Almost Diagonalization of Pseudodifferential Operators with Respect to Coherent States (Gabor Frames)

Karlheinz Gröchenig

European Center of Time-Frequency Analysis Faculty of Mathematics University of Vienna

http://homepage.univie.ac.at/karlheinz.groechenig/

WPI, Vienna, January 2008

Karlheinz Gröchenig (EUCETIFA)

Almost Diagonalization

Outline

- 2 Phase-Space Analysis of Pseudodifferential Operators
- 3 Almost Diagonalization
- 4 Time-Varying Systems and Wireless Communications

Aspects

- Gabor frames = discretized (generalized) coherent states
- convenient for interpretation in physics and signal processing contribution of cells in phase-space
- new results on classical pseudodifferential operators
- applications in wireless communication
- computational physics?

Pseudodifferential Operators

Symbol σ on phase space $\mathbb{R}^{2d} = \mathbb{R}^d \times \mathbb{R}^d$

$$\sigma(\mathbf{x}, D) f(\mathbf{x}) = \int_{\mathbb{R}^{2d}} \sigma(\mathbf{x}, \xi) \hat{f}(\xi) e^{2\pi i \mathbf{x} \cdot \xi} d\xi$$

Hörmander classes $S^m_{\delta,\rho}$ as standard symbol classes for PDE In phase-space analysis

$$\sigma \in S^{\mathbf{0}}_{\mathbf{0},\mathbf{0}} \Leftrightarrow \partial^{\alpha} \sigma \in L^{\infty}(\mathbb{R}^{2d}), \quad \forall \alpha \geq \mathbf{0}$$

Standard Results

Boundedness.

Theorem (Calderòn-Vaillancourt) If $\sigma \in S_{0,0}^0$, then $\sigma(x, D)$ is bounded on $L^2(\mathbb{R}^d)$ and $\|\sigma(x, D)\|_{L^2 \to L^2} \leq \sum_{|\alpha| \leq 2d+1} \|\partial^{\alpha} \sigma\|_{\infty}$.

Functional Calculus.

Theorem (Beals '77)

If $\sigma \in S_{0,0}^0$ and $\sigma(x, D)$ is invertible on $L^2(\mathbb{R}^d)$, then $\sigma(x, D)^{-1} = \tau(x, D)$ for some $\tau \in S_{0,0}^0$.

REMARK: NO asymptotic expansions, NO symbolic calculus for $S_{0,0}^0$.

Phase-Space Shifts, Coherent States

Phase-space shifts: $z = (x, \xi) \in \mathbb{R}^{2d}$, $f \in L^2(\mathbb{R}^d)$. $\pi(z)f(t) = e^{2\pi i \xi \cdot t} f(t - x) = M_{\xi} T_x f(t)$

 $\{\pi(z)g : z \in \mathbb{R}^{2d}\}$ is a set of (generalized) coherent states. Continuous resolution of identity (phase-space decomposition):

$$f = \langle \gamma, g \rangle^{-1} \, \int_{\mathbb{R}^{2d}} \langle f, \pi(z)g \rangle \, \pi(z)\gamma \; dz$$

Often $g(t) = g(t) = e^{-\pi t^2}$ Gaussian Short-time Fourier transform (cross Wigner distribution, Gabor transform, radar ambiguity function, coherent state transform, etc.) of *f* with respect to state/window *g*

$$V_g f(z) = \langle f, \pi(z)g \rangle = (f \cdot g(\cdot - x))^{(\xi)}$$

measures "amplitude" of *f* in neighborhood of point *z* in phase-space (local frequency amplitude ξ near time *x*)

Discrete Expansions

Discretize the continuous resolution of the identity

- g "nice", e.g., $g \in \mathcal{S}$
- $\Lambda \subseteq \mathbb{R}^{2d}$ lattice, $\Lambda = A\mathbb{Z}^{2d}$ for $A \in GL(2d, \mathbb{R})$, e.g., $\Lambda = \alpha \mathbb{Z}^d \times \beta \mathbb{Z}^d$. Wanted: stable expansions

$$f = \sum_{\lambda \in \Lambda} \langle f, \pi(\lambda) \gamma \rangle \, \pi(\lambda) g \tag{1}$$

for suitable pair of "nice" g, γ with unconditional convergence and equivalence of norms on f and norm on the coefficients.

