A dichotomy for finitely generated subgroups of word hyperbolic groups

Goulnara N. Arzhantseva

ABSTRACT. Given L > 0 elements in a word hyperbolic group G, there exists a number M = M(G, L) > 0 such that at least one of the assertions is true: (i) these elements generate a free and quasiconvex subgroup of G; (ii) they are Nielsen equivalent to a system of L elements containing an element of length at most M up to conjugation in G. The constant M is given explicitly. The result is generalized to groups acting by isometries on Gromov hyperbolic spaces. For proof we use a graph method to represent finitely generated subgroups of a group.

1. Introduction

Let H be a subgroup of a word hyperbolic group G. It is known that either H is elementary (that is, it contains a cyclic subgroup of finite index) or H contains a non-abelian free subgroup of rank two. In the case G is torsion-free, there are, up to conjugacy, finitely many Nielsen equivalence classes of non-free subgroups of G generated by two elements [3].

Our main result gives a sufficient condition for H to be free and quasiconvex in G. It is an improvement of a result due to Gromov [4, 5.3.A].

THEOREM 1. For any $\delta \geq 0$ and an integer L > 0 there exists a number $M = M(\delta, L) > 0$ with the following property.

Let G be a δ -hyperbolic group with respect to a finite generating set \mathcal{X} and H be a subgroup of G generated by h_1, \dots, h_L . Then at least one of the following assertions is true.

- (i) H is free on h_1, \dots, h_L and quasiconvex in G;
- (ii) The tuple (h₁,...,h_L) is Nielsen equivalent to an L-tuple (h'₁,...,h'_L) with h'₁ conjugate to an element in G of word length at most M with respect to X.

 $^{2000\} Mathematics\ Subject\ Classification.\ 20F67; 20E07.$

Key words and phrases. Word hyperbolic groups, quasigeodesics, Nielsen equivalence.

The work has been supported in part by the Swiss National Science Foundation, No. PP002-68627.

The constant $M = M(\delta, L)$ can be calculated explicitly. Then, as an immediate consequence of Theorem 1 we obtain Gromov's result. Let

$$\mathsf{Rad}\ H = 1/2 \inf_{h \in H \setminus \{\mathsf{id}\}} |[h]|,$$

where $|[h]| = \inf_{h'} |h'|$ for all $h' \in G$ conjugate to h and |h| is the word length of h. This is called the injectivity radius of H.

THEOREM 2. (cf. [4, 5.3.A]) Let G be a δ -hyperbolic group and H be a subgroup of G generated by L elements. If

Rad
$$H \ge \frac{1}{2} \left(\frac{14400(\delta+1)}{\ln 2} L^2 \right)^{1+1/2}$$

then H is free and quasiconvex¹ in G.

The following result is a natural generalization of Theorem 1 to groups acting on hyperbolic spaces.

THEOREM 3. For any $\delta \geq 0$ and an integer L > 0 there exists a number $M = M(\delta, L) > 0$ with the following property.

Let G be a group on L generators g_1, \dots, g_L acting on a δ -hyperbolic space (X, d) by isometries. Then at least one of the following assertions is true.

- (i) G is free on g_1, \dots, g_L and for every $x \in X$ the map $G \to X$ which assigns to each $g \in G$ the element $gx \in X$ is a quasi-isometric embedding;
- (ii) The tuple (g_1, \ldots, g_L) is Nielsen equivalent to an L-tuple (g'_1, \ldots, g'_L) with $d(g'_1y, y) < M$ for some $y \in X$.

The constant $M = M(\delta, L)$ can be calculated explicitly.

For proof of Theorem 1 a representation of finitely generated subgroups of a group by labelled graphs is used [1]. The technique is of independent interest. In particular, transformations of a labelled graph defined below can be viewed as a generalization of free reductions and Nielsen reductions of tuples of group elements.

Theorem 3 is obtained with essentially the same methods, except that, in our arguments, instead of the word length metric, we refer to the metric on G induced from the group action.

I was informed that Kapovich and Weidmann showed both results (without an explicit estimate on the constant) independently of my work and by different methods [6].

Acknowledgments This work has been done during my visit to University Luis Pasteur, Strasbourg, May 2000. I thank Thomas Delzant for suggesting the problem and hospitality. I also thank the referee for useful comments.

