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Introduction

Problems of coordinated control deal with the behaviour of networks of
individuals (’the agents’), who can exchange partial information among them, and
who aim at reaching or preserving a particular configuration.

Examples of such situations are:

Rendez-vous

Formation

Flocking

The mathematical modeling of such situations is a challenging task, with a wide
range of applications.
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The rendez-vous problem

Assume we have a large number N of agents in the space Rq (typically with
q = 1, 2, 3).

The position of agent j at time t will be denoted by xj(t) and we will assume that
they will all undergo the same dynamics governed by a linear input/output law
which can be in either discrete or continuous time.
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The discrete-in-time model

The evolution of all agents takes place over the lattice 0, τ, 2τ, . . . where τ > 0 is
a fixed time step.
For the sake of notational simplicity, we assume τ = 1, so that each xj(t) depends
upon t ∈ N.

We assume a first-order evolution law of every agent:

xj(t + 1) = Axj(t) + Buj(t)

The vector uj(t) ∈ Rk plays the role of a control input function that each agent
can autonomously choose on the basis of the information available at time t: in
general, it will be a function of the position xj(t) as well of the information
transmitted by its neighbors.

A and B are constant matrices of dimension q × q and q × k, respectively.
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If we use the notation

x(t) = (x1(t), . . . xN (t))∗ , u(t) = (u1(t), . . . uN (t))∗ ,

we can rewrite the whole model as

x(t + 1) = Āx(t) + B̄u(t) ,

for suitable matrices Ā, B̄.

Equivalently,
x(t + 1) = x(t) + Âx(t) + B̄u(t) ,

with Â = Ā− I.
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A feedback control law for such a system consists of a sequence of matrices
K(t) to which there correspond controls of type

u(t) = K(t)x(t) .

Inserting in the above model we obtain the autonomous system

x(t + 1) = (Ā + B̄K(t))x(t) .

We say that the feedback control law K(t) satisfies the rendez-vous problem if
for every initial condition z(0), there exists α ∈ Rq such that

lim
t→+∞

xj(t) = α ∀j = 1, . . . , N .

Moreover, we say that it satisfies the barycentral rendez-vous problem if
α = N−1

∑
j xj(0).
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The continuous-in-time problem

The scheme

x(t + 1) = x(t) + (Â + B̄K(t))x(t)

can be considered as the Explicit Euler time discretization of the continuous
dynamical system (control problem with feedback)

x′(t) = (Â + B̄K(t))x(t) , t ∈ R+ .

The right-hand side is a velocity, which depends on the position via the feedback
law.
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The communication model

We assume constraints on the matrices K(t), deriving from communication
limitations.

Precisely, we assume that at every time instant t we have an undirected
communication graph Gt = (V, Et) where V = {1, 2, . . . , N} and where Et is a
family of unordered pairs of vertices in V .

Given j ∈ V we consider the neighborhood of j at time t formally defined by

Nt(j) = {k ∈ V \ {j} | {j, k} ∈ Et} ;

we also define
νj(t) = |Nt(j)| .
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The communication model (cont’d)

On the other hand, each matrix K(t) has a natural block structure induced by the
blocks ui(t) and xj(t). We denote by Kij(t) the k × q block corresponding to
ui(t) and xj(t).

The feedback control law K(t) is said to be adapted to the graph Gt if, for
every time t and every pair of indices i and j, we have that

Kij(t) 6= 0 ⇒ i ∈ Nt(j) .
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The geometric graph

Assumption: The communication graph Gt is linked to the positions of the
agents, as a consequence of a limitation in the communication length among
agents.

Precisley, we assume that there is a constant R > 0 such that the communication
graph available at time t is the so-called geometric graph Gt(R) = (V, Et(R)) for
which

{i, j} ∈ Et(R) ⇔ ‖xi(t)− xj(t)‖ ≤ R .
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The simplest realization of such a dynamics is

xj(t + 1) =
1

νj(t)

∑
k∈Nj(t)

xk(t) .

