Sparse finite element methods

Endre Süli
University of Oxford

Based on joint work with
Christoph Schwab \& Radu-Alexandu Todor
ETH Zürich

WPI Vienna, January 2008

Some pointers to the literature

Survey article:

囯 H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147-123, 2004.

Journal \& conference papers:

C. Zenger. Sparse grids. In Parallel algorithms for partial differential equations:

Proceedings of the Sixth GAMM-Seminar, Kiel, January 1990.
R. Balder and C. Zenger. The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput., 17(3):631-646, May 1996.
H.-J. Bungartz. A multigrid algorithm for higher order finite elements on sparse grids. Electronic Transactions on Numerical Analysis, 6:63-77, December 1997.
T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer. Algorithms, 18(3-4):209-232, 1998.
M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing, 61(2):151-179, 1998.
M. Griebel, P. Oswald, and T. Schiekofer. Sparse grids for boundary integral equations. Numer. Math., 83(2):279-312, 1999.

Journal \& conference papers [continued]:

J. Nordmans and P. W. Hemker. Application of an adaptive sparse-grid technique to a model singular perturbation problem. Computing, 65:357-378, 2000.
T. Von Petersdorff and C. Schwab. Numerical solution of parabolic equations in high dimensions. M2AN Math. Model. Numer. Anal., 38(1):93-127, 2004.
V. H. Hoang and C. Schwab. High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul., 3(1):168-194, 2005.
H. Yserentant. Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numerische Mathematik, 101(2):381-389, 2005.
R.A. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. SAM Report. 2006-05. February 2006.
G. Widmer, R. Hiptmair and C. Schwab. Sparse Adaptive Finite Elements for Radiative Transfer. SAM Technical Report. ETH Zürich, January 2007.
C. Schwab, E. Süli, R.-A. Todor. Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. M^{2} AN (Submitted, 2007).

Scientific motivation

High-dimensional partial differential equations arise in:

- Stochastic analysis
- Mathematical finance
- Statistical physics
- Kinetic theory of gases and plasma (Boltzmann and Vlasov equations)
- Kinetic theory of dilute polymers (degenerate Fokker-Planck equations)
- Radiative heat transfer equations
- Quantum chemistry: Schrödinger equation

Example 1: Schrödinger equation

High-dimensional PDEs give rise to a major computational challenge.
"One hundred grid points represent a fair resolution for two-point boundary value problems in one space dimension. To obtain the same resolution in three space dimensions, already a million grid points are needed.

The number increases to the unthinkable 10^{60} grid points for equations in 30 dimensions, as in the electronic Schrödinger equation for small molecules

such as
water
H. Yserentant: Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. (2005).

Physically admissible eigenfunctions of the electronic Schrödinger operator

$$
H=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{i}-\sum_{i=1}^{N} \sum_{i=1}^{K} \frac{Z_{v}}{\left|x_{i}-a_{v}\right|}+\frac{1}{2} \sum_{\substack{i, j=1 \\ i \neq j}}^{N} \frac{1}{\left|x_{i}-x_{j}\right|},
$$

where $x_{1}, \ldots, x_{N} \in \mathbb{R}^{3}$ are the co-ordinates of N given electrons, a_{v} are the co-ordinates of K nuclei, and Z_{v} are the charges, are antisymmetric under the exchange of electron coordinates x_{i} and x_{j} with indices i and j. (Pauli).

Example 2: Radiative heat transfer equation

Consider the monochromatic radiative heat transfer eq. on a bounded Lipschitz domain $D \subset \mathbb{R}^{d}, d=2,3$, without scattering.

We identify a direction s with a point on the unit sphere \mathbb{S}^{d} and seek the intensity $u(x, s)$:

$$
\begin{aligned}
s \cdot \nabla_{x} u(x, s)+\kappa(x) u(x, s) & =\kappa(x) f(x), & & (x, s) \in D \times \mathbb{S}^{d} \\
u(x, s) & =g(x, s), & & x \in \partial D, \quad s \cdot n(x)<0
\end{aligned}
$$

- $\quad n(x)$ is the unit outer normal to the boundary at $x \in \partial D$,
- $\quad \kappa \geq 0$ is the absorption coefficient,
- $\quad f \geq 0$ is the black-body intensity and $g \geq 0$ is the wall emission.
$\Longrightarrow \quad \mathrm{PDE}$ in $d+(d-1)=2 d-1$ dimensions.

Example 3: Kolmogorov-Fokker-Planck equations

Consider the (Itô) stochastic differential equation:

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=X
$$

Here:

- $W=\left(W^{1}, \ldots, W^{k}\right)$ is a Wiener process w.r.t. a filtration $\left\{\mathcal{F}_{t}, t \geq 0\right\}$;
- $\sigma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times k} \quad$ is Lipschitz continuous \rightsquigarrow dispersion/volatility;
- $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \quad$ is Lipschitz continuous \rightsquigarrow drift.

Define:

- $a:=\sigma \sigma^{\top}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$
\rightsquigarrow diffusion matrix.

Backward Kolmogorov (Fokker-Planck) equation

Theorem

Let the random variable X_{t} have a density function $(x, t) \mapsto \psi(x, t)$ of class $\mathrm{C}^{2,1}\left(\mathbb{R}^{d} \times[0, \infty)\right.$), and let $X_{0}=X$ be a square-integrable random variable that is \mathcal{F}_{0}-measurable with density function $\psi_{0} \in \mathrm{C}^{2}\left(\mathbb{R}^{d}\right)$. Then,

$$
\partial_{t} \psi+\sum_{j=1}^{d} \frac{\partial}{\partial x_{j}}\left(b_{j} \psi\right)=\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(a_{i j} \psi\right)
$$

in $\mathbb{R}^{d} \times(0, \infty)$ and $\psi(x, 0)=\psi_{0}(x)$ for $x \in \mathbb{R}^{d}$.

$$
a(x)=\sigma(x) \boldsymbol{\sigma}^{\top}(x) \geq 0
$$

Computational challenges:

- PDE non-self-adjoint, transport/drift-dominated, perhaps degenerate
- PDE high-dimensional

Example 4: non-Newtonian fluids

Find $u: \Omega \times(0, \infty) \mapsto \mathbb{R}^{3}$ and $p: \Omega \times(0, \infty) \mapsto \mathbb{R}$ such that

$$
\begin{aligned}
\partial_{t} u+\left(u \cdot \nabla_{x}\right) u-v \Delta_{x} u+\nabla_{x} p & =f+\nabla_{x} \cdot \tau & & \text { in } \Omega \times(0, \infty), \\
\nabla_{x} \cdot u & =0 & & \text { in } \Omega \times(0, \infty) \\
u & =0 & & \text { on } \partial \Omega \times(0, \infty), \\
u(x, 0) & =u_{0}(x) & & x \in \Omega ;
\end{aligned}
$$

where $\tau(x, t)$ is the symmetric extra stress tensor.

Example

- Algebraic models: $\tau=F(\nabla u)$

Quasi-Newtonian

- Differential models: $\partial_{t} \tau+u \cdot \nabla \tau=F(\tau, \nabla u)$

Non-Newtonian fluids

Gareth McKinley's Non-Newtonian Fluid Dynamics Group, MIT

Kinetic polymer models: Kramers chain \rightarrow dumbbell

圆 H.A. Kramers:
The viscosity of macromolecules in a streaming fluid. Physica, 11, 1944.
R.B. Bird, C.F. Curtiss, R.A. Armstrong, O. Hassager:

Dynamics of Polymeric Liquids, Kinetic Theory. Wiley 1987.
H.C. Öttinger: Stochastic Processes in Polymeric Fluids. Springer, 1996.

