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ABSTRACT. Let F,, be a free group with m generators and let R
be its normal subgroup such that F,,/R projects onto Z. We give
a lower bound for the growth rate of the group F,,/R’ (where R’ is
the derived subgroup of R) in terms of the length p = p(R) of the
shortest non-trivial relation in R. It follows that the growth rate
of F,,/R' approaches 2m — 1 as p approaches infinity. This implies
that the growth rate of an m-generated amenable group can be
arbitrarily close to the maximum value 2m — 1. This answers an
open question of P. de la Harpe. We prove that such groups can
be found in the class of abelian-by-nilpotent groups as well as in
the class of virtually metabelian groups.

1. INTRODUCTION

Let G be a finitely generated group and A a fixed finite set of gener-
ators for G. We denote by ¢(g) the word length of an element g € G in
the generators A, i.e. the length of a shortest word in the alphabet A*!
representing g. Let B(n) denote the ball {g € G | ¢(g) < n} of radius n
in G with respect to A. The growth rate of the pair (G, A) is the limit

w(G,A) = nhﬂr{)lc> V|B(n)l.

(Here | X| denotes the number of elements of a finite set X.) This limit
exists due to the submultiplicativity property of the function |B(n)|, see
for example [5, VI.C, Proposition 56]. Clearly, w(G, A) > 1. A finitely
generated group G is said to be of exponential growth if w(G,A) > 1
for some (which in fact implies for any) finite generating set A. Groups
with w(G, A) = 1 are groups of subexponential growth.

Let |A| = m. It is known that w(G, A) = 2m — 1 if and only if G
is freely generated by A [3, Section V]. In this case G is non-amenable
whenever m > 1.

A finitely generated group which is nonamenable is necessarily of
exponential growth [1]. The following interesting question is due to
P. de la Harpe.
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Question. [5, VI.C 62| For an integer m > 2, does there ezist a con-
stant ¢, > 1, with ¢, < 2m — 1, such that G is not amenable whenever

w(G,A) > ¢ ?

We show that the answer to this question is negative. Thus, given
m > 2, there exists an amenable group on m generators with the growth
rate as close to 2m — 1 as one likes.

It is worth noticing that for every m > 2 there exists a sequence
of non-amenable groups (even containing non-abelian free subgroups)
whose growth rates approach 1 (see [4]).

For a group H, by H' we denote its derived subgroup, that is, [H, H].
The authors thank A. Yu. Ol’'shanskii for helpful comments.

2. RESULTS

Let F,, be a free group of rank m with free basis A. Suppose that
R is a normal subgroup of F,,,. Assume that there is a homomorphism
¢ from F,,, onto an infinite cyclic group whose kernel contains R (that
is, F,,/R has the additive group Z as a homomorphic image). By a we
denote a letter from A*! such that

$(a) = max{ ¢(z) | v € AF'}.
Clearly, ¢(a) > 1.

Throughout the paper, we fix a homomorphism ¢ from F;, onto Z,
the letter a described above and the value C' = ¢(a). By R we will
usually denote a normal subgroup in F;, that is contained in the kernel

of ¢.

A word w in A*! is called good whenever it satisfies the following
conditions:

(1) w is freely irreducible,

(2) the first letter of w is a,

(3) the last letter of w is not a™,
)

(4) ¢(w) >
Let Dy be the set of all good words of length k and let dy, = |Dy].

Lemma 1. The number of good words of length k > 4 satisfies the
following inequality:

(1) dy, > 4m(m — 1)*(2m — 1)**

In particular, klim d,lc/k =2m — 1.
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Proof. Let av be a word of length k. It will be good if v is a freely
irreducible word that starts and ends with letters different from a~! and
such that ¢(v) > 0. Let Q be the set of all freely irreducible words v of
length & — 1 satisfying ¢(v) > 0. The number of all freely irreducible
words of length k — 1 equals 2m(2m — 1)¥=2. At least half of them has
a nonnegative image under ¢. So |Q| > m(2m — 1)k=2.

