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A dichotomy for finitely generated subgroups of word
hyperbolic groups

Goulnara N. Arzhantseva

Abstract. Given L > 0 elements in a word hyperbolic group G, there exists
a number M = M(G, L) > 0 such that at least one of the assertions is true:
(i) these elements generate a free and quasiconvex subgroup of G; (ii) they are
Nielsen equivalent to a system of L elements containing an element of length at
most M up to conjugation in G. The constant M is given explicitly. The result
is generalized to groups acting by isometries on Gromov hyperbolic spaces. For
proof we use a graph method to represent finitely generated subgroups of a
group.

1. Introduction

Let H be a subgroup of a word hyperbolic group G. It is known that either H
is elementary (that is, it contains a cyclic subgroup of finite index) or H contains a
non-abelian free subgroup of rank two. In the case G is torsion-free, there are, up
to conjugacy, finitely many Nielsen equivalence classes of non-free subgroups of G
generated by two elements [3].

Our main result gives a sufficient condition for H to be free and quasiconvex
in G. It is an improvement of a result due to Gromov [4, 5.3.A].

Theorem 1. For any δ ≥ 0 and an integer L > 0 there exists a number
M = M(δ, L) > 0 with the following property.

Let G be a δ-hyperbolic group with respect to a finite generating set X and H
be a subgroup of G generated by h1, · · · , hL. Then at least one of the following
assertions is true.

(i) H is free on h1, · · · , hL and quasiconvex in G;
(ii) The tuple (h1, . . . , hL) is Nielsen equivalent to an L-tuple (h′

1, . . . , h
′
L) with

h′
1 conjugate to an element in G of word length at most M with respect to

X .
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The constant M = M(δ, L) can be calculated explicitly. Then, as an immediate
consequence of Theorem 1 we obtain Gromov’s result. Let

Rad H = 1/2 inf
h∈H\{id}

|[h]|,

where |[h]| = infh′ |h′| for all h′ ∈ G conjugate to h and |h| is the word length of h.
This is called the injectivity radius of H .

Theorem 2. (cf. [4, 5.3.A]) Let G be a δ-hyperbolic group and H be a sub-
group of G generated by L elements. If

Rad H ≥ 1
2

(
14400(δ+ 1)

ln 2
L2

)1+1/2

,

then H is free and quasiconvex1 in G.

The following result is a natural generalization of Theorem 1 to groups acting
on hyperbolic spaces.

Theorem 3. For any δ ≥ 0 and an integer L > 0 there exists a number
M = M(δ, L) > 0 with the following property.

Let G be a group on L generators g1, · · · , gL acting on a δ-hyperbolic space
(X, d) by isometries. Then at least one of the following assertions is true.

(i) G is free on g1, · · · , gL and for every x ∈ X the map G → X which assigns
to each g ∈ G the element gx ∈ X is a quasi-isometric embedding;

(ii) The tuple (g1, . . . , gL) is Nielsen equivalent to an L-tuple (g′1, . . . , g′L) with
d(g′1y, y) < M for some y ∈ X.

The constant M = M(δ, L) can be calculated explicitly.

For proof of Theorem 1 a representation of finitely generated subgroups of a
group by labelled graphs is used [1]. The technique is of independent interest. In
particular, transformations of a labelled graph defined below can be viewed as a
generalization of free reductions and Nielsen reductions of tuples of group elements.

Theorem 3 is obtained with essentially the same methods, except that, in our
arguments, instead of the word length metric, we refer to the metric on G induced
from the group action.

I was informed that Kapovich and Weidmann showed both results (without
an explicit estimate on the constant) independently of my work and by different
methods [6].

Acknowledgments This work has been done during my visit to University Luis
Pasteur, Strasbourg, May 2000. I thank Thomas Delzant for suggesting the problem
and hospitality. I also thank the referee for useful comments.

2. Auxiliary information

Let G be a group and X be a finite set of generators for G. We fix both for the
rest of the paper. All words are assumed to be in the alphabet X±1. We shall make
no essential distinction between words and elements of G. If w and v are words
then the notation w =G v means that they represent the same group element.

