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Abstract

For any finitely generated grou@ an invariant Il G >0 is introduced which measures
the “amount of non-amenability” ofs. If G is amenable, thend G = 0. If Fol G >0, we
call G uniformly non-amenableWe study the basic properties of this invariant; for example,
its behaviour when passing to subgroups and quotient$s.ofMe prove that the following
classes of groups are uniformly non-amenable: non-abelian free groups, non-elementary word-
hyperbolic groups, large groups, free Burnside groups of large enough odd exponent, and
groups acting acylindrically on a tree. Uniform non-amenability implies uniform exponential
growth. We also exhibit a family of non-amenable groups (in particular including all non-
solvable Baumslag—Solitar groups) which are not uniformly non-amenable, that is, they satisfy
Fol G = 0. Finally, we derive a relation between our uniformliter constant and the uniform
Kazhdan constant with respect to the left regular representatidd. of
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0. Introduction

Amenability is a fundamental concept with many apparently unrelated but logically
equivalent formulations in different branches of mathematics, such as measure the-
ory, representation theory, geometry, and algebra. Following the work of Fglner, the
geometric notion of amenability can be paraphrased as follows:

A space is amenable if it can be exhausted by a family of sgisof finite
volume, with boundaries Bdy,, also of finite volume, such that the ratio Volume
(Bdy A,))/Molume (A,) tends to 0 ast — oo.

For a finitely generated grou@ the volume of a subsek of G is simply set to be
its cardinality #4. The boundarydA of A can be defined in several different manners,
each of them usually dependent on the choice of a finite generating ¢leG. In this
paper, we use tha&ner boundaryof A (we will simply say “boundary”)

OxA={a€cA|ax ¢ A for some x € X*1}.

This seems to be the most natural definition from the viewpoint of geometric group
theory (as it measures nicely the isoperimetric quality of theAyeand is used in this

and related contexts by many authors. For the purpose of deciding whether a group is
amenable, that is, whether there exists a family of Fglner 4gts G with

. #OA
lim —~ =0,
n—oo #A,

all the competing definitions for the boundady, turn out to be equivalent: one can
consider the so-called Cheeger boundary, the exterior boundary, the above-defined inte-
rior boundary, etc. One of these alternative boundary notions determines the Kazhdan
constantk (1g, G, X) of G with respect to the left regular representation of G,
which will be defined in Sectior2.

This paper, however, focuses omn-amenable groupsand more precisely, on the
amount of non-amenability a group possesses. In order to measure non-amenability,

one quickly realizes that knowledge of any lower boundféﬁé for all finite A Cc G
is worthless, unless it isiniform with respect to all finite generating systemsof G.
Thus we define theiniform Fglner constant

HOxA
FolG = inf inf ~2X2
X A #HA

where A ranges over all non-empty finite subsets @fand X ranges over all finite
generating sets oB. Note that FgG is, in a rather subtle way, sensitive to the choice
made among the competing definitions for the boundanrA.of
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In this paper, we prove in particular that, & is a group generated hy elements,
then one has:

-2

2n
0<FolG <
2n

The lower bound is achieved & is amenable; correspondingly we call groupswith
non-zero Fglner invariant, FGl > 0, uniformly non-amenable

In Section13 we show that there exist non-amenable groups whichateniformly
non-amenable. They deserve special interest, as, by a result of[ZHinthe much
sought for examples of groups with exponential but not uniform exponential growth
must be either amenable but not elementary amenable, or else non-amenable, while we
show in Sectionl that the uniform growth rates(G) is bounded below byl_F%.
Together with the above-mentioned Kazhdan constant, also uniformized over all finite
generating systems, the situation can be summarized as follows (compare Propositions
1.4 and 2.4): Every finitely generated grou@ satisfies

1 1
0<=K(ig, G)’<FolG<l— ——.
5 (4G, G) o(G)

The maximal value, Fat = (2n — 2)/(2n — 1), is achieved forG free of rankn,
and by no other group generated byelements, see Sectidn For surface groups,
we give fairly close lower and upper bounds for Bglin Section6. A less precise
lower bound is computed in Sectid@for virtually free groups. While the computation
for free groups follows directly from geometric arguments in the Cayley graph, our
proof for surface groups is the model for a much larger class of groups, for which
uniform non-amenability is summarized in Theorem below.