Let €4 be the subset of 2 that consists of all words whose initial letter
is different from a~'. We show that || > ((2m —2)/(2m —1))|Q]. Tt
is sufficient to prove that [ N AF'u| > ((2m—2)/(2m —1))|Q2N A* |
for any word u of length k — 2. Suppose that a~'u belongs to Q. For
every letter b one has ¢(b) > ¢(a~!). Therefore bu € Q; for every letter
b # a~! if bu is irreducible. There are exactly 2m — 2 ways to choose a
letter b with the above properties. Hence |€; N A¥!u| and |Q N A%y
have 2m — 2 and 2m — 1 elements, respectively. If a~'u & €, then the
two sets coincide.

Now let €29 denote the subset of €2; that consists of all words whose
terminal lettre is different from a=!. A similar argument implies that

€] > ((2m —2)/(2m — 1))[€0].
It is obvious that av is good if v € 5. Therefore the number of good
words is at least
2m — 2 <2m -2

Q] > QO >
T LU Gy

)2 Q| > 4m(m — 1)*(2m — 1)*.

0

To every word w in A*! one can uniquely assign a path p(w) in the
Cayley graph C = C(F/R, A) of the group F'/R with A the generating
set. This is the path that has label w and starts at the identity. We
say that a path p is self-avoiding if it never visits the same vertex more
than once.

Let p = p(R) be the length of the shortest non-trivial element in a
normal subgroup R < F,.

Lemma 2. Let R be a normal subgroup in F,, that is contained in
the kernel of a homomorphism ¢ from F,, onto Z. Suppose that k > 2
1s chosen in such a way that the following inequality holds:

(2) p(R) > Ck(2k — 3) + 2k — 2.

Then any path in the Cayley graph C of F,,/ R labelled by a word of the
form g1gs - - - g, wheret > 1, gs € Dy, for all1l < s <'t, is self-avoiding.

Proof. Suppose that p is not self-avoiding, and consider a minimal sub-
path ¢ between two equal vertices. Clearly, |q| > p > k. Therefore,
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q can be represented as ¢ = ¢'g; - - - g;¢”, where g;, ..., g; are in Dy,
the word ¢’ is a proper suffix of some word in Dy, the word ¢” is
a proper prefix of some word in Dy. We have |¢|,|¢"] < k —1 so
lgi...gj| > Ck(2k — 3). This implies that j — i + 1 (the number of
sections that are completely contained in q) is at least C'(2k — 3) + 1.
Obviously, ¢(¢g') > —C(k — 1) and ¢(¢") > —C(k — 2) (we recall that
g" starts with a if it is non-empty). On the other hand, ¢(gs) > 1
for all s. Hence ¢(g;---g;) > j—i+1 > C(2k —3)+ 1 and so
&(g'gi---9;9") > 1, which is obviously impossible because for every
r € R one has ¢(r) = 0. O

Theorem 1. Suppose that R is a normal subgroup in the free group
F,, that is contained in the kernel of a homomorphism ¢ from F,,
onto Z. Let C' be the maximum value of ¢ on the generators and their
inverses. Let p = p(R) be the length of the shortest cyclically irreducible
non-empty word in R. If the number k > 4 satisfies the inequality

(3) p> Ch(2k —3) + 2k — 1,

then the growth rate of F,,/ R with respect to the natural generators is
at least )
4 ] o\ 1/k
(om —1). (2mlm =17
(2m — 1)*

Proof. We use the following known fact [2, Lemma 1]: a word w belongs
to R if and only if, for any edge e, the path labelled by w in the Cayley
graph of the group F},/R has the same number of occurrences of e and
e~!. Hence distinct self-avoiding paths of length n in the Cayley graph
of F,,/ R represent distinct elements of the group F,,/R’. Moreover, all
the corresponding paths in the Cayley graph of F,,/R’ are geodesic so
these elements have length n in the group F,,/R’.

Suppose that the conditions of the theorem hold. For every n, one
can consider the set of all words of the form g9 ... ¢g,, where each g;
belongs to Dy. By Lemma 2 all these elements give us distinct self-
avoiding paths in the Cayley graph of F,/R. Hence for any n we have
at least d} different elements in the group F),,/R’ that have length kn.

