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Adaptive methods for approximation

o N

#® Given [ e X define a sequence of approximations
fjesS;cX for j=0,1,2, ...

® Thespace S Ischosen from a (fixed) variety of
finite dimensional spaces after f; is found.

o Werequire n; < n;.1 where n, isthe dimension of S;.
® Inmostofthecases S; C Sj;1.

® The decision about S;,; is made based upon the
information how [; approximates /.

o |
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Adaptive methods for approximation 11

=

¥

-

Usually, S; = span{v;:k=1,....n;}.

Certain functionals ®,,,(f, f;) are used to indicate
to what extent adding some set V;,, of new basic

functions might contribute to the improvement of the
approximation.

In many cases <&;,, Isa local error indicator, and
> ©;u(f. f;) relates to the error || — f)].

In the PDE settings “local” means only that it is a local
quantity but not necessarily that @;,, gives a bound
for the local error. J
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Goal
N -

Find methods that realize optimal balance
between accuracy and resources.

e adaptive methods — make decisions during the computations

e sparse representations

e complexity «~ information content

Can we derive theoretical estimates about the performance?

o |
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Example: A Toy Problem

- N

arget function: [ € L]0, 1]

Piecewise constant approximation on N intervals: [y
Error measured in L |0, 1]

# Linear Approximation
f/ S LOO[07 ” = Hf - JENHOO < N_l Hf/HOO
# Nonlinear Approximation

frerfo,1] = |f—fyllee <N

1
[ully 32/\10(50)\61517 [ulloo := sup |u(z)]
L ‘ x€[0,1] J
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Linear vs Nonlinear Approximation

o N

: L = f - piecewise constant, /V pieces,
Linear Approximation Sy := < f: N
fixed breakpoints { - }k: .

1 2 N—1
0~ ~ ~ 1
_ ~ f - piecewise constant, /V pieces,
Nonlinear Approximation >y := ¢ f:

arbitrary breakpoints {Zlfk;}]k\;l

L 0 x1 9 ry-1 1 J
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Approximation of Functions
i,

Linear Approximation: [ — Z CAU A Is fixed.
AEA

niversal set W = {¢\},.,. with index set A*

for a given set A\ with #/\ = N find constants c)
sothat ||f — f|| is as small as possible

Nonlinear Approximation: f — Z AU A can vary.
A€EA

findaset A C A" with #\ < N and constants c)
sothat ||f — f|| is as small as possible

LData organization ~- structure of A C A* J
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-

Topography of smoothness spaces

S
C  spaces

A

s+t T

Embedding
in X

‘ O(N -t/d )
Nonlinear

X : measurement of the error

(s derivatives in Lp)

.*" (Slope d)

No embedding
in X

1/p 1/g=1/p+t/d

|
Lp spaces
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Nonlinear Adaptive Approximation

-

Dyadic Intervals : X\ = [ .

o|w

=

-

Associated Tree

[0.1]

[0,1/2] [1/2,1]

[0,1/4]/ [1/4,1/2]

[1/4,3/8])  '[3/8,1/2]

[1/4,5/16] [6/16,3/8]

[5/16,11/32] [11/32,3/8]

|
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Wavelet Representations

oe |

Featured Applications: Image Compression (JPEG 2000) and Numerical P

wavelet representation — the infinite index setis atree A* =T1*

f=Y [

AEA~

best N-term approximation

on(f)x = AcAg’HLASN Hf — > s
AEA X
best N-term tree approximation
T — inf _
L ON(f)X T is a subtrelenof T, #T<N ||f )%; wa}\ J
X
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N-term vs Tree Approximation

o N

N-term Approximation Tree Approximation
F=) oty #AN f=> oy #r<N
AEA AET

/

/A N AN

\_ A canbe any set T must be a tree J



Best Tree Approximation

A

pproximation class

A5 = {fEX : As i=sup N°oy(f)x <oo}
N

Theorem [Cohen, Daubechies, Dahmen, DeVore]
compact embedding ~- tree approximation is optimal

e.g. X =W!L,)—functionsin R with ¢ derivativesin L,

| 1
Wt+8d(Lq) C ASVVt(Lp) |f 5 < S —l— ]—?

U — unit ball in Wis4(L,)

L Jscggafv(f))( < C ?EBUN(]C)X J
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Smoothness spaces for tree approximation

. N

)

LTTHTTHTHTHTHTHHH
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Advantages of Tree Approximation

-

# an efficient encoding of indices A

# Iinimage compression ~~ embedded zero-trees
® |ocally refined meshes « trees

o allows fast access to the potential additions

# still essentially optimal convergence rates and optimal
complexity rates

|
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.

What could be improved?

