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To study two different levels of description for
chemotaxis and to study how these two levels are
related.
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Gener al Picture

Consider &inetic modelM_. with a certain
non-dimensional parameter> 0.
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Consider &inetic modelM . with a certain
non-dimensional parameter> 0.

Consider the solutiod. (fg, -) (mlcroscoplc
variableg, and conside@ = (pe, S¢) := ([, fedv, S;)
(macroscopic variablgs

Let us define the limit

¢ = lim(p., S:) .

ge—0

Question:
Which Is the set of equations thétobey?
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Gener al Picture

Models > 0 Limit modele — 0
Initial conditions P!l — Ol :=lim,_, !
| |

Time evolution

Ms[\pe] =0 M[(I)] =0
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Gener al Picture

Models > 0 Limit modele — 0
Initial conditions P!l — Ol :=lim,_, !
| |
Time evolution | M_[V.] =0 M[P] =0
! !
Final state U (T) ? o(T)

I
O(t) = lim @.(1), ¢t <T

(in some sense) theM is the limit model ofM..
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Chemotaxis
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Figure 1. Life cycle of Dictyostelium discoideum Picture made by
Florian Seigert and Kees Wiejer (Zoologisches Institut Btisn Ludwig-
Maximilians-Universitat Munchen).
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\elocity jJump model

= Introduced by Alt (1980) and Othmer, Dunbar and
Alt (1988).
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Introduced by Alt (1980) and Othmer, Dunbar and
Alt (1988).

The cell goes in straight line for a certain
characteristic time and then changes its direction
from o' to v (in a space-time pointz, ¢) in the
presence of the substan§end cell density)
according to a certain turning kernel

TS, p|(x,v,v,t).
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Introduced by Alt (1980) and Othmer, Dunbar and
Alt (1988).

The cell goes in straight line for a certain
characteristic time and then changes its direction
from o' to v (in a space-time pointz, ¢) in the
presence of the substan§end cell density)
according to a certain turning kernel

TS, p|(x,v,v,t).

The set of all possible velocities Is given by a
compact, spherically symmetric Sét
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Ity Jump model

(?tf(:c,v,t) U - Vf(fll',?],t) —

S, pl(x, v, 0", t) f(x, v, t) — T[S, p](x, v, v, 1) f(x,v,t))dv" .



\elocity jJump model
Orf(x,v,t) +v-Vf(z,v,t) =

/V(T[S, pl(x, v, 0" t) f(x, v, t) — T[S, pl(x,v",v,t) f(x,v,t))dv" .

f(x,v,t) = cell density in space-time poift, ¢) with
velocity v (phase-space dens)ty
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Ity Jump model

—n
|

f(:lj,,l},t) )
f(z,v',1)
T:Sa :0: — T:‘97 p:(x,v,v’,t) 7
T[S, p T[S, p|(x, v, v,t).

~h
|




\elocity jJump model

Notation
f — f(aj7v7t) Y
f/ — f(:lj’ U/7t) Y
T[S,p] = T[S, p|(z,v,v 1),
T*[S,p] = TI[S,p|(z, v, v,1).
Equation

Of +0-Vf = [ (TSlf =TI, p10)a0
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\elocity jJump model

= This is an example of a Boltzmann-type
Integro-differential equation (kinetic model).
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This is an example of a Boltzmann-type
Integro-differential equation (kinetic model).

The “macroscopic” density is related to the
“microscopic” densityf by

p(x,t) = /Vf(a:,v,t)dv.
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This is an example of a Boltzmann-type
Integro-differential equation (kinetic model).

The “macroscopic” density is related to the
“microscopic” densityf by

p(x,t) = /Vf(a:,v,t)dv.

We should consider also an equation for
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Keller-Segel model

Mathematical model for chemotaxis introduced by Patl
(1953) and Keller and Segel (1970).
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Mathematical model for chemotaxis introduced by Patl
(1953) and Keller and Segel (1970).

Keller-Segel equations:

Op = V- (DVp—x(S)B(p)pVS),

S
© owX N
|-

cell density,

density of chemo-attractant
chemotactic sensitivity
diffusion coefficients
Interaction betweep and.S.
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-Segel mode!

pical example of interaction

p(S,p) = ap—BS,
tha > 0,5 > 0.