Gabor Frames

(1) is equivalent to the following:

• $\{\pi(\lambda)g, \lambda \in \Lambda\}$ is a frame (Gabor frame), i.e., $\exists A, B > 0$, such that

$$oldsymbol{A} \|f\|_2^2 \leq \sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda) g
angle|^2 \leq oldsymbol{B} \|f\|_2^2 \qquad orall f \in L^2(\mathbb{R}^d) \,.$$

If A = B, then $\{\pi(\lambda)g, \lambda \in \Lambda\}$ is called a tight frame and

$$f = \mathcal{A}^{-1} \sum_{\lambda \in \Lambda} \langle f, \pi(\lambda) oldsymbol{g}
angle \, \pi(\lambda) oldsymbol{g}$$

- looks like orthonormal expansion
- but $\{\pi(\lambda)g : \lambda \in \Lambda\}$ is no basis, coefficients not unique
- Smoothness w.r.t. phase-space content modulation spaces results on nonlinear approximation

The Sjöstrand Class

$$\|\sigma\|_{M^{\infty,1}} = \int_{\mathbb{R}^{2d}} \sup_{z \in \mathbb{R}^{2d}} |(V_{\Phi}\sigma(z,\zeta)| \, d\zeta < \infty$$

 $\zeta \to V_{\Phi}\sigma(z,\zeta) = (\sigma \cdot T_z \Phi)^{\frown} \in L^1.$ $\Rightarrow \sigma$ is bounded and locally in $\mathcal{F}L^1$! $M^{\infty,1}$ contains functions without smoothness.

Weighted Sjöstrand class $M_{\mathbf{v}}^{\infty,1}(\mathbb{R}^{2d})$.

$$\|\sigma\|_{\mathcal{M}^{\infty,1}_{\mathbf{v}}} = \int_{\mathbb{R}^{2d}} \sup_{\mathbf{z} \in \mathbb{R}^{2d}} |(\sigma \cdot T_{\mathbf{z}} \Phi)^{\widehat{}}(\zeta)| \, \mathbf{v}(\zeta) \, d\zeta < \infty$$

 $M_{v}^{\infty,\infty}$ with norm

$$\|\sigma\|_{M^{\infty,\infty}_{\boldsymbol{v}}} = \sup_{\boldsymbol{z},\boldsymbol{\zeta}\in\mathbb{R}^{2d}} |(\boldsymbol{\sigma}\cdot\boldsymbol{T}_{\boldsymbol{z}}\Phi)^{\widehat{}}(\boldsymbol{\zeta})|\boldsymbol{v}(\boldsymbol{\zeta})|$$

Observation: If $v_s(\zeta) = (1 + |\zeta|)^s$, then

$$S_{0,0}^0 = \bigcap_{s \ge 0} M_{v_s}^{\infty,1} = \bigcap_{s \ge 0} M_{v_s}^{\infty,\infty}$$

Matrix of $\sigma(x, D)$ with respect to Gabor Frame

Natural idea: investigate pseudodifferential operators with respect to coherent states/phase-space shifts (quantum mechanics, quantum optics?)

Assume that $\{\pi(\lambda)g : \lambda \in \Lambda\}$ is a (tight) frame for $L^2(\mathbb{R}^d)$. Then $f = \sum_{\lambda \in \Lambda} \langle f, \pi(\mu)g \rangle \pi(\mu)g$ and $\sigma(\mathbf{x}, \mathbf{D})(\pi(\mu)g) = \sum_{\lambda \in \Lambda} \langle \sigma(\mathbf{x}, \mathbf{D})\pi(\mu)g, \pi(\lambda)g \rangle \pi(\lambda)g$.

$$\sigma(\mathbf{x}, \mathbf{D})\mathbf{f} = \sum_{\mu \in \Lambda} \langle \mathbf{f}, \pi(\mu) \mathbf{g} \rangle \sigma(\mathbf{x}, \mathbf{D}) \pi(\mu) \mathbf{g}$$
$$= \sum_{\lambda \in \Lambda} \Big(\sum_{\mu \in \Lambda} \underbrace{\langle \sigma(\mathbf{x}, \mathbf{D}) \pi(\mu) \mathbf{g}, \pi(\lambda) \mathbf{g} \rangle}_{\lambda \in \Lambda} \langle \mathbf{f}, \pi(\mu) \mathbf{g} \rangle \Big) \pi(\lambda) \mathbf{g}$$