It relies on two basic good properties of the uniform Fglner constant (see Sections
4 and 7):

(1) FelG >FalG/N for any normal subgroupl of G, and
(2) FolyG > 2 Faly H for any subgroupH of G,

where the constant depends only on the cardinality of the generating systeof H
and the maximal length of the elementsYofvith respect to the generating systetn
of G (the terminology is given in Sectioh below).
With these tools we can establish the following theorem. Our proofs are inspired by
the previously known results on uniform growth.

Theorem. The following classes of groups G are uniformly non-amenable

(1) non-elementary word-hyperbolic groups

(2) large groups(i.e. groups containing a finite index subgroup that surjects onto a
non-abelian free group

(3) free Burnside groups of large enough odd exponent

(4) groups which act acylindrically on a simplicial tree without global fixed points.
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Finally, we would like to direct the readers attention to recent workj2#] by
Osin, which, in a late state of our work, was communicated to us by de la Harpe.
The last section of our paper has been influenced by looking at this paper and at its
“predecessor” by Meief21].

1. Definitions
Let G be a group and leA be a non-empty finite subset &.

Definition 1.1. The boundary ofA C G with respect to the finite subs&f C G is
defined as

OxA ={a € Alax ¢ A for somex € X*1}.

Usually X will be a finite generating set fo. The boundary ofA is the set of
group elements which are at distance one from the complemehirothe word metric
relative toX. The boundary can be defined a priori for any subseGpbut it will be
used mostly for finite sets.

Definition 1.2. We define theFglner constaniof G with respect to the generating set
X as the number

 HOxA
Foly G = inf
oG =100 i

whereA runs over all non-empty finite subsets @f The uniform Fglner constantor
G is defined as

FolG = il;l(f Foly G,

where X runs over all finite generating sets Gf

Our definitions are motivated by the well-knowAmIner conditionon a group which
is equivalent to the amenability of the group. Using the above-introduced notation this
characterization can be stated as follows: a finitely generated g®Bugp amenable
if and only if FaglyG = 0 for some (and hence for every) generating Xgtsee for
instance[30,13] Clearly then, every amenable group has uniform Fglner constant zero.
Following [14] (for instance), we will use the following term:

Definition 1.3. A finitely generated groufs is said to beuniformly non-amenablé
FolG > 0.
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Amenability originates from a more general context which will be indicated in the
next section. It is worth noticing that in Sectid3 we give examples ofion-amenable
groups with uniform Fglner constant zero.

Recall that associated naturally to a gro@pand a finite generating set there is a
locally finite connected graph, th@ayley graph which can be considered as a metric
space by associating length 1 to every edge. It realizes on its verte® #w word
metric relative toX. A family of Fglner sets can be viewed as an analogue of the
sequence of ball®y (n) of radiusn around the origin ¥ G, and FgkG measures in
some sense the growth of these “generalized balls”.

On the other hand, thgrowth rate of G with respect toX is defined to be

wx(G) = n||_)mQQ V#Bx (n)

(the existence of this limit follows from the submultiplicativity property of the function
#Bx (n): #Bx (m+n) <#Bx(m)#Bx (n) for n, m >0, see for examplgl1]). The uniform
growth rateof G is defined as

o(G) = inf wx(G),

where the infimum is taken over all finite generating s¢tior G.

It is not hard to show that the growth rate of a free graypof rank k, with respect
to a free basisXy, is wx, (Fx) = 2k — 1. In fact this is the uniform growth rate of the
free group of rankk, see for instanc¢ll].

An important open problem on uniform growth rates, posed by Grofd@y Re-
marque 5.12]is the question whether there exist groups of exponential growth (i.e.
wx(G) > 1 for all generating setX) but with uniform growth rate equal te(G) = 1.
(Wilson [31] has recently produced a non-amenable example of such a group.) In view
of the following result such groups must have uniform Fglner constant zero.

Proposition 1.4. Let G be a finitely generated groupnd let X be a finite generating
set. Then

Fﬂ'xG <1l-—
wx(G)
and hence
1
FolG<1— ——.
o(G)

Proof. The Falner constant is an infimum taken over all non-empty finite subsets of
G. SincedxBx(n) € Bx(n) — Bx(n — 1), we have

#0xB #B -1
FolyG < 7% X(n)gl— x(n—1)
#Bx (n) #Bx (n)
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for all n>1. And, since

4B
liminf XM _ 6.
n—>oo #Bx(n —1)

we deduce

Fﬂ|xG<l —

wx(G)’

Note that the inequalities in Propositidn4 may very well be strict. However, in a
recent papef2] which has appeared while this paper was in final revision, Arzhantseva,
Guba and Guyot have shown that there krgenerator amenable groups with growth
rates arbitrarily close tok2— 1, and thus with uniform Fglner constant 0, but such that
the upper bound of the inequality is arbitrarily close %:—i The Baumslag—Solitar
group BS(1, 2) (see Sectiorl3 for the definition) provides an example of an amenable
group, hence with the Fglner constant zero, whose uniform growth rate is different
from 1 [4]. In general, for amenable groups with exponential growth, the inequalities
involving a fixed generating set are always strict. We also seediti@ > 1 whenever
FolG > O:

Corollary 1.5. Uniformly non-amenable groups have uniform exponential growth dif-
ferent from one.