1This lower bound is not optimal. For example, one can take 1
2

(
14400(δ+1)

ln 2 L2
)1+ε

with

ε > 0 or a better constant satisfying condition (4) below.
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2.1. Graphs representing subgroups. Let Γ be a graph. By an edge of Γ
we mean a directed edge, i.e., an edge of Γ in the usual sense with any of its two
possible directions. If e is an edge of Γ then e−1 denotes the edge with the opposite
direction. A map ψ from the edges of Γ to X±1 is called a labelling function on
Γ if it satisfies ψ(e−1) = (ψ(e))−1 for any edge e. By the label ψ(p) of a path
p = e1e2 . . . ek of length k in Γ we mean the word ψ(e1)ψ(e2) . . .ψ(ek). The label
of a path of length 0 (which by definition is identified with a vertex of Γ) is the
empty word.

A labelled graph is a finite connected graph Γ with a labelling function ψ and a
distinguished vertex O. Any labelled graph Γ represents a subgroup H(Γ) of a free
group F = F (X ), which is the image of the fundamental group π1(Γ, O) under the
homomorphism induced by ψ. In other words, x ∈ H(Γ) if and only if x may be
represented by a word which can be read on a circuit at O.

It is easy to see that any finitely generated subgroup H ≤ F may be represented
by a labelled graph. To do this, we first take words h1, h2, · · · , hk in the alphabet
X±1 that represent generators of H . Next we take a rose of k circles attached to
a point O and make each of the circles a circuit labelled hi, 1 ≤ i ≤ k. For the
resulting labelled graph Γ, we obviously have H(Γ) = H .

We define two types of transformations of a labelled graph Γ, which preserve
the subgroup H(Γ) and which we call reductions. A transformation of the first type
is identification of two edges with the same label and the same initial vertex. A
transformation of the second type is removal of a vertex of degree 1 other than O,
together with the incident edge.

A labelled graph Γ is said to be reduced if it admits no reductions, that is, it
has no pair of edges with the same label and initial vertex and no vertices of degree
1 with the possible exception of the distinguished vertex O.

Starting from a labelled graph Γ with H(Γ) = H and performing all possible
reductions, we reach a reduced labelled graph which represents the subgroup H .
It is known [10, 8] that a reduced labelled graph representing a subgroup H ≤ F
is unique up to graph isomorphism (that is, it does not depend on the order of
reductions, the choice of the initial graph Γ, and the choice of generators for H).

If Γ is a reduced labelled graph then it is easy to see that a reduced word w
represents an element of H(Γ) if and only if w is the label of a reduced circuit at O
in Γ. It follows in particular that the label of a path p in Γ starting at O represents
an element of H(Γ) only if O is also the terminal vertex of p.

A finitely generated subgroup H of G can also be presented by a labelled graph
Γ. It suffices to consider the graph obtained from a lift of the subgroup generators
under the natural homomorphism F → G. However the reduced form of Γ is not
unique in this case. For Γ representing H ≤ G we introduce a transformation of
the third type as well, see [1].

Denote by p− (p+) the initial (terminal) vertex of a path p. By an arc we mean
a path p all of whose vertices except p− and p+ have degree 2 and are distinct from
the distinguished vertex O.

— (arc reduction) Let vertices O1 and O2 in Γ be joined by a path p so that
ψ(p) ≡ w and the word w is equal to some word v in G. Let q′ be an arc
in Γ which is a subpath of p. First let us add to Γ a new graph formed
by a single arc q with label ψ(q) ≡ v such that O1 = q− and O2 = q+
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are the only common points of the new graph and Γ. Then let us remove
from Γ all edges and vertices of q′ except q′− and q′+.

Remark. We remove an arc whenever we add another one. Hence the trans-
formations preserve the Euler characteristic of Γ which is the number of vertices
minus the number of edges. Thus if the fundamental group π1(Γ) of Γ is generated
by L loops, then for any graph Γ′ obtained from Γ by the transformations, π1(Γ′)
is L-generated as well.

