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Compressive algorithm

Compressive Algorithms (CA) are an approach to efficient
adaptive computing that take advantage of the property of
solutions of certain PDE’s and variational problems to be
characterized by few major features, which are recovered by
adaptive nonlinear iterations.
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The approach to efficient computing via CA responds to the
need of addressing large scale problems. CA tend to use the
minimal number of degrees of freedom, and are very
successfully applied in several problems. Their analysis is
challenging.
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Introduction
Things to be understood

(1) Let us stress from now that the “relevant
features” might not be merely, e.g., large wavelet
coefficients, but they can be expressed in terms of
more sophisticated representations of the solution.

(2) To start, we will use redundant frame expansions
(frames) as a prototype of compressible
representation.

(3) However, we may consider also solutions of
singular PDE’s with discontinuities along curves,
and these will be the interesting features to be
recovered during the solution process.

Fornasier Compressive Algorithms



Compressive algorithms
Frames

Adaptive frame methods for PDEs
Sparse recovery: beyond wavelet approximation

Introduction
Things to be understood

(1) Let us stress from now that the “relevant
features” might not be merely, e.g., large wavelet
coefficients, but they can be expressed in terms of
more sophisticated representations of the solution.

(2) To start, we will use redundant frame expansions
(frames) as a prototype of compressible
representation.

(3) However, we may consider also solutions of
singular PDE’s with discontinuities along curves,
and these will be the interesting features to be
recovered during the solution process.

Fornasier Compressive Algorithms



Compressive algorithms
Frames

Adaptive frame methods for PDEs
Sparse recovery: beyond wavelet approximation

Introduction
Things to be understood

(1) Let us stress from now that the “relevant
features” might not be merely, e.g., large wavelet
coefficients, but they can be expressed in terms of
more sophisticated representations of the solution.

(2) To start, we will use redundant frame expansions
(frames) as a prototype of compressible
representation.

(3) However, we may consider also solutions of
singular PDE’s with discontinuities along curves,
and these will be the interesting features to be
recovered during the solution process.

Fornasier Compressive Algorithms



Compressive algorithms
Frames

Adaptive frame methods for PDEs
Sparse recovery: beyond wavelet approximation

Definitions and main properties
Gabor and wavelet frames

Outline
1 Compressive algorithms

Introduction
Things to be understood

2 Frames in Hilbert spaces: towards the sparsity concept
Definitions and main properties
Gabor and wavelet frames and audio signals

3 Adaptive frame methods for PDEs
Frame discretization of elliptic equations
Optimal algorithms
Conclusions

4 Sparse recovery: beyond wavelet approximation
Compression and `1-minimization
Compressed sensing and other applications
`1-minimization: re-weighted least square method
`1-minimization with noisy data

Fornasier Compressive Algorithms



Compressive algorithms
Frames

Adaptive frame methods for PDEs
Sparse recovery: beyond wavelet approximation

Definitions and main properties
Gabor and wavelet frames

Frames

Informally, a frame is a collection of “linear dependent” vectors
F = {fn : n = 1,2,3, ...}. Hence,

f =
∑

n

cnfn,

where the coefficients cn are NOT unique.
A frame codify a signal f in a redundant way.
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Frames in Hilbert spaces

Definition
A countable subset F = {fn : n ∈ N} of a separable Hilbert
space H is a frame for H if there exists constants A,B > 0 such
that the following pseudo-Parseval formula holds:

A‖f‖2
H ≤

∑
n∈N

|〈f , fn〉|2 ≤ B‖f‖2
H,

for all f ∈ H.
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Operators of analysis and synthesis

Two operators are associated to a frame F = {fn : n ∈ N}:
Analysis operator: F : H → `2(N) : f 7→ 〈f , fn〉;
Synthesis operator: F ∗ : `2(N) → H : c 7→

∑
n∈N cnfn.