-

for feU c A5 the estimate is only for the whole
class U/ (i.e. worst case scenario)

the goal is to achieve instance optimality

If — fllx < const o}y(f)x

? choose the largest coefficients and complete to a tree
~» not good — too greedy

? examine all cases ~ complexity exponential in N

the complexity of the algorithm should be linearin N J
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Adaptive Finite Element Methods

. N

¢ 1. Babuska and M. Vogelius [1984]
e rates of convergence in the univariate case.

onvergence of AFEM:

o W. Dérfler [1996]
¢ P. Morin, R. Nochetto, and K. Siebert [2000]
® convergence — complexity in terms of the number of iterations

¢ P. B., W. Dahmen, and R. DeVore [2004]
® sparsity check «~~ coarsening step
e optimal convergence rates and complexity of the algorithm

o R. Stevenson [2006]
\_ e shows optimal convergence rates without the coarsening step J
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Estimate — Mark — Refine — Solve
fT

# (1) start with an initial partition

he usual adaptive strategy for solving PDEs

® (2) estimate the global error via local error indicators
#® (3) if the error is smaller than ¢, then STOP

# (4) mark triangles for refinement

# (5) refine and complete the triangulation

# (6) solve the discrete problem and go to (2)

e the marking strategy is often based on bulk chasing
which guarantees that the sum of the local errors for the
marked cells is an essential part of the global error.

o |
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Basic Properties of Standard AFEM
-

#® guarantied error reduction after each loop

# the rate of convergence cannot be optimal, if the
approximate solution « is not sparse at every step

# optimal asymptotic rates can be maintained, if the
bulk constant ¢ is controlled in such a way that
u remains asymptotically sparse

# the solution v € A% has to show its asymptotic
behavior even for small N

# no instance optimality feasible

Approximation class A% = {u € X : |Jullay :=sup N°oj(u)x < oo}
N

o |
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AFEM with Coarsening
-

# (1) start with an initial partition

® (2) calculate error indicators and mark triangles for
refinement

# (3) refine and complete the triangulation
# (4) calculate error indicators and check the global error

# (5) If the error is larger than ¢, then coarsen the
triangulation and continue with (2)

® (6) stop
Remarks:
e the refinement strategy guarantees an error reduction by

a constant factor o
Lothe coarsening increases the error at most «/2 times. J
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Coarsening

o N

o Calculate error indicators 7y to receive a partition
P with global error indicator ® = ¢(P) which gives a
global error estimate

lu—upll < @

® Use TrRee ALGoRrITHM On the already known up to find
uy Which is defined on a coarser a partition [/,
approximates up with an error = < ®/2,
and is near best (near optimal), i.e.

lu —un| < C2  int inf flu -]
#P’SN/Cl VES pr

o |
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AFEM Theorem

Theorem 1 For any function f ¢ H—(Q2) and any ¢ > 0, the
AFEM algorithm produces a partition P for which

d(P) <e.

Ifs>0anduec A%, and | € A%, then

#(P) < #(Po) + C()(IFI 4 + llull e /s

with C'(s) > 0 a constant depending only on s and the initial
partition F,. Moreover, The number of computations used in
producing P does not exceed

C () (#(Po) + 1L + llull 1) e

o |
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Comments
fThe theorem is formulated in the framework of the result of T
Cohen, Dahmen, and DeVore [2001,2002] about rates of
convergence for wavelet based adaptive methods:
If the solution u can be approximated (using complete knowledge of u) in the energy
norm by an n-term wavelet expansion to accuracy O(n~*%), n — oo, then the adaptive

method will do the same using only knowledge of u gained through the adaptive iteration.
® the coarsening step gives optimal individual performance

# the actual coarsening of the mesh should be performed
only if u IS not sparse.

#® sparsity is a necessary condition for optimal performance

L’ the complexity of the sparsity check is approximately the J
same as the calculation of error indicators
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Example - solution

Discrete P1 Solution

Nr of Nodes: 39533

two types of singularities: in the center and near the boundary
e the theoretical value for ¢ is small

o |

Coarsenina in AdaptiveFinite Element Methods — p. 23/40



Example - performance of the algorithms

Estimated Energy Error

10° 10’ 10° 10° 10*

bulk chasing with 4 = 1072 > 200 iterations
LAFEI\/I with sparsity check 16 iterations J
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Near Best Approximation

-

Best Approximation UN(f) = inf ||f—9H
geELN

o There exisj absolute constants ¢, Cy > 0 such that
Hf _ fNH < (% OclN(f) forany N and f.

# For a given smoothness space B* and for any f ¢ B*
we have on(f) = O(N77) and |[|f — fn[| = O(N77) .
There might be functions f ¢ B® for which on(f) = O(N~F) .
» Approximation Class A :={f:3C oy(f) <CN %}

Forany fe A° wehave ||f — fy| = O(N7).
The constant C' might depend on f. Usually, the estimates are
L proven for N > Ny where Ny can be large. J

Coarsenina in AdaptiveFinite Element Methods — p. 25/40



Optimal Rate vs. Near Best
-

fThere IS an important difference between an approximation
that has optimal rate and a near best approximation. In
general, "rate" means a number r for which f € A" and

therefore the complexity should be N = O (=) with
e =on(f). For example, if

N =<e™ r]logelﬁ

then f € A" for any r € (0, k) regardless of the value of

4 > 0. However, it should be clear that the constants in this

asymptotic rates differ a lot in cases ¢ = 1 and 5 = 1000.

