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ABSTRACT. Given a closed Riemannian manifold M and a (virtual) epimorphism π1(M) ³ F2

of the fundamental group onto a free group of rank 2, we construct a tower of finite sheeted regular
covers {Mn}

∞
n=0 of M such that λ1(Mn) → 0 as n → ∞. This is the first example of such a tower

which is not obtainable up to uniform quasi-isometry (or even up to uniform coarse equivalence) by
the previously known methods where π1(M) is supposed to surject onto an amenable group.

1. INTRODUCTION

Let M be a closed (that is, compact and without boundary) Riemannian manifold with funda-
mental group π1(M). A residually finite group G, a surjective homomorphism π1(M) ³ G and a
nested sequence of finite index normal subgroups of G with trivial intersection gives rise to a tower
of finite sheeted regular covers of M; conversely, every tower of finite sheeted regular covers arises
in this manner. In summary, writing G0 = G and M0 = M, we have:

(∗)
G0 Q G1 Q G2 Q · · · , with

∞⋂

n=0

Gn = { 1 },

π1(Mn) ³ Gn, and finite groups Γn := G/Gn,

²² ²²
Γ2

²²

M2

²²
Γ1

²²

M1

²²
Γ0 M0.

In the context of spectral geometry of towers of covers one studies the asymptotic behavior of
the first non-zero eigenvalues λ1(Mn) of the Laplacian, that is, of the Laplace-Beltrami operator
of the individual Riemannian manifolds Mn. In particular, the following questions are classical:

(a) Does there exist a tower with λ1(Mn) > c > 0 uniformly over n?
(b) Does there exist a tower with λ1(Mn) → 0 as n → ∞?

In this note we are concerned with (b). The earliest positive result on this question is due to
Randol, who studied the case of cyclic covers using the trace formula [9]. Subsequent results of
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Brooks [3, 2] and Burger [4] were obtained by relating the eigenvalues λ1(Mn) to combinatorial
properties of the Cayley graphs of finite groups of deck transformations Γn. Similar results are due
to Sunada [12].

In all cases, the method to build a tower of covers satisfying (b) rests on choosing an amenable
group G for the construction (∗). Our main result is that it is possible to obtain such a tower when
G is the free group on two generators. In the statement, H(2) denotes the subgroup of the discrete
group H generated by the squares of its elements.

Theorem. Let M be a closed Riemannian manifold, whose fundamental group admits a virtual1

surjective homomorphism onto the free group of rank 2. Taking the nested sequence of subgroups
in (∗) to be the sequence of iterated squares in the free group

(∗∗) G0 = F2, G1 = F(2)
2 , G2 = (F(2)

2 )
(2)

, G3 = ((F(2)
2 )

(2)
)
(2)

, · · ·

we obtain a tower of covers of M for which λ1(Mn) → 0 as n → ∞. This tower is not obtainable
up to uniform quasi-isometry (or even uniform coarse equivalence) by the construction (∗) with an
amenable G.

Observe here that each Gn is normal, even characteristic, in F2.
The hypothesis of the theorem means that the fundamental group is large (the terminology is due

to Gromov [5]). It applies to many hyperbolic manifolds [6], in particular, to a closed orientable
surface of genus at least two – the fundamental group of such a manifold surjects onto F2.

We conclude the introduction by remarking that in more modern terminology the classical prob-
lems above concerning the construction (∗) can be rephrased in terms of Property τ: (a) asks for
G to have Property τ with respect to the family of subgroups (Gn)n>0, whereas (b) asks, after
perhaps passing to a subsequence, for G to not have Property τ with respect to the (Gn)n>0. This
is explained in the work of Burger and Brooks cited above. Thus, the first assertion in the theo-
rem is essentially equivalent to the assertion that F2 does not have Property τ with respect to the
subgroups appearing in (∗∗). For the definition and relevant facts about Property τ see [7].

2. EIGENVALUES

A graph is a collection of vertices and edges. With a small number of exceptions, we permit
neither multiple edges nor loops, so that an edge is uniquely determined by its incident vertices.
Our graphs are unoriented. The Cheeger constant of a finite graph Γ is

(2.1) h(Γ) = inf
#E(A,B)

min{ #A, #B }
,

where the infimum is taken over all decompositions of the vertex set of Γ as a disjoint union AtB

and where, for such a decomposition, E(A,B) denotes the set of edges with one incident vertex in
A and the other in B.