We define the so-called frame operator S by

S = F ∗F , Sf =
∑

n

〈f , fn〉fn.
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The frame operator

The operator S is self-adjoint, positive, and boundedly
invertible; We have the following reproducing formulas

f = S−1Sf =
∑

n

〈f , fn〉S−1fn = SS−1f =
∑

n

〈f ,S−1fn〉fn.

The set F̃ := {f̃n := S−1fn : n ∈ N} is again a frame, called the
canonical dual frame.
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The canonical dual

The canonical dual determines coefficients cn(f ) = 〈f , f̃n〉 for
the synthesis of f . However, since kerF ∗ 6= {0} in general,
there exists an infinite collection of different coefficients
(dn(f ))n∈N such that f =

∑
n cn(f )fn =

∑
n dn(f )fn, c 6= d .

Proposition

If f =
∑

n dnfn for some scalars (dn)n, then∑
n

|dn|2 =
∑

n

|〈f ,S−1fn〉|2 +
∑

n

|〈f ,S−1fn〉 − dn|2.

In particular, the sequence (〈f ,S−1fn〉)n has the minimal
energy, i,e., `2 − norm, among all such sequences.
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The canonical dual

Frame elements, and one in red

Frame and its canonical dual
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The canonical dual

The canonical dual has not all the possible virtues.
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Compression and robustness

Since the coefficients are not unique, two fundamental positive
features of frames are

frames do allow for sparser representations (i.e., few
coefficients are nonzero) of an element f ∈ H; The slogan
is: “The larger is my dictionary, the shorter will be the
phrases I can compose by using proper terminology”;
frames do improve robustness not only under perturbations

f =
∑

n

cnfn ≈
∑

n

c̃nfn, cn ≈ c̃n,

also under erasures, i.e., the loss of some coefficients, see
the concept of “democratic expansion” (or Kashin’s
representation) introduced first by Calderbank-Daubechies.
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Nontrivial examples

The modulation, translation, and dilation operators are resp.:

Mωf (t) = e2πiωt f (t), Tx f (t) = f (t−x), Daf (t) = |a|−
d
2 f

(
t
a

)
,

for x , ω ∈ Rd , and a ∈ R, here d is the dimension.
For Λ ⊂ R, a family {Tx f : x ∈ Λ} is a frame for its span if
and only if is a Riesz basis;
For Λ ⊂ R× R, if a family of functions {MωTx f : (x , ω) ∈ Λ}
is a frame, then it is called a Gabor or Weyl-Heisenberg
frame;
For J ⊂ R× R, if a family of functions {DaTx f : (x ,a) ∈ J }
is a frame, then it is called a wavelet frame.
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Practical meaning of Gabor and wavelet frames
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The analysis of Gabor and wavelet frames

Few elements of a Gabor frame can approximate very well
functions constituted by strong local harmonic parts;
Few elements of a wavelet frame/basis can approximate
very well functions characterized by, e.g., strong
transitions, discontinuities, impulsive parts.

Hence a frame constituted by the hybrid UNION of Gabor and
wavelet frames is a suitable tool in order to COMPRESS, e.g.,
audio signals.
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Elliptic equations: theoretical setting

Ω ⊂ Rd Lipschitz domain
H Hilbert space, H ⊂ L2(Ω) ⊂ H ′ Gelfand triple
L : H → H ′ linear, boundedly invertible

a(·, ·) := 〈L·, ·〉 : H × H → R

symmetric, continuous, H-elliptic: a(v , v) h ‖v‖2
H .

task: for f ∈ H ′, solve

Lu = f ,

i.e., find u ∈ H s.t.

a(u, v) = 〈f , v〉, v ∈ H.
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Discretization via bases

Cohen, Dahmen, DeVore (1998):
I choose wavelet basis Ψ = {ψλ}λ∈J ⊂ L2(Ω) with

‖c‖`2 h ‖cT D−1Ψ‖H .

