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Main Goal

To study two different levels of description for
chemotaxis and to study how these two levels are
related.
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General Picture

Consider akinetic modelMε with a certain
non-dimensional parameterε > 0.
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General Picture

Consider akinetic modelMε with a certain
non-dimensional parameterε > 0.

Consider the solutionΨε := (fε, Sε) (microscopic
variables), and considerΦε := (ρε, Sε) := (

∫

V
fεdv, Sε)

(macroscopic variables).

Let us define the limit

Φ := lim
ε→0

(ρε, Sε) .

Question:

Which is the set of equations thatΦ obey?
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General Picture

Modelε > 0 Limit model ε→ 0
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General Picture

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI

ε
−→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0

↓ ↓

Final state Ψε(T ) ? Φ(T )

If

Φ(t) = lim
ε→0

Φε(t) , t < T

(in some sense) thenM is the limit model ofMε.
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Chemotaxis

Figure 1: Life cycle of Dictyostelium discoideum. Picture made by

Florian Seigert and Kees Wiejer (Zoologisches Institut München Ludwig-

Maximilians-Universität München).
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Velocity jump model

Introduced by Alt (1980) and Othmer, Dunbar and
Alt (1988).
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Velocity jump model

Introduced by Alt (1980) and Othmer, Dunbar and
Alt (1988).

The cell goes in straight line for a certain
characteristic time and then changes its direction
from v′ to v (in a space-time point(x, t) in the
presence of the substanceS and cell densityρ)
according to a certain turning kernel
T [S, ρ](x, v, v′, t).
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Velocity jump model

Introduced by Alt (1980) and Othmer, Dunbar and
Alt (1988).

The cell goes in straight line for a certain
characteristic time and then changes its direction
from v′ to v (in a space-time point(x, t) in the
presence of the substanceS and cell densityρ)
according to a certain turning kernel
T [S, ρ](x, v, v′, t).

The set of all possible velocities is given by a
compact, spherically symmetric setV .
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Velocity jump model

∂tf(x, v, t) + v · ∇f(x, v, t) =
∫

V

(T [S, ρ](x, v, v′, t)f(x, v′, t) − T [S, ρ](x, v′, v, t)f(x, v, t))dv′ .
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Velocity jump model

∂tf(x, v, t) + v · ∇f(x, v, t) =
∫

V

(T [S, ρ](x, v, v′, t)f(x, v′, t) − T [S, ρ](x, v′, v, t)f(x, v, t))dv′ .

f(x, v, t) = cell density in space-time point(x, t) with

velocityv (phase-space density).
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Velocity jump model

Notation

f = f(x, v, t) ,

f ′ = f(x, v′, t) ,

T [S, ρ] = T [S, ρ](x, v, v′, t) ,

T ∗[S, ρ] = T [S, ρ](x, v′, v, t).
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Velocity jump model

Notation

f = f(x, v, t) ,

f ′ = f(x, v′, t) ,

T [S, ρ] = T [S, ρ](x, v, v′, t) ,

T ∗[S, ρ] = T [S, ρ](x, v′, v, t).

Equation

∂tf + v · ∇f =

∫

V

(T [S, ρ]f ′ − T ∗[S, ρ]f)dv′ .
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Velocity jump model

This is an example of a Boltzmann-type
integro-differential equation (kinetic model).
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Velocity jump model

This is an example of a Boltzmann-type
integro-differential equation (kinetic model).

The “macroscopic” densityρ is related to the
“microscopic” densityf by

ρ(x, t) =

∫

V

f(x, v, t)dv .

We should consider also an equation forS:

∂tS = D0∆S + ϕ(S, ρ) .
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Keller-Segel model

Mathematical model for chemotaxis introduced by Patlak
(1953) and Keller and Segel (1970).
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Keller-Segel model

Mathematical model for chemotaxis introduced by Patlak
(1953) and Keller and Segel (1970).

Keller-Segel equations:

∂tρ = ∇ · (D∇ρ− χ(S)β(ρ)ρ∇S) ,

∂tS = D0∆S + ϕ(S, ρ) .