2. Auxiliary information

Let G be a group and \mathcal{X} be a finite set of generators for G. We fix both for the rest of the paper. All words are assumed to be in the alphabet $\mathcal{X}^{\pm 1}$. We shall make no essential distinction between words and elements of G. If w and v are words then the notation $w =_G v$ means that they represent the same group element.

¹This lower bound is not optimal. For example, one can take $\frac{1}{2} \left(\frac{14400(\delta+1)}{\ln 2} L^2 \right)^{1+\varepsilon}$ with $\varepsilon > 0$ or a better constant satisfying condition (4) below.

2.1. Graphs representing subgroups. Let Γ be a graph. By an edge of Γ we mean a directed edge, i.e., an edge of Γ in the usual sense with any of its two possible directions. If e is an edge of Γ then e^{-1} denotes the edge with the opposite direction. A map ψ from the edges of Γ to $\mathcal{X}^{\pm 1}$ is called a *labelling function* on Γ if it satisfies $\psi(e^{-1}) = (\psi(e))^{-1}$ for any edge e. By the label $\psi(p)$ of a path $p = e_1 e_2 \dots e_k$ of length k in Γ we mean the word $\psi(e_1)\psi(e_2)\dots\psi(e_k)$. The label of a path of length 0 (which by definition is identified with a vertex of Γ) is the empty word.

A labelled graph is a finite connected graph Γ with a labelling function ψ and a distinguished vertex O. Any labelled graph Γ represents a subgroup $H(\Gamma)$ of a free group $F = F(\mathcal{X})$, which is the image of the fundamental group $\pi_1(\Gamma, O)$ under the homomorphism induced by ψ . In other words, $x \in H(\Gamma)$ if and only if x may be represented by a word which can be read on a circuit at O.

It is easy to see that any finitely generated subgroup $H \leq F$ may be represented by a labelled graph. To do this, we first take words h_1, h_2, \dots, h_k in the alphabet $\mathcal{X}^{\pm 1}$ that represent generators of H. Next we take a rose of k circles attached to a point O and make each of the circles a circuit labelled h_i , $1 \leq i \leq k$. For the resulting labelled graph Γ , we obviously have $H(\Gamma) = H$.

We define two types of transformations of a labelled graph Γ , which preserve the subgroup $H(\Gamma)$ and which we call *reductions*. A transformation of the first type is identification of two edges with the same label and the same initial vertex. A transformation of the second type is removal of a vertex of degree 1 other than O, together with the incident edge.

A labelled graph Γ is said to be *reduced* if it admits no reductions, that is, it has no pair of edges with the same label and initial vertex and no vertices of degree 1 with the possible exception of the distinguished vertex O.

Starting from a labelled graph Γ with $H(\Gamma) = H$ and performing all possible reductions, we reach a reduced labelled graph which represents the subgroup H. It is known [10, 8] that a reduced labelled graph representing a subgroup $H \leq F$ is unique up to graph isomorphism (that is, it does not depend on the order of reductions, the choice of the initial graph Γ , and the choice of generators for H).

If Γ is a reduced labelled graph then it is easy to see that a reduced word w represents an element of $H(\Gamma)$ if and only if w is the label of a reduced circuit at O in Γ . It follows in particular that the label of a path p in Γ starting at O represents an element of $H(\Gamma)$ only if O is also the terminal vertex of p.

A finitely generated subgroup H of G can also be presented by a labelled graph Γ . It suffices to consider the graph obtained from a lift of the subgroup generators under the natural homomorphism $F \to G$. However the reduced form of Γ is not unique in this case. For Γ representing $H \leq G$ we introduce a transformation of the third type as well, see [1].

Denote by $p_{-}(p_{+})$ the initial (terminal) vertex of a path p. By an *arc* we mean a path p all of whose vertices except p_{-} and p_{+} have degree 2 and are distinct from the distinguished vertex O.