2. Amenability and Kazhdan’s constants

A locally compact groud” is calledamenabléf there exists a left-invariant, finitely
additive measure: defined on all Borel subsets df and satisfyingu(I') = 1. For
more information and background on amenability, see for instgddde3,30] and the
references therein. The characterization of amenability which we shall use throughout
this paper is the existence of a family of Fglner sets, that is, a seqyapg®f subsets
of I' of finite Haar measure such that for glle I' we have

. #(A,LNgA
jim  HAnLgA) (2.1)
n— 00 #A,

(We use # to denote Haar measure; later we shall simply consider cardinality of finite
sets.)

Amenability can also be characterized from the point of view of representations. Let
Jr be the left regular representation bf on the Hilbert spacé{ = L2(T), that is,
r(@u(f) =u(g 1f) foru e L3T) and f, g € T

Definition 2.1. Let I" be a locally compact group, and lét be the left regular repre-
sentation ofl". We say that the trivial representationvieakly containedn Ar if, for
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any ¢ > 0 and any compact subs§tc T, there exists: € LZT) with |ju|| = 1 such
that

[, Ar(s)u) — 1] < ¢ 2.2)

for anys € S.

Theorem 2.2 (Hulanicki [16]). A group I' is amenable if and only if the left regular
representation of” weakly contains the trivial representation.

Related to Fglner constants are the well-known Kazhdan constants, which are defined
in terms of unitary representations.

Let I' be a locally compact grouf{ a separable Hilbert space, afid- I" a compact
set. For a unitary representation, ) of I' we define the number

KT, S) = inf max Z&u—ul
O#ueH seS [Ju]

Then theKazhdan constantvith respect to the séb is defined as

K(T,S) =inf K(x,T,S),
Y

where the infimum is taken over unitary representatiorigaving no invariant vectors.
We also define theiniform Kazhdan constant (with respect 1) as

K(n,TI)= ir;f K(n,T,S),

where the infimum is taken over all compact s&ts

A group T is said to haveKazhdan property(T) (or to be a Kazhdan group) if
there exists a compact s&tc I' with K(I', §) > 0. There are explicit computations
or estimates of Kazhdan constants in the litera{38,6,8,22,27,28,32]

Observe that according to the Definitichl and Theorem2.2, the groupI is
amenable if and only ik (A, I', §) = 0 for all compactS c T.

Let us now return to finitely generated groups, Leis replaced byG, S by a finite
generating systenX, and L?(I') by ¢?(G). We can rewrite condition(1) in terms of
the boundaries of finite sefsd,} forming a Fglner family, see for instan¢®]. Thus,
using the notations above and results already mentioned, we can summarize several
equivalent characterizations of amenability as follows:

Proposition 2.3. Let G be a finitely generated group. The following conditions on G
are equivalent.

(i) G is amenablg
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(i) There exist a finite generating set X of G and a sequence of non-empty finite
subsets{A,} of G satisfying

#oxAn _

lim
n—o0 n

(iii) FolxG = 0 for every finite generating set; X
(iv) K(4g, G, X) =0 for every finite generating set. X

The uniform Kazhdan constant of the left regular representation is related to the
Fglner constant as follows:

Proposition 2.4. Let G be a finitely generated group. Then one has
1 2
FolG > > K(g, G)“.

In particular, if FglG = 0 then K(1g, G) = 0.

Proof. For anye > FglG there exist a finite generating sktfor G and a non-empty

- #OxA - .
finite subsetA € G so thatﬁ < e. Let y,-1 be the characteristic function of 1.