Lemma 4. [1, Lemma 1] If a labelled graph Γ′ is carried into a labelled graph
Γ by transformations of types 1–3 or their inverses, then it represents the same
subgroup of G as Γ does.

2.2. Nielsen equivalence.

Definition 5. Let U = (u1, . . . , uk) and Ũ = (ũ1, . . . , ũk) be k-tuples of ele-
ments of G. They are Nielsen equivalent if U can be carried into Ũ by a finitely
many regular elementary Nielsen transformations defined as follows:

(t1) replace ui by u−1
i for some i;

(t2) replace ui by uiuj for some i ̸= j;
In both cases ut remains unchanged if t ̸= i.

Remark. If w1, · · · , wk are words we shall consider (w1, . . . , wk) as the k-tuple
of group elements represented by these words.

Note that the regular elementary Nielsen transformations generate a group
containing every permutation of the ui. It is obvious that if a k-tuple U is carried
by a regular elementary Nielsen transformation into a k-tuple Ũ , then they generate
the same subgroup of G. Proceeding by induction we see that Nielsen equivalent
tuples of group elements generate the same subgroup of G. Moreover, in a free
group any two bases of a finitely generated subgroup are Nielsen equivalent. Here
by a basis of a subgroup we mean a set of group elements freely generating the
subgroup. In general, this is not true for a non-free group G. However we have the
following

Lemma 6. Let H be a subgroup of G generated by elements represented by
words h1, · · · , hk. Let Γ be a graph obtained from a rose Ω of k circuits at a vertex
O labelled by h1, · · · , hk by transformations of 1-3 types or their inverses. Then for
any basis l1, · · · , lk of π1(Γ, O) the k-tuple (ψ(l1), . . . ,ψ(lk)) is Nielsen equivalent
to (h1, . . . , hk).

Proof. Let Γ be obtained from Ω by transformations of types 1–3 or their
inverses. Hence there is a sequence of graphs Γ0 = Ω, . . . , Γj , . . . , Γf = Γ, so that
Γi is carried into Γi+1 by only one transformation. If f = 0, i.e. Γ coincides
with Ω, the lemma obviously holds. Suppose that f > 0. We claim that for each
basis s1, · · · , sk of π1(Γj+1, O) there exists a basis t1, · · · , tk of π1(Γj , O) such that
(ψ(t1), . . . ,ψ(tk)) is Nielsen equivalent to (ψ(s1), . . . ,ψ(sk)). This is obvious if the
performed transformation is a reduction. For ti we take a loop in Γj which were
carried by the reduction into si, 1 ≤ i ≤ k (possibly ti and si coincide). Let’s
now consider an arc reduction. Let q be the added arc and q′ the removed arc.
By definition, there is a path p ∈ Γj with the same endpoints as q ∈ Γj+1 such
that p contains q′ as a subpath and ψ(p) =G ψ(q) in G. Let’s define ti ∈ Γj . We
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start with si ∈ Γj+1. We replace each entry of q in si by p. In such a way we
obtain loops ti at O in Γj , 1 ≤ i ≤ k . Clearly, it will be a basis of π1(Γj , O).
The k-tuple of elements represented by labels of these loops is Nielsen equivalent
to (ψ(s1), . . . ,ψ(sk)). Indeed, we have ψ(si) =G ψ(ti) as ψ(p) =G ψ(q) in G.

The claim is true for any 1 ≤ j ≤ f . Thus, for any basis l1, · · · , lk of π1(Γ, O)
there exists a basis l′1, · · · , l′k of π1(Ω, O) such that (ψ(l1), . . . ,ψ(lk)) is Nielsen
equivalent to (ψ(l′1), . . . ,ψ(l′k)). As it was mentioned above the labels of any two
bases of π1(Ω, O) represent Nielsen equivalent k-tuples. Hence (ψ(l′1), . . . ,ψ(l′k)) is
Nielsen equivalent to (h1, . . . , hk). This completes the proof. !