- (arc reduction) Let vertices O_1 and O_2 in Γ be joined by a path p so that $\psi(p) \equiv w$ and the word w is equal to some word v in G. Let q' be an arc in Γ which is a subpath of p. First let us add to Γ a new graph formed by a single arc q with label $\psi(q) \equiv v$ such that $O_1 = q_-$ and $O_2 = q_+$

are the only common points of the new graph and Γ . Then let us remove from Γ all edges and vertices of q' except q'_{-} and q'_{+} .

REMARK. We remove an arc whenever we add another one. Hence the transformations preserve the Euler characteristic of Γ which is the number of vertices minus the number of edges. Thus if the fundamental group $\pi_1(\Gamma)$ of Γ is generated by L loops, then for any graph Γ' obtained from Γ by the transformations, $\pi_1(\Gamma')$ is L-generated as well.

LEMMA 4. [1, Lemma 1] If a labelled graph Γ' is carried into a labelled graph Γ by transformations of types 1–3 or their inverses, then it represents the same subgroup of G as Γ does.

2.2. Nielsen equivalence.

DEFINITION 5. Let $\mathcal{U} = (u_1, \ldots, u_k)$ and $\tilde{\mathcal{U}} = (\tilde{u}_1, \ldots, \tilde{u}_k)$ be k-tuples of elements of G. They are Nielsen equivalent if \mathcal{U} can be carried into $\tilde{\mathcal{U}}$ by a finitely many regular elementary Nielsen transformations defined as follows:

(t1) replace u_i by u_i^{-1} for some i;

(t2) replace u_i by $u_i u_j$ for some $i \neq j$;

In both cases u_t remains unchanged if $t \neq i$.

REMARK. If w_1, \dots, w_k are words we shall consider (w_1, \dots, w_k) as the k-tuple of group elements represented by these words.

Note that the regular elementary Nielsen transformations generate a group containing every permutation of the u_i . It is obvious that if a k-tuple \mathcal{U} is carried by a regular elementary Nielsen transformation into a k-tuple $\tilde{\mathcal{U}}$, then they generate the same subgroup of G. Proceeding by induction we see that Nielsen equivalent tuples of group elements generate the same subgroup of G. Moreover, in a free group any two bases of a finitely generated subgroup are Nielsen equivalent. Here by a *basis* of a subgroup we mean a set of group elements freely generating the subgroup. In general, this is not true for a non-free group G. However we have the following

LEMMA 6. Let H be a subgroup of G generated by elements represented by words h_1, \dots, h_k . Let Γ be a graph obtained from a rose Ω of k circuits at a vertex O labelled by h_1, \dots, h_k by transformations of 1-3 types or their inverses. Then for any basis l_1, \dots, l_k of $\pi_1(\Gamma, O)$ the k-tuple $(\psi(l_1), \dots, \psi(l_k))$ is Nielsen equivalent to (h_1, \dots, h_k) .

PROOF. Let Γ be obtained from Ω by transformations of types 1–3 or their inverses. Hence there is a sequence of graphs $\Gamma_0 = \Omega, \ldots, \Gamma_j, \ldots, \Gamma_f = \Gamma$, so that Γ_i is carried into Γ_{i+1} by only one transformation. If f = 0, i.e. Γ coincides with Ω , the lemma obviously holds. Suppose that f > 0. We claim that for each basis s_1, \cdots, s_k of $\pi_1(\Gamma_{j+1}, O)$ there exists a basis t_1, \cdots, t_k of $\pi_1(\Gamma_j, O)$ such that $(\psi(t_1), \ldots, \psi(t_k))$ is Nielsen equivalent to $(\psi(s_1), \ldots, \psi(s_k))$. This is obvious if the performed transformation is a reduction. For t_i we take a loop in Γ_j which were carried by the reduction into s_i , $1 \leq i \leq k$ (possibly t_i and s_i coincide). Let's now consider an arc reduction. Let q be the added arc and q' the removed arc. By definition, there is a path $p \in \Gamma_j$ with the same endpoints as $q \in \Gamma_{j+1}$ such that p contains q' as a subpath and $\psi(p) =_G \psi(q)$ in G. Let's define $t_i \in \Gamma_j$. We start with $s_i \in \Gamma_{j+1}$. We replace each entry of q in s_i by p. In such a way we obtain loops t_i at O in Γ_j , $1 \le i \le k$. Clearly, it will be a basis of $\pi_1(\Gamma_j, O)$. The k-tuple of elements represented by labels of these loops is Nielsen equivalent to $(\psi(s_1), \ldots, \psi(s_k))$. Indeed, we have $\psi(s_i) =_G \psi(t_i)$ as $\psi(p) =_G \psi(q)$ in G.