We shall make use of the following result of Brooks which, in the notation of (∗), relates the
eigenvalues of the Mn to the Cheeger constants of the Cayley graphs of the Γn computed with

1A virtual homomorphism is a homomorphism of a finite-index subgroup.
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respect to the canonical images of generators of G and denoted, by an abuse of notation, again by
Γn. We shall require only the forward implication, which is the content of [3, Lemma 1].

Theorem (Brooks). In the notation of (∗) we have h(Γn) → 0 precisely when λ1(Mn) → 0. ¤
Thus, the first statement in theorem of the introduction is reduced to the following:

1. Proposition. Let G = F2 be the free group of rank 2. Consider the tower of iterated squares
(∗∗) and the corresponding quotients:

Γ0 = { 1 } ← Γ1 = F2/F(2)
2 ← Γ2 = F2/(F(2)

2 )
(2) ← · · ·

Abusing notation, view each Γn as a Cayley graph with respect to the images of the standard free
generators of F2. Then we have h(Γn) → 0 as n → ∞.

In preparation for the proof we recall the construction of the Z/2-homology cover of a finite
graph Σ. Fix a maximal tree T in Σ and let e1, . . . , er be the edges of Σ not in T . The vertex and
edge sets of the Z/2-homology cover Σ̃ are

Ṽ = V ×⊕r
1Z/2, Ẽ = E×⊕r

1Z/2,

where E and V denote the vertex and edge sets of Σ. Let e ∈ E and let v, w ∈ V be the vertices
incident with e. Consider the edge (e, α) ∈ Ẽ. Incidence is defined in two cases:

(e, α) contains

{
(v, α) and (w, α), when e belongs to the maximal tree T

(v, α) and (w, α + ej), when e = ej, for some 1 6 j 6 r.

Here ej = (. . . , 1, . . . ) is the standard basis vector with a single 1 in the j-the position and 0’s
elsewhere. Strictly speaking, when defining incidence it is necessary to direct the edges ej. It
is quickly verified however that, while the edges are parameterized in a different manner, the
underlying undirected graph is independent of the choice. We shall not dwell on this aspect.

Remark. The construction given here of the Z/2-homology cover is a special case of the classical
construction of a finite sheeted regular cover of Σ corresponding to a given normal subgroup of
finite index in π1(Σ), see, for example, [11, Ch. 2]. Indeed, with e1, . . . , er as above, and after
directing each ej, we identify

π1(Σ) ∼= Fr = 〈 e1, . . . , er 〉.
Then the cover corresponding to the kernel of the epimorphism

π1(Σ) ∼= Fr ³ Fr/F(2)
r

∼= ⊕r
1Z/2 defined by ej 7→ ej,

is the Z/2-homology cover.

2. Lemma. Let Σ be a finite graph, with vertex set V; let Σ̃ be its Z/2-homology cover. We have

h(Σ̃) 6 2

#V
.
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Proof. We employ the notation introduced above for Σ̃. We shall exhibit a decomposition of the
vertex set Ṽ = A t B for which the quotient in (2.1) is bounded by 2/#V . Let

A = { (v, α) ∈ Ṽ : α = (∗, . . . , ∗, 0) }, B = { (w,β) ∈ Ṽ : β = (∗, . . . , ∗, 1) },

each of which contains exactly 2r−1 #V vertices. The edges in Ẽ with one vertex in A and the other
in B are exactly those of the form (er, γ), for arbitrary γ ∈ ⊕r

1Z/2; thus E(A,B) contains exactly
2r edges. ¤

Proof of Proposition 1. The Cayley graph Γn is the n-th iterated Z/2-homology cover of the “fig-
ure 8”. Since the number of vertices in Γn tends to infinity, the result follows from the previous
lemma. ¤

Remark. A more detailed analysis gives information on the rate of the convergence h(Γn) → 0.
Indeed, let Vn be the set of vertices and En the set of edges of (the Cayley graph of) Γn. We have

#Vn+1

#Vn

=
#En+1

#En

= 2rk π1(Γn).