2.3. Word hyperbolic groups. For a background on word hyperbolic groups
we refer to [4, 5], and [2].

Let C(G) be the Cayley graph of G with respect to X . It is a graph whose set
of vertices is G and whose set of edges is G × (X±1). An edge (h, x) starts at the
vertex h ∈ G and ends at the vertex hx. We consider an edge (h, x) of C(G) as
labelled by the letter x. The label ϕ(ρ) of a path ρ = e1e2 . . . en in C(G) is the
word ϕ(e1)ϕ(e2) . . .ϕ(en) where ϕ(ei) is the label of the edge ei. We regard ϕ(ρ)
as an element of G. We endow C(G) with a metric by assigning to each edge the
metric of the unit segment [0, 1] and then defining the distance |g − h| to be the
length of a shortest path between g and h. Thus C(G) becomes a geodesic metric
space. Obviously, this metric on C(G) is invariant under the natural left action
of G. For any g ∈ G, we write |g| for the length of a shortest path from the unit
element to g. In particular, |g − h| = |g−1h|.

Definition 7. [4, 6.3.B] The Gromov product of points x and y of a metric
space M with respect to a point z ∈ M is defined to be

(x|y)z =
1
2
(|x − z| + |y − z|− |y − x|)

where |x − y| denotes the distance between x and y.
A geodesic metric space M is called δ-hyperbolic, for δ ≥ 0, if

(x|y)w ≥ min{(x|z)w, (z|y)w}− δ

for any x, y, z, w ∈ M.
A group G is δ-hyperbolic with respect to a finite generating set X if the Cayley

graph C(G) with respect to X is a δ-hyperbolic space. The group G is called word
hyperbolic if it is δ-hyperbolic for some δ ≥ 0 and X .

It turns out that the word hyperbolicity of a group is independent of the finite
generating set chosen [4, 2.3.E].

Lemma 8. [9, Lemma 21] Let c ≥ 14δ and c1 > 12(c + δ), and suppose that
a geodesic n-gon [x1, . . . , xn] in a δ-hyperbolic metric space satisfies the conditions
|xi−1 − xi| > c1 for i = 2, . . . , n and (xi−2|xi)xi−1 < c for i = 3, . . . , n. Then
the polygonal line ρ = [x1, x2] ∪ [x2, x3] ∪ · · · ∪ [xn−1, xn] is contained in the 2c-
neighbourhood of the side τ = [xn, x1], and the side τ is contained in the 14δ-
neighbourhood of ρ.

Corollary 9. Under the assumptions of the previous lemma there is a con-
stant λ = λ(c, c1) > 0 such that

|τ | ≥ λ∥ρ∥,



6 GOULNARA N. ARZHANTSEVA

where ∥ρ∥ is the length of the path ρ.

Proof. By the lemma, there exist points v1, . . . , vn on [xn, x1] such that |xi −
vi| ≤ 2c, 1 ≤ i ≤ n. The hypothesis of the lemma imply easily that vi−1 is located
between vi and vi−2. So,

|τ | =
n∑

i=2

|vi−1 − vi| ≥
n∑

i=2

(|xi−1 − xi|− 4c) = ∥ρ∥ − (n − 1)4c.

Taking λ = c/c1 and using ∥ρ∥ > (n − 1)c1 we obtain |τ |/∥ρ∥ ≥ λ. !

The following lemma is obvious as any side of a geodesic triangle in a δ-
hyperbolic space belongs to the 4δ-neighbourhood of the union of the other two
sides [5, Ch.2, Pr. 21].

Lemma 10. (cp. [4, § 7]) Let ρ be a path in a δ-hyperbolic space. Then for
every point A on a geodesic segment with the same endpoints as ρ

inf
B∈ρ

|A − B| ≤ 4δ log2 ∥ρ∥ + 1.

