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Projected gradient iterations

A first intuitive way to avoid this long “external” detour is to force
the successive iterates to remain within the ball BR. One
method to achieve this is to substitute for the thresholding
operations the projection PR onto BR. The algorithm

x (n+1) = PR

[
x (n) + β(n)Φ∗(y − Φx (n))

]
,

does lead, in numerical simulations, to promising, converging
results.
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Projected gradient iterations: the descent parameter
choice

(?) The main issue is to determine how large we can
choose the successive β(n), and still prove norm
convergence.

(?) The projected steepest descent algorithm may
allow in practice for large steps, “jumping
from-face-to-face” of the reference `1-ball BR.

(?) Typically, within the few initial iterations, the
algorithm executes very large jumps to reach
quickly the “right face/edge”, and then it does not
leave it anymore, denoting the capability to adapt
the iteration in the vicinity of the solution.
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The two major ingredients

(?) The descent parameter: We say that the sequence(
β(n)

)
n∈N satisfies Condition (B) with respect to

the sequence
(
x (n)

)
n∈N if there exists n0 so that:

(B1) β̄ := sup{β(n) ; n ∈ N } < ∞
and inf{β(n) ; n ∈ N } ≥ 1

(B2) β(n)‖Φ(x (n+1) − x (n))‖2 ≤ r‖x (n+1) − x (n)‖2 ∀n ≥ n0.

(?) The projection PR on the `1-ball BR is
implemented by PR(x) = Sτ(R;x)(x), where
τ(R; x) > 0 is such that ‖Sτ(R;x)(x)‖1 = R. The
complexity is O(m log m).
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τ

‖Sτ (a)‖1

‖a‖1

τ

R

maxi |ai |

For a given vector a ∈ `2, ‖Sτ (a)‖1 is a piecewise linear
continuous and decreasing function of τ (strictly decreasing for
τ < maxi |ai |) . The knots are located at {|ai |, i : 1 . . . m} and 0.
Finding τ such that ‖Sτ (a)‖1 = R ultimately comes down to a
linear interpolation.
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Computation of the projection

In practice and more explicitely, the projection onto the `1-ball
BR is therefore computed as follows: Order the entries of a by
magnitude such that |ai1 | ≥ |ai2 | ≥ . . . ≥ |aim |. Let
n ∈ {1, . . . , m} be the largest index satisfying

|ain | ≥
1

n − 1

(
n−1∑
k=1

|aik | − R

)
.

Then

(PR(a))ij = aij −
sgn(aij )

n

(
n∑

k=1

|aik | − R

)
, j = 1, . . . , n,

(PR(a))ij = 0, j = n + 1, . . . , m.
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Theorem (Daubechies, F., Loris)

The sequence
(
x (n)

)
n∈N, where the step-length sequence(

β(n)
)

n∈N satisfies Condition (B) with respect to the x (n),
converges in norm to a minimizer of D(x) = ‖Φx − y‖2

2 on BR.
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Some results in a geophysics application

5h 10h 15h 20h
0

1 ‖xn − x̄‖/‖x̄‖

Convergence rate of the thresholded Landweber algorithm
(solid line), the projected Landweber algorithm (dashed line)
and the projected steepest descent algorithm (dotted line). The
projected steepest descent algorithm converges about four
times faster than the thresholded Landweber iteration.
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A subspace correction method

We consider the minimization of J = Jτ , by alternating
subspace corrections.
We start by decomposing the “domain” of the sequences Λ
into two disjoint sets Λ1,Λ2 so that Λ = Λ1 ∪ Λ2.
Associated to a decomposition C = {Λ1,Λ2} we define the
extension operators Ei : `2(Λi) → `2(Λ), (Eiv)λ = vλ, if
λ ∈ Λi , (Eiv)λ = 0, otherwise, i = 1, 2. The adjoint
operator, which we call the restriction operator, is denoted
by Ri := E∗

i .
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With these operators we define the functional J (x1, x2),
J : `2(Λ1)× `2(Λ2) → R, given by

J (x1, x2) := J (E1x1 + E2x2).

