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Ab Initio Computation

In future technology we need the computation of molecular phenomena: chemistry, molecular biology,
semiconductor devices, material science etc.

Ab inito computation is based on first principles of quantum mechanics

small systems - high accuracy large systems restricted accuracy



Stationary Schrödinger equation for H-atom Hydrogen

(Schrödinger 1925)

Describes one electron inside an electrical field of a single proton with Coulomb potential V (x) = 1
|x|.

H Ψ(x) := (T +V )Ψ(x) = [−1
2

∆− 1
|x|

]Ψ(x) = EΨ(x) , x ∈ R3

(in atomic units)

Eigenvalue problem for a linear 2nd order PDE

Analytical solution has been obtained by Schrödinger 1925.

spin s introduced by Pauli (1926)

Explained (almost): spectral lines of Hydrogen and vaguely quantum (discrete) effects, periodic system,
etc.



Generalization to a single atom with nuclear charge Z centered at R = 0 and N electrons (Dirac 1927)

H Ψ =
N

∑
i=1

[−1
2

∆i−
Z
|xi|

+
1
2

N

∑
j 6=i

1
|xi−x j|

]Ψ = EΨ

where the sought state-function

Ψ(x1,s1; . . . ;xN,sN) , Ψ : R3N ⊗SN → C , 〈Ψ,Ψ〉= 1

satisfies the Pauli’s antisymmetry principle (Dirac 1927):

Ψ(x1,s1; . . . ;xi,si; . . . ;x j,s j; . . . ;xN,sN) =−Ψ(x1,s1; . . . ;x j,s j; . . . ;xi,si; . . . ;xN,sN)

Model assumptions: In the sequel, we will neglect relativistic and non-Born Oppenheimer effects and
consider only the
(real valued) stationary electronic Schrödinger equation in atomic units.



Electronic Schrödinger Equation

• System of N identical non-relativistic particles with spin si is described by a state-function

Ψ(X1, . . . ,XN) = Ψ(x1,s1; . . . ;xN,sN) , Ψ : R3N ⊗SN → C , 〈Ψ,Ψ〉= 1

Pauli’s antisymmetry principle:

Ψ(x1,s1; . . . ;xi,si; . . . ;x j,s j; . . . ;xN,sN) =−Ψ(x1,s1; . . . ;x j,s j; . . . ;xi,si; . . . ;xN,sN)

• Ψ satisfies the (stationary) Schrödinger equation with an Hamiltonian H

H Ψ = E0Ψ , E0 = min〈Ψ,Ψ〉=1〈H Ψ,Ψ〉

Born-Oppenheimer-approximation: The Hamiltonian H for N electrons is given by

H =
N

∑
i=1

[−1
2

∆i−
M

∑
j=1

Z j

|xi−R j|
+

1
2

N

∑
j 6=i

1
|xi−x j|

]

Input: Z j- charge of nucleon at position R j in atomic units, N number of electrons.



Major interest in Output: ground-state energy: Ritz variational principle

E0 = min〈Ψ,Ψ〉=1〈H Ψ,Ψ〉 , Ψ = argmin〈Ψ,Ψ〉=1〈H Ψ,Ψ〉

Using Born Oppenheimer energy E(R1, . . . ,RN) = E0(R1, . . . ,RN)+ ∑
M
k=1 ∑ j<k

Z jZk
|R j−Rk|

, this is the basis
for computing 
Bonding energies, molecule geometries, forces, ionization energies, spectroscopical, electrical, mechan-
ical, optical and thermal properties of molecules and crystals etc..

Dirac 1927: Quantum Mechanics of Many Electron Systems
... The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the difficulty
is only that the exact application of these laws lead to equations too much too complicated
to be soluble.

It therefore becomes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main features
of complex atomic systems without too much computation.

Is chemistry (and solid state physics) a part of mathematics?



Analytical results (simplified):

• Kato, ... (.. 60..) , energy space: Ψ ∈ H1((R3×{±1
2})

N).

• HVZ-Theorem ( ..60..), existence: −∞ < E0 < σess(H )

• Agmon ( .. 70 .. ), decay: Ψ(x) = O(e−a‖x‖ if ‖x‖→ ∞.