Dumbbell model

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=u\left(X_{t}, t\right) \mathrm{d} t \\
\mathrm{~d} Q_{t}=\left(\nabla_{X} u\left(X_{t}, t\right) Q_{t}-\frac{1}{2 \lambda} F\left(Q_{t}\right)\right) \mathrm{d} t+\frac{1}{\sqrt{\lambda}} \mathrm{~d} W_{t}
\end{array}\right.
$$

W
$\lambda=\xi /(4 H)$
ξ
$F(Q):=U^{\prime}\left(\frac{1}{2}|q|^{2}\right) q$ elastic force acting on the chain due to elongation.
$(x, q, t) \in \mathbb{R}^{6} \times \mathbb{R}_{\geq 0} \mapsto \psi(x, q, t) \in \mathbb{R}_{\geq 0}$ is a probability density function:

$$
\begin{aligned}
\partial_{t} \psi+\left(u \cdot \nabla_{x}\right) \psi+\nabla_{q} \cdot\left(\left(\nabla_{x} u\right) q \psi-\frac{1}{2 \lambda} U^{\prime} q \psi\right) & =\frac{1}{2 \lambda} \Delta_{q} \psi \text { in } \Omega \times D \times(0, \infty), \\
\psi & =0 \quad \text { on }(\Omega \times \partial D) \times(0, \infty) \\
\psi(x, q, 0) & =\psi_{0}(x, q) \quad \text { for }(x, q) \in \Omega \times D
\end{aligned}
$$

Kramers expression for extra stress tensor:

$$
\tau(x, t)=k \mu \int_{D} \psi(x, q, t)\left[U^{\prime}\left(\frac{1}{2}|q|^{2}\right) q q^{\top}-\rho(x, t) I\right] \mathrm{d} q, \quad k, \mu>0 .
$$

Example: FENE (finitely extendible nonlinear elastic) potential:

$$
U(q)=-\frac{b}{2} \ln \left(1-\frac{|q|^{2}}{b}\right), \quad U^{\prime}(q)=\frac{1}{1-\frac{|q|^{2}}{b}}, \quad q \in D=\{q:|q|<\sqrt{b}\} .
$$

References to PDE theory

```
M. Renardy:
An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM Math. Anal., 1991.
B. Jourdain, T. Lelièvre \& C. Le Bris:
Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal., 2004.
W. E, T.J. Li, and P.-W. Zhang:
Well-posedness for the dumbbell model of polymeric fluids. Commun. Math. Phys. 248 (2004) 409-427.
J.W. Barrett, C. Schwab \& E. Süli:
Existence of global weak solutions for some polymeric flow models. M3AS, 2005.
P. Constantin:
Nonlinear Fokker-Planck-Navier-Stokes systems. Comm. Math. Sci., 2005.
F. Otto \& A. Tzavaras:
Continuity of velocity gradients in suspensions of rod-like molecules. Preprint, Bonn, 2006.
B. Jourdain, T. Lelièvre, C. Le Bris, \& F. Otto:
Long-time asymptotics of a multiscle model for polymeric fluid flows. Arch. Rat. Mech. Anal., 181 (2006), pp. 97-148.
J.W. Barrett \& E. Süli:
Existence of global weak solutions to some regularized kinetic models for dilute polymers. SIAM MMS, 2007.
P.-L. Lions \& N. Masmoudi:
Global existence of weak solutions to some micro-macro models. C. R. Math. Acad. Sci. Paris. 2007.
J.W. Barrett \& E. Süli:
Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. M3AS, 2008.
```


Outline

- PDEs with non-negative characteristic form
- Weak and stabilized variational formulations
- Univariate hierarchical spaces
- Multidimensional sparse tensor product spaces
- Approximability from sparse tensor product spaces
- Stability and convergence of the sparse stabilized FEM

Based on:
B
C. Schwab, E. Süli, R.-A. Todor: Sparse finite element approximation of highdimensional transport-dominated diffusion problems. M ${ }^{2}$ AN (Submitted, 2007).

1. PDEs with non-negative characteristic form

$$
\begin{gathered}
\mathcal{L} u:=-a: \nabla \nabla u+b \cdot \nabla u+c u=f(x), \quad x \in \Omega, \quad+\mathrm{BCs}, \\
\Omega=(0,1)^{d} \quad \text { and } \quad d \gg 1 .
\end{gathered}
$$

Assume that $c>0, b \in \mathbb{R}^{d}, a \in \mathbb{R}^{d \times d}$, with $a=a^{\top} \geq 0$.
Special cases:

- When a is positive definite, the PDE is elliptic;
- When $a=0$ and $b \neq 0$, the PDE is first-order hyperbolic;
- When

$$
a=\left(\begin{array}{ll}
\alpha & 0 \\
0 & 0
\end{array}\right), \quad \text { with } \quad \alpha \in \mathbb{R}^{(d-1) \times(d-1)}, \quad \alpha=\alpha^{\top}>0
$$

and $b=(0, \ldots, 0,1)^{\top} \in \mathbb{R}^{d}$, the PDE is parabolic.

2. Weak and stabilized variational formulations

Find $u: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
\begin{gathered}
\mathcal{L} u \equiv-\nabla \cdot(a \nabla u)+\nabla \cdot(b u)+c u=f \text { in } \Omega, \\
u=0 \text { on } \Gamma_{\mathrm{D}} \cup \Gamma_{-}, \quad n \cdot(a \nabla u)=0 \text { on } \Gamma_{\mathrm{N}} .
\end{gathered}
$$

$$
\zeta^{\top} a(x) \zeta \geq 0 \quad \forall \zeta \in \mathbb{R}^{d}, \quad \text { a.e. } x \in \bar{\Omega}
$$

$$
\begin{aligned}
\Gamma_{0} \equiv \Gamma_{\mathrm{D}} \cup \Gamma_{\mathrm{N}} & =\left\{x \in \Gamma: n(x)^{\top} a(x) n(x)>0\right\} & & \text { (Elliptic boundary) } \\
\Gamma_{-} & =\left\{x \in \Gamma \backslash \Gamma_{0}: b(x) \cdot n(x)<0\right\} & & \text { (Hyperbolic inflow) } \\
\Gamma_{+} & =\left\{x \in \Gamma \backslash \Gamma_{0}: b(x) \cdot n(x) \geq 0\right\} & & \text { (Hyperbolic outflow) }
\end{aligned}
$$

Fichera function: $\quad x \mapsto b(x) \cdot n(x) \quad$ defined on Γ.

Suppose that $v \in \mathrm{H}^{1}(\Omega)$ with $\left.v\right|_{\Gamma_{\mathrm{D}}}=0$. Via formal integration by parts:

$$
\begin{aligned}
& \int_{\Omega} a \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\Omega} b u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} c u v \mathrm{~d} x \\
& \quad-\int_{\Gamma}(a \nabla u \cdot n) v \mathrm{~d} s+\int_{\Gamma}(b \cdot n) u v \mathrm{~d} s=\int_{\Omega} f v \mathrm{~d} x . \\
& \int_{\Gamma}(b \cdot n) u v \mathrm{~d} s=\int_{\Gamma_{\mathrm{N}} \cup \Gamma_{+}}(b \cdot n) u v \mathrm{~d} s, \\
& \int_{\Gamma}(a \nabla u \cdot n) v \mathrm{~d} s=\int_{\Gamma \backslash \Gamma_{0}}\left((\nabla u)^{\top} a n\right) v \mathrm{~d} s=0,
\end{aligned}
$$

since $n^{\top} a n=0$ on $\Gamma \backslash \Gamma_{0}$ and $a=a^{\top} \geq 0$ implies that $a n=0$ on $\Gamma \backslash \Gamma_{0}$.
$\mathcal{V}:=\left\{v \in \mathrm{H}^{1}(\Omega):\left.v\right|_{\Gamma_{\mathrm{D}}}=0\right\}, \quad\langle w, v\rangle_{\gamma}=\int_{\gamma}|b \cdot n| v w \mathrm{~d} s, \quad \gamma \subset \Gamma$,
$\mathcal{H}:=$ closure of \mathcal{V} in the norm induced by

$$
(w, v)_{\mathcal{H}}:=(a \nabla w, \nabla v)+(w, v)+\langle w, v\rangle_{\Gamma_{\mathrm{N}} \cup \Gamma_{-} \cup \Gamma_{+}} .
$$