ρ = cell density,
S = density of chemo-attractant,
χ = chemotactic sensitivity,

D,D0 = diffusion coefficients,
ϕ = interaction betweenρ andS.
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Keller-Segel model

Typical example of interaction

ϕ(S, ρ) = αρ− βS ,

with α > 0, β ≥ 0.
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Keller-Segel model

Typical example of interaction

ϕ(S, ρ) = αρ− βS ,

with α > 0, β ≥ 0.

Finite-time-blow-up:

lim
t→T

(

||ρ(·, t)||L∞(Rn) + ||S(·, t)||L∞(Rn)

)

= ∞ .

Ex: ρ(·, T ) → δa.
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Re-scaling

Let us go back to the Othmer-Dunbar-Alt model:

∂tf + v · ∇f =

∫

V

(T [S, ρ]f ′ − T ∗[S, ρ])dv′ .
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Re-scaling

Let us go back to the Othmer-Dunbar-Alt model:

∂tf + v · ∇f =

∫

V

(T [S, ρ]f ′ − T ∗[S, ρ])dv′ .

Re-scaling

x′ = x/x0 , t′ = t/t0 , v′ = v/v0 ,

T ′ = T/T0 , S′ = S/S0 , ρ′ = ρ/ρ0 ,

f ′ = f/f0 .
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Re-scaling

∂f

∂t
+

v0

x0/t0
v · ∇f = T0v

n
0 t0

∫

V

(Tf ′ − T ∗f) dv′ ,

∂S

∂t
=

t0
x2

0

D0∆S +
α1ρ0t0
S0

ρ− α2t0S ,

ρ =
f0v

n
0

ρ0

∫

V

f dv .
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Re-scaling

∂f

∂t
+

v0

x0/t0
v · ∇f = T0v

n
0 t0

∫

V

(Tf ′ − T ∗f) dv′ ,

∂S

∂t
=

t0
x2

0

D0∆S +
α1ρ0t0
S0

ρ− α2t0S ,

ρ =
f0v

n
0

ρ0

∫

V

f dv .

We impose thediffusive scaling: t0 ≈ x2
0, normalizations

and

ε =
x0/t0
v0

.
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Re-scaling

∂f

∂t
+

1

ε
v · ∇f =

1

ε2

∫

V

(Tεf
′ − T ∗

ε f) dv′ ,

∂S

∂t
= ∆S + ρ− S ,

ρ =

∫

V

f dv .

The kernelT depends onε...
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Re-scaling

∂fε

∂t
+

1

ε
v · ∇fε =

1

ε2

∫

V

(Tεf
′
ε − T ∗

ε fε) dv
′ ,

∂Sε

∂t
= ∆Sε + ρε − Sε ,

ρε =

∫

V

fε dv .

The solution depends onε...
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Formal computations

Consider the turning kernel

Tε[S, ρ] = T0[S, ρ] + εT1[S, ρ] + · · ·

such that

T0[S, ρ] = λ(S, ρ)(x, t)F (v) ,

T1[S, ρ] = F (v)a(S, ρ)v · ∇S ,

where

F > 0 ,

∫

V

Fdv = 1 ,

∫

V

vFdv = 0 ,

λ ≥ λmin > 0
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Formal computations

Two possible examples are given by

Tε[S, ρ] = F (v)λ(S, ρ) + εF (v)a(S, ρ)v · ∇S ,

Tε[S, ρ] = ψ(S(x, t), S(x + εµ(ρ)v, t))F (v) ,
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Formal computations

Two possible examples are given by

Tε[S, ρ] = F (v)λ(S, ρ) + εF (v)a(S, ρ)v · ∇S ,

Tε[S, ρ] = ψ(S(x, t), S(x + εµ(ρ)v, t))F (v) ,

We consider the formal expansion of the solutions:

fε = f0 + εf1 + ε2f2 + · · · ,

Sε = S0 + εS1 + ε2S2 + · · · .
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Formal computations

Two possible examples are given by

Tε[S, ρ] = F (v)λ(S, ρ) + εF (v)a(S, ρ)v · ∇S ,

Tε[S, ρ] = ψ(S(x, t), S(x + εµ(ρ)v, t))F (v) ,

We consider the formal expansion of the solutions:

fε = f0 + εf1 + ε2f2 + · · · ,

Sε = S0 + εS1 + ε2S2 + · · · .