For a word w, the length ∥w∥ is the length of a path in C(G) labelled by w and
|w| is the length of a geodesic in C(G) between the same endpoints. If ∥w∥ = |w|
the word w is called a geodesic word. The notation w ≡ xy means that w can
be decomposed, as a word, into a product of two words which represent elements
x, y ∈ G. The following fact is known (see the proof of (P1, δ) ⇒ (P2, 4δ) in [5,
Ch.2, Pr. 21]). If G is δ-hyperbolic then

(H) for any two geodesic words u and v, if u ≡ u1u2, v ≡ v1v2 and |u1| = |v1| ≤
1
2 (|u| + |v|− |u−1v|) then |u−1

1 v1| ≤ 4δ.

Notice that if G is δ-hyperbolic then it is also δ′-hyperbolic for any δ′ > δ. So
we can always assume δ ≥ 1.

3. Proof of Theorem 1

From now on, we assume G to be word hyperbolic and fix a number δ ≥ 1 such
that (H) holds.

The following two lemmas are the main technical tools for the proof of our
theorems.

Lemma 11. Let δ ≥ 1, K > 16δ + 1. Let x be a word with |x| < K log2 ∥x∥
and ∥x∥ ≥ 24. Then there exists a subword y of x such that

1
2∥x∥ ≤ ∥y∥ < ∥x∥ and |y| < K log2 ∥y∥.

Proof. We denote by η a path starting at the unit vertex of the Cayley graph
C(G) and labelled by x. Let ρ be a geodesic path in C(G) with the same endpoints
as η and z be the label of ρ. Note that ∥z∥ = |x|. We take a middle point A on
ρ so that z = z1z2, where A is a terminal vertex of a subpath labelled by z1 and
∥z1∥ =

[
∥z∥
2

]
.

Suppose that ∥z∥ < 9δ log2 ∥x∥. Then, for a desired subword y we take x
without its terminal letter, i.e. ∥y∥ = ∥x∥ − 1. The assumption on ∥x∥, |x|, and K
implies easily the needed inequalities on ∥y∥ and |y|.
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The remaining case is ∥z∥ ≥ 9δ log2 ∥x∥. By Lemma 10, there is a point B on η
such that |A−B| ≤ 4δ log2 ∥η∥+1 = 4δ log2 ∥x∥+1. Then B gives a decomposition
of η into two subpaths labelled by words x1 and x2 with x = x1x2 and

|xi| ≤
K

2
log2 ∥x∥ + 4δ log2 ∥x∥ + 1 =

(
K

2
+ 4δ

)
log2 ∥x∥ + 1.

The words x1 and x2 are nontrivial which easily follows from the assumption on
∥z∥ and the bound on |A−B|. Hence ∥x∥

2 ≤ ∥xi∥ < ∥x∥ for i = 1 or i = 2. Without
loss of generality, we assume that ∥x1∥ ≥ ∥x2∥. Since ∥x∥ ≥ 24 and K > 16δ + 1
we have

|xi| ≤
(

K

2
+ 4δ

)
log2 ∥x∥ + 1 < K log2

∥x∥
2

≤ K log2 ∥x1∥.

Thus, we can take x1 for a desired subword y of x. !

Corollary 12. Let δ ≥ 1, K > 16δ + 1. Let D ≥ 24 and x be a word with
|x| < K log2 ∥x∥ and ∥x∥ ≥ D. Then there is a subword y of x such that

D
2 ≤ ∥y∥ < D and |y| < K log2 D.

Proof. By Lemma 11, there is a subword y of x with

∥y∥ ≥ D

2
and |y| < K log2 ∥y∥.(1)

We take such a y of the minimal possible length. We have ∥y∥ < D for otherwise
using the previous lemma we could find a subword y′ of y satisfying (1) with ∥y′∥ <
∥y∥. Hence |y| < K log2 ∥y∥ < K log2 D. !

Lemma 13. Let δ ≥ 1. For any T > 2δ+7 there are numbers λ = λ(T, δ) > 0
and D1 = D1(T, δ) > 0 with the following property:

Let x be a word with ∥x∥ ≥ D1. If |y| ≥ 20
(

δT
log2 T

)1/2
log2 ∥y∥ for any subword y

of x with ∥y∥ ≥ T then |x| ≥ λ∥x∥.