Weak formulation: Find $u \in \mathcal{H}$ such that

$$
B(u, v)=\ell(v) \quad \forall v \in \mathcal{V}
$$

where

$$
\begin{aligned}
B(u, v) & =(a \nabla u, \nabla v)-(u, b \cdot \nabla v)+(c u, v)+\langle u, v\rangle_{\Gamma_{\mathrm{N}} \cup \Gamma_{+}}, \\
\ell(v) & =(f, v) .
\end{aligned}
$$

Existence of weak solutions:
圊 Oleŭnik \& Radkevič (1973)

A special case: $\Omega=(0,1)^{d}$

Lemma

Each of the sets $\Gamma_{0}, \Gamma_{+}, \Gamma_{-}$is the union of $(d-1)$-dimensional open faces of Ω. Moreover, each pair of opposite $(d-1)$-dimensional faces of Ω is contained either in the elliptic part Γ_{0} of Γ or its complement $\Gamma_{-} \cup \Gamma_{+}$, the hyperbolic part of Γ.

We shall assume henceforth that $\Gamma_{\mathrm{N}}=\emptyset$ (i.e. that $\Gamma_{0}=\Gamma_{\mathrm{D}}$).

Weak formulation: Find $u \in \mathcal{H}$ such that

$$
B(u, v)=\ell(v) \quad \forall v \in \mathcal{V}=\left\{v \in \mathrm{H}^{1}(\Omega):\left.v\right|_{\Gamma_{0}}=0\right\}
$$

where

$$
\begin{aligned}
B(u, v) & =(a \nabla u, \nabla v)-(u, b \cdot \nabla v)+(c u, v)+\langle u, v\rangle_{\Gamma_{+}}, \\
\ell(v) & =(f, v) .
\end{aligned}
$$

Remarks

$\left.u\right|_{\Gamma_{0}}=0$ is imposed strongly, through the definition of $\mathcal{V} \subset \mathcal{H}$, $\left.u\right|_{\Gamma_{-}}=0$ is imposed weakly, through the definition of $B(\cdot, \cdot)$.

Hence,

$$
\bigotimes_{i=1}^{d} \mathrm{H}_{(0)}^{1}(0,1):=\mathrm{H}_{(0)}^{1}(0,1) \otimes \cdots \otimes \mathrm{H}_{(0)}^{1}(0,1) \subset \mathcal{H}
$$

where the i th component in the tensor-product is

$$
\mathrm{H}_{(0)}^{1}(0,1):= \begin{cases}\mathrm{H}_{0}^{1}(0,1) & \text { if } \mathrm{O} x_{i} \text { is an elliptic co-ordinate direction, } \\ \mathrm{H}^{1}(0,1) & \text { if } \mathrm{O} x_{i} \text { is a hyperbolic co-ordinate direction. }\end{cases}
$$

We wish to construct a Galerkin finite element approximation to the boundary-value problem using finite-dimensional subspaces of \mathcal{H} that have analogous tensor-product structure.

Stabilization

$$
\begin{aligned}
-\nabla \cdot(a \nabla u)+\nabla \cdot(b u)+c u & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{\mathrm{D}} \cup \Gamma_{-} .
\end{aligned}
$$

Perturbed weak formulation: Find $u \in \mathcal{H}$ such that

$$
B_{\delta}(u, v)=\ell_{\delta}(v) \quad \forall v \in \mathcal{V}
$$

where

$$
\begin{aligned}
B_{\delta}(u, v) & =B(u, v)+\sum_{\alpha \in \mathcal{T}} \delta_{\alpha}(-\nabla \cdot(a \nabla u)+\nabla \cdot(b u)+c u, b \cdot \nabla v)_{\alpha} \\
\ell_{\delta}(v) & =\ell(v)+\sum_{\alpha \in \mathcal{T}} \delta_{\alpha}(f, b \cdot \nabla v)_{\alpha}
\end{aligned}
$$

$\delta_{\alpha} \geq 0$ - stabilization parameter.

Stabilized finite element method

Find $u_{\mathrm{SD}} \in V_{h p} \subset \mathcal{V}$ such that

$$
B_{\delta}\left(u_{\mathrm{SD}}, v\right)=\ell_{\delta}(v) \quad \forall v \in V_{h p}
$$

Streamline-diffusion norm:
$\left\lvert\,\|u\|_{\mathrm{SD}}=\left(\|\sqrt{a} \nabla u\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|u\|_{\mathrm{L}^{2}(\Omega)}^{2}+\|u\|_{\Gamma_{+} \cup \Gamma_{-}}^{2}+\sum_{\alpha \in \mathcal{T}} \delta_{\alpha}\|b \cdot \nabla u\|_{\mathrm{L}^{2}(\alpha)}^{2}\right)^{\frac{1}{2}}\right.$
Coercivity and stability: There exist $\delta_{0}>0, c_{0}>0$ s.t., for all $\delta \in\left[0, \delta_{0}\right]$,
$B_{\delta}(v, v) \geq c_{0}\| \| v\left\|_{\mathrm{S}_{\mathrm{SD}}}^{2} \quad \forall v \in V_{h p}, \quad\right\|\left\|u_{\mathrm{SD}}\right\| \|_{\mathrm{SD}} \leq \frac{1}{c_{0}}\left(\sum_{\alpha \in \mathcal{T}}\left(1+\delta_{\alpha}\right)\|f\|_{\mathrm{L}^{2}(\alpha)}^{2}\right)^{\frac{1}{2}}$.

Key observation: for all $v \in V_{h p}$

$$
\begin{aligned}
& B_{\delta}(v, v) \geq \int_{\Omega}|\sqrt{a} \nabla v|^{2} \mathrm{~d} x+\int_{\Omega}\left(c+\frac{1}{2} \nabla \cdot b\right)|v|^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Gamma_{\mathrm{N}} \cup \Gamma_{+} \cup \Gamma_{-}}|b \cdot n||u|^{2} \mathrm{~d} s \\
& \quad+\frac{1}{2} \sum_{\alpha \in \mathcal{T}} \delta_{\alpha} \int_{\alpha}|b \cdot \nabla v|^{2} \mathrm{~d} x-\sum_{\alpha \in \mathcal{T}} \delta_{\alpha} \int_{\alpha}\left[(c-\nabla \cdot b)^{2}|v|^{2}+|\nabla \cdot(a \nabla v)|^{2}\right] \mathrm{d} x \\
& \text { Norm-equivalence in finite-dimensional normed linear spaces } \Rightarrow
\end{aligned}
$$

Coercivity: There exists $c_{0}=c_{0}\left(c_{*}\right)$ such that

$$
B_{\delta}(v, v) \geq c_{0}\| \| v \|_{\text {SD }}^{2} \quad \forall v \in V_{h p}
$$

Bibliography [Elliptic theory!]:
眉 Hughes \& Brooks (1979), Johnson \& Nävert (1983)
围 Baiocchi, Brezzi, Franca (1993), Brezzi \& Russo (1994) \rightarrow RFB/multiscale FEMs
Brezzi, Hughes, Marini \& Süli (1989), Brezzi, Marini \& Süli (2000)

A brief interlude

Let B_{p}^{d} denote the d-dimensional ball of radius L in \mathbb{R}^{d} in the ℓ_{p} norm.
Clearly, $B_{1}^{d} \subset B_{2}^{d} \subset B_{\infty}^{d}$.
Question: What are the volumes of the three balls?