Keller-Segel model

= Typical example of interaction

w(S,p) =ap—BS,

with o > 0, G > 0.
= Finite-time-blow-up:

}1_% (11 )| poemny + 1S5 )| poommy) = 00

EX: p(-,T) — 0.
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Re-scaling

Let us go back to the Othmer-Dunbar-Alt model:

Of +v-Vf= /V(T[S, plf' = T[S, p)dv’ .
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Re-scaling

Let us go back to the Othmer-Dunbar-Alt model:

Of +v-Vf= /V(T[S, plf' = T[S, p)dv’ .

Re-scaling

¥ = x/fxg, t = t/ty, Vv = v/y,

T = T/Ty, 5 S/So, p
= flh

p/p07
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Re-scaling

of (%0 / / /
8?5 Qf()/t()/v vf OUO 0 V( f f) [%
0S to oy Polo
— = —DyAS H toS
57 72 0 3 p — Qalo
p = Jod fdv.
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af vo / / /
| - = Tyt | (T —T*f)dv
ot Z'O/t()v vf 0Up Lo V( f f) U
a—s = t—ODQAS | OélpOtO,O OéQtOS,
ot

We impose thdaliffusive scalingt, ~ z3, normalizations
and

_ (E()/t()
Vo .
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Re-scaling

Of
—— = — [ (T T f)
8t+ v VI / L —

0S

A

> S+p—5,

p = fdv.

”

The kernell’ depends oa...
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Re-scaling

8f5 1 1 / /
- = - e — 5 Te — € d 9
at EU vf 52/‘/( f€ €f) (%
0S
- = ASE 6_587
o1 Tr

Pe — /fedv-
Vv

The solution depends on..
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Formal computations

Consider the turning kernel

Tc‘i[sv /0] — TO[Sg ,0] —|—€T1[S, p] + ..
such that

TolS,p] = A(S,p)(z,t)F(v),
S, p] = F(v)a(S,p)v- VS,

where

F >0, /dezl, /dev:O,
1% 1%

)\ZAmin>O
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Formal computations

Two possible examples are given by

T[S, p] = FW)A(S,p) +eF(v)a(S,pv- VS,
T[S, p] = ©(5(z,¢), S(z +eplp)v,t))F(v) ,
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Formal computations

Two possible examples are given by

T[S, p] = F()A(S,p) +eF(v)a(S,pv- VS,
T[S, p) = w(S(z,1),5(z +eplp)v,t))F(v),

We consider the formal expansion of the solutions:

fo = foteh+efat+ -,
S. = SQ—|—851—|—€2SQ—|—“°.
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Two possible examples are given by

L[S, p] = F()A(S,p) +eF(v)a(S,p)v- VS,
TS, p] = v(S(=,t),S(x +ep(p)v,t))F(v),

We consider the formal expansion of the solutions:

fo = fotefi+efot -,
S. = S()—I_E:Sl—I_EQSQ—I_"'.

We put these expansions in the model, match terms w
the same order af and solve the resulting system.
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Formal computations

In both cases thermal drift-diffusion limit is given by
the zeroth order equations (Othmer, Hillen)

V- (D(S()v ,OO)V,OO — X(So, Po)ﬂovso) ;

a15,00
0:Sy

ASy + po — So
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Formal computations

In both cases thermal drift-diffusion limit is given by
the zeroth order equations (Othmer, Hillen)

Opo = V - (D(S0,p0)Vpo — x(S0,p0)poVSo)
¢S ASy + po — So ,

where

|

D ‘— 2Fdul
(50, 20 n)\(soaﬂo)/vv .

(S py) = —5) ( /V U2de) .

nA(S()a /00)
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Gener al Picture (again...)

Models > 0 Limit modele — 0
Initial conditions P!l — Ol :=lim,_, !
| |
Time evolution | M_[V.] =0 M[P] =0
! !
Final state U (T) ? o(T)

I
O(t) = lim @.(1), ¢t <T

(in some sense) theM is the limit model ofM..
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Theorem (C., Markowich, Perthame, Schmeiser,
Hwang, Kang, Stevens, Rodrigues). Consider turning
kernels’. depending orb., V.S, andp. under mild
assumptions. Then, the solution of the kinetic model
(fz, Se) is such that

Pe — PO In LIQOC(Rn)7

S. — Sy inLL (R"),1<qg< o0,
VS. — VSyinLi .1<gqg< .

loc 7

where(pg, Sp) is the solution of the associated
Keller-Segel model.
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RIgor ous Results

By mild assumptiong/e mean:

62p. S| > (1 —eA(||S|lwrx)) F '

¢A[/07 3-2 / 2
= - dU S E A S 1,00 ]
where
¢S ,: T€[Sv IO]F/ _I_Te*[pv S]F
£ : 2 )
¢A . Tg[S,,O]F/_T;[,O, S]F
& : 2 )

and other more technical ones.
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Theorem (C., Markowich, Perthame, Schmeiser, Hwar
Kang, Stevens): Consider turning kernels such that:

0<T.[S.,VS.] < c1+eS(x+ev,t)+c3S(x—ev,t)
+c4|VS(z + ev,t)| + 5|V S(z — ev, )|,
co|VS(z + ev,t)| + 3| VS(x — ev', 1))
+¢4|V2S(z + ev, t)| + ¢5|V2S (2 — v, t)] .