Now, the rank of the fundamental group π1(Γn) is the number of edges not belonging to a fixed
maximal tree in Γn. Since #En = 2 ·#Vn, the rank of π1(Γn) is #Vn +1. Thus, we get the recursive
formula

#Vn+1 = #Vn · 2#Vn+1.

In particular, #Vn grows faster than an iterated exponential and, according to the previous lemma,
the Cheeger constant h(Γn+1) decays as the reciprocal of #Vn.

3. NON UNIFORM COARSE EQUIVALENCE

We shall now show that the tower constructed in the previous section cannot be duplicated begin-
ning with an amenable group in (∗), thus completing the proof of the theorem in the introduction.

Two families (Xn)n>0 and (Yn)n>0 of metric spaces are uniformly quasi-isometric if there exist
functions fn : Xn → Yn and constants C > 1 and D > 0 such that for all x, y ∈ Xn and z ∈ Yn,
we have

• C−1d(x, y) − D 6 d(fn(x), fn(y)) 6 Cd(x, y) + D,
• d(z, fn(Xn)) 6 D.

The families (Xn)n>0 and (Yn)n>0 are uniformly coarsely equivalent if there exist functions fn :
Xn → Yn with the following two properties:

• ∀A ∃B such that ∀n ∀x, y ∈ Xn we have d(x, y) 6 A ⇒ d(fn(x), fn(y)) 6 B,
• ∀A ∃B such that ∀n ∀x, y ∈ Xn we have d(x, y) > B ⇒ d(fn(x), fn(y)) > A.

If two families are uniformly quasi-isometric then they are uniformly coarsely equivalent. Observe
that these notions apply to individual spaces, which we regard as trivial families containing a single
space. We say, for example, two spaces are coarsely equivalent.
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3. Proposition (The Uniform Švarc-Milnor Lemma). Continue with the notation of (∗). Equip
each Γn with the word metric associated to a fixed finite generating set for G; equip each Mn with
the path metric associated to its Riemannian structure. The families (Γn)n>0 and (Mn)n>0 are
uniformly quasi-isometric.

Remark. In the situation of (∗) the group G is indeed finitely generated. Further, the statement in
the proposition is independent of the choice of generators for G.

Proof of Proposition 3. The result follows from the Švarc-Milnor Lemma [1, Prop. I.8.19], observ-
ing that the inherent quasi-isometry constants (see the proof of the Lemma) depend only on the
diameter of a fundamental domain for the action. In detail, Γn is the group of deck transformations
of the cover Mn of M, whereas G is the group of deck transformations of the cover correspond-
ing to the kernel of the surjective homomorphism π1(M) ³ G. Further, the image in Mn of a
bounded fundamental domain for the action of G is a fundamental domain for the action of Γn, of
no greater diameter. ¤

Thus, the second statement in the theorem of the introduction is reduced to the following:

4. Proposition. Consider the tower of iterated squares (∗∗) of the free group F2 and the corre-
sponding quotients

Γ0 = { 1 } ← Γ1 = F2/F(2)
2 ← Γ2 = F2/(F(2)

2 )
(2) ← · · ·

Then the family (Γn)n>0 is not uniformly coarsely equivalent to any family of quotients of an
amenable group.

Let G be a finitely generated discrete group, and let ` be the word length associated to a fixed
finite and symmetric set of generators. Of the many equivalent definitions of amenabilitiy we shall
work with Reiter’s condition – G is amenable if for every ε > 0 and for every R > 0 there exists a
finitely supported ξ ∈ `1(G) such that ξ > 0, ‖ξ‖ = 1 and

(3.1) `(g) 6 R ⇒ ‖g · ξ − ξ‖ < ε,

where the action of G on `1(G) is defined by g · ξ(h) = ξ(g−1h).
Our main tool to prove Proposition 4 is the use of Property A, a weak form of amenability

introduced by Yu in the context of the Baum-Connes conjecture in topology [14].
Let X be a discrete metric space of bounded geometry – that is, the number of points in a ball of

fixed radius is bounded, the bound depending only on the radius of the ball and not on its center. Of
the many equivalent definitions of Property A we choose the one most closely related to Reiter’s
condition – X has Property A if for every ε > 0 and R > 0 there exists an S > 0 and for each
x ∈ X a function ξx ∈ `1(X) such that ξx > 0, ‖ξx‖ = 1 and

d(x, y) 6 R ⇒ ‖ξx − ξy‖ < ε,

ξx(y) 6= 0 ⇒ d(x, y) 6 S.