Figure 1: 'Unit circles' in the linear space \mathbb{R}^{2} with respect to three vector norms: (a) the 1-norm; (b) the 2-norm; (c) the ∞-norm.

Answer:

$$
\begin{aligned}
\operatorname{Vol}\left(B_{\infty}^{d}\right) & =(2 L)^{d}, \\
\operatorname{Vol}\left(B_{2}^{d}\right) & =\frac{\pi^{d / 2} L^{d}}{\Gamma(d / 2+1)}, \\
\operatorname{Vol}\left(B_{1}^{d}\right) & =2^{d} \frac{\prod_{k=1}^{d} L}{d!} .
\end{aligned}
$$

Note, in particular, that

$$
\frac{\operatorname{Vol}\left(B_{1}^{d}\right)}{\operatorname{Vol}\left(B_{\infty}^{d}\right)}=\frac{1}{d!} .
$$

If $d=30$, then $1 / d!=3.77 \cdot 10^{-33}$.
If $d=100$, then $1 / d!=1.07 \cdot 10^{-158}$.

3. Univariate hierarchical spaces

$\mathcal{T}^{\ell}:=$ uniform mesh of spacing $h_{\ell}=2^{-\ell}, \ell \geq 0$, on $[0,1]$,
$\mathcal{V}^{\ell, p}:=\left\{\right.$ all continuous p.w. polynomials of degree p defined on $\left.\mathcal{T}^{\ell}\right\}$,
$\mathcal{V}_{0}^{\ell, p}:=\mathcal{V}^{\ell, p} \cap \mathrm{H}_{0}^{1}(0,1)$.

The families of spaces $\left\{\mathcal{V}^{\ell, p}\right\}_{\ell \geq 0}$ and $\left\{\mathcal{V}_{0}^{\ell, p}\right\}_{\ell \geq 0}$ are nested, i.e.,

$$
\mathcal{V}^{0, p} \subsetneq \mathcal{V}^{1, p} \subsetneq \mathcal{V}^{2, p} \subsetneq \cdots \subsetneq \mathcal{V}^{\ell, p} \subsetneq \cdots \subsetneq \mathrm{H}^{1}(0,1),
$$

and

$$
\mathcal{V}_{0}^{0, p} \subsetneq \mathcal{V}_{0}^{1, p} \subsetneq \mathcal{V}_{0}^{2, p} \subsetneq \cdots \subsetneq \mathcal{V}_{0}^{\ell, p} \subsetneq \cdots \subsetneq \mathrm{H}_{0}^{1}(0,1)
$$

Notation: $\mathcal{V}_{(0)}^{\ell, p}$ is $\mathcal{V}^{\ell, p}$ or $\mathcal{V}_{0}^{\ell, p}$, as the case may be.

Linear hierarchical basis: $p=1$

Linear hierarchical basis: $p=1$

Dimension of the space $=1+2+\cdots+2^{L-1}=2^{L}-1$.

A basis-free definition of the subspaces

Consider

$$
\left(P^{\ell, p} u\right)(x):=u(0)+\int_{0}^{x}\left(\Pi^{\ell, p-1} u^{\prime}\right)(\xi) \mathrm{d} \xi, \quad P_{0}^{\ell, p}:=\left.P^{\ell, p}\right|_{\mathrm{H}_{0}^{1}(0,1)}
$$

Define

$$
\mathcal{V}_{(0)}^{\ell, p}:=P_{(0)}^{\ell, p} \mathrm{H}_{(0)}^{1}(0,1), \quad \ell \geq 0, \quad p \geq 1
$$

1- d approximation property: Let $u \in \mathrm{H}^{k+1}(0,1) \cap \mathrm{H}_{(0)}^{1}(0,1), k \geq 1$; then,

$$
\left\|\partial^{s}\left(u-P_{(0)}^{\ell, p}\right) u\right\|_{\mathrm{L}^{2}(0,1)} \leq\left(\frac{h_{\ell}}{2}\right)^{t+1-s} \frac{1}{p^{1-s}} \sqrt{\frac{(p-t)!}{(p+t)!}}\left\|\partial^{t+1} u\right\|_{\mathrm{L}^{2}(0,1)}
$$

where $1 \leq t \leq \min (p, k), h_{\ell}=2^{-\ell}, \ell \geq 0, p \geq 1, s \in\{0,1\}$.

Hierarchical decomposition

Incremental projectors:

$$
Q_{(0)}^{\ell, p}:= \begin{cases}P_{(0)}^{\ell, p}-P_{(0)}^{\ell-1, p}, & \ell \geq 1, \\ P_{(0)}^{0, p}, & \ell=0 .\end{cases}
$$

Increment spaces:

$$
\mathcal{W}_{(0)}^{\ell, p}:=Q_{(0)}^{\ell, p} \mathrm{H}_{(0)}^{1}(0,1), \quad \ell \geq 0 .
$$

Now,

$$
P_{(0)}^{L, p}=\sum_{\ell=0}^{L} Q_{(0)}^{\ell, p} \quad \Longrightarrow \quad \mathcal{V}_{(0)}^{L, p}=\sum_{\ell=0}^{L} \mathcal{W}_{(0)}^{\ell, p}
$$

Proposition

Let X be a vector space; then, there exist nontrivial subspaces X_{ℓ}, $\ell=0, \ldots, L$, of X such that $X=\bigoplus_{\ell=0}^{L} X_{\ell}$ if, and only if, there are nonzero linear mappings $q_{0}, \ldots, q_{L}: X \rightarrow X$ such that
(1) $\sum_{\ell=0}^{L} q_{\ell}=\mathrm{Id}_{X}$;
(2) $q_{\ell_{1}} \circ q_{\ell_{2}}=0_{X}$ for all $\ell_{1}, \ell_{2} \in\{0, \ldots, L\}, \ell_{1} \neq \ell_{2}$.

Moreover, each q_{ℓ} is necessarily a projector and X_{ℓ} can be chosen to be $\operatorname{Im}\left(q_{\ell}\right), \ell=0, \ldots, L$.

Therefore,

$$
Q_{(0)}^{\ell_{1}, p} Q_{(0)}^{\ell_{2}, p}=0, \quad \ell_{1} \neq \ell_{2}, \quad \Longrightarrow \quad \mathcal{V}_{(0)}^{L, p}=\bigoplus_{\ell=0}^{L} \mathcal{W}_{(0)}^{\ell, p}
$$

4. Multidimensional sparse tensor-product spaces

Define

$$
V_{(0)}^{L, p}:=\mathcal{V}_{(0)}^{L, p} \otimes \cdots \otimes \mathcal{V}_{(0)}^{L, p} .
$$

Clearly,

$$
V_{(0)}^{L, p}=\sum_{|\ell|_{\infty} \leq L} \mathcal{W}_{(0)}^{\ell_{1}, p} \otimes \cdots \otimes \mathcal{W}_{(0)}^{\ell_{d}, p} .
$$

Sparse tensor-product space

\longrightarrow Babenko (1960), Smolyak (1963), Zenger (1990), Bungartz \& Griebel (2004)

$$
\hat{V}_{(0)}^{L, p}:=\sum_{|\ell|_{1} \leq L} \mathcal{W}_{(0)}^{\ell_{1}, p} \otimes \cdots \otimes \mathcal{W}_{(0)}^{\ell_{d}, p} .
$$

Number of DOFs (for p fixed):

$$
\operatorname{dim} V_{(0)}^{L, p} \asymp h_{L}^{-d}, \quad \operatorname{dim} \hat{V}_{(0)}^{L, p} \asymp h_{L}^{-1}\left|\log _{2} h_{L}\right|^{d-1}
$$

Supports of basis functions in $V^{L, 1}$

Dimension of the space $=\left(1+2+\cdots+2^{L-1}\right)^{d}=\left(2^{L}-1\right)^{d}$.