Stiffness Matrix

Matrix of $\sigma(x, D)$ is $M(\sigma)_{\lambda,\mu} = \langle \sigma(x, D)\pi(w)g, \pi(z)g \rangle$ Stiffness matrix, channel matrix

$$\begin{array}{cccc} L^{2}(\mathbb{R}^{d}) & \stackrel{\sigma(\mathbf{x},D)}{\longrightarrow} & L^{2}(\mathbb{R}^{d}) \\ \downarrow & V_{g}|_{\Lambda} & & \downarrow & V_{g}|_{\Lambda} \\ \ell^{2}(\Lambda) & \stackrel{M(\sigma)}{\longrightarrow} & \ell^{2}(\Lambda) \end{array}$$

$$(2)$$

$$\begin{aligned} \langle \sigma(\mathbf{x}, \mathbf{D}) \pi(\mathbf{w}) \mathbf{g}, \pi(\mathbf{z}) \mathbf{g} \rangle &= \langle \sigma, \mathbf{R}(\pi(\mathbf{z}) \mathbf{g}, \pi(\mathbf{w}) \mathbf{g}) \rangle \\ &= \langle \sigma, \mathbf{M}_{\zeta(\mathbf{z}, \mathbf{w})} \mathbf{T}_{u(\mathbf{z}, \mathbf{w})} \mathbf{R}(\mathbf{g}, \mathbf{g}) \rangle = \mathbf{V}_{\Phi} \sigma(u, \zeta) \end{aligned}$$

•
$$R(f,g)(x,\xi) = f(x)\overline{\hat{g}(\xi)}e^{-2\pi i x \cdot \xi}$$
 Rihaczek distribution

• phase-space properties of $\sigma \Leftrightarrow$ off-diagonal decay of $M(\sigma)$

Almost Diagonalization for the Sjöstrand Class I

Theorem

Fix $g \neq 0$, such that $\int_{\mathbb{R}^{2d}} |V_g g(z)| v(z) dz < \infty$ $(g \in M_v^1)$ (A) A symbol $\sigma \in M_v^{\infty,1}$, if and only if there is $H \in L_v^1(\mathbb{R}^{2d})$, such that

$$|\langle \sigma(\mathbf{x}, \mathbf{D}) \pi(\mathbf{w}) \mathbf{g} \rangle, \pi(\mathbf{z}) \mathbf{g}
angle| \le H(\mathbf{z} - \mathbf{w}) \qquad \mathbf{w}, \mathbf{z} \in \mathbb{R}^{2d}$$
 (3)

(B) Assume in addition that $\{\pi(\lambda)g : \lambda \in \Lambda\}$ is a tight frame. Then $\sigma \in M_v^{\infty,1}$, if and only if there is $h \in \ell_v^1(\Lambda)$, such that

$$|\langle \sigma(\mathbf{x}, \mathbf{D}) \pi(\mu) \mathbf{g} \rangle, \pi(\lambda) \mathbf{g} \rangle| \le h(\lambda - \mu) \qquad \lambda, \mu \in \Lambda.$$
 (4)

- Matrix of *σ*(*x*, *D*) is dominated by convolution kernel in *ℓ*¹_{*ν*}.
- If $v(x + y) \le v(x)v(y)$, then ℓ_v^1 is Banach algebra w.r.t. convolution. Consequence: if $\sigma_1, \sigma_2 \in M_v^{\infty,1}$, then

$$\sigma_1(\mathbf{x}, \mathbf{D})\sigma_2(\mathbf{x}, \mathbf{D}) = \tau(\mathbf{x}, \mathbf{D}) \qquad \text{for } \tau \in M_v^{\infty, 1}$$

Almost Diagonalization II

Theorem

Fix $g \neq 0$, such that $\int_{\mathbb{R}^{2d}} |V_g g(z)| v(z) dz < \infty$ ($g \in M_v^1$). Assume that $v^{-1} * v^{-1} \leq Cv^{-1}$. (A) A symbol $\sigma \in M_v^{\infty,\infty}$, if and only if

$$|\langle \sigma(\mathbf{x}, \mathbf{D}) \pi(\mathbf{w}) \mathbf{g} \rangle, \pi(\mathbf{z}) \mathbf{g}
angle| \leq C \, \mathbf{v}(\mathbf{z} - \mathbf{w})^{-1} \qquad \mathbf{w}, \mathbf{z} \in \mathbb{R}^{2d}$$
 (5)