XA-1 .
Then forx € X andu = of norm |lu|| = 1 we obtain
VHA el
1 2 #OxA
2 -1 X
) —ulf=— § - — Y- < <2s.
4G (x)u — ul] vy (XA 1(x77g) — 14 1(g)) 2 ) 2

geG

This implies K (/.. G, X) <+/2¢, s0 K (Jg, G)</2FglG. O

It is a subtle question whether the implication in the last sentence of Proposition
2.4 can be reversed. In particular, it would be interesting to know whether the 2-
generator infinite periodic groups with K (lg, G) = 0 exhibited in[24], which are
not amenable, satisfy F@l = 0: If so, they would be examples of non-amenable but not
uniformly non-amenable groups which do not contain non-abelian free subgtoups.

It follows from Propositions2.4 and 1.4 that K (g, G) > 0 implies thatG has uni-
form exponential growth. 1fi28], Shalom shows thak (s, G) > 0 for non-elementary
residually finite word hyperbolic groups. If18], Koubi proves that non-elementary

1The referee has pointed out that the 2-generator infinite periodic g@bepnstructed in24] actually
does have zero Fglner constant. This is beca@sis a quotient of all non-elementary word hyperbolic
groups, and the infimum of their uniform Fglner constants is zero since the closure of the set of
non-elementary word hyperbolic groups in the space of marked groups contains an amenabl@2%jroup
Applying Lemma13.2 and Theoremd.l, it follows that FglQ = 0.
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word hyperbolic groups have uniform exponential growth, a result that we will use
later.

3. Subgroups

Before beginning with the computation of the Falner constants of free groups, we
establish some results which relate the Fglner constants of a group to those of its
subgroups and quotients.

Lemma 3.1. Let G be a finitely generated grouX a finite generating systenand
ge€G. LetY = XU/{g}. Then

Faly G <FgalyG.

Proof. The Cayley graph ofs with respect toY is the same as the one with respect
to X, but at each vertex there is an extra edge labellefdleaving v and an extra
edge labelledy arriving atv. Consider a non-empty finite subsit Obviously, adding
edges to a Cayley graph cannot move a boundary poid tf the interior. The only
thing that can happen is that an interior point now becomes a boundary point if its
corresponding edgg or ¢g~1 has its other endpoint outsid® So the boundary with
respect toyY is at least as large as the boundary with respect.to]

The following result gives lower bounds on the Fglner constants of a group in terms
of those of certain subgroups:

Theorem 3.2 (First subgroup theorein Let G be a groupand let X = {x1,...,x,}
be a finite generating set of G. Let<n, and let H be the subgroup of G generated
by the sety = {x1, ..., x,}. Then

Fﬂ'XG > Fﬂly H.

Proof. Let A be a non-empty finite subset &, and choosey, ..., yx elements ofG
in such a way thaty, H Ny;H = if i # j, and AN y;H # . Namely, they; are
representatives of the cosets ldfwhich intersectA. Let A;, = AN y;H.

The Cayley graph oH with respect toY sits inside the Cayley graph @ with
respect toX. Considering only the edges labelled Ynthe cosets foH form disjoint
“parallel” copies of the Cayley graph dfi. Note thatA; is a finite subgraph of the
component corresponding to the coseti. Clearly, by the definition of the Fglner
constant, we have

HovA;  #ov(y; A)

= 1 >Faly H.
#A; #(y; ~A)
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Now, using the argument of the lemma above, it is clear that the bounda#y dising
only elements ofY is smaller than theX-boundary ofA. Then,

#0xA S #OyA _ Zi #OyA;

> = >FolyH,
HA T HA Y #A ’

which concludes the proof.OJ

This result has many interesting applications. For instance, it allows us to prove the
following proposition, which is a special case of the main result of the next section.

Proposition 3.3. Suppose that G is a finitely generated group, and that there is a
surjective homomorphismp: G — F». Then

FolG >Fal F,.
Proof. Let X = {x1,...,x,} be a finite set of generators f@. For 1<i < j <n, the
subgroup(¢(x;), ¢(x;)) of F» generated by the imagep(x;), ¢(x;) is either free of
rank 2, or cyclic. As¢(G) = F>, there are generatorg, x; such that(¢(x;), ¢(x;))

is free of rank 2, and hencgy;, x;) is a free non-abelian subgroup G The result
now follows from the first subgroup theorem(]

4. Quotients

The Fglner constant of a group is bounded below by the constants of its quotients
as follows:

Theorem 4.1. Let G be a finitely generated group and let X be a finite generating
system for G. Let N be a normal subgroup afsthe canonical homomorphism of G
onto G/N and X’ = n(X). Then

FolyG >Foly G/N
and hence
FolG >FelG/N.