Supports of basis functions in $\hat{V}^{L, 1}$

Dimension of the space $=\sum_{m=1}^{L}\binom{m+d-2}{d-1} 2^{m-1} \sim \frac{2^{L} L^{d-1}}{(d-1)!}$.

Proof:

$$
\mathcal{S}(m, k, d):=\left\{\ell \in \mathbb{N}^{d}:|\ell|_{1}=m,|\ell|_{\infty}=k\right\}, \quad m, k \in \mathbb{N} .
$$

Lemma

$$
\begin{aligned}
\mathcal{S}(m, k, d) & =0 \quad \forall k>m, \\
\sum_{k=0}^{\infty}|\mathcal{S}(m, k, d)| & =\binom{m+d-1}{d-1} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Dimension of the space } & =\sum_{\ell \in \mathbb{N}^{d},|\ell|_{1} \leq L-1} 2^{|\ell|_{1}}=\sum_{m=0}^{L-1} \sum_{\ell \in \mathbb{N}^{d},|\ell|_{1}=m} 2^{m} \\
& =\sum_{m=0}^{L-1} 2^{m} \sum_{k=0}^{\infty} \sum_{\ell \in \mathbb{N}^{d},|\ell|_{1}=m,| |_{\infty}=k} 1
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m=0}^{L-1} 2^{m} \sum_{k=0}^{\infty}|\mathcal{S}(m, k, d)|=\sum_{m=0}^{L-1} 2^{m}\binom{m+d-1}{d-1} \\
& =\left.\frac{1}{(d-1)!}\left(\sum_{m=0}^{L-1} x^{m+d-1}\right)^{(d-1)}\right|_{x=2} \\
& =\left.\frac{1}{(d-1)!}\left(x^{d-1} \frac{x^{L}-1}{x-1}\right)^{(d-1)}\right|_{x=2} \\
& =\left.\frac{1}{(d-1)!} \sum_{m=0}^{d-1}\binom{d-1}{m} \cdot\left(x^{L+d-1}-x^{d-1}\right)^{(m)} \cdot\left(\frac{1}{x-1}\right)^{(d-1-m)}\right|_{x=2} \\
& =2^{L} \sum_{m=0}^{d-1}\binom{L+d-1}{m}(-2)^{d-1-m}+(-1)^{d} \\
& \sim \frac{2^{L} L^{d-1}}{(d-1)!}=\frac{1}{(d-1)!} h_{L}^{-1}\left|\log _{2} h_{L}\right|^{d-1} .
\end{aligned}
$$

5. Approximability from sparse tensor product spaces

Full tensor-product projector:

$$
P_{(0)}^{L, p}=\sum_{|\ell|_{\infty} \leq L} Q_{(0)}^{\ell_{1}, p} \otimes \cdots \otimes Q_{(0)}^{\ell_{d}, p}: \bigotimes_{i=1}^{d} \mathrm{H}_{(0)}^{1}(0,1) \rightarrow V_{(0)}^{L, p}, \quad \ell=\left(\ell_{1}, \ldots, \ell_{d}\right)
$$

Sparse tensor-product projector:

$$
\hat{P}_{(0)}^{L, p}=\sum_{|\ell|_{1} \leq L} Q_{(0)}^{\ell_{1}, p} \otimes \cdots \otimes Q_{(0)}^{\ell_{d}, p}: \bigotimes_{i=1}^{d} \mathrm{H}_{(0)}^{1}(0,1) \rightarrow \hat{V}_{(0)}^{L, p}, \quad \ell=\left(\ell_{1}, \ldots, \ell_{d}\right)
$$

Define

$$
|u|_{\mathcal{H}^{t+1}(\Omega)}:=\max _{s \in\{0,1\}} \max _{1 \leq k \leq d}\left(\max _{\substack{\begin{subarray}{c}{\leq\{1,2, \ldots, d\} \\
|J|=k} }}\end{subarray}}|u|_{\mathrm{H}^{t+1, s, J}(\Omega)}\right) .
$$

Theorem

Let $\Omega=(0,1)^{d}, s \in\{0,1\}, k \geq 1, p \geq 1$ be given. For $1 \leq t \leq \min \{p, k\}$, there exist $\underline{c}_{p, t}>0, \kappa_{(0)}(p, t, s, L)>0$, independent of d, such that, for any $u \in \mathcal{H}^{k+1}(\Omega)$ and all $L \geq 1$ and $d \geq 2$, we have

$$
\left|u-\hat{P}_{(0)}^{L, p} u\right|_{\mathrm{H}^{s}(\Omega)} \leq d^{1+\frac{s}{2}} \underline{c}_{p, t}\left(\kappa_{(0)}(p, t, s, L)\right)^{d-1+s} 2^{-(t+1-s) L}|u|_{\mathcal{H}^{t+1}(\Omega)} .
$$

$$
\begin{gathered}
\kappa_{(0)}(p, t, s, L):= \begin{cases}\tilde{c}_{p, 0, t}(L+1) \mathrm{e}^{1 /(L+1)}+\hat{c}_{p, 0,(0)}, & s=0, \\
2 \tilde{c}_{p, 0, t}+\hat{c}_{p, 0,(0)}, & s=1 .\end{cases} \\
\hat{c}_{p, 0,(0)}:=\left|Q_{(0)}^{0, p}\right|_{\mathcal{B}\left(\mathrm{H}_{(0)}^{1}(0,1), \mathrm{L}^{2}(0,1)\right)} .
\end{gathered}
$$

The constants

$$
\kappa_{(0)}(p, t, s, L):= \begin{cases}\tilde{c}_{p, 0, t}(L+1) \mathrm{e}^{1 /(L+1)}+\hat{c}_{p, 0,(0)}, & s=0 \\ 2 \tilde{c}_{p, 0, t}+\hat{c}_{p, 0,(0)}, & s=1 .\end{cases}
$$

For $p \geq 1, t \in \mathbb{N}, 1 \leq t \leq p, s \in\{0,1\}$:

$$
\tilde{c}_{p, 0, t}=\left(1+\frac{1}{2^{t+1-s}}\right) \frac{1}{p} \sqrt{\frac{(p-t)!}{(p+t)!}}, \quad \hat{c}_{p, 0,(0)}=\frac{1}{\pi}
$$

Refined values for $p=1$:

$$
\tilde{c}_{1,0,1}=\frac{1}{3}, \quad \hat{c}_{1,0,0}=0 .
$$

Tracking the constants

Remark (A)

If $\Gamma=\Gamma_{0}$ (elliptic problem) and $s=1\left(\mathrm{H}^{1}(\Omega)\right.$ seminorm error), then

$$
\kappa_{0}(p, p, 1, L)<1 \quad \forall p \geq 1, \quad L \geq 1 .
$$

Therefore the factor $\left(\kappa_{0}(p, p, 1, L)\right)^{d-1+s}$ decays exponentially as $d \rightarrow \infty$.
R Mriebel (CUP, 2006: Proc. Found. Comp. Math. Santander, Spain, 2005), $p=1, s=1$, under stronger, $\mathrm{W}^{2, \infty}(\Omega)$, regularity on u, for $-\Delta u=f$ with $\left.u\right|_{\Gamma}=0$.

Remark (B)

If $s=0$ (i.e. for $\mathrm{L}^{2}(\Omega)$ norm error), no $\left|\log _{2} h_{L}\right|^{d-1}$ term, if

$$
p=2 \text { and } L \leq 3, \quad p=3 \text { and } L \leq 49, \quad p \geq 4 \text { and } L \leq 528 .
$$

Remark (C)

If $s=0$ and

$$
\gamma_{(0)}(p, t):=\tilde{c}_{p, 0, t} 2^{t+1} /\left(2^{t+1}-1\right)+\hat{c}_{p, 0,(0)}<1,
$$

then there exists a positive constant $c_{t, p}$, independent of L and d, such that $\kappa_{(0)}(p, t, 0, L)<1$ for all $L \geq 1$ and $d \geq 2$ satisfying $L+1 \leq c_{t, p}(d-1)$.