This implies
Lu = f ⇒ Lu = f,

where

L := D−1〈LΨ,Ψ〉D−1,

f := D−1〈f ,Ψ〉.

problem: construction of wavelet bases on general
domains difficult/complicated!
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Discretization via frames

Dahlke, F., Raasch, Stevenson (2003-2006)
choose a frame Ψ = {ψλ}λ∈J ⊂ L2(Ω) with

‖g‖L2 h ‖〈g,Ψ〉‖`2 .

Ψ is a Gelfand frame for (H,L2,H ′) if

F ∗ : `→ H : c 7→ cT Ψ, F̃ : H → ` : g 7→ 〈g, Ψ̃〉

are bounded.
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Mapping diagram

Ψ canonical dual frame

H //

L

$$

F̃
��

L2(Ω) // H′

F
��

ℓ
D

//

F
∗

OO

ℓ2(J )
D

∗

//
ℓ
′

F̃
∗

OO
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Construction of wavelet Gelfand frames

H = H t
0(Ω);

reference Riesz basis Ψ� ⊂ H t
0(�), � := (0,1)d ;

overlapping decomposition Ω =
∑n

i=1 Ωi ;
κi : � → Ωi , Cm-diffeomorphisms, m ≥ t ;
appropriate lifting yields Gelfand frames Ψ =

⋃n
i=1 Ψi .
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Gelfand frame construction
⋃

(0, 1)2

Ψ
�

κ2

κ1
Ψ

(1)

Ψ
(2)

Ω2

Ω1
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Solution of the discrete problem

The operator L : `2(J ) → `2(J ) is going to be bounded,
symmetric, positive, but has nontrivial kernel. Nevertheless
we have

L : ran(L) → ran(L)

is boundedly invertible;
(ideal) damped Richardson iteration:

(R) u(n+1) = u(n) + r(n), r(n) = f− Lu(n)

(ideal) steepest descent method

(SD) u(n+1) = u(n) +
〈r(n), r(n)〉
〈Lr(n), r(n)〉

r(n).
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Basic discrete procedures
Assume that we have the following procedures at our disposal:

RHS[ε,g] → gε: determines for g ∈ `2(J ) a finitely supported
gε ∈ `2(J ) such that

‖g− gε‖`2(J ) ≤ ε;

APPLY[ε,N,v] → wε: determines for N ∈ B(`2(J )) and for a
finitely supported v ∈ `2(J ) a finitely supported wε such that

‖Nv−wε‖`2(J ) ≤ ε;

COARSE[ε,v] → vε: determines for a finitely supported
v ∈ `2(J ) a finitely supported vε ∈ `2(J ) with at most N
significant coefficients, such that

‖v− vε‖`2(J ) ≤ ε.

Moreover, N . Nmin holds, Nmin being the minimal one.
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The algorithm

SOLVE[ε,L, f] → uε:
Let θ < 1/3 and K ∈ N be fixed such that 3ρK < θ.
i := 0, v(0) := 0, ε0 := ‖L−1

| ran(L)‖‖f‖`2(J )

While εi > ε do
i := i + 1
εi := 3ρK εi−1/θ
f(i) := RHS[ θεi

6αK , f]
v(i,0) := v(i−1)

For j = 1, ...,K do
v(i,j) := v(i,j−1) − α(APPLY[ θεi

6αK ,L,v
(i,j−1)]− f(i))

od
v(i) := COARSE[(1− θ)εi ,v(i,K )]
od
uε := v(i).
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The proof of convergence and optimality

Convergence and optimal complexity:
(R) Riesz basis case: Cohen, Dahmen, DeVore (2000)
(R) Frame case: Stevenson (2003)
(SD) Riesz basis case: Dahmen, Urban, Vorloeper (2002)
Canuto, Urban (2003)
(SD) Dahlke, F., Raasch, Stevenson, Werner (2005)
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Theorem
Let Q be the orthogonal projection onto ran(L). Assume that
there exists a solution u ∈ ran(L) ∩ `w

