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“Make your theory as simple as possible, but no
simpler”

A.Einstein
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1. Introduction: the description of the
system

A primary tumor grows somewhere;

• through angiogenesis, the tumor spreads (inde-
pendent) cells which form secondary tumors
(metastases); they grow and spread cells as the
primary one.

• Aim: to describe the distribution of the metas-
tases as a function of size and time.

Reference work ([IKS]: description of the system, de-
terministic approach and comparison with experimen-
tal data):

K.Iwata, K.Kawasaki, N.Shigesada,
A Dynamical Model for the growth and size distribu-
tion of multiple metastatic tumors.
J.Theor. Biol. 203, 177-186,(2000)
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2. The deterministic model

A revised version of IKS:

J.Struckmeier,
A mathematical investigation of a dynamical model
for the growth and size distribution of multiple meta–
static tumors.
Preprint Inst Angew. Math. Hamburg 277, (2003)

The IKS model:

• Deterministic growth law in the continuum (i.e.
the number of its cells is considered as a contin-
uous variable xp ∈ [1,∞]),

ẋp = g(xp)

g is Gomperztian i.e. g(z) = az log b/z, a ≈
3 · 10−3day−1, b ≈ 1010.

Explicit solution, with xp(0) = 1,

xp(t) = b exp(−(log b) exp(−at))

(from these data: it takes 300 days to reach the
size 106, and 700 to get 109)
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• Spreading of sparse, one-cell secondary tumours
(i.e. metastases) happens with a rate

β(xp) = mxα
p , m ≈ 5 · 10−8, α ∈ (0, 1]

The parameter α describes the (fractal) ge-
ometry of the capillary network in the tumor:
α ≈ 2/3 means that the network is essentially
on the surface of the tumors, while α ≈ 1 means
a bulk structure of the network; m is the colo-
nization rate.

These metastases grow and produce other me–
tastases with the same laws as the primary.

• Issue: to determine the distribution ρ(x, t) as a
function of the size x and the time t.
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ρ is the solution of a linear first order PDE (i.e. the
Liouville eq. for the growth flow in the continuum
approximation),

∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, x > 1, t > 0

Boundary condition at x = 1 (=incoming flux there,
due to the primary and to the proliferation process):

g(1)ρ(1, t) =

∫ ∞

1

β(x)ρ(x, t)dx + β(xp)

Initial condition

ρ(x, 0) = 0, x > 1
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Remarks:

• The solution is discontinuous along the growth
curve {(t, xp(t), t > 0} in the (t, x)−plane.

• From asymptotic analysis: the distribution grows
in time with a dominant exponential, and for
fixed large time the dependence on x may be
either decreasing or U-shaped (i.e. with an inter-
nal minimum). This depends on the parameters:
given a,m, b as before, a change in α from .66 to
.4 determines this qualitative change ([IKS]).

ρ

x
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Figure 1. Qualitative graphs of two distribution functions for α = .66 (thick)
and α = .4 (thin).
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3. The stochastic model: generalities

Individual evolution of primary and secondary tu-
mors is modeled as a birth-death process, where drift
(=birth-death rates) behaves as the deterministic one,
but with the new feature of being absorbed in 0 (a.s.
extinction).

For large sizes: the behavior is not very different
from the predicted by the deterministic model,

E. Renshaw (1991) Modelling Biological Popula-
tions in Space and Time. Cambridge

For small sizes (e.g. x = 1), fluctuations are more
relevant, in particular absorption in 0 may change
things qualitatively.

This is particularly relevant in the colonization pro-
cess, where single clonal cells (i.e. minimum size) are
created.
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3.1. Stochastic description of the single-
tumor evolution. A single tumor evolves like an
inhomogeneous Random Walk X(·) on Z+, the one-
dimensional space of nonnegative sizes (= sites)

Z+ = {0, 1, 2, ..} ≡ {0} ∪ Z+

with nonnegative rates of one-step jump λn (up) and
µn (down), which are positive for n > 0 and null in 0.

Let λn and µn be such that the net drift λn−µn ≈
the deterministic, Gompertz law.

E.g.

λn = an log(b+1); µn = an log(n+1), n = 0, 1, 2, ...

Let Q be the tridiagonal matrix:
Qi,i = −(λi + µi), i = 0, 1, ..

Qi,i−1 = µi, i = 1, 2, ..;

Qi,i+1 = λi, i = 0, 1, ..;

Qi,k = 0 otherwise

Let P (t) denote the transition probability matrix, we
then get for the nonhomogeneous random walk on Z+:

Ṗ = QP, (Backw. Equ.)

Ṗ = PQ, (Forw. Equ.)
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3.2. Stochastic description of the many-
tumor evolution. The system is a like a gas of
identical independent RW’s.

ηk(t), k = 1, 2, .. is the occupation number of the
site k, at time t; their expected values are

ρk(t) =< ηk(t) >= (ρ(t))k

Colonization rate and its expected value:

C(η) =
∑

βnηn, c(t) = 〈C(η)〉 =
∑

βnρn(t)

e1 is the vector s.t. (e1)k = δ1k, k = 1, 2, ...