Therefore, the growth rate of F,,/R’ is at least d,i/ . It remains to
apply Lemma 1. O

One can summarize the statement of Theorem 1 as follows: if all
relations of F,/R are long enough, then the growth rate of the group
F,./R'is big enough. Notice that we cannot avoid the assumption that
F,./ R projects onto Z. Indeed, for any number p, there exists a finite
index normal subgroup in F}, all of whose non-trivial elements have
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length greater than p. If R were such a subgroup, then F'/R' would be
a finite extension of an abelian group and so its growth rate would be
equal to 1.

Theorem 2. Let F,, be a free group of rank m with free basis A and
let ¢ be a homomorphism from F,, onto Z. Suppose that

ker¢p >Ry >Ry >+ >R, > -

15 a sequence of normal subgroups in F,, with trivial intersection. Then
the growth rates of the groups F,,/R., approach 2m—1 asn approaches
infinity, that is,

lim w(F,/R;,A) =2m — 1.

n—oo
Proof. Since the subgroups R,, have trivial intersection, the lengths of
their shortest non-trivial relations approach infinity, that is, p(R,) —

oo as n — 00. Let k(n) = [\/p(Rn)/QC}, where C'is defined in terms

of ¢ as above. Obviously the inequality (3) holds and k(n) — oc.
Theorem 1 implies that the growth rates of the groups F,,,/ R}, approach
2m — 1. 0

Now we show that for every m there exists an amenable group with
m generators whose growth rate is arbitrarily close to 2m — 1.

Theorem 3. For every m > 1 and for every € > 0, there exists
an m-generated amenable group G, which is an extension of an abelian
group by a nilpotent group such that the growth rate of G is at least
2m —1—e.

Proof. 1t suffices to take the lower central series in the statement of
Theorem 2 (that is, Ry = F!, Riy1 = [R;, F),] for all ¢ > 1). The
subgroups R,, (n > 1) have trivial intersection and they are contained
in F) and hence certainly lie in kernels of epimorphisms to Z. The
groups G,, = F,,,/ R}, are extensions of (free) abelian groups R,,/R], by
(free) nilpotent groups F,/R, and so they are all amenable. Their
growth rates approach 2m — 1. O

One can take instead the sequence R, = F&”) of iterated derived
subgroups (that is, Ry = F, R;11 = R. for all i > 1). It is not hard to
show that p(R,) grows exponentially. The groups F,,/R), = F,,,/Rn+1
are free soluble. Their growth rates approach 2m — 1 very quickly. For
instance, the growth rate of the free soluble group of degree 15 with 2
generators is greater than 2.999.

One more application of Theorem 3 can be obtained as follows. The
group F},, has countably many finite index normal subgroups and so one
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can enumerate them as Ny, No, ..., N;, ... . Let M; = Ny\NNyN---NN;
and let R; = M for all ¢ > 1. Obviously, the subgroups M; (and thus
R;) have trivial intersection since F, is residually finite. As above, all
subgroups R; are contained in F! and so in kernels of epimorphisms
to Z. Hence the growth rates of the groups F,,,/R; = F,,/M] approach
2m —1. These groups are extensions of M; /M by F,,/M;, that is, they
are finite extensions of (free) metabelian groups.

Therefore there exist m-generated groups with growth rates approach-
ing 2m—1 in each of the following: (1) the class of extensions of abelian
groups by nilpotent groups, and (2) the class of finite extensions of
metabelian groups.

Remark. A. Yu. Ol'shanskii suggested the following improvement.
Let p be a prime. Since F}, is residually a finite p-group, there is a chain
My > My > --- of normal subgroups with trivial intersection, where
each F,,/M; is a finite p-group. Let R; = ker ¢ N M;. The group F,,/R;
is a subdirect product of Z and a finite p-group. In particular, it is
nilpotent. Moreover, it is also an extension of Z by a finite p-group and
an extension of a finite p-group by Z. So F),,/R; will be both abelian-
by-nilpotent and metabelian-by-finite. (In fact, the metabelian part is
an extension of an abelian group by Z.) Also F,, /R, is an extension of
a virtuall abelian group by Z.
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