The claim is true for any $1 \leq j \leq f$. Thus, for any basis l_1, \dots, l_k of $\pi_1(\Gamma, O)$ there exists a basis l'_1, \dots, l'_k of $\pi_1(\Omega, O)$ such that $(\psi(l_1), \dots, \psi(l_k))$ is Nielsen equivalent to $(\psi(l'_1), \dots, \psi(l'_k))$. As it was mentioned above the labels of any two bases of $\pi_1(\Omega, O)$ represent Nielsen equivalent k-tuples. Hence $(\psi(l'_1), \dots, \psi(l'_k))$ is Nielsen equivalent to (h_1, \dots, h_k) . This completes the proof.

2.3. Word hyperbolic groups. For a background on word hyperbolic groups we refer to [4, 5], and [2].

Let C(G) be the Cayley graph of G with respect to \mathcal{X} . It is a graph whose set of vertices is G and whose set of edges is $G \times (\mathcal{X}^{\pm 1})$. An edge (h, x) starts at the vertex $h \in G$ and ends at the vertex hx. We consider an edge (h, x) of C(G) as labelled by the letter x. The label $\varphi(\rho)$ of a path $\rho = e_1 e_2 \dots e_n$ in C(G) is the word $\varphi(e_1)\varphi(e_2)\dots\varphi(e_n)$ where $\varphi(e_i)$ is the label of the edge e_i . We regard $\varphi(\rho)$ as an element of G. We endow C(G) with a metric by assigning to each edge the metric of the unit segment [0, 1] and then defining the distance |g - h| to be the length of a shortest path between g and h. Thus C(G) becomes a geodesic metric space. Obviously, this metric on C(G) is invariant under the natural left action of G. For any $g \in G$, we write |g| for the length of a shortest path from the unit element to g. In particular, $|g - h| = |g^{-1}h|$.

DEFINITION 7. [4, 6.3.B] The *Gromov product* of points x and y of a metric space \mathcal{M} with respect to a point $z \in \mathcal{M}$ is defined to be

$$(x|y)_z = \frac{1}{2}(|x-z| + |y-z| - |y-x|)$$

where |x - y| denotes the distance between x and y.

A geodesic metric space \mathcal{M} is called δ -hyperbolic, for $\delta \geq 0$, if

$$(x|y)_w \ge \min\{(x|z)_w, (z|y)_w\} - \delta$$

for any $x, y, z, w \in \mathcal{M}$.

A group G is δ -hyperbolic with respect to a finite generating set \mathcal{X} if the Cayley graph C(G) with respect to \mathcal{X} is a δ -hyperbolic space. The group G is called *word* hyperbolic if it is δ -hyperbolic for some $\delta \geq 0$ and \mathcal{X} .

It turns out that the word hyperbolicity of a group is independent of the finite generating set chosen [4, 2.3.E].

LEMMA 8. [9, Lemma 21] Let $c \ge 14\delta$ and $c_1 > 12(c+\delta)$, and suppose that a geodesic n-gon $[x_1, \ldots, x_n]$ in a δ -hyperbolic metric space satisfies the conditions $|x_{i-1} - x_i| > c_1$ for $i = 2, \ldots, n$ and $(x_{i-2}|x_i)_{x_{i-1}} < c$ for $i = 3, \ldots, n$. Then the polygonal line $\rho = [x_1, x_2] \cup [x_2, x_3] \cup \cdots \cup [x_{n-1}, x_n]$ is contained in the 2cneighbourhood of the side $\tau = [x_n, x_1]$, and the side τ is contained in the 14 δ neighbourhood of ρ .

COROLLARY 9. Under the assumptions of the previous lemma there is a constant $\lambda = \lambda(c, c_1) > 0$ such that

 $|\tau| \ge \lambda \|\rho\|,$

where $\|\rho\|$ is the length of the path ρ .