• Kato (1957), Thomas - von Ostenhoff et al. (98), cusp-singularities:

Ψ(x) = φ(x)eF(x),

φ ∈Cα , ∆F =
N

∑
i=1

(
M

∑
j=1

Z j

|xi−R j|
+

1
2

N

∑
j 6=i

1
|xi−x j|

)

and analytical outside the set of singularities.



Numerical approximation

• linear problem, but extremely high-dimensional + anti-symmetry constraints + singularities.

• traditional approximation methods (FEM, Fourier series, polynomials, MRA etc.): approximation error
in R1: . n−s, s- regularity , R3N: . n−

s
3N curse of dimension

• Existing deterministic methods are scaling exponentially with N, if convergence is considered.

For large systems N >> 1 the electronic Schrödinger equation seems to be intractable!? Impressive suc-
cess after 70 years of progress in quantum chemistry was awarded by the Nobel price 1998 in Chemistry:
Kohn, Pople

BigDFT discretization for C19H22N2O

In most successful methods replace the original linear problem by a nonlinear problem.



Approximation in Rd

Due to the curse of dimension : error. n−
s

3N . Recently, avoiding the curse of dimension is a major chal-
lenge of modern Numerical Mathematics due to computational bottlenecks for many problems: Machine
Learning (Data Mining), Computational Finance, PDE’s with stochastic data, Multi- scale phenomena
etc... DFG priority program SPP 1324:Extraction of essential information out of complex data

• Sparse grid or hyperbolic cross approximation: e.g. Smolyak, Telmyakov, Zenger, Griebel, ....

• Tensor product approximation: e.g. Golub, Beylkin, Mohlenkamp, Hackbusch, Tyrtishnikov ....

f (x1, . . . ,xd)≈
r

∑
k=0

dO
i=1

fi,k(xi)

, complexity is O(dr dimVh,1−D)!!!



Tensor product approximation of wave functions

Approximation by sums anti-symmetric tensor products (separation of variables): Ψ = ∑
∞

k=1 ckΨk

Ψk(x1,s1, . . . ,xN,sN) = ϕ1,k∧ . . .∧ϕN,k =
1√
N!

det(ϕi,k(x j,s j))N
i, j=1 , 〈ϕi,k,ϕ j,k〉= δi, j

Slater determinant: Ψk = Ψk[1, . . . ,N] is an (anti-symmetric) product of N ortho-normal functions ϕi,
i = 1, . . . ,N called spin orbitals ϕi : R3×{±1

2}→ C, i = 1, . . . ,N.

orbital functions



Hartree Fock approximation

Simplest approximation by one Slater-determinant Ψ≈ΨSL = Ψ0 = ΨHF minimization of EFH = 〈Ψ0,H Ψ0〉
Hartree-Fock (1929,1933) and closed shell model:

EHF = JHF(Φ) =
N

∑
i=1

1
2
〈∇ϕi,∇ϕi〉+ 〈Vcoreϕi,ϕi〉+

1
2
〈VHϕi,ϕi〉−

1
4
〈W ϕi,ϕi〉

First order nesc. conditions are

FΦϕ̆i = λiϕ̆i , λ0 ≤ . . .≤ λi ≤ . . .≤ λN < λN+1

with the (Hamilton-) Fock operator

F = FΦ =−1
2

∆+Vcore +VH,Φ−
1
2

WΦ

With the Hartree potential VH and the exchange energy term ρ(x,y = ∑i ϕi(x)ϕi(y), n(x) = ρ(x,x)

∆VH(x) =−4πn(x) , W u(x) =
Z

R3

ρ(x,y)
|x−y|

u(y,s′)dy

Existence result if Z = ∑Z j ≥ N Lieb-Simon (1977), P.L. Lions (1998), Lieb, Bach: EHF → E0 for Z → ∞



Effective single particle model

If you don’t know the answer, change the problem

The Hartree-Fock model is a prototype for improved approximations e.g. Kohn-Sham equation etc.
Kohn -Hohenberg theorem (1960): Ground state energy depends only on the electron density n(x)

JKS(Φ) =
N

∑
i=1

1
2
〈∇ϕi,∇ϕi〉+ 〈Vcoreϕi,ϕi〉+

1
2
〈VHϕi,ϕi〉+α〈VXCϕi,ϕi〉−β

1
4
〈W ϕi,ϕi〉

Kohn Sham equations (1963), e.g. closed shell: each orbital is for a pair of electron with opposite spin

HΦϕi =
−1
2

∆ϕi +Vcoreϕi +VHϕi +αVXCϕi−β
1
2

W ϕi = λiϕi

The exchange correlation energy term

VXC(x) =−CT F n(x)1/3 + . . . correction terms

is not known explicitly!