τ , 1/τ = s + 1/2,
s ∈ (0, s∗). If Q is bounded on the weak-`τ space and K > 0 in
the inner loop is large enough, then
(1) ‖Q(u− uε)‖`2 ≤ ε;
(2) the support size of uε and the number of algebraic

equations to compute it are O(ε−
1
s ‖u‖1/s

`w
τ

)

The presence of Q in (1) is harmless. Indeed, due to the fact
that ran(L) = ran(D−1F ),

uε =
∑

i

∑
λ

(Quε)i,λψi,λ =
∑

i

∑
λ

(uε)i,λψi,λ
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Numerical examples
↔ −

Let us consider the Poisson’s equation on the L-shaped
domain:

−∆u = f , u|∂Ω = 0,

and choose f with singularity at the re-entrant corner.
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Numerical examples

some (SD) iterations:
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Besov regularity problems

L-shaped domain: Ω := (−1,1)2 \ [0,1)2, decomposed into two
overlapping subdomains Ω = Ω1 ∪ Ω2 with
Ω1 := (−1,0)× (−1,1) and Ω2 := (−1,1)× (−1,0).
φ : [0, 3π

2 ] → R≥0 is a smooth function with φ(θ) = 1 for θ ≤ π
2

and φ(θ) = 0 for θ ≥ π. With (r(x), θ(x)) being the polar
coordinates of x with respect to the reentrant corner, the
functions σ1 := φ ◦ θ and σ2 := 1− σ1 form a partition of unity
subordinate to the patches Ωi .
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For sufficiently smooth wavelets, and 0 < s < (d − t)/n, one
has the relation

u ∈ Bsn+t
τ (Lτ (Ω)) if and only if DF̃u =

(
2|λ|t〈u, ψ̃λ〉L2(Ω)

)
λ∈I

∈ `τ (I),

where τ = (s + 1
2)−1, and DF̃u are exactly the unique

expansion coefficients of u with respect to the Riesz basis
D−1Ψ in H t

0(Ω).
Unfortunately we cannot say much about the canonical dual
frame coefficients of a Gelfand frame Ψ := Ψ(1) ∪Ψ(2) for
the L-shape domain.
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However for the sequence of expansion coefficients

u = (2t |λ|〈u, σi ψ̃i,λ〉)λ∈I�,i=1,2

we have the following result.

Theorem (Dahlke, F., Primbs, Raasch, Werner)
Let u be the variational solution to the Poisson eq. on the
L-shaped domain. Let the right-hand side f be contained in
Hµ(Ω) for a µ > 0. Then, the sequence of frame coefficients
(2|λ|〈u, σi ψ̃i,λ〉)λ∈I�,i=1,2 belongs to the space `τ0(I), where
1
τ0

= s−1
2 + 1

2 , for all 1 < s < min{d , µ+ 2}.

It is important to stress the fact that in the case of a wavelet
basis the analogous statement holds under the only slightly
milder requirement f ∈ Hµ(Ω), µ > −1/2.
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Domain decomposition methods

Algorithm 1. Multiplicative Schwarz iteration

for k = 1, . . . ,
uk−1

0 = uk−1

for i = 1, . . . ,n
uk−1

i = uk−1
i−1 + QT

i L̃−1
i Qi(f− Luk−1

i−1 )
endfor
uk = uk−1

n
endfor

Algorithm 2. Additive Schwarz iteration

for k = 1, . . . ,
uk = uk−1 + α

∑n
i=1 QT

i L̃−1
i Qi(f− Luk−1)

endfor
where 0 < α ≤ 1 is a suitable damping parameter.Fornasier Compressive Algorithms
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(4) The redundancy effects can be diminished by
subspace corrections/domain decompositions;

(5) Towards hybrid and highly redundant
approximations.
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Finite frames

To construct finite frames is easy:

Proposition

Every collection of vectors Φ = {ψi ∈ Rn : i = 1, ...,N} is a
frame for its span. We will always assume in the following that
n ≤ N.
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The traditional Vs. new compression paradigms

(1) We showed that different classes of
functions/signals can be represented with respect
to certain bases Φ in a very parsimonious way,
which leads to most of the modern compression
methods (JPEG,MP3 etc.).