PROOF. By the lemma, there exist points v_1, \ldots, v_n on $[x_n, x_1]$ such that $|x_i - v_i| \leq 2c$, $1 \leq i \leq n$. The hypothesis of the lemma imply easily that v_{i-1} is located between v_i and v_{i-2} . So,

$$|\tau| = \sum_{i=2}^{n} |v_{i-1} - v_i| \ge \sum_{i=2}^{n} (|x_{i-1} - x_i| - 4c) = \|\rho\| - (n-1)4c.$$

Taking $\lambda = c/c_1$ and using $\|\rho\| > (n-1)c_1$ we obtain $|\tau|/\|\rho\| \ge \lambda$.

The following lemma is obvious as any side of a geodesic triangle in a δ -hyperbolic space belongs to the 4δ -neighbourhood of the union of the other two sides [5, Ch.2, Pr. 21].

LEMMA 10. (cp. [4, § 7]) Let ρ be a path in a δ -hyperbolic space. Then for every point A on a geodesic segment with the same endpoints as ρ

$$\inf_{B \in \rho} |A - B| \le 4\delta \log_2 \|\rho\| + 1.$$

For a word w, the length ||w|| is the length of a path in C(G) labelled by w and |w| is the length of a geodesic in C(G) between the same endpoints. If ||w|| = |w| the word w is called a *geodesic word*. The notation $w \equiv xy$ means that w can be decomposed, as a word, into a product of two words which represent elements $x, y \in G$. The following fact is known (see the proof of $(P1, \delta) \Rightarrow (P2, 4\delta)$ in [5, Ch.2, Pr. 21]). If G is δ -hyperbolic then

(H) for any two geodesic words u and v, if $u \equiv u_1 u_2$, $v \equiv v_1 v_2$ and $|u_1| = |v_1| \le \frac{1}{2}(|u| + |v| - |u^{-1}v|)$ then $|u_1^{-1}v_1| \le 4\delta$.

Notice that if G is δ -hyperbolic then it is also δ' -hyperbolic for any $\delta' > \delta$. So we can always assume $\delta \geq 1$.

3. Proof of Theorem 1

From now on, we assume G to be word hyperbolic and fix a number $\delta \geq 1$ such that (H) holds.

The following two lemmas are the main technical tools for the proof of our theorems.

LEMMA 11. Let $\delta \ge 1$, $K > 16\delta + 1$. Let x be a word with $|x| < K \log_2 ||x||$ and $||x|| \ge 2^4$. Then there exists a subword y of x such that

$$\frac{1}{2}||x|| \le ||y|| < ||x||$$
 and $|y| < K \log_2 ||y||$.

PROOF. We denote by η a path starting at the unit vertex of the Cayley graph C(G) and labelled by x. Let ρ be a geodesic path in C(G) with the same endpoints as η and z be the label of ρ . Note that ||z|| = |x|. We take a middle point A on ρ so that $z = z_1 z_2$, where A is a terminal vertex of a subpath labelled by z_1 and $||z_1|| = \left\lceil \frac{||z||}{2} \right\rceil$.

Suppose that $||z|| < 9\delta \log_2 ||x||$. Then, for a desired subword y we take x without its terminal letter, i.e. ||y|| = ||x|| - 1. The assumption on ||x||, |x|, and K implies easily the needed inequalities on ||y|| and |y|.

The remaining case is $||z|| \ge 9\delta \log_2 ||x||$. By Lemma 10, there is a point B on η such that $|A - B| \le 4\delta \log_2 ||\eta|| + 1 = 4\delta \log_2 ||x|| + 1$. Then B gives a decomposition of η into two subpaths labelled by words x_1 and x_2 with $x = x_1 x_2$ and

$$|x_i| \le \frac{K}{2} \log_2 ||x|| + 4\delta \log_2 ||x|| + 1 = \left(\frac{K}{2} + 4\delta\right) \log_2 ||x|| + 1.$$

The words x_1 and x_2 are nontrivial which easily follows from the assumption on ||z|| and the bound on |A-B|. Hence $\frac{||x||}{2} \le ||x_i|| < ||x||$ for i = 1 or i = 2. Without loss of generality, we assume that $||x_1|| \ge ||x_2||$. Since $||x|| \ge 2^4$ and $K > 16\delta + 1$ we have

$$|x_i| \le \left(\frac{K}{2} + 4\delta\right) \log_2 ||x|| + 1 < K \log_2 \frac{||x||}{2} \le K \log_2 ||x_1||.$$

Thus, we can take x_1 for a desired subword y of x.