If $\Gamma=\Gamma_{0}$, then $\gamma_{0}(p, p)<1$ for all $p \geq 1$. Also,

$$
\kappa_{0}(p, p, 0, L)<1
$$

whenever

$$
L+1 \leq c_{p, p}(d-1)
$$

where

$$
c_{1,1}=0.6, \quad c_{2,2}=0.71, \quad c_{3,3}=1.846, \quad c_{4,4}=2.161, \ldots
$$

Remark (D)

If $\Gamma_{0} \subsetneq \Gamma$ (i.e. hyperbolic boundary $\Gamma_{-} \cup \Gamma_{+} \neq \emptyset$), then

- for $s=1$, i.e. for $\mathrm{H}^{1}(\Omega)$ seminorm error:

$$
\kappa_{(0)}(p, p, 1, L)<1 \quad \text { when } \quad \begin{cases}p=2 & \text { and } d \leq 7, \\ p=3 & \text { and } d \leq 71 \\ p=4 & \text { and } d \leq 755 .\end{cases}
$$

- for $s=0$, i.e. for $\mathrm{L}^{2}(\Omega)$ error, the worst-case scenario is:

$$
\kappa_{(0)}(p, p, 0, L) \leq(L+1)^{d-1} \kappa_{*}^{d-1}
$$

where

$$
\kappa_{*}=\frac{1}{L+1}+\frac{2}{p \sqrt{(2 p)!}}<1
$$

for $L \geq 1$ and $p \geq 2$.

Technical ingredients of the proof

1. First ingredient: tensorization of seminorms

Proposition

$\operatorname{Let}\left(\mathrm{H}_{i},\langle\cdot, \cdot\rangle_{\mathrm{H}_{i}}\right),\left(\mathrm{K}_{i},\langle\cdot, \cdot\rangle_{\mathrm{K}_{i}}\right),\left(\tilde{\mathrm{H}}_{i},\langle\cdot, \cdot\rangle_{\tilde{\mathrm{H}}_{i}}\right),\left(\tilde{\mathrm{K}}_{i},\langle\cdot, \cdot\rangle_{\tilde{\mathrm{K}}_{i}}\right)$ for $i=1,2$ be separable Hilbert spaces.

Let $T_{i} \in \mathcal{B}\left(\mathrm{H}_{i}, \mathrm{~K}_{i}\right), \tilde{T}_{i} \in \mathcal{B}\left(\tilde{\mathrm{H}}_{i}, \tilde{\mathrm{~K}}_{i}\right)$ and $Q_{i} \in \mathcal{B}\left(\mathrm{H}_{i}, \tilde{\mathrm{H}}_{i}\right)$ be bounded linear operators, and assume that $\left\|\tilde{T}_{i} Q_{i} v_{i}\right\|_{\tilde{\mathrm{K}}_{i}} \leq c_{i}\left\|T_{i} v_{i}\right\|_{\mathrm{K}_{i}} \quad \forall v_{i} \in \mathrm{H}_{i}, i=1,2$.

Then

$$
\left\|\left(\tilde{T}_{1} \otimes \tilde{T}_{2}\right)\left(Q_{1} \otimes Q_{2}\right) u\right\|_{\tilde{\mathrm{K}}_{1} \otimes \tilde{\mathrm{~K}}_{2}} \leq c_{1} c_{2}\left\|\left(T_{1} \otimes T_{2}\right) u\right\|_{\mathrm{K}_{1} \otimes \mathrm{~K}_{2}} \quad \forall u \in \mathrm{H}_{1} \otimes \mathrm{H}_{2}
$$

In terms of an abbreviated notation:

$$
\left|Q_{i}\right|_{\left(T_{i}, \tilde{T}_{i}\right)} \leq c_{i}, \quad i=1,2 \quad \Rightarrow \quad\left|Q_{1} \otimes Q_{2}\right|_{\left(T_{1} \otimes T_{2}, \tilde{T}_{1} \otimes \tilde{T}_{2}\right)} \leq c_{1} c_{2}
$$

$T_{i} \in \mathcal{B}\left(\mathrm{H}_{i}, \mathrm{~K}_{i}\right), \tilde{T}_{i} \in \mathcal{B}\left(\tilde{\mathrm{H}}_{i}, \tilde{\mathrm{~K}}_{i}\right), Q_{i} \in \mathcal{B}\left(\mathrm{H}_{i}, \tilde{\mathrm{H}}_{i}\right), \quad\left\|Q_{i}\right\|_{T_{i}, \tilde{T}_{i}} \leq c_{i}, \quad i=1,2$.

$$
\begin{aligned}
& \mathrm{H}_{1} \otimes \mathrm{H}_{2} \xrightarrow{T_{1} \otimes T_{2}} \mathrm{~K}_{1} \otimes \mathrm{~K}_{2} \\
& \left\lvert\, \begin{array}{l}
Q_{1} \otimes Q_{2}
\end{array}\right. \\
& \tilde{\mathrm{H}}_{1} \otimes \tilde{\mathrm{H}}_{2} \xrightarrow{\tilde{T}_{1} \otimes \tilde{T}_{2}} \tilde{\mathrm{~K}}_{1} \otimes \tilde{\mathrm{~K}}_{2}
\end{aligned}
$$

$\left\|Q_{1} \otimes Q_{2}\right\|_{T_{1} \otimes T_{2}, \tilde{T}_{1} \otimes \tilde{T}_{2}} \leq c_{1} c_{2}$.
2. Second ingredient: Explicit bounds on lattice sums

Lemma

Suppose that $d, m \in \mathbb{N}_{>0}$ and $x>1$. Then,

$$
d \cdot x^{m} \leq \sum_{\ell \in \mathbb{N}^{d},|\ell|_{1}=m} x^{|\ell|_{\infty}} \leq d\left(1+\frac{1}{x-1}\right)^{d-1} \cdot x^{m} .
$$

Lemma

For $L, d \in \mathbb{N}_{>0}, \alpha, \beta>0$, and $x \geq 2$ define

$$
\begin{gathered}
A(L, d, x):=\sum_{\substack{\left.k \in \mathbb{N}^{d} \\
| |\right|^{1}>L}} x^{-|\ell|_{1}}, \\
B(L, d, x, \alpha, \beta):=\sum_{k=1}^{d}\binom{d}{k} \alpha^{k} \beta^{d-k} A(L, k, x) .
\end{gathered}
$$

Then

$$
B(L, d, x, \alpha, \beta) \leq \frac{\alpha \mathrm{e} d x}{x-1} \cdot\left(\alpha(L+1) \mathrm{e}^{1 /(L+1)}+\beta\right)^{d-1} \cdot x^{-(L+1)} .
$$

Lemma

For $L, d \in \mathbb{N}_{>0}, \alpha, \beta>0$, and $x \geq 2$ define

$$
\begin{gathered}
A(L, d, x):=\sum_{\substack{k \in \mathbb{N}^{d} \\
| |_{1}>L}} x^{-|\ell|_{1}}, \\
B(L, d, x, \alpha, \beta):=\sum_{k=1}^{d}\binom{d}{k} \alpha^{k} \beta^{d-k} A(L, k, x) .
\end{gathered}
$$

If $\gamma:=\alpha \cdot x /(x-1)+\beta<1$, then there exists $c_{1, x, \gamma}>0, c_{2, x, \gamma} \in(0,1)$ such that

$$
\text { whenever } \quad d \geq 2 \quad \text { and } \quad L+1 \leq c_{1, x, \gamma}(d-1)
$$

we have

$$
B(L, d, x, \alpha, \beta) \leq \frac{\alpha d x}{x-1} \cdot c_{2, x, \gamma}^{d-1} \cdot x^{-(L+1)} .
$$