Proof. Set c = T , c1 = 12(c+δ)+2, and D1 = 2
c1
K , where K = 20

(
δT

log2 T

)1/2
.

Take λ = λ(c, c1) by Corollary 9.
Suppose the lemma does not hold. Then there is a word x with ∥x∥ ≥ D1

and |x| < λ∥x∥ such that for any subword y of x with ∥y∥ ≥ T the inequality

|y| ≥ K log2 ∥y∥ holds for K = 20
(

δT
log2 T

)1/2
.

We take any decomposition x ≡ x1x2 . . . xs where D1 ≤ ∥xi∥ ≤ 2D1 for 1 ≤
i ≤ s. For each xi, we choose a shortest word zi representing the same element of
G. It is easy to see that D1 > T . Then, by our assumption we have ∥zi∥ = |xi| ≥
K log2 ∥xi∥ ≥ K log2 D1 ≥ c1.

Let ρ be a path in C(G) labelled with x1x2 . . . xs. Each zi labels a geodesic
path with the same endpoints as the subpath of ρ labelled with xi. By Lemma 8
applied to the (s + 1)-gon in C(G) formed by the endpoints of the paths labelled
with xi, for some i we have

(2) |zizi+1| < ∥zi∥ + ∥zi+1∥ − 2c.
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Let us decompose zi and zi+1 so that zi ≡ yiz′i and zi+1 ≡ z′i+1yi+1 with ∥z′i∥ =
∥z′i+1∥ = c for some words yi, yi+1. By (2) and (H), |z′iz′i+1| ≤ 4δ. By Lemma 10
we find a terminal subword x′

i of xi and an initial subword x′
i+1 of xi+1 such that

|x′
i(z′i)−1| ≤ 4δ log2 ∥xi∥ + 1 and |(z′i+1)−1x′

i+1| ≤ 4δ log2 ∥xi+1∥ + 1. Thus,

|x′
ix

′
i+1| ≤ 8δ log2 2D1 + 2 + 4δ.

Since ∥x′
i∥, ∥x′

i+1∥ ≥ c − 4δ log2 2D1 − 1 we have

∥x′
ix

′
i+1∥ ≥ 2c − 8δ log2 2D1 − 2.

It is easy to check that for T > 2δ+7 we have 20
(

δT
log2 T

)1/2
≥ 104δ which im-

plies c ≥ 8δ
(
1 + c1

K

)
+2. From the last inequality we deduce that 2c−8δ log2 2D1−

2 ≥ T .
Now we prove that 8δ log2 2D1 +2+4δ < K log2(2c−8δ log2 2D1−2). Indeed,

since for K ≥ 104δ we have 2c − 8δ
(
1 + c1

K

)
− 2 ≥ c, it suffices to verify that

8δ
(
1 +

c1

K

)
+ 2 + 4δ < K log2 c.

Using K ≥ 104δ and c1 = 12(c+δ)+2 we obtain 8δ
(
1 + c1

K

)
+2+4δ ≤ 96δ c

K +13δ+3.
The latter is less or equal to 112δ c

K as c > K and δ ≥ 1. Now by the choice of c
and K, 112δ c

K < K log2 c.
Thus we have found a subword y ≡ x′

ix
′
i+1 of x such that ∥y∥ ≥ T and |y| <

K log2 ∥y∥. This contradicts the assumption. !

Proof of Theorem 1. Given δ ≥ 1, L > 0, and any K > 16δ+ 1, we choose
D = D(δ, L) by the inequality

D

log2 D
> 6KL.(3)

Let G be a δ-hyperbolic group, H be a subgroup of G generated by L elements
represented by words h1, · · · , hL. Let Ω be a rose of L circuits at a vertex O
labelled by h1, · · · , hL. Let Γ = Γ(H) be a graph representing H which is obtained
from Ω by transformations of types 1–3 and has the minimal possible number of
edges. In particular, Γ is reduced and π1(Γ) is L-generated. By Lemma 6, for any
basis of π1(Γ, O), its image in G under the labelling function is Nielsen equivalent
to the tuple (h1, . . . , hL).