COROLLARY 12. Let $\delta \geq 1$, $K > 16\delta + 1$. Let $D \geq 2^4$ and x be a word with $|x| < K \log_2 ||x||$ and $||x|| \ge D$. Then there is a subword y of x such that

 $\frac{D}{2} \le \|y\| < D \quad and \quad |y| < K \log_2 D.$

PROOF. By Lemma 11, there is a subword y of x with

(1)
$$||y|| \ge \frac{D}{2}$$
 and $|y| < K \log_2 ||y||$.

We take such a y of the minimal possible length. We have ||y|| < D for otherwise using the previous lemma we could find a subword y' of y satisfying (1) with ||y'|| < ||y'||| < ||y'|| < ||y||||y||. Hence $|y| < K \log_2 ||y|| < K \log_2 D$.

LEMMA 13. Let $\delta \geq 1$. For any $T > 2^{\delta+7}$ there are numbers $\lambda = \lambda(T, \delta) > 0$

and $D_1 = D_1(T, \delta) > 0$ with the following property: Let x be a word with $||x|| \ge D_1$. If $|y| \ge 20 \left(\frac{\delta T}{\log_2 T}\right)^{1/2} \log_2 ||y||$ for any subword y of x with $||y|| \ge T$ then $|x| \ge \lambda ||x||$.

PROOF. Set c = T, $c_1 = 12(c+\delta)+2$, and $D_1 = 2^{\frac{c_1}{K}}$, where $K = 20 \left(\frac{\delta T}{\log_2 T}\right)^{1/2}$. Take $\lambda = \lambda(c, c_1)$ by Corollary 9.

Suppose the lemma does not hold. Then there is a word x with $||x|| \geq D_1$ and $|x| < \lambda \|x\|$ such that for any subword y of x with $\|y\| \ge T$ the inequality $|y| \ge K \log_2 \|y\| \text{ holds for } K = 20 \left(\frac{\delta T}{\log_2 T}\right)^{1/2}.$

We take any decomposition $x \equiv x_1 x_2 \dots x_s$ where $D_1 \leq ||x_i|| \leq 2D_1$ for $1 \leq ||x_i|| \leq 2D_1$ $i \leq s$. For each x_i , we choose a shortest word z_i representing the same element of G. It is easy to see that $D_1 > T$. Then, by our assumption we have $||z_i|| = |x_i| \ge |z_i|$ $K\log_2 \|x_i\| \ge K\log_2 D_1 \ge c_1.$

Let ρ be a path in C(G) labelled with $x_1 x_2 \dots x_s$. Each z_i labels a geodesic path with the same endpoints as the subpath of ρ labelled with x_i . By Lemma 8 applied to the (s+1)-gon in C(G) formed by the endpoints of the paths labelled with x_i , for some *i* we have

(2)
$$|z_i z_{i+1}| < ||z_i|| + ||z_{i+1}|| - 2c.$$

Let us decompose z_i and z_{i+1} so that $z_i \equiv y_i z'_i$ and $z_{i+1} \equiv z'_{i+1} y_{i+1}$ with $||z'_i|| = ||z'_{i+1}|| = c$ for some words y_i, y_{i+1} . By (2) and (H), $|z'_i z'_{i+1}| \leq 4\delta$. By Lemma 10 we find a terminal subword x'_i of x_i and an initial subword x'_{i+1} of x_{i+1} such that $|x'_i(z'_i)^{-1}| \leq 4\delta \log_2 ||x_i|| + 1$ and $|(z'_{i+1})^{-1} x'_{i+1}| \leq 4\delta \log_2 ||x_{i+1}|| + 1$. Thus,

$$|x_i'x_{i+1}'| \le 8\delta \log_2 2D_1 + 2 + 4\delta$$

Since $||x_i'||, ||x_{i+1}'|| \ge c - 4\delta \log_2 2D_1 - 1$ we have

$$\|x_i'x_{i+1}'\| \ge 2c - 8\delta \log_2 2D_1 - 2.$$

It is easy to check that for $T > 2^{\delta+7}$ we have $20 \left(\frac{\delta T}{\log_2 T}\right)^{1/2} \ge 104\delta$ which implies $c \ge 8\delta \left(1 + \frac{c_1}{K}\right) + 2$. From the last inequality we deduce that $2c - 8\delta \log_2 2D_1 - 2 \ge T$.