(2) This classical paradigm is based on the concept of
best N-term approximation, i.e., re-arrange the
entries by magnitude and keep the most important
ones.

(3) Frames do allow for sparser representations BUT
the computation of the best N-term approximation
is a difficult combinatorial problem.
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The problem

Given a frame Φ = {φi ∈ Rn : i = 1, ...,N} and a signal y ∈ Rn

we would like to compute x∗ ∈ RN with
‖z∗‖`0 := # supp(x) << n such that

Φx∗ = y .

or
x∗ = argminΦz=y ‖z‖`0 .
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The problem

How could we find such a x∗? One possibility is to consider any
set T of k << n column indices and find the least squares
solution xT := argminz ‖ΦT z − y‖`2 . Finding xT is numerically
simple. After finding each xT , we choose T ∗ which minimizes
the residual. However, the method is numerically prohibitive, it
requires solving

(N
k

)
least squares problems.
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Possible practical solutions

The known practical solutions to the problem above assume
special properties of Φ:

(1) Greedy algorithms, e.g., OMP (requires that Φ has
incoherency properties, e.g., it is a union of
incoherent bases – “sines and spikes”);

(2) Convex relaxation, i.e., `1-minimization (basis
pursuit)

x∗ = argminΦz=y ‖z‖`1 .

It needs special well conditioning of any small
column subspace of Φ.
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Why `1-minimization can work
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Why `1-minimization can work

(1) `1−norm as a sparsity-promoting functional is first
used in reflection seismology (1970-1980)

(2) Rigorous results began to appear in the
late-1980’s (Donoho, Logan, and Stark).

(3) Applications for `1−minimization in statistical
estimation (mid-1990’s, Tibshirani) with the
LASSO algorithm (iterative soft-thresholding).

(4) In signal processing, Basis Pursuit (mid-1990’s
Donoho).
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Restricted Isometry Property (Candès, Tao)

A critical property needed in order to allow the best possible
performances is the so-called Restricted Isometry Property
(RIP).

Definition
We say that the matrix Φ has the RIP of order k if there exists a
0 < δk < 1 such that

(1− δk )‖xT‖2
`2
≤ ‖ΦT xT‖2

2 ≤ (1 + δk )‖xT‖2
`2
,

for all x and for all subset T with #T ≤ k .
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A fundamental result

Theorem (Candès, Romberg, Tao - Cohen, Dahmen, DeVore)

Let Φ be a frame which satisfies the RIP of order 3k for δ3k ≤ δ < 1. Then
there exists a decoder ∆ such that

‖x −∆(Φx)‖`2 ≤ C
σk (x)`1√

k
,

where σk (x)X = ‖x − xk‖X , and xk is the best k-term approximation of x in
norm X.

The best possible (i.e. the largest) k for which this theorem can hold is
k � n

log(N/n)+1 ;

If #(supp(x)) ≤ k then σk (x) = 0 and we have the perfect
reconstruction x = ∆(Φx).
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The fundamental open problem

There exist frames Φ with RIP of optimal order k � n
log(N/n)+1?

yes;
... but ALL the constructions of such frame are NOT
deterministic1.

1Refer to the Terence Tao’s blog
http://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-
matrices
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Some probabilistic constructions

The simplest examples are n × N matrices Φ whose
entries φi,j are independent realizations of Gaussian
random variables

φi,j ∼ N (0,
1
n

);

One can also use matrices where the entries are
independent realizations of ± Bernoulli random variables

φi,j :=

{
+ 1√

n , with probability 1
2

− 1√
n , with probability 1

2
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Fourier ensembles

The discrete Fourier transform x̂ = Ψx is defined by the matrix

Ψω,t =
1√
n

e−2πi ωt
n .