This yields a nonlinear one particle Schrödinger system of eigenvalue type for N functions Φ =(ϕ1, . . . ,ϕN)
Complexity (roughly) O(N2dimVh,3−D).

But, there remains a modeling error!!!, Typically 2-3 digits relative accuracy

Recent Project BigDFT: high performance (linear scaling) wavelet code for density functional (DFT) com-
putation of large molecules

http://www-drfmc.cea.fr/sp2m/L Sim/BigDFT/

included in the newest version of ABINIT ABINIT: http://www.abinit.org (open source software)
(∼ 103−105 atoms are computable).



Best N-Term Approximation

Consider a Riesz basis Ψ = (ψλ)λ∈I in some Hilbert space H. For v ∈ H, the error of best n-term
approximation

σn,H,Ψ(v) = min{‖v− ∑
λ∈T

wλψλ‖ : wλ ∈ C , T ⊂ I , ]T = n}

As(H,Ψ) := {v ∈ H : σn,H,Ψ(v). n−s}



Theorem: (Hackb., Flad , S. 05, Flad, S., Schulze 07) For s > 0 there exists a
wavelet basis Ψ of L2(R), s.t. the orbitals ϕi, i = 1, . . . ,N satisfy

ϕi ∈ As(L2(R3),
3O

i=1

Ψi) , ϕi ∈ As−1(H1(R3),
3O

i=1

Ψi)

This result can be obtained using Mellin calculus of pseudo differential operators
together with convergent SCF iteration from Cances, LesBris, for the nonlinear HF
equations. The density matrices ρ satisfy

ρ ∈ As/3(L2(R6),ΨR3×ΨR3) , ρ ∈ As((L2(R6),
6O

i=1

Ψi)

For all s > 0, 1
τ
= s+ 1

2, there holds

ϕi ∈
3O

i=1

Bs
τ,τ(R) , ρ ∈

6O
i=1

Bs
τ,τ(R)



Wave function methods

• Moller Plesset Perturbation Theory

• Configuration Interaction (CI)

• Multi Configuration Self Consistent Field Method (MCSCF)

• Coupled Cluster (CC)

• Density matrix minimization



CI Configuration interaction

Full CI ⇔ Galerkin method for

Vh = VCI =
N̂

i=1

Xh,i = span{ΨSL = Ψ[ν1, ..νN]} , Xh := span := {ϕi : i = 1, . . . ,N }

dimXh = N , dimVh =
(

N
N

)
= N !

N!(N −N)! ∼ O(N N). ,

Galerkin method leads to a linear eigenvalue problem

H = (〈Ψk′,H Ψk〉) ,Ψ = coΨ0 +∑ckΨk , Hc = Ec , dim Vh =
(

N
N

)

Theorem Let E0 be a single eigenvalue and HΨ = E0Ψ and E0,h, Ψh ∈ Vh the Galerkin solution

‖Ψ−Ψh‖V ≤ c inf
φh∈Vh

‖Ψ−φh‖V

E0,h−E0 ≤ C inf
φh∈Vh

‖Ψ−φh‖2
V .



Since dim Vh = O(N N), (curse of dimension), the full CI method is infeasible for large N or N !!!!