Now we prove that $8\delta \log_2 2D_1 + 2 + 4\delta < K \log_2(2c - 8\delta \log_2 2D_1 - 2)$. Indeed, since for $K \ge 104\delta$ we have $2c - 8\delta \left(1 + \frac{c_1}{K}\right) - 2 \ge c$, it suffices to verify that

$$8\delta\left(1 + \frac{c_1}{K}\right) + 2 + 4\delta < K \log_2 c.$$

Using $K \ge 104\delta$ and $c_1 = 12(c+\delta)+2$ we obtain $8\delta\left(1+\frac{c_1}{K}\right)+2+4\delta \le 96\delta\frac{c}{K}+13\delta+3$. The latter is less or equal to $112\delta\frac{c}{K}$ as c > K and $\delta \ge 1$. Now by the choice of c and K, $112\delta\frac{c}{K} < K\log_2 c$.

Thus we have found a subword $y \equiv x'_i x'_{i+1}$ of x such that $||y|| \ge T$ and $|y| < K \log_2 ||y||$. This contradicts the assumption.

PROOF OF THEOREM 1. Given $\delta \ge 1$, L > 0, and any $K > 16\delta + 1$, we choose $D = D(\delta, L)$ by the inequality

(3)
$$\frac{D}{\log_2 D} > 6KL$$

Let G be a δ -hyperbolic group, H be a subgroup of G generated by L elements represented by words h_1, \dots, h_L . Let Ω be a rose of L circuits at a vertex O labelled by h_1, \dots, h_L . Let $\Gamma = \Gamma(H)$ be a graph representing H which is obtained from Ω by transformations of types 1–3 and has the minimal possible number of edges. In particular, Γ is reduced and $\pi_1(\Gamma)$ is L-generated. By Lemma 6, for any basis of $\pi_1(\Gamma, O)$, its image in G under the labelling function is Nielsen equivalent to the tuple (h_1, \dots, h_L) .

Suppose that H is not free on generators represented by h_1, \dots, h_L . Then there is a closed reduced path p in Γ starting at O labelled by a nontrivial word xrepresenting the identity element of G, i.e. $x =_G 1$. We take such a p of minimal length. There are two cases.

First suppose ||x|| < D. Then p contains a simple circuit ν of length < D as a subpath (possibly, $\nu = p$). Let μ be any reduced path starting at O and ending at a vertex v on ν . Then the label of $\mu\nu\mu^{-1}$ represents an element $h'_1 \in H$. Obviously, h'_1 is conjugate to an element of length less then D that is represented by the label of ν . Moreover, h'_1 can be included in a system of generators of H. Indeed, suppose that $\nu = \nu_1 e \nu_2$, where ν_1 starts at v and e is an edge of ν . Then the tripod rooted at v consisting of tree branches μ , ν_1 , and ν_2 , can be included in a maximal tree spanning Γ . Hence h'_1 is the label of one of L generators of $\pi_1(\Gamma, O)$ given by this maximal tree. Thus, by Lemma 6, (h_1, \ldots, h_L) is Nielsen equivalent to an L-tuple (h'_1, \ldots, h'_L) and the conclusion (ii) of the theorem holds. The remaining case is $||x|| \ge D$. Since $x =_G 1$, we have $0 = |x| < K \log_2 ||x||$. By Corollary 12, there is a subword y of x with $\frac{D}{2} \le ||y|| < D$ and $|y| < K \log_2 D$. We may assume that y labels a simple path γ . Otherwise, γ contains a simple circuit ν of length < D as a subpath and we proceed as above. The number of arcs in Γ is less then 3L. Since $||y|| \ge \frac{D}{2}$, there is a subword u of y of length at least $\frac{D}{6L}$ which labels an arc. Using a transformation of Γ of the third type, we remove this arc and add a new arc of length |y| with the same endpoints as γ . We label this arc by a shortest word representing the same group element as y. By (3) and the choice of y, the length of the new arc is less then $\frac{D}{6L}$. So, the number of edges in the obtained graph is less than one in Γ . This contradicts the choice of Γ .

