j=1

p(∆j) = p(∆) + 1 . (4)
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Adaptive Tree Algorithm

Modified Error ẽ :

initial partitionÃ subtree T0 ⊂ T ?, ∆ ∈ T0 : ẽ(∆) := e(∆)

for each child ∆j of ∆ : ẽ(∆j) :=

(
1

e(∆j)
+

1

ẽ(∆)

)−1

Adaptive Tree Algorithm
(creates a sequence of trees Tj , j = 1, 2, . . . ):

start with T0

subdivide leaves ∆ ∈ L(Tj−1) with largest ẽ(∆)

to produce Tj

Remark 1 To eliminate sorting, we can consider all ẽ(∆) with
2` ≤ ẽ(∆) < 2`+1 to be equally large.
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Adaptive Tree Algorithm - Theorems

[Binev, DeVore, 2004] Fast Computation in adaptive tree approximation

Numerische Mathematik (2004) 97: 193–217

Theorem 2 Let σn(T ) := min
#L(T )≤n

E(T ) be the best n-term tree

approximation. Then, there is an absolute constant C1 > 0 such that at
each step the output tree T of the ADAPTIVE TREE ALGORITHM satisfies

E(T ) ≤ C1σn(T ) whenever n ≤ #L(T )/(2K + 2).

Theorem 3 [2007] Let the local errors e(∆) in T satisfy the
subadditivity condition. Then at each step of the NEW TREE ALGORITHM the
output tree T satisfies

E(T ) ≤

(
1 +

min{n, 2(n−N0)}

#L(T ) − n+ 1

)
σn(T )

whenever n ≤ #L(T ) and N0 is the size of the initial partition.
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Numerical Examples

Problem:

Find an adaptive

L2-approximation

of the function

f(x) = x−1/2

ln(x/1.02)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−60
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−40
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−20

−10

0

Function  f ( x )

Algorithms:

• greedy

• adaptive - old

• adaptive

0 10 20 30 40 50 60 70 80 90 100
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100

101

102
Errors of the algorithms
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Errors for the first 1000 iterations

0 100 200 300 400 500 600 700 800 900 1000
10−3
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Errors of the algorithms

• greedy • adaptive - old • adaptive
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Ratio of the errors
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Recent and Future Developments

improved constants for the case of week subadditivity

tree based framework for AFEM : combine the tree
algorithm with a marking strategy
only theoretical significance – the constants would be large

high dimensions : sparse occupancy trees
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Tree for a Partition
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Occupancy Tree
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Sparse Occupancy Tree
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Sparse Occupancy Trees

Special indexing of the objects that allows fast access and
cross level communications in multiresolutional settings
(applications include very high dimensional problems > 100)

adaptive space partition that keeps the information at
the level of detail (just) necessary for the problem to be
solved;

key-words: one letter for each level to show the position
inside of the parent cell on that level;

complexity is limited by the number of points;

the memory is limited to the number of occupied cells at
the finest level;

if required, only a small part of the point cloud can be
kept in the fast memory.
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