Proof. It is clear that the second inequality follows from the first, because the first
inequality is valid for any finite generating system @f We have

FolyG >Falxy G/N >FelG/N,

so the infimum of FglG has the same lower bound.
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To prove the theorem, consider a finite getc G, and letB = n(A). By definition,

#0x' B
#X >FolyG/N.

For all i > 1, we define tha-level subset oB as
Bi={be G/Nl#(n_l(b) n A) >i) C B.

Note thatB; = B and thatB; = @ wheneveri > #A.
We need the following lemma:

Lemma 4.2. Let b,c € G/N such that there exists € X with image x’ = n(x)

satisfyingbx” = ¢ (i.e. b and c are at distance at most onedyN). Suppose € B;

andc € Bj — Bj1, for somei > j>0. Then there exist at least — j points in the
setoxA N 1(b).

Proof. Let a1, ...,a; bei different points in7—1(b) N A and consider the elements
aix, ...,ajx. These points are all im~(c), but at mostj of them are inA, since
n~1(c) N A has exactlyj elements. Hence, there are at least; points inz=1(b)N A
which are in the boundary o&. This completes the proof of the lemmall

We have the inequality

#0x' B;

Faly G/N <
x G/ B,

for all non-emptyB;, so

The proof will conclude when we prove that

Z #0x' B; <#HIxA .
i1

So let nowb be a point in som&y B;, and letip = #(n~1(b) N A) >i. We want to
consider the neighbour df which has the least number of preimages: let

iy = min {j | bx’ € Bj — Bjy1}.
x'eX’
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Then, sinceb hasig preimages i, and it has a neighbour with exactly preimages,
the contribution ofb to

Z #0x B;

i=1

is exactly zero ifip<iy andip—iy otherwise, sincé appears in all the se@&y B; for
all j =i1+1,...,ip. But now, according to Lemma4&.2, in the preimage ob there
must be at leasty — i1 points in the boundaryxA. So the conclusion is that

Z #Oy B; <HOXA,
i>1

as desired. O

5. Free groups

The quintessential examples of non-amenable groups are free non-abelian groups. So
it is reasonable to start our computations by calculating their Fglner constants. However,
all computations below depend only on the combinatorial properties of Cayley graphs
of free groups with respect to free bases. Such Cayley graphs are always regular trees.
It is remarkable to observe that the computations agree with the situation for a free
group of rank one, that is, the group of integers. All results will be stated including
this special case.

Let F; be the free group ok >1 generators, and leX; = {x1, ..., x;} be a basis
for Fi. The growth rate of a free group;, with respect to a free basis i 2 1. From
Proposition1.4 we immediately obtain:

Lemma 5.1. Let F; be a free group of rank k. Then

2k — 2

Fal Fr <Faly, Fi < Zk——l

We will devote the rest of this section to proving that these two inequalities are indeed
equalities, i.e. the uniform Fglner constant for free groups is achieved by considering
balls and free bases.

Recall that the Cayley graph of the free group of r&mkith respect to a free basis
is a X-regular tree. A subseft C F; can also be considered as a subgraph of this
Cayley graph; in this wayA is a forest.

Proposition 5.2. Let A be any non-empty finite subsetff with k>1. Then

#ox, A 2k —2
> — .
#A 2% —1
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Proof. We can assume that the graph(i.e. the vertices imA together with all edges
with both ends inA) is connected, because if the result is satisfied by all the connected
components, then it is clearly satisfied by their union.

Let V; denote the number of vertices of valenca A, i =1,...,2k. SinceAis a
tree its Euler characteristic must be zero,

Vit 2Va 4 -+ 2kV.
1= (Vit o+ Vo) + — 2 > % =0

So, V1 =24 Y. %4(i — 2)V;. Now,

#Hox A Vit +Vyg
#A Vi4+---4 Vo

Vo

= 1——
Vit + Vi

Vor
1- 2% . ;
24 Vo + Zizg(l %

1
>1——
2k—1
2k —2
= —_—. U
2k—1

This last result, together with the upper bound obtained from the growth rate, com-
pletes the proof of the calculation of the Fglner constant for free groups with respect
to free bases:

Proposition 5.3. If X; is a basis for the free grougy, then

2k —2

FﬂleFk - m .

To conclude the computation of the uniform Fglner constant of the free groups, we
only need to use the first subgroup theorem.