Suppose that H is free on h_1, \dots, h_L but not quasiconvex. We are going to find a constant $T = T(\delta, L)$ such that (h_1, \dots, h_L) is Nielsen equivalent to an L-tuple containing an element conjugate to an element of length at most T. Take any $T > 2^{\delta+7}$ satisfying

(4)
$$\frac{T}{\log_2 T} > 6KL_t$$

where $K = 20 \left(\frac{\delta T}{\log_2 T}\right)^{1/2}$. Choose $\lambda = \lambda(T, \delta) > 0$ and $D_1 = D_1(T, \delta) > 0$ by Lemma 13.

Since *H* is supposed to be free but non-quasiconvex there are a reduced circuit at *O* in Γ labelled by a word *z* and a subword *x* of *z* such that either *x* represents the identity element of *G* or $||x|| \ge D_1$ and $|x| < \lambda ||x||$.

We repeat the proof as above in the case when $x =_G 1$ slightly modifying the subcase $||x|| < D_1$. Namely, if x labels a simple path then we identify the endpoints of this path removing an arc of this path. Since $x =_G 1$ we obtain a new labelled graph representing H with less number of edges than one in Γ . This is a contradiction. If the path labelled by x is not simple it contains a circuit of length less than D_1 .

In the second case, by Lemma 13, there is a subword y of x such that $||y|| \ge T$ and $|y| < K \log_2 ||y||$. Using Corollary 12 we can assume that $T/2 \le ||y|| < T$. Then, arguing as above we conclude that either there is a circuit of length less than T in Γ or we can use a transformation of the third type reducing the number of edges in Γ .

We take $M = \max\{D, T\}$ finishing the proof.

Thus, $M = \max\{D, T\}$ with constants defined by (3) and (4). It is now a routine to check that Theorem 2 is a straightforward consequence of Theorem 1.

Theorem 3 can be shown by mimic arguments above where the word length is replaced by the length function induced by the group action. Namely, if $x_0 \in X$ is arbitrary, then the length of an element $g \in G$ is defined by $\ell(g) := d(gx_0, x_0)$ and the left-invariant distance between group elements g and h is given by $\ell(g^{-1}h)$.

References

- G.N.Arzhantseva and A.Yu.Ol'shanskii, The class of groups all of whose subgroups with lesser number of generators are free is generic, Mat. Zametki, 59(4)(1996), 489-496 (in Russian), English translation in Math. Notes, 59(4)(1996), 350-355.
- [2] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics, 1441, Springer-Verlag, 1990.

GOULNARA N. ARZHANTSEVA

- [3] T. Delzant, Sous-groupes deux générateurs des groupes hyperboliques, Group theory from a geometrical viewpoint (Trieste, 1990), 177–189, World Sci. Publishing, River Edge, NJ, 1991.
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York-Berlin, 1987, 75–263.
- [5] E. Ghys and P. de la Harpe (editors), Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, 83, Birkhauser, 1990.
- [6] I. Kapovich and R. Weidmann, Nielsen methods and groups acting on hyperbolic spaces, Geom. Dedicata 98 (2003), 95-121.
- [7] R. Lyndon and P. Schupp, Combinatorial group theory, Springer-Verlag, 1977.
- [8] S. W. Margolis and J. C. Meakin, Free inverse monoids and graph immersions, Int. J. Algebra and Comput., 3(1) (1993), 79–99.
- [9] A. Yu. Ol'shanskii, Periodic quotients of hyperbolic groups, Mat. Zbornik, 182(4)(1991), 543-567 (in Russian), English translation in Math. USSR Sbornik 72(2) (1992).
- [10] J. Stallings, Topology of finite graphs, Inv.Math., **71** (1983), 552–565.

Université de Genève, Section de mathématiques, 2-4, rue du Lièvre, CH-1211 Genève24

 $E\text{-}mail\ address:$ Goulnara.Arjantseva@math.unige.ch