Our frame is going to be constructed extracting submatrix Φ by
random choice of rows of Ψ. Therefore on the set {1, ...,N} we
apply some random selectors which are δ1, . . . , δN independent
Bernoulli random variables taking value 1 with probability
δ = n/N. We define the rows by the set
Ω = {j ∈ {1, ...,N} : δj = 1}. Clearly E|Ω| = n.

Fornasier Compressive Algorithms



Compressive algorithms
Frames

Adaptive frame methods for PDEs
Sparse recovery: beyond wavelet approximation

Compression and `1-minimization
Compressed sensing and other applications
`1-minimization: re-weighted least square method
`1-minimization with noisy data

Encoding via random projections ⇒ Compressed
Sensing
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`1-minimization is a practical decoder

Theorem (Donoho, Candes, Tao ’05-’06)

Let Φ be frame which satisfies the RIP of order 2k for δ2k ≤ δ < 1/3. Then,
for any x ∈ RN with #(supp(x)) ≤ k and y = Φx, the decoder

∆(y) := argminΦz=y ‖z‖`1 ,

reconstructs x = ∆(y) exactly.

The variational problem can be simply reformulated as a Linear Program (LP)
in standard form:

argmin[Φ|−Φ]v=y 1T v , v ≥ 0, v = [z+|z−].
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Two first applications that attracted the attention:
CS for tomography (Candes, Romberg, Tao);
CS in digital image acquisition (Wakin, Laska, Duarte,
Baron, Sarvotham, Takhar, Kelly, and Baraniuk);

Nevertheless more and more applications are continuously
found.
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Tomography and Fourier ensembles
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Rice camera and pseudo-random ensembles
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Left: Original mandrill 4096 pixels;

Center: reconstruction with 20% rand. meas.;
Right: reconstruction with 40% rand. meas.
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Few recent new applications

designing sparse interconnect wiring,

designing sparse control system feedback gains,

sparse trades in portfolio optimization with fixed transaction cost,

design well connected sparse graphs,

sparse gene network systems identification

...

any combinatorial problem with prescribed linear or nonlinear equation
constraints
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A lapidary statement

The use of `1 regularization has become so widespread that it
could arguably be considered the “modern least squares”.
From this lapidary statement it follows the clear need for
efficient algorithms for the minimization problem.
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Fast iterative methods

Let Φ be an n × N (compressed sensing) CS matrix.
We are interested in decoding y = Φz with z ∈ RN and
y ∈ Rn.
The set of all solutions to y = Φz will be denoted by F(y),
which can also be described by the affine space z +N ,
where N is the null space of Φ.
We denote by x the minimal `1-norm solution

x := arg min
z∈F(y)

‖z‖1

We seek for faster alternatives to using linear
programming (i.e., interior point methods) to find x.

Fornasier Compressive Algorithms



Compressive algorithms
Frames

Adaptive frame methods for PDEs
Sparse recovery: beyond wavelet approximation

Compression and `1-minimization
Compressed sensing and other applications
`1-minimization: re-weighted least square method
`1-minimization with noisy data

CS matrices (NSP)

The Null Space Property (NSP) of order k for γ > 0 says that

‖ηT‖1 ≤ γ‖ηT c‖1,

for all sets T of cardinality less than k and all η ∈ N .
If Φ satisfies RIP of order (b + 1)k for δ > 0, where b ≥ 1 is an
integer, then Φ satisfies the NSP of order k for γ := 1+δ√

b(1−δ)
.
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Re-weighted Iterative Least Square (Osborne ’85)

For w ∈ RN
+ and ε > 0, define

J (z, w , ε) =
1
2

24 NX
j=1

z2
j wj +

NX
j=1

(ε2wj + w−1
j )

35 .