Proof of the Theorem: $[s=0]$

For $u \in \mathrm{C}_{(0)}^{\infty}(\bar{\Omega}) \subset \mathrm{L}^{2}(\Omega)$, the following identity holds in $\mathrm{L}^{2}(\Omega)$:

$$
\begin{aligned}
\left\|u-\hat{P}_{(0)}^{L, p} u\right\|_{L^{2}(\Omega)} & \leq \sum_{\ell \in \mathbb{N}^{d},|\ell|_{1}>L}\left\|\left(Q_{(0)}^{\ell_{1}, p} \otimes \cdots \otimes Q_{(0)}^{\ell_{d}, p}\right) u\right\|_{\mathrm{L}^{2}(\Omega)} \\
& =\sum_{k=1}^{d} \sum_{\substack{I \subset\{1,2, \alpha, d\} \\
| | \mid=k}} \sum_{\substack{\ell \in \mathbb{N}^{d},\left|| |_{1}>L \\
\text { supp }(\ell)=I\right.}}\left\|\left(Q_{(0)}^{\ell_{1}, p} \otimes \cdots \otimes Q_{(0)}^{\ell_{d}, p}\right) u\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Now, for any $\ell \in \mathbb{N}^{d}$ with $I=\operatorname{supp}(\ell)$ and $|I|=k$:

$$
\begin{aligned}
& \left\|\left(Q_{(0)}^{\ell_{1}, p} \otimes \cdots \otimes Q_{(0)}^{\ell_{d}, p}\right) u\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \\
& \quad \leq\left\{\prod_{j \in I}\left|Q_{(0)}^{\ell_{j}, p}\right|_{\left(\partial^{t+1}, \mathrm{Id}_{\mathrm{L}^{2}(0,1)}^{2}\right)}^{2}\right\}\left|Q_{(0)}^{0, p}\right|_{\left(\mathrm{Id}_{\mathrm{H}_{(0)}^{1}(0,1)}^{2(d-k)} \operatorname{Id}_{\mathrm{L}^{2}(0,1)}\right)}|u|_{\mathrm{H}^{t+1,0, I}(\Omega)}^{2} \\
& \quad=\tilde{c}_{p, 0, t}^{2 k} \hat{c}_{p, 0,(0)}^{2(d-k)} 2^{-2(t+1)|\ell|_{1}}|u|_{\mathrm{H}^{t+1,0, I}(\Omega)}^{2}
\end{aligned}
$$

Summing this bound over all $I \subseteq\{1,2, \ldots, d\}$ with $|I|=k$ implies

$$
\begin{aligned}
\left\|u-\hat{P}_{(0)}^{L, p} u\right\|_{L^{2}(\Omega)} \leq & \sum_{k=1}^{d}\binom{d}{k} \tilde{c}_{p, 0, t}^{k} \hat{c}_{p, 0,(0)}^{d-k}\left\{\sum_{\substack{\left.\ell \in \mathbb{N}^{k} \\
| |\right|_{1}>L}} 2^{-(t+1)|\ell|_{1}}\right\} \\
& \times \max _{1 \leq k \leq d}\left(\max _{\substack{1 \subset\{1,2,,, d\} \\
|1|=k}}|u|_{\mathrm{H}^{++1,0, I}(\Omega)}\right) .
\end{aligned}
$$

Using the lattice sum lemmas 2 and 3 with $x:=2^{t+1} \geq 2$ for $t \geq 0$, $\alpha:=\tilde{c}_{p, 0, t}$, and $\beta:=\hat{c}_{p, 0,(0)}$ we obtain

$$
\left\|u-\hat{P}_{(0)}^{L, p} u\right\|_{\mathrm{L}^{2}(\Omega)} \leq 2 d \mathrm{e} \tilde{c}_{p, 0, t} \cdot \kappa_{(0)}(p, t, 0, L)^{d-1} \cdot 2^{-(t+1)(L+1)}|u|_{\mathcal{H}^{t+1}(\Omega)}
$$

where
$\kappa_{(0)}(p, t, 0, L):=\tilde{c}_{p, 0, t}(L+1) \mathrm{e}^{1 /(L+1)}+\hat{c}_{p, 0,(0)}, \quad p \geq 1, \quad 1 \leq t \leq p, \quad L \geq 1$.

Hence the required bound for $s=0$, with $\underline{c}_{p, t}=2^{-t} \mathrm{e} \tilde{c}_{p, 0, t}$.
Further, if

$$
\gamma_{(0)}(t, p):=\tilde{c}_{p, 0, t} 2^{t+1} /\left(2^{t+1}-1\right)+\hat{c}_{p, 0,(0)}<1
$$

then there exists a constant $c_{t, p}>0$, independent of L and d, such that $\kappa_{(0)}(p, t, 0, L)<1$ for all $L \geq 1$ and $d \geq 2$ satisfying $L+1 \leq c_{t, p}(d-1)$.

6. Stability and convergence of the sparse stabilized FEM

Theorem

Suppose that

$$
0 \leq \delta_{L} \leq \min \left(\frac{h_{L}^{2}}{12 d p^{4}|\sqrt{a}|^{2}}, \frac{1}{c}\right)
$$

Then,

$$
\forall v_{h} \in \hat{V}_{(0)}^{L, p}: \quad B_{\delta}\left(v_{h}, v_{h}\right) \geq \frac{1}{2}\| \| v_{h} \|_{\text {SD }}^{2}
$$

Now, fix

$$
\delta_{L}:=K_{\delta} \cdot \min \left(\frac{h_{L}^{2}}{12 d p^{4}|\sqrt{a}|^{2}}, \frac{h_{L}}{|b|}, \frac{1}{c}\right),
$$

with $K_{\delta} \in \mathbb{R}_{>0}$ a constant, independent of h_{L} and d.

Theorem

Let $f \in \mathrm{~L}^{2}(\Omega), \Omega=(0,1)^{d}, u \in \mathcal{H}^{k+1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \cap \bigotimes_{i=1}^{d} \mathrm{H}_{(0)}^{1}(0,1), k \geq 1$, and let the stabilization parameter δ_{L} be as above.

If $p \geq 1,1 \leq t \leq \min (p, k), h=h_{L}=2^{-L}$ and $L \geq 1$, then
$\left\|\left|\left|u-u_{h}\right| \|_{\mathrm{SD}} \leq C_{p, t} d^{2} \max \left\{(2-p)_{+}, \kappa_{(0)}(p, t, 0, L)^{d-1}, \kappa_{(0)}(p, t, 1, L)^{d}\right\}\right.\right.$

$$
\times\left(|\sqrt{a}| h_{L}^{t}+|b|^{\frac{1}{2}} h_{L}^{t+\frac{1}{2}}+c^{\frac{1}{2}} h_{L}^{t+1}\right)|u|_{\mathcal{H}^{t+1}(\Omega)} .
$$

Sketch of the proof

Let $h=h_{L}=2^{-L}$.

$$
\left\|\left\|u-u_{h}\right\|_{\mathrm{SD}} \leq\right\|\left\|u-\hat{P}_{(0)}^{L, p} u\right\|\left\|_{\mathrm{SD}}+\right\| \hat{P}_{(0)}^{L, p} u-u_{h} \|_{\mathrm{SD}}
$$

The first term on the right is bounded using the approximation Thm from Sec. 5. Further, by coercivity of B_{δ} on $\hat{V}_{(0)}^{L, p}$ and Galerkin orthogonality,

$$
\begin{aligned}
\frac{1}{2}\left\|\mid \hat{P}_{(0)}^{L, p} u-u_{h}\right\| \|_{\mathrm{SD}}^{2} & \leq B_{\delta}\left(\hat{P}_{(0)}^{L, p} u-u_{h}, \hat{P}_{(0)}^{L, p} u-u_{h}\right) \\
& =-B_{\delta}\left(u-\hat{P}_{(0)}^{L, p} u, \hat{P}_{(0)}^{L, p} u-u_{h}\right)
\end{aligned}
$$

since

$$
B_{\delta}\left(u-u_{h}, \hat{P}_{(0)}^{L, p} u-u_{h}\right)=0
$$

Roughly (and not entirely correctly; the precise argument is much more involved):

$$
\left|B_{\delta}\left(u-\hat{P}_{(0)}^{L, p} u, \hat{P}_{(0)}^{L, p} u-u_{h}\right)\right| \leq \text { Const. }\left\|\left\|u-\hat{P}_{(0)}^{L, p} u\right\|\right\|_{\mathrm{SD}}\left\|\mid \hat{P}_{(0)}^{L, p} u-u_{h}\right\| \| .
$$

How about $|u|_{\mathcal{H}^{t+1}(\Omega)}$?