In analogy to the Schwartz multiplicative algorithm, we analyze
the following algorithm:

x (n+1)
1 = argminv1∈`2(Λ1)

J (v1, x (n)
2 )

x (n+1)
2 = argminv2∈`2(Λ2)

J (x (n+1)
1 , v2)

x (n+1) := E1x (n+1)
1 + E2x (n+1)

2 .
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Let us observe that
‖E1x1 + E2x2‖`1(Λ) := ‖x1‖`1(Λ1) + ‖x2‖`1(Λ2), hence

argminv1∈`2(Λ1)
J (v1, x (n)

2 )

= argminv1∈`2(Λ1)
‖(y − ΦE2x (n)

2 )− ΦE1v1‖2
2 + τ‖v1‖1.

A similar formulation holds for argminv2∈`2(Λ2)
J (x (n+1)

1 , v2).
This means that the solution of the local problems on Λi is of
the same kind as the original problem argminx∈`2(Λ)J (x), but
the dimension for each has been reduced.
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A sequential algorithm

This leads to the following sequential algorithm


x (n+1,0)

1 = x (n,L)
1

x (n+1,`+1)
1 = Sτ

(
x (n+1,`)

1 + R1Φ
∗((y − ΦE2x (n,M)

2 )− ΦE1x (n+1,`)
1 )

)
` = 0, . . . , L− 1
x (n+1,0)

2 = x (n,M)
2

x (n+1,`+1)
2 = Sτ

(
x (n+1,`)

2 + R2Φ
∗((y − ΦE1x (n+1,L)

1 )− ΦE2x (n+1,`)
2 )

)
` = 0, . . . , M − 1

x (n+1) := E1x (n+1,L)
1 + E2x (n+1,M)

2 .
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This leads to the following parallel algorithm


x (n+1,0)

1 = x (n,L)
1

x (n+1,`+1)
1 = Sτ

(
x (n+1,`)

1 + R1Φ
∗((y − ΦE2R2x (n))− ΦE1x (n+1,`)

1 )
)

` = 0, . . . , L− 1
x (n+1,0)

2 = x (n,M)
2

x (n+1,`+1)
2 = Sτ

(
x (n+1,`)

2 + R2Φ
∗((y − ΦE1R1x (n))− ΦE2x (n+1,`)

2 )
)

` = 0, . . . , M − 1

x (n+1) :=
E1x (n+1,L)

1 +E2x (n+1,M)
2 +x (n)

2 .
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Theorem (Fornasier)
The (sequential and parallel) subspace correction algorithms
produce a sequence (x (n))n∈N in `2(Λ) whose strong
accumulation points are minimizers of the functional J . In
particular, the set of strong accumulation points is non-empty. If
the minimizer is unique then the whole sequence (x (n))n∈N
converges to it.
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We assume K = R40 and H = R10, Φ is a 40× 10 (scaled)
random matrix with ‖Φ‖ < 1, and y ∈ R10 is a random vector.
We fix the regularization parameter τ = 0.1. The figure shows
the normalized frequency for multiple random trials of the
percentage ratio between the number of operations required by
the sequential domain decomposition method in order to
achieve an accuracy of 10−15 and the one required by the
thresholded Landweber iteration. Here L = M = 8.
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Some interesting applications

Earth global tomography/Terrestrial seismic tomography;
Magnetoencephalography (MEG);
... many more ...
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Global terrestrial seismic tomography (Dahlen, Nolet,
Montelli)
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Banana-Doughnut sensitivity kernels by Tony Dahlen
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Global terrestrial seismic tomography via sparsity
input ℓ1 ℓ2 ℓ2 (wavelets)
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Toy 2D velocity model for the East African rift and adjacent
continental craton, showing the seismic stations (triangles) and
earthquake events (circles); reconstructed model using iterative
thresholding vs Tikhonov reg. (joint work with F. A. Dahlen, I.
Daubechies, I. Loris, and G. Nolet.)
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Magnetoencephalography
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Left: Machine for magnetoencephalography. Right: 2D model.
Sensors are distributed on a semicircle. (joint work with F.
Pitolli.)
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Current density reconstruction
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Conclusions

(1) Combinatorial problems can be approached
effectively by `1-minimization;

(2) Fast algorithms are currently developed;
(3) Subspace corrections/domain decompositions

help to further reduce the dimensionality and to
speed-up computations;

(3) Many open problems to be understood concerning
rates of convergence and complexity of these
algorithms.
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