The analogy with amenability being clear, we say that a metric space having Property A is coarsely
amenable whereas one not having Property A is coarsely non-amenable.
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Finally, a metric space X is the coarse union of its subspaces Xn if X = tXn (disjoint union),
and if d(Xn, Xm) → ∞ as n + m → ∞. If the Xn are metric spaces each having finite diameter,
then there exists a metric space X which is the coarse union of (isometric copies of) the Xn. Further,
any two such unions are coarsely equivalent. Moreover, if Y is the coarse union of the Yn then X

and Y are coarsely equivalent when the Xn and Yn are uniformly coarsely equivalent.
We require the following slight generalization of [10, Prop. 11.39]. We include a proof which is

both different from other proofs in the literature and convenient for our result.

5. Proposition. Let G be a finitely generated amenable group. Every quotient of G is amenable;
the coarse union of any family of finite quotients of G is coarsely amenable.

Proof. Let H be a quotient of G and identify H with a set of cosets { gK }. Fix a finite and symmetric
set of generators for G and equip G with the associated word length; equip H with the word length
associated to the induced generators. With these conventions

`H(x) 6 R ⇐⇒ ∃ g ∈ x such that `G(g) 6 R

and, in particular, the map G ³ H is contractive. Given ε > 0 and R > 0, obtain ξ ∈ `1(G) as in
(3.1). Define

(3.2) η(x) =
∑
g∈x

ξ(g),

so that η > 0 and ‖η‖ = 1. Further, when z ∈ H has length at most R we obtain g ∈ G of length
at most R such that z = gK. We then calculate

‖z · η − η‖ =
∑

x∈H

|η(g−1x) − η(x)| 6
∑

x∈H

∑

h∈x

|ξ(g−1h) − ξ(h)| = ‖g · ξ − ξ‖ < ε.

We conclude that H is amenable.
When dealing with a coarse union the essential observation is that, in the previous argument, if

ξ is supported on the elements of length at most S then the same is true of η. Thus, let {Hn} be
a family of finite quotients of G, each equipped with a length function as above, and let X be a
coarse union of the Hn. Given ε > 0 and R > 0 proceed as above – obtain a Reiter function ξ for
G and define ηn as in (3.2). For x ∈ X define

ξx =

{
χN, x ∈ Hn, n 6 N

x · ηn, x ∈ Hn, n > N,

where N is chosen large enough so that for n > N the distance between Hn and any other Hm is
at least R and where χN is the normalized characteristic function of H1∪· · ·∪HN. Finally, choose
S larger than the diameter of H1 ∪ · · · ∪ HN and large enough so that ξ is supported on elements
of length at most S in G. The required properties are easily verified. ¤
Proof of Proposition 4. The iterated squares are proper characteristic subgroups of the free group,
hence, by Levi’s theorem [8, Ch.I, Prop. 3.3], they have trivial intersection, ∩F(2)...(2)

2 = { 1 }. Thus,
the coarse union of the metric spaces Γn is an example of a coarsely non-amenable box space. See
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[10, Def. 11.24 and Prop. 11.39]. (This statement is the converse of the previous proposition, and
can also be proved by modifying the above argument.) This finishes the proof as coarse amenability
is invariant under coarse equivalence, see, for example, [13, Prop. 4.2]. ¤

We conclude with two remarks. First, we have used a very crude invariant from coarse geometry
to distinguish towers constructed from the sequence of iterated squares (∗∗) from those constructed
beginning with an amenable group in (∗) – the former are coarsely non-amenable while the latter
are coarsely amenable. More refined invariants would be needed to establish the existence of
coarsely inequivalent towers constructed as in (∗) from a given non-amenable group.

Second, our construction involving the iterated squares (∗∗) is particular to the free group. It
would be interesting to remove the hypothesis of ‘largeness’ from our theorem.
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Soc., Zürich, 2010, to appear.
[7] Alexander Lubotzky. Discrete groups, expanding graphs and invariant measures, volume 125 of Progress in
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