Canonical orbitals ϕi, i = 1, . . . ,N are eigenfunctions of the discretized Fock operator F := Fh = ∑
N
k=1 Fk

Fϕi = λiϕi

The first N eigenfunctions ϕi are called occupied orbitals the others are called unoccupied orbitals

ϕ1, . . . ,ϕN,ϕN+1, . . . ,ϕN

Remark: Let Ψ = ΨSL = Ψ[ν1, . . . ,νN] be a Slater determinant of canonical orbitals, then

F Ψ = εΨ , ε =
N

∑
i=1

λνi

orbital



Excitation operators Ψ2 = Xa
j Ψ1 Ψ1 = Ψ[. . . ,νi,ν j, . . .]

single excitations Ψ2 = Ψ[. . . ,νi,νa, . . .]
Ψ1 = Xa,b

i, j Ψ2 Ψ1 = Ψ[. . . ,νi,ν j, . . .]
double excitations Ψ2 = Ψ[. . . ,νa,νb, . . .]
or higher excitations Ψ2 = Ψ[. . . ,νa,νb,νc . . .] etc. for higher excitations

Single excitation operator e.g. Xa
j acts on Slater determinants

Ψ
2 = Xa

j Ψ
1 , Ψ

1 = Ψ[. . . , i, j, . . .] , Ψ
2 = Ψ[. . . , i,a, . . .] = Xa

j Ψ
1

and Xa
j := 0 if the orbital ϕ j is not contained in Ψ1. General excitation operator:

Xµ := Xb1,...,bk
l1,...,lk

=
k

∏
i=1

Xbi
li

, 1≤ li < li+1 ≤ N , N < bi < bi+1 , i = 1, . . . ,k ≤ N.

Decomposition of the Hamilton operator into single particle and two particle operators

H = h+G = F +U ,

e.g. h =
N

∑
i=1

hi =
N

∑
i=1

(
1
2

∆i +
M

∑
j=1

−Z j

|xi−R j|
) , G =

N

∑
i

N

∑
j>i

1
‖xi−x j‖

,



Slater-Condon Rules — computation of 〈Ψ2,HΨ1〉, e.g.

Single particle operators Two particle operators
e.g.: h or Fock operator F e.g.: G or fluctuation potential U

〈Ψ2,FΨ1〉= 0 〈Ψ2,UΨ1〉= 0

if Ψ2 = Xa,b
i, j Ψ1 if Ψ2 = Xa,b,c

i, j,l Ψ1

or higher excitations or higher excitations

Truncated CI Method Let Jh ⊂ J be a subset of all indices for the Slater determinants. A truncated CI
solution, i.e. a Galerkin solution according to the ansatz Ψh = c0Ψ0 +∑µ∈Jh

cµΨµ can be written by

Ψh = c0Ψ0 + ∑
µ∈Jh

cµXµΨ0

Usually one truncated w.r.t the excitation level ΨCISD = c0Ψ0 +T1Ψ0 +T2Ψ0.

These truncations are NOT size consistent, i.e.
for M independent systems Ecor := E0−EHF = O(M), but CISD Ecor,CISD := ECISD−EHF =

√
M!
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Coupled Cluster Approximation - Exponential-Ansatz

Idea: Instead of an ]Jh dimensional linear space one approximate Ψ by an ]Jh dimensional manifold.

Nowadays CC is the most powerful methods for high accuracy computations! Typically 4-6 digits relative
accuracy for . 102 electrons.

Theorem (S. 06) Let Ψ0 be a reference Slater determinant, e.g. Ψ0 = ΨHF and Ψ ∈ VCI be the
ground state wave function satisfying

〈Ψ,Ψ0〉= 1 intermediate normalization .

Then there exists an excitation operator (T1 - single-, T2 - double- , . . . excitation operators)

T =
N

∑
i=1

Ti = ∑
µ∈J

tµXµ such that

Exponential-ansatz Ψ = eT Ψ0.



History: Kümmel (1960), discovered by Paldus Czichek (1965) for QC,

Simplified ansatz

Instead of a general operator consider a multiplication operator.

Exponential ansatz for the symmetric Jastrow factor

Ψ≈Φ0F = Φ0eτ

with an ANOVA type approximation

τ(x1,s1, . . . ,xN,sN)≈
N

∑
i=1

τ1(xi,si)+∑
j<i

τ2(x1,s1,x2,s2)+ . . .

corresponding to CCSD size consistency !!!

τ is approximated by minimizing the corresponding ground sate energy.

The reference function Φ0 must not be a single determinant!!!

Perturbation approach recently by Luo, Flad and Hackbusch.

There remains an error due to the set of zeros of Φ0 is fixed (fixed node approximation).