This means that at the new time step each agent places itself in the barycenter of
the position of all agents which it sees in a neighborhood of radius R around it.

Equivalently, one has
xj(t + 1) = xj(t) + uj(t)

with

uj(t) =

 1
νj(t)

∑
k∈Nj(t)

xk(t)

− xj(t) =

∑
k∈Nj(t)

(xk(t)− xj(t))∑
k∈Nj(t)

1
,

i.e., the velocity is the difference between the barycenter indicated above and the
current position of the agent.
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A vaste literature on this and similar problems is available, e.g.,

Lorenz (2005), Blondel, Hendricks and Tsitsiklis (2007), ...

with different points of view and contributions from mathematicians, statisticians,
physicists, engineers, social scientists, ...

Almost invariably, these investigations are based on the Lagrangean point of
view, which is inherent to the formulation presented so far.
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The continuous-in-space model

When the number of agents N is very large, one can identify the set of agents at
time t with a mass distribution µt in Rq.

Since agents are neither created nor destroyed, the total mass of µt is preserved,
hence (up to a normalization) it is not restrictive to assume that µt is, at every
time t ≥ 0, a probability measure in Rq.

In principle, µt can be any Borel probability measure in Rq,
such as a (normalized) Lebesgue measure in [a, b], or a fully atomic measure

µt = 1
N

∑N
j=1 δxj(t).

A velocity field Vt(x) = Vt(µt)(x) is attached to any point x ∈ Rq at time t.

Lagrangean approach −→ Eulerian approach

C. Canuto () WPI - Vienna January 25, 2008 14 / 30



Rendez-vous problem Continuous-in-space models Theoretical results Numerical insight Perspectives

A mass transfer problem

In a discrete-in-time setting, the dynamical system takes the form

µt+1 = T (µt)µt = pt#µt, t = 0, 1, 2, . . . ,

where
T (µt) = pt# ·

is the push-forward of a measure by the mapping

pt : suppµt ⊆ Rq → Rq, pt(x) = x + Vt(µt)(x) ,

which is formally defined as

pt#µt(E) = µt(p−1
t (E)) for every Borel set E.
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A mass transfer problem (cont’d)

Equivalently, we have∫
Rq

ϕ(x) dµt+1 =
∫

Rq

ϕ(x + Vt(x)) dµt

for every (bounded and Borel) function ϕ.

By choosing ϕ as the characteristic function of a set E one may substantiate the
intuitive idea that a point x in the support of µt moves at time t + 1 to the point
x + V t(x) in the support of µt+1.

This formulation is an instance of mass transport problem, related to the
classical Monge-Kantorovich problem.
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The velocity field is defined, for any x ∈ supp(µt), as

Vt(x) = Vt(µt)(x) =

∫
Rq

ξR(y − x) y dµt(y)∫
Rq

ξR(y − x) dµt(y)
−x =

∫
Rq

ξR(y − x) (y − x) dµt(y)∫
Rq

ξR(y − x) dµt(y)
,

where ξR : Rq → R is supported and positive in the ball B(0, R) of radius R
around the origin (e.g., the characteristic function of the ball).

Non-local dependence on µt.

A simplified model uses

Vt(x) =
∫

Rq

ξR(y − x) (y − x) dµt(y)

instead.
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The continuous-in time model

The continuous-in-time counterpart is the conservation law (continuity equation)

∂

∂t
µt + div Vtµt = 0 ,

to be meant in the sense of measures, i.e.,

d

dt

∫
Rq

η(x) dµt(x) =
∫

Rq

∇η(x) · Vt(x) dµt(x)

for any test function η ∈ D(Rq).