Consider, on $\Omega=(0,1)^{d}$, the PDE

$$
-a: \nabla \nabla u+b \cdot \nabla u+c u=f(x), \quad x \in \Omega,
$$

with $f \in \mathrm{~L}^{2}(\Omega)$, constant coefficients $a \in \mathbb{R}^{d \times d}, b \in \mathbb{R}^{d}$, and $c \in \mathbb{R}_{>0}$, $a^{\top}=a \geq 0$, subject to periodic boundary conditions.

Recall that

$$
|u|_{\mathcal{H}^{[+1}(\Omega)}:=\max _{s \in\{0,1\}\} \mid \leq k \leq d} \max _{1 \leq d}\left(\max _{\substack{s \leq 1,2 \times \\||| |=k}}|u|_{\mathbf{H}^{+1}, s, s}(\Omega)\right) .
$$

We shall therefore begin by considering, for $s \in\{0,1\}, k \in\{1, \ldots, d\}$ and $J \subset\{1, \ldots, d\}$, with $|J|=k$,

$$
|u|_{\mathrm{H}^{t+1, s, J}(\Omega)}
$$

$$
u=\sum_{m \in \mathbb{Z}^{d}} \hat{u}_{m} \mathrm{e}^{2 \pi \mathrm{i} m \cdot x}, \quad f=\sum_{m \in \mathbb{Z}^{d}} \hat{f}_{m} \mathrm{e}^{2 \pi \mathrm{i} m \cdot x}
$$

Substituting these into the PDE yields

$$
\left[m^{\top} a m+i(b \cdot m)+c\right] \hat{u}_{m}=\hat{f}_{m} \quad \forall m \in \mathbb{Z}^{d} .
$$

Hence,

$$
\left|\hat{u}_{m}\right|^{2}=\frac{\left|\hat{f}_{m}\right|^{2}}{\left(m^{\top} a m+c\right)^{2}+|b \cdot m|^{2}} \quad \forall m \in \mathbb{Z}^{d} .
$$

Since $a \geq 0$ and $c>0$, it follows that

$$
\left|\hat{u}_{m}\right|^{2} \leq \frac{1}{c^{2}}\left|\hat{f}_{m}\right|^{2} \quad \forall m \in \mathbb{Z}^{d}
$$

Assume without loss of generality that $J=\{1, \ldots, k\}$, where $1 \leq k \leq d$. Hence,

$$
|u|_{\mathbb{H}^{t+1, s, J}(\Omega)}^{2}=\sum_{m \in \mathbb{Z}^{d}}\left(2 m_{1} \pi\right)^{2(t+1)} \cdots\left(2 m_{k} \pi\right)^{2(t+1)}\left(2 m_{k+1}\right)^{2 s} \cdots\left(2 m_{d}\right)^{2 s}\left|\hat{u}_{m}\right|^{2}
$$

Therefore,

$$
|u|_{\mathrm{H}^{t+1, s,}(\Omega)}^{2} \leq \frac{1}{c^{2}} \sum_{m \in \mathbb{Z}^{d}}\left(2 m_{1} \pi\right)^{2(t+1)} \cdots\left(2 m_{k} \pi\right)^{2(t+1)}\left(2 m_{k+1}\right)^{2 s} \cdots\left(2 m_{d}\right)^{2 s}\left|\hat{f}_{m}\right|^{2} .
$$

Equivalently,

$$
|u|_{\mathrm{H}^{t+1, s, J}(\Omega)}^{2} \leq c^{-2}|f|_{\mathrm{H}^{t+1, s, J}(\Omega)}^{2} .
$$

Therefore,

$$
|u|_{\mathcal{H}^{t+1}(\Omega)}^{2} \leq c^{-2}|f|_{\mathcal{H}^{t+1}(\Omega)}^{2} .
$$

For example, if $f\left(x_{1}, \ldots, x_{d}\right)=f_{1}\left(x_{1}\right) \cdots f_{d}\left(x_{d}\right)$, then

$$
|f|_{\mathrm{H}^{t+1, s, J}(\Omega)}=\left|f_{1}\right|_{\mathrm{H}^{t+1}(0,1)} \cdots\left|f_{k}\right|_{\mathrm{H}^{++1}(0,1)}\left|f_{k+1}\right|_{H^{s}(0,1)} \cdots\left|f_{d}\right|_{\mathrm{H}^{s}(0,1)} .
$$

Let

$$
\alpha_{0}=\max _{1 \leq k \leq d} \max _{s \in\{0,1\}}\left\{\left|f_{k}\right|_{\mathrm{H}^{r+1}(0,1)},\left\|f_{k}\right\|_{\mathrm{H}^{s}(0,1)}\right\} .
$$

Then,

$$
|f|_{\mathcal{H}^{t+1}(\Omega)} \leq \alpha_{0}^{d},
$$

and therefore,

$$
|u|_{\mathcal{H}^{t+1}(\Omega)} \leq c^{-1} \alpha_{0}^{d} .
$$

Example

$$
\begin{gathered}
f\left(x_{1}, \ldots, f_{d}\right)=\frac{1}{(2 \pi)^{d(t+1)}} \prod_{k=1}^{d} \sin 2 \pi x_{k} . \\
|f|_{\mathcal{H}^{t+1}(\Omega)} \leq 1 .
\end{gathered}
$$

Conclusions

(1) For 2nd-order PDEs with non-negative characteristic form on $\Omega=(0,1)^{d}$, we developed a stabilized variational formulation.
(2) Formulation stable on sparse tensor-product space, of meshwidth $h=h_{L}$ and polynomial degree $p \geq 1$, independent of:
\star mesh Péclet number;

* anisotropy in basis functions;
* degeneracy of elliptic part.
(3) error analysis shows that the constant decreases exponentially as $d \rightarrow \infty$ (substantially generalizing M. Griebel (2006) from $p=1$ and Dirichlet b.v.p. for $-\Delta u=f$, to $p>1$, any sparse basis, and second-order PDEs with non-negative characteristic form).
(9) We have identified a number of preasymptotic regimes where there is no $\left|\log _{2} h_{L}\right|^{d-1}$ term in the error bound.

Comments

The statements above presuppose that

$$
|u|_{\mathcal{H}^{t+1}(\Omega)}:=\max _{s \in\{0,1\}} \max _{1 \leq k \leq d}\left(\max _{\substack{J \leq\{1,2, \ldots, d\} \\|J|=k}}|u|_{H^{t+1, s, J}(\Omega)}\right)
$$

is bounded as $d \rightarrow \infty$.

A poorly understood question:
analysis of regularity and growth of norms of solutions of high-dimensional PDEs in spaces of functions with square-integrable mixed derivatives.

國 H. Yserentant: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives, Numer. Math. (2004).
图 H. Yserentant: Regularity properties of wavefunctions and the complexity of the quantum-mechanical N-body problem, (2007).