VT[S, VS|

VAN

The kinetic model has global existence of solutions.

Kinetic models for chemotaxis p. :



Global Existence

Let us consider
I [S](z,v,v',t) = Y(S(z + ev, t) — S(z,t))
with ¢ > 4., > 0, increasing and (y) < Ay + B.
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Let us consider
1. [S)(z,v,v',t) = (S(z + ev,t) — S(z, 1))

with ¥ > 4., > 0, increasing and (y) < Ay + B.

Then the kinetic model has global existence of solutior
converges (in the drift diffusion limit) to thelassical
Keller-Segel model (which presents blow up).
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Theorem (C., Rodrigues): For certain classes of turnin
kernelsi.|S., VS, p:], such that ifp.(x,t) > p, then

T.1S.,VS., p)(z,v,0",t) = To[S:, VSe, pe|(z,v,0", 1) ,

and fore small enough, we conclude global existence
solution(f., S.).
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Theorem (C., Rodrigues): For certain classes of turnin
kernelsi.|S., VS, p:], such that ifp.(x,t) > p, then

T.1S.,VS., p)(z,v,0",t) = To[S:, VSe, pe|(z,v,0", 1) ,

and fore small enough, we conclude global existence
solution( f-, S.). Furthermore,

(5 )| Lo mey < max{p, ||0'||zo®n)} -
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Global Existence

Example:

T:1S,pl = XS, p)F +ca(S,p)Fv-VS,
T[S, p] = ¥(S(z+ep(p)v,t) — S(z,))F

with
a(S,p) =0, pup)=0, p=2p>0.
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Example:

T:15,p = ANS,p)F +ca(S,p)Fv-VS,
T[S, p] = ¢(S(z+eulp)v,t) — S(z,1))F
with
a(S,p) =0, up)=0, p=2p>0.

Corollary: For the limit Keller-Segel model, we can
conclude global existence of solutions. Furthermore, tl
cell density is bounded. (Hillen, Painter)

Op =V -(Vp—=0B(p)pVS), B(p)=0,p=p>0.
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Beyond Keller-Segel

Q:What is the meaning of blow up?
A:Changes of orders of magnitude with respect to the
certain variables.
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Q:What is the meaning of blow up?
A:Changes of orders of magnitude with respect to the

certain variables.

Q:ls blow up good or bad?
A: Blow up does not exists in nature, we should

look for models without blow up.
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Beyond Keller-Segel

Q:What is the meaning of blow up?

A:Changes of orders of magnitude with respect to the
certain variables.

Q:ls blow up good or bad?

A: Blow up does not exists in nature, we should
look for models without blow up.
A: Keller-Segel model cannot be valid after

certain time, so a realistic model should indicate that it
breaks down.
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we prevent blow up?



Beyond Keller-Segel

Q: Can we prevent blow up?
A: Yes. This was done in the kinetic level. Other
possibility Is given by Velazquez:

Bp=V - (vp H‘)st>

For anyu. > 0, there is global existence of solutions. Fc
1 = 0, solutions blow up In finite time.
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Beyond Keller-Segel

With

.., p] = ¥ (s (:p - fupv) S (x,t))

the solution exists globally and the drift-diffusion limit
(globally in timg Is the Velazquez’ model (C., Kang).
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Beyond Keller-Segel

‘/Global existence of solutions
/N

R E——

global-1n—time convergence

Velazquez® Model

local-in—time convergence

RN

e
(V A Ninetic Models €

Blow up Classical Keller Segel
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conclusions

Model (¢ > 0) Limit model (¢ — 0)
Closer tofirst principles | Phenomenological.
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Model (= > 0) Limit model (= — 0)

Closer tofirst principles | Phenomenological.
Detailed description. Simpler picture.
Difficult to handle. Easy to find solutions.
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Model (= > 0) Limit model (= — 0)

Closer tofirst principles | Phenomenological.
Detailed description. Simpler picture.
Difficult to handle. Easy to find solutions.

THE END
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