We initialize by w (0) = (1, . . . , 1) and ε0 = 1. Then, recursively

x (n+1) := arg min
z∈F(y)

J (z, w (n), εn),

εn+1 := min{εn,
r(x (n+1))K

N
}

w (n+1) := arg min
w>0

J (x (n+1), w , εn+1)

=
“
[(x (n+1)

j )2 + ε2
n+1]

−1/2
”N

j=1
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Re-weighted least squares

Fornasier Compressive Algorithms



Compressive algorithms
Frames

Adaptive frame methods for PDEs
Sparse recovery: beyond wavelet approximation

Compression and `1-minimization
Compressed sensing and other applications
`1-minimization: re-weighted least square method
`1-minimization with noisy data

Theorem (Daubechies, DeVore, F., Güntürk)
Let k ≥ 1 and define K = k + 6. We assume that Φ satisfies
the NSP of order 3K for γ ≤ 1/2. Let x be the unique minimum
`1-norm point in F(y). Then, for each y ∈ Rm, the Algorithm
above converges and its limit x̄ satisfies

‖x − x̄‖1 ≤ C1σk (x)`1 , C1 :=
5(1 + γ)

1− γ

In particular if x is k-sparse then x (n) converges to x.
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Theorem (Daubechies, DeVore, F., Güntürk)
For a given 0 < ρ < 1, assume that Φ satisfies NSP of order 3K
with constant γ > 0 such that

µ :=
γ

1− ρ

(
1 +

1
K − k

)
< 1.

Moreover, assume that | supp(x)| ≤ k, i.e., x is k-sparse. Here
we denote En := ‖x (n) − x‖1. Let n0 ∈ N be such that

En0 ≤ R∗ := ρmin
j∈T

|xj | = ρr(x)k .

Then for all n ≥ n0, we have En+1 ≤ µEn. Consequently x (n)

converges to x exponentially.
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Re-weighted Iterative Least Square: `τ minimization
τ < 1

We initialize by w (0) = (1, . . . ,1) and ε0 = 1. Then, recursively

x (n+1) := arg min
z∈F(y)

J (z,w (n), εn),

εn+1 := min{εn,
r(x (n+1))K

N
}

w (n+1) := arg min
w>0

J (x (n+1),w , εn+1)

=
(
[(x (n+1)

j )2 + ε2
n+1]

τ
2−1

)N

j=1
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`1 minimization with noisy data

(?) In realistic cases the data y are not provided
noise-free, thus we have to assume Φx = y + e.
Here Φ can be the matrix of a bounded operator
with respect to basis/frame coordinates.

(?) To deal with the reconstruction of x a
regularization mechanism is required.

(?) Regularization techniques try to take advantage of
prior knowledge one may have about the nature of
x . We assume that x is sparse (or compressible).

(?) The recovery is realized by minimizing

Jτ (x) := ‖Φx − y‖2
2 + 2τ‖x‖1.
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`1 minimization promotes sparsity

(?) As observed above, for certain classes of matrices
Φ, the `1-minimization does compute the sparsest
solution.

(?) Even for Φ outside this classes, `1-minimization
seems to lead to very good approximations to the
sparsest solutions.
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A minimizing algorithm

Several authors (e.g., Donoho, Starck, Tibshirani) proposed
independently an iterative soft-thresholding algorithm to
approximate the solution x̄(τ). More precisely, x̄(τ) is the limit
of the sequence x (n) defined by

x (n+1) = Sτ

[
x (n) + Φ∗y − Φ∗Φx (n)

]
,

starting from an arbitrary x (0), where Sτ is the soft-thresholding
operation defined by Sτ (x)λ = Sτ (xλ) with

Sτ (x) =


x − τ x > τ
0 |x | ≤ τ
x + τ x < −τ

.
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Performances

The algorithm converges initially relatively fast, then it
overshoots the value ‖x̄(τ)‖1 (where x̄(τ) := limn→∞ x (n)), and
it takes very long (forever!) to re-correct back. In other words,
starting from x (0) = 0, the algorithm generates a path
{x (n); n ∈ N} that is initially fully contained in the `1-ball
BR := {x ∈ `2(Λ) : ‖x‖1 ≤ R}, with R := ‖x̄(τ)‖1. Then it gets
out of the ball to slowly inch back to it in the limit.
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