Thus, aiming for the rates only would force us to anticipate

the possibility to have very large constants in the second

case. At the same time, it would not make a difference for
L[he near best approximation. J
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9

X

Near Best Approximation - comments

It is not only the question of computing fy. One have
to get the information about f, as well.

It is not realistic to expect a practical solution to handle
Infinite possibilities. Therefore, we want to examine
adaptive procedures that have finitely many varieties for
any fixed N. In Tree Approximation the number of
possible N-term bases is exponential on V.

We want to have an algorithm that finds the near best
tree approximation for O(N) steps, i.e. checking only
this number of bases.

We want the complexity constant ¢; and
the approximation constant C5 to be close to 1. |
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Trees

-

® 1™ — aninfinite rooted tree called the master tree
#® anode A of 7" may have different number of children
® L(T) the set of leaf nodes of a subtree 7" of 7T~
® proper subtree T° «~ partition
s T contains the root node of 7~

s ifanode A T hasachid A’ e T, then all of the
children (from 7*) of A arealsoinT

In some cases we may require more properties for the proper trees
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Trees — example

/ o o o o Y\ o o o o o o

0oodao Dooododododao Doodoooodododao

_ |
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Error Functionals

-

# afunctional ¢: node A eT* — eror ¢(A) >0

® totalerror E(T):= ) e(A).

A€EL(T)
Subadditivity
Forany node A € 7™ if C(A) is the set of its children, then
> eld) <e(d) (1)
A’EC(A)

Weak Subadditivity
4 Cy > 1 suchthatforany A 7" and
for any finite subtree 7o C 7™ with root node A

L Ag{:m e(A) < Cy e(A) 2) J
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The Idea of Tree Approximation

-

flnitially, for all of the root nodes of T we define ¢(A) = e(A).
Then, foreach child A;, 5 =1,...,m(A) of A

m(A)
> e(hy)

“(8) = ald) = oA

e(A). (3)

QM)
>
~— |

o |
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Adaptive Tree Algorithm
-

Modified Error ¢ :

® initial partition ~ subtree T, c T*, A € Ty: €é(A):=e(A)

—1
o foreachchild A, of A: e(A,) 1= ( (i | + ~(1A)>
€ j €

Adaptive Tree Algorithm

(creates a sequence of trees 7, 7 = 1,2, ... ):
& start with 75

® subdivide leaves A € L(7;_1) with largest ¢(A)
to produce 7}

LFlemark 1 To eliminate sorting, we can consider all ¢(A) with
2t < e(A) < 2! to be equally large. J
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Adaptive Tree Algorithm - Theorems

f [Binev, DeVore, 2004] Fast Computation in adaptive tree approximation —‘
Numerische Mathematik (2004) 97: 193-217

Theorem 2 Let o,(T):= #LI?%?< E(T) be the best n-term tree

approximation. Then, there is an absolute constant | > 0 such that at
each step the output tree 'I' of the ApAPTIVE TREE ALGORITHM Ssatisfies

E(T) < Cyo,(T) whenever n < #L(T)/(2K + 2).

Theorem 3 [2007] Let the local errors e(A) in T satisfy the
subadditivity condition. Then at each step of the New TREE ALGORITHM the
output tree I’ satisfies

min{n, 2(n — Np)}
BT = (H LT —n+ 1 ) on(T)

Lwhenever n < #L(T) and Ny is the size of the initial partition. J
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.

Numerical Examples

Problem:
Find an adaptive
Lo-approximation

of the function
—1/2

flz) = 1né;/1.02)

Algorithms:

e greedy

e adaptive

-20

=30

—40f

50+

-60

Function f(x)
T T
—
1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Errors of the algorithms
1 1 1 1 1 1 1
10 20 30 40 50 60 70

I I
80 90 100
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Errors for the first 1000 iterations

Errors of the algorithms

10 T T T

e greedy e adaptive - old e adaptive

Ratio of the errors
9 T T T

2 7 J
1
0 I I I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000
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Recent and Future Developments

o N

# improved constants for the case of week subadditivity
# tree based framework for AFEM : combine the tree
algorithm with a marking strategy

only theoretical significance — the constants would be large

# high dimensions : sparse occupancy trees

o |
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Tree for a Partition

N o o o @ N O 0O O o0 0O 0O

0Oodao Dodoodoodoododao Dodoodoododaodao
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Occupancy Tree

I\ I S R S S S
4 C) o o o o @ @ o o o o o 0
R GO T G I
nana@hnanananananam@nananananana
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Sparse Occupancy Tree

o o o @1 o o

OOO0ODO0ODOODOOOOO OO OO
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Sparse Occupancy Trees

-

fSpecial iIndexing of the objects that allows fast access and
cross level communications in multiresolutional settings
(applications include very high dimensional problems > 100)

# adaptive space partition that keeps the information at
the level of detall (just) necessary for the problem to be
solved;

# Kkey-words: one letter for each level to show the position
inside of the parent cell on that level,;

o complexity is limited by the number of points;

o the memory is limited to the number of occupied cells at
the finest level;

# if required, only a small part of the point cloud can be
~ keptin the fast memory. o
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