Equation of motion for the vector ρ(t), with Q re-
stricted to the transient set Z+.

ρ̇ = ρQ + C(ρ)e1

ρ0 = e1

(3.1)

A closed equation for the expected colonization rate
C(ρ(t) ≡ c(t):

ρk(t) = P1,k(t) +

∫ t

0

c(s)P1,k(t− s)ds, k = 1, 2, ..

ρ0 = e1
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Multiplying by βk and summing up,∑
βkρk(t) =

∑
βkP1,k(t) +

∫ t

0

c(s)
∑

βkP1,k(t− s)ds

Let
γ1(t) ≡

∑
βkP1,k(t) = 〈βX(t)〉 > 0

In compact form

c(t) = γ1(t) +

∫ t

0

c(s)γ1(t− s)ds
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Proposition

If the colonization constant m in the definition
of β· is suitably chosen, the asymptotic behavior
of c(t) may be exponentially small, constant, or
exponentially increasing as t →∞.

Sketch of the proof.
X(t): RW with a drift which is positive just in Z+∩

[1, b]: there is a positive decay constant Λ+ for the
transition probabilities restricted to the transient class
Z+. The exponential estimate (actually, in time t and
in space k ∈ Z+)

P1,k ≤ Mke
−Λ+t

gives

γ1(t) ≤ mβe−Λ+t, where β =
∑

kαMk

Let

A0 =

∫ ∞

0

γ1(t)dt, A1 =

∫ ∞

0

tγ1(t)dt

(their values depend on the colonization parameter
m). γ̂1(z) is the Laplace transform of the positive
function γ1.

γ̂1(z) =

∫ ∞

0

e−ztγ1(t)dt
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ĉ(z) =
γ̂1(z)

1− γ̂1(z)
Laplace transform for small z ⇒ asymptotics in large
t:

• if A0 = γ̂1(0) < 1,

ĉ(z) =
γ̂1(z)

1− γ̂1(z)
=

γ̂1(z)

1− γ̂1(0) + o(z)

so that

c(t) → 0, for t →∞

• if A0 = γ̂1(0) = 1,

c(t) → A0

A1
, as t →∞

• if A0 = γ̂1(0) > 1, calling σ > 0 the positive
root of γ̂1(z) = 1, and defining

A′
0 =

∫ ∞

0

e−σtγ1(t)dt, A′
1 =

∫ ∞

0

te−σtγ1(t)dt

we get

c(t) ∼ eσtA
′
0

A′
1

, as t →∞
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This result on the colonization rate may be plugged
in the equation for ρ obtaining the analogous results
for the expected occupation numbers.

Proposition.

The expected occupation numbers for the “meta–
static” process go to zero, to a constant, or grow
asymptotically in an exponential way, according to
suitable values of the colonization constant m.

Sketch of the proof:

by passing to Laplace transform, and using the pre-
ceding results on c(t), we get first

ρ̂k(z) = P̂1,k(z) + ĉ(z)P̂1,k(z) =

P̂1,k(z)(1 + ĉ(z)) = P̂1,k(z)(
1

1− γ̂1(z)
)

In this Laplace-transform form, the resolvent is the
same which appears before, so that we get the same
asymptotics as before.
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4. Comparisons and perspectives

This behavior is clearly very different from the de-
terministic one, and it may give a way to model the
“dormancy”, (i.e. long time survival of very small
metastases, as particles in a metastable situation).

Seminars in Cancer Biology, n.4, 11, (2001)

It should be interesting to study the whole process
by introducing the notion of “quasistationarity”.

E.A. van Doorn Quasi-stationary distributions and
convergence to quasi-stationarity of birth-death pro-
cess. Ann. Appl. Probab. 23 , 683-700, (1991)

A difficulty is the procedure sketched above: the
ergodic behavior for the individual evolution is estab-
lished in a very long time, and this sure event happens
after (astronomically) long times. What is really ob-
served in the long time for the individual evolution? It
is a stationary distribution, conditioned of not having
been absorbed before (quasistationary distribution).
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Further perspective: model the system in the con-
tinuum, like [IKS], but adding a stochastic fluctuation.

I.e. Diffusion approximation of the population pro-
cess:

Ricciardi, Luigi M., Stochastic population theory:
diffusion processes, in Mathematical Ecology, Bioma–
thematics, 17, Springer, 1986

The diffusion coefficient comes out to be propor-
tional to the size, and the drift coefficient may be
corrected near the origin with a small trap, i.e. the
associated potential has a deep minimum in the large
asymptotic site, and a narrow (how deep?) one near
the origin.

An exploration of the combined effect of this cor-
rection together with the absorption may give some
information on a possible metastable situation, where
particles stay long time around the origin.

G.N.Naumov, I.C. McDonald, A.F.Chambers, A.C.
Groom, Solitary cancer cells as a possible source of
tumour dormancy?, Sem. in Cancer Biology, 11,
271-276, (2001)