(B) Assume in addition that $\{\pi(\lambda)g : \lambda \in \Lambda\}$ is a tight frame. Then $\sigma \in M_v^{\infty,1}$, if and only if

$$|\langle \sigma(\mathbf{x}, \mathbf{D}) \pi(\mu) \mathbf{g} \rangle, \pi(\lambda) \mathbf{g} \rangle| \leq \mathbf{C}' \mathbf{v} (\lambda - \mu)^{-1} \qquad \lambda, \mu \in \Lambda.$$
 (6)

Stiffness matrix possesses quantifiable off-diagonal decay.

Almost Diagonalization for Hörmander Class

Corollary

Fix $g \in S$ and tight Gabor frame $\{\pi(\lambda)g : \lambda \in \Lambda\}$. TFAE: (A) $\sigma \in S_{0,0}^{0}$ (B) $|\langle \sigma(x,D)\pi(w)g \rangle, \pi(z)g \rangle| = O(|z-w|^{-N})$ for all $N \ge 0$. (C) $|\langle \sigma(x,D)\pi(\mu)g \rangle, \pi(\lambda)g \rangle| = O(|\lambda-\mu|^{-N})$ for all $N \ge 0$.

Stiffness matrix of symbol in $S_{0,0}^0$ decays rapidly off diagonal.

$M_v^{\infty,1}$ is Inverse-Closed

Theorem (Sjöstrand)

If $\sigma \in M^{\infty,1}(\mathbb{R}^{2d})$ and $\sigma(x, D)$ is invertible on $L^2(\mathbb{R}^d)$, then $\sigma(x, D)^{-1} = \tau(x, D)$ for some $\tau \in M^{\infty,1}$.

Theorem

Assume that v is submultiplicative and $\lim_{n\to\infty} v(nz)^{1/n} = 1, \quad \forall z \in \mathbb{R}^{2d}.$ If $\sigma \in M_v^{\infty,1}(\mathbb{R}^{2d})$ and $\sigma(x, D)$ is invertible on $L^2(\mathbb{R}^d)$, then $\sigma(x, D)^{-1} = \tau(x, D)$ for some $\tau \in M_v^{\infty, 1}.$

Only functional calculus, neither symbolic calculus nor asymptotic expansions

• Even if $\sigma(x, D)$ is invertible on $L^2(\mathbb{R}^d)$, $M(\sigma)$ is not invertible on $\ell^2(\Lambda)$, but it possess a pseudoinverse with same off-diagonal decay as $M(\sigma)$.

Approximation by Elementary Operators

Stiffness matrix possesses strong off-diagonal decay, i.e., can be approximated well by banded matrix.

Definition: Gabor multipliers If $\{\pi(\lambda)g, \lambda \in \Lambda\}$ is a tight frame and $\mathbf{a} \in \ell^{\infty}(\mathbb{Z}^{2d})$, define

$$\mathcal{M}_{\mathsf{a}} f = \sum_{\lambda \in \mathsf{\Lambda}} oldsymbol{a}_\lambda ig\langle f, \pi(\lambda) oldsymbol{g}
angle \pi(\lambda) oldsymbol{g}$$

[if $a_{\lambda} = 1$, then $M_{a} = \text{Id.}$] Diagonal of $M(\sigma)$ corresponds to the operator

$$\mathcal{M}_{d}f = \sum_{\lambda \in \Lambda} \underbrace{\langle \sigma(\mathbf{x}, D) \pi(\lambda) g, \pi(\lambda) g \rangle}_{\langle f, \pi(\lambda) g \rangle} \langle f, \pi(\lambda) g \rangle \pi(\lambda) g$$

Approximation by Elementary Operators II

Side-diagonals correspond to operators of the form

$$\mathcal{M}f = \sum_{\lambda \in \Lambda} \underbrace{\langle \sigma(\mathbf{x}, \mathbf{D}) \pi(\lambda) \mathbf{g}, \pi(\lambda - \kappa) \mathbf{g} \rangle}_{\lambda \in \Lambda} \langle f, \pi(\lambda) \mathbf{g} \rangle \pi(\lambda - \kappa) \mathbf{g}$$
$$= \pi(-\kappa) \sum_{\lambda \in \Lambda} \mathbf{b}_{\lambda} \langle f, \pi(\lambda) \mathbf{g} \rangle \pi(\lambda) \mathbf{g}$$

Approximation of $M(\sigma)$ by banded matrix amounts to approximation of $\sigma(x, D)$ by modified Gabor multipliers

$$\sigma(\mathbf{x}, \mathbf{D}) \mathbf{f} \approx \sum_{|\kappa| \leq L} \pi(-\kappa) \mathcal{M}_{\mathbf{a}_{\kappa}} \mathbf{f}$$

(Error estimates: Andreas Klotz, KG, 200?)