We put these expansions in the model, match terms with
the same order ofε and solve the resulting system.
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Formal computations

In both cases theformal drift-diffusion limit is given by
the zeroth order equations (Othmer, Hillen)

∂tρ0 = ∇ · (D(S0, ρ0)∇ρ0 − χ(S0, ρ0)ρ0∇S0) ,

∂tS0 = ∆S0 + ρ0 − S0 ,
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Formal computations

In both cases theformal drift-diffusion limit is given by
the zeroth order equations (Othmer, Hillen)

∂tρ0 = ∇ · (D(S0, ρ0)∇ρ0 − χ(S0, ρ0)ρ0∇S0) ,

∂tS0 = ∆S0 + ρ0 − S0 ,

where

D(S0, ρ0) :=
1

nλ(S0, ρ0)

∫

V

v2FdvI ,

χ(S0, ρ0) :=
a(S, ρ)

nλ(S0, ρ0)

(
∫

V

v2Fdv

)

.
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General Picture (again...)

Modelε > 0 Limit model ε→ 0

Initial conditions ΨI

ε
−→ ΦI := limε→0 ΦI

ε

↓ ↓

Time evolution Mε[Ψε] = 0 M[Φ] = 0

↓ ↓

Final state Ψε(T ) ? Φ(T )

If

Φ(t) = lim
ε→0

Φε(t) , t < T

(in some sense) thenM is the limit model ofMε.
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Rigorous results

Theorem (C., Markowich, Perthame, Schmeiser,
Hwang, Kang, Stevens, Rodrigues): Consider turning
kernelsTε depending onSε, ∇Sε andρε under mild
assumptions. Then, the solution of the kinetic model
(fε, Sε) is such that

ρε → ρ0 in L2
loc(R

n) ,

Sε → S0 in Lq
loc(R

n) , 1 ≤ q <∞ ,

∇Sε → ∇S0 in Lq
loc , 1 ≤ q <∞.

where(ρ0, S0) is the solution of the associated
Keller-Segel model.
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Rigorous Results

By mild assumptionswe mean:

φS
ε [ρ, S] ≥ γ(1 − εΛ(||S||W 1,∞))FF ′ ,

∫

V

φA
ε [ρ, S]2

FφS
ε [ρ, S]

dv′ ≤ ε2Λ(||S||W 1,∞) ,

where

φS
ε :=

Tε[S, ρ]F
′ + T ∗

ε [ρ, S]F

2
,

φA
ε :=

Tε[S, ρ]F
′ − T ∗

ε [ρ, S]F

2
,

and other more technical ones.
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Global Existence

Theorem (C., Markowich, Perthame, Schmeiser, Hwang,
Kang, Stevens): Consider turning kernels such that:

0 ≤ Tε[Sε,∇Sε] ≤ c1 + c2S(x+ εv, t) + c3S(x− εv′, t)

+c4|∇S(x+ εv, t)| + c5|∇S(x− εv, t)| ,

|∇Tε[Sε,∇Sε]| ≤ c2|∇S(x+ εv, t)| + c3|∇S(x− εv′, t)|

+c4|∇
2S(x+ εv, t)| + c5|∇

2S(x− εv, t)| .

The kinetic model has global existence of solutions.
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Global Existence

Let us consider

Tε[S](x, v, v′, t) = ψ(S(x + εv, t) − S(x, t))

with ψ ≥ ψmin > 0, increasing andψ(y) ≤ Ay +B.