We say that a family of probability measures µt, t ≥ 0, is a solution, if for every
test function η(x) ∈ D(Rq), the function

t 7→
∫

Rq

η(x) dµt(x), t ≥ 0,

is continuous in [0,∞), differentiable in (0,∞) and satisfies the previous equation
for every t > 0.
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The case of absolutely continuous measures

Assume that the probability measures µt are absolutely continuous with respect to
the Lebesgue measure on Rq, i.e., there exists a density function ρ(t, x) ≥ 0, which
for all t is compactly supported in x and satisfies

∫
Rq ρ(t, x) dx = 1, such that

dµt = ρ(t, x) dx .

Then, the continuity equation becomes

∂ρ

∂t
+ div F = 0 ,

where the flux F is the nonlocal function

F (ρ; t, x) = V (ρ; t, x)ρ(t, x)

depending on the velocity field

V (ρ; t, x) =

∫
Rq

ξR(y − x) (y − x) ρ(t, y) dy∫
Rq

ξR(y − x) ρ(t, y) dy

.
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Existence and Uniqueness

Assume that V is given by Vt(x) =
∫

Rq ξR(y − x) (y − x) dµt(y) and that the
cut-off function ξR satisfies ξR(−x) = ξR(x) for all x.

Theorem
Let µ0 be any probability measure on Rq with compact support. Then the
discrete-in-time dynamical system

µt+1 = T (µt)µt , t = 0, 1, 2, . . . ,

generates a sequence of probability measures which converge, as t →∞, to a
limit probability measure µ∞. This is a purely atomic measure, whose atoms are a
distance at least R apart from one another.

A similar result holds for the continuous-in-time dynamical system, with the
additional result of the uniqueness of the solution.
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Schetch of proof:

Prove the bound

∞∑
t=0

∫
Rq

∫
Rq

ξR(y − x)‖y − x‖2 dµt(y)dµt(x) < +∞

Prove that the second-order moments∫
Rq

‖x‖2 dµt(x)

form a non-increasing sequence as t →∞.

Deduce from previous steps that there exists a probability measure µ∞ such
that

lim
t→∞

∫
Rq

ϕ(x) dµt(x) =
∫

Rq

ϕ(x) dµ∞(x)

for all bounded and continuous function ϕ.

Prove by contradiction that the non-atomic part of µ∞ is zero.
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Numerical simulations

Assuming ρ0(x) a compactly supported piecewise smooth function, the
initial-value problem

∂ρ

∂t
+ div(V ρ) = 0 , x ∈ Rq, t > 0 ,

ρ(x, 0) = ρ0(x) , x ∈ Rq

is discretized by a standard finite-volume scheme of upwind type on a uniform
Cartesian grid, with Courant number =1.

Invariably, the cut-off function ξR has been chosen as the characteristic function
of the ball B(0, R).

A significant robustness of the qualitative features of the discretized dynamics
with respect to the discretization parameter(s) has been observed.
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Numerical simulations (cont’d)

The evolution of a piecewise constant density towards steady state:
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Constant initial density
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Linear density evolution
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Parabolic density evolution
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Linear initial density
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Invariance and stability

A probability measure µ is said to have a radial symmetry with respect to
x0 ∈ Rq if for any rotation U centered at x0 one has U#µ = µ.

Theorem
In dimension q > 1, let ξR be a radial function. If the initial measure µ0 has radial
symmetry with respect to some x0, then µ∞ = δx0 .

Thus, in 2D, if µ0 is the characteristic function of the unit circle, then µ∞ = δ0.

However, ....
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Invariance and stability (cont’d)
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Further developments

The present investigation has shown that the rendez-vous problem can be
succesfully solved only if the communication length is sufficiently large.
To enhance the possibility of success, one could think of

having different species of agents, with different communication power (e.g.,
few ’master agents’ with long-range communication, many ’slave agents’ with
short-range communication)

Potentially interesting additional features of the model may include

the presence of noise (diffusion effects)

the roughness of the ’ground’ (friction effects)

the topology of the ’ground’ (boundary effects)

...
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