Time-Varying Systems

Time-Varying Channels

Received signal \tilde{f} is a superposition of time lags

$$ilde{f}(t) = \int_{\mathbb{R}^d} V(u) \dots f(t+u) \, du$$

Received signal \tilde{f} is a superposition of frequency shifts

$$ilde{f}(t) = \int_{\mathbb{R}^d} W(\eta) \dots e^{2\pi i \eta t} f(t) d\eta$$

Thus received signal \tilde{f} is a superposition of time-frequency shifts:

$$\widetilde{f}(t) = \int_{\mathbb{R}^{2d}} \widehat{\sigma}(\eta, u) \underbrace{e^{2\pi i \eta \cdot t} f(t+u)}_{(\pi(-u, n)f)(t)} du d\eta$$

Modelling

Standard assumption of engineers: $\sigma \in L^2$ and $\hat{\sigma}$ has compact support.

Problem: Does not include distortion free channel and time-invariant channel.

So supp $\hat{\sigma}$ is compact, but $\hat{\sigma}$ is "nice" distribution. Then σ is bounded and an entire function.

 $\Rightarrow \sigma \in M_v^{\infty,1}$ for exponential weight.

Multiplexing

Transmission of "digital word" $(c_k), c_k \in \mathbb{C}$ via pulse g

$$f(t) = \sum_{k=0}^{\infty} c_k g(t-k)$$

Transmission of several "words" (\iff simultaneous transmission of a symbol group) by distribution to different frequency bands with modulation

Partial signal for ℓ -th word $\mathbf{c}^{(\ell)} = (c_{kl})_{k \in \mathbb{Z}}$

$$f_{\ell} = \sum_{k} c_{kl} T_{k} g$$

Total signal is a Gabor series (Gabor expansion)

$$f = \sum_{k,l} c_{kl} M_{\theta l} T_k \mathbf{g} = \sum_{\lambda \in \Lambda} c_{\lambda} \pi(\lambda) g$$

If $M_{\theta}T_{k}g$ orthogonal, then OFDM (orthogonal frequency division

Decoding and the Channel Matrix

Received signal is

$$\widetilde{f} = \sigma(\mathbf{x}, \mathbf{D}) \Big(\sum_{\mu \in \Lambda} c_{\mu} \pi(\mu) g \Big)$$

Standard procedure: take correlations

$$\langle \widetilde{f}, \pi(\lambda) oldsymbol{g}
angle = \sum_{\mu} oldsymbol{c}_{\mu} \left\langle \sigma(oldsymbol{x}, oldsymbol{D}) \pi(\mu) oldsymbol{g}, \pi(\lambda) oldsymbol{g}
ight
angle$$

Solve the system of equations

$$\mathbf{y} = A\mathbf{c}$$

where $A_{\lambda,\mu} = \langle \sigma(\mathbf{x}, \mathbf{D})(\pi(\mu)\mathbf{g}), \pi(\lambda)\mathbf{g} \rangle$ is the channel matrix.

Decoding II

Recovery of original information c_{λ} amounts to inversion of channel matrix (equalization, demodulation).

Engineer's assumption in statistical models: A is a diagonal matrix i.e.,

$$oldsymbol{c}_{\lambda} = \langle \sigma(oldsymbol{x}, oldsymbol{D}) \pi(\lambda) oldsymbol{g}, \pi(\lambda) oldsymbol{g}
angle^{-1} oldsymbol{y}_{\lambda}$$

Cannot quite be true, but *A* is almost diagonal. Hope: improvement of accurary by including side-diagonal.

Final remarks

- Use the almost diagonalization w.r.t. Gabor frames in wireless communications and in quantum mechanics
- Approximation by banded matrices is simple.
- Works only on \mathbb{R}^d , not on domains
- Any advantages from adaptive methods (CDD1 and CDD2)? [Dahlke, Fornasier, KG]