Kinetic models for chemotaxis– p. 21



Global Existence

Let us consider

Tε[S](x, v, v′, t) = ψ(S(x + εv, t) − S(x, t))

with ψ ≥ ψmin > 0, increasing andψ(y) ≤ Ay +B.
Then the kinetic model has global existence of solution,
converges (in the drift diffusion limit) to theclassical
Keller-Segel model (which presents blow up).
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Global Existence

Theorem (C., Rodrigues): For certain classes of turning
kernelsTε[Sε,∇Sε, ρε], such that ifρε(x, t) ≥ ρ̄, then

Tε[Sε,∇Sε, ρε](x, v, v
′, t) = T0[Sε,∇Sε, ρε](x, v, v

′, t) ,

and forε small enough, we conclude global existence of
solution(fε, Sε).
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Global Existence

Theorem (C., Rodrigues): For certain classes of turning
kernelsTε[Sε,∇Sε, ρε], such that ifρε(x, t) ≥ ρ̄, then

Tε[Sε,∇Sε, ρε](x, v, v
′, t) = T0[Sε,∇Sε, ρε](x, v, v

′, t) ,

and forε small enough, we conclude global existence of
solution(fε, Sε). Furthermore,

||ρε(·, t)||L∞(Rn) ≤ max{ρ̄, ||ρI||L∞(Rn)} .
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Global Existence

Example:

Tε[S, ρ] = λ(S, ρ)F + εa(S, ρ)Fv · ∇S ,

Tε[S, ρ] = ψ(S(x+ εµ(ρ)v, t) − S(x, t))F

with
a(S, ρ) = 0 , µ(ρ) = 0 , ρ ≥ ρ̄ > 0 .
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Global Existence

Example:

Tε[S, ρ] = λ(S, ρ)F + εa(S, ρ)Fv · ∇S ,

Tε[S, ρ] = ψ(S(x+ εµ(ρ)v, t) − S(x, t))F

with
a(S, ρ) = 0 , µ(ρ) = 0 , ρ ≥ ρ̄ > 0 .

Corollary: For the limit Keller-Segel model, we can
conclude global existence of solutions. Furthermore, the
cell density is bounded. (Hillen, Painter)

∂tρ = ∇ · (∇ρ− β(ρ)ρ∇S) , β(ρ) = 0 , ρ ≥ ρ̄ > 0 .
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Beyond Keller-Segel

Q:What is the meaning of blow up?
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Beyond Keller-Segel

Q:What is the meaning of blow up?
A:Changes of orders of magnitude with respect to the
certain variables.
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Beyond Keller-Segel

Q:What is the meaning of blow up?
A:Changes of orders of magnitude with respect to the
certain variables.

Q:Is blow up good or bad?
A:Bad: Blow up does not exists in nature, we should
look for models without blow up.
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Beyond Keller-Segel

Q:What is the meaning of blow up?
A:Changes of orders of magnitude with respect to the
certain variables.

Q:Is blow up good or bad?
A:Bad: Blow up does not exists in nature, we should
look for models without blow up.
A:Good: Keller-Segel model cannot be valid after
certain time, so a realistic model should indicate that it
breaks down.
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Beyond Keller-Segel

Q: Can we prevent blow up?
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Beyond Keller-Segel

Q: Can we prevent blow up?
A: Yes. This was done in the kinetic level. Other
possibility is given by Velazquez:

∂tρ = ∇ ·

(

∇ρ−
ρ

1 + µρ
∇S

)

For anyµ > 0, there is global existence of solutions. For
µ = 0, solutions blow up in finite time.
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Beyond Keller-Segel

With

Tε,µ[S, ρ] = ψ

(

S

(

x+
ε

1 + µρ
v

)

− S (x, t)

)

the solution exists globally and the drift-diffusion limit
(globally in time) is the Velazquez’ model (C., Kang).
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Beyond Keller-Segel
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Blow up Classical Keller Segel

global−in−time convergence

local−in−time convergence

Global existence of solutions
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Conclusions

Model (ε > 0) Limit model (ε→ 0)
Closer tofirst principles. Phenomenological.
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Closer tofirst principles. Phenomenological.
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Conclusions

Model (ε > 0) Limit model (ε→ 0)
Closer tofirst principles. Phenomenological.

Detailed description. Simpler picture.
Difficult to handle. Easy to find solutions.

THE END
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