Suppose that H is not free on generators represented by h1, · · · , hL. Then
there is a closed reduced path p in Γ starting at O labelled by a nontrivial word x
representing the identity element of G, i.e. x =G 1. We take such a p of minimal
length. There are two cases.

First suppose ∥x∥ < D. Then p contains a simple circuit ν of length < D as a
subpath (possibly, ν = p). Let µ be any reduced path starting at O and ending at
a vertex v on ν. Then the label of µνµ−1 represents an element h′

1 ∈ H . Obviously,
h′

1 is conjugate to an element of length less then D that is represented by the label
of ν. Moreover, h′

1 can be included in a system of generators of H . Indeed, suppose
that ν = ν1eν2, where ν1 starts at v and e is an edge of ν. Then the tripod rooted
at v consisting of tree branches µ, ν1, and ν2, can be included in a maximal tree
spanning Γ. Hence h′

1 is the label of one of L generators of π1(Γ, O) given by this
maximal tree. Thus, by Lemma 6, (h1, . . . , hL) is Nielsen equivalent to an L-tuple
(h′

1, . . . , h
′
L) and the conclusion (ii) of the theorem holds.
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The remaining case is ∥x∥ ≥ D. Since x =G 1, we have 0 = |x| < K log2 ∥x∥.
By Corollary 12, there is a subword y of x with D

2 ≤ ∥y∥ < D and |y| < K log2 D.
We may assume that y labels a simple path γ. Otherwise, γ contains a simple
circuit ν of length < D as a subpath and we proceed as above. The number of arcs
in Γ is less then 3L. Since ∥y∥ ≥ D

2 , there is a subword u of y of length at least D
6L

which labels an arc. Using a transformation of Γ of the third type, we remove this
arc and add a new arc of length |y| with the same endpoints as γ. We label this
arc by a shortest word representing the same group element as y. By (3) and the
choice of y, the length of the new arc is less then D

6L . So, the number of edges in
the obtained graph is less than one in Γ. This contradicts the choice of Γ.

Suppose that H is free on h1, · · · , hL but not quasiconvex. We are going to
find a constant T = T (δ, L) such that (h1, . . . , hL) is Nielsen equivalent to an L-
tuple containing an element conjugate to an element of length at most T . Take any
T > 2δ+7 satisfying

T

log2 T
> 6KL,(4)

where K = 20
(

δT
log2 T

)1/2
. Choose λ = λ(T, δ) > 0 and D1 = D1(T, δ) > 0 by

Lemma 13.
Since H is supposed to be free but non-quasiconvex there are a reduced circuit

at O in Γ labelled by a word z and a subword x of z such that either x represents
the identity element of G or ∥x∥ ≥ D1 and |x| < λ∥x∥.

We repeat the proof as above in the case when x =G 1 slightly modifying
the subcase ∥x∥ < D1. Namely, if x labels a simple path then we identify the
endpoints of this path removing an arc of this path. Since x =G 1 we obtain a new
labelled graph representing H with less number of edges than one in Γ. This is a
contradiction. If the path labelled by x is not simple it contains a circuit of length
less than D1.

In the second case, by Lemma 13, there is a subword y of x such that ∥y∥ ≥ T
and |y| < K log2 ∥y∥. Using Corollary 12 we can assume that T/2 ≤ ∥y∥ < T .
Then, arguing as above we conclude that either there is a circuit of length less than
T in Γ or we can use a transformation of the third type reducing the number of
edges in Γ.

We take M = max{D, T } finishing the proof. !

Thus, M = max{D, T} with constants defined by (3) and (4). It is now a
routine to check that Theorem 2 is a straightforward consequence of Theorem 1.

Theorem 3 can be shown by mimic arguments above where the word length is
replaced by the length function induced by the group action. Namely, if x0 ∈ X is
arbitrary, then the length of an element g ∈ G is defined by ℓ(g) := d(gx0, x0) and
the left-invariant distance between group elements g and h is given by ℓ(g−1h).
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