Projected Coupled Cluster Method

The Projected Couple Cluster method consists in the ansatz

T =
l

∑
k=1

Tk = ∑
µ∈Jh

tµXµ , 0 6= µ ∈ Jh ⊂ J

e.g. CCSD T = T1 +T2 = T (t) satisfying

0 = 〈Ψµ,e−T HΨ〉= 〈Ψµ,e−T HeT Ψ0〉=: fµ(t) , t = (tν)ν∈Jh , µ,ν ∈ Jh

These are L = ]Jh nonlinear equations for L unknown excitation amplitudes tµ, µ ∈ Jh .

Computable: Due to the Slater Condon rules, the Baker Cample Hausdorff expansion terminates after
the 4th term! Projected CC is size consistent!!!



Ground State Energy

Let Ψ ∈ V satisfying
H Ψ := HhΨ = E0Ψ,

then, due to the Slater Condon rules and 〈Ψ,Ψ0〉= 1

E = 〈Ψ0,H Ψ〉= 〈Ψ0,H (I +T2 + 1
2T 2

1 )Ψ0〉

Observation:
E = J (t) subordinated to f(t) = 0



Convergence

Theorem (S. 06) (a priori estimate) If f(t) = 0 and f is (locally) strictly monotone at t and solution
of projected CC th satisfies ‖t− th‖V ≤ δ, then it there holds

‖t− th‖V . inf
v∈R]J

‖t−vh‖V .

Additionally, we have
‖Ψ−Ψh‖H1 . inf

v∈RL
‖Ψ− e∑µ∈Jh

vµXµΨ0‖H1.

Crucial was the proof of the property
‖t‖V ∼ ‖eT

Ψ0‖H1



Theorem (S. 06) The error in the energy E = J(t) and the discrete energy
Eh = J(th) can be estimated by

|E−Eh| . ‖t− th‖V‖a−ah‖V +(‖t− th‖V )2

. inf
uh∈Vh

‖t−uh‖V inf
bh∈V

‖a−bh‖V +

+( inf
uh∈Vh

‖t−uh‖V )2.

All constants involved above are uniform w.r.t. N → ∞.
Improved estimate

|E−Eh| . ‖t− th‖V‖a−ah‖V

. inf
uh∈Vh

‖t−uh‖V inf
bh∈V

‖a−bh‖V

Proof by using dual weighted residual method (Rannacher)

A posteriori error estimator are available if the residual can be computed.



Tractability

• Theorem (Yserentant 05) : The wave function is in the space

H1,1
2((R×{±1

2
}3N) := {

Z
|Ψ̂(ξ)|2(1+ |ξ|2)Π(1+ |ξi|) < ∞}

. With a sparse grid approximation (theoretically) an order

O(n−s) ,∀s <
1
6

, n' DOF

can be achieved for approx. Ψ, and twice the rate for the energy.

• Theorem (Flad, Hackbusch, Schneider ’05) For every 0 < s < 1/2 the singularity Θ≈ |x−y|
of an electron-electron cusp (Kato, Thomas Ostenhoff et al. ) could be approximated by a rate

O(n−s) , ∀s <
1
2

, n' DOF

• Conjecture: This is also true for the wave function Ψ. More over a better rate with orbital approxi-
mation is not possible.

• Question. What is the (ideal) complexity for the solution O(n)? How to achieve this practically?



Error decay rates for the ground state energy

Multiscale bases and sparse grids: n basis functions, n determinants

Hyperbolic cross (Yserentant ’04, ’05,’07)O(n−1/6) (O(n−1/3))
Adaptive sparse grids (H., F., S.) O(n−1) for all s < 1

O(n−2) using r1,2 singularity functions
Demand: linear complexity O(n) is in progress

GTO bases: basis set of size N , n∼N 2 determinants in SD

e.g. CCSD O(n−1/2)

Complexity is O(N2×n5) (naively)!

Improvements: r1,2 ( f1,2)-Methods in CCSD (Klopper) and Linear scaling CCSD (Schütz, Werner)



Not mentioned:

• MCSCF (Multi-Configuration Self Consistent Field Method)

• perturbation theory

• p-particle density matrix optimization ( Mazziotti)

• Quantum Monte Carlo methods

• many other important items ...

electron density of C40H82 electron density in a silicon