Proposition 5.4. One has
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Proof. LetY be any finite generating system f@j,. Let = be the abelianization map

n. Fp — 7k
and let Y3 = 7(Y). Since Y2 generatesZ¥, we can findys, ..., yx € Y such that
n(y1), ..., n(y) € Y2 are linearly independent, and hence, they generate a subgroup

of ZF which is isomorphic tozX. Then, H = (y1, ..., y) is a subgroup ofFy which
is also isomorphic to a free group of raksince it maps ont&* which cannot be
generated by less thanelements (note that, in gener#l, is not necessarily equal to
the original ;). Thus, using the first subgroup theorem, we can deduce that

2k — 2
Fﬂ|yFk>Fﬂ|{y1“__’yk}H = Zk——l
and sinceY is any finite generating system df,, we conclude the desired result, by
using Propositiorb.3. O

The above result can be improved to say that the free group ofkaskhe unique
group with Fglner constar%i%i, among groups admitting a system of generators with
k elements. This follows from the analogous result about the growth rate proved by
Koubi [19].

Proposition 5.5. Let G be a group generated by a set X such thét= k>2. Then
FolyG<%=2, and the equality holds if and only if G is free with basis X

Proof. As G hask generators, it is clear thaby (G) <2k — 1. From Propositior.4,
we have the upper bound

2k — 2
FolyG<1-1 <—0.
ol G Jox(G)< 53—

If FolyG = %’,ﬁ—j we see thatwy (G)>2k — 1, and thuswy(G) = 2k — 1. Koubi’s
Proposition 1.2 in[19] states thatwy (G) <2k — 1 with equality if and only ifG is
free with basisX. In our casewyx(G) = 2k — 1 and so, by Koubi's resultG is free
with basisX.

Conversely, ifG is free onX, the equality holds by Propositich3. O

Analogously, the same can be said with the uniform Fglner constant.

Theorem 5.6. Let G be a k-generated group>2. Then FglG < g’;—j and the equal-
ity holds if and only if G is free of rank.k

Now that Fglner constants for free groups have been calculated exactly, using the
guotient theorem, we see that knowledge of the Fglner constant of a group gives
information about its rank and about the rank of its free quotients.
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Corollary 5.7. Let G be a finitely generated group. If k is a positive integer such that

2k_2<F;aIG
2% — 1

then the rank of G is at least k

Corollary 5.8. Let G be a finitely generated group. If k is a positive integer such that

2k —2

FalG <
2k —1

and G admits a free quotient of rank then ¢ <k.

6. Surface groups

Let S, be the fundamental group of a closed orientable surface of ggndshe
rank of S, is 2g, so that(4g — 2)/(4g — 1) is an upper bound for its uniform Fglner
constant.

A lower bound for the Fglner constants f§§ can be obtained as follows. L&t be
the usual set of 2 generators foiS,. By Magnus’ Freiheitssatz, any subset gf 21
elements ofX generates a free group of rank 2 1, and the first subgroup theorem
applies to conclude that the Fglner constantSpmwith respect toX has a lower bound
given by the constant foF,_1. In fact this bound is uniform.

Theorem 6.1.Let S, be the fundamental group of a closed orientable surface of
genus g. Then

4g — 4 4g — 2
g <FolS, < g

4 — 3 4g —1°

Proof. LetY be any finite set of generators 8. Since the abelianization o, is 7%,
there is a subset’ consisting of 2 elements ofY whose images in the abelianization
are linearly independent. Lat” be a subset of” with 2¢g — 1 elements. Since every
subgroup of a surface group is either free or else a surface group of higherYank,
is necessarily free. And sinc&”) maps ontoZ?$~1, which cannot be generated by
less than 2 — 1 elements, we see thaY”) has rank 2 — 1. Now, the First Subgroup
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Theorem and Propositioh.3 tell us that

4o — 4

= Faly, ((Y")) <FalyS,,
23 yr({(Y")) Y

which is valid for everyyY.

Finally, the second inequality is consequence of the fact thathas rank 2,
and it is strict becauseS, is not free (and equality would therefore contradict
Theorem5.6). O

Notice that the subsét’ in the above proof generates a subgroup which is either free
of rank 2%, or S, itself. The first subgroup theorem implies that either ;F.‘@I> dg—2
or Y’ is a minimal set of generators fof,. In the first case, FglS, is bounded
away from the uniform Fglner constant. Thus to obtain a Fglner constant close to the
uniform one, it suffices to consider minimal sets of generators. The definition of the
Falner constants and the first subgroup theorem already suggest that this should be true
in general, as larger sets of generators will apparently provide larger boundaries. The
examples of the free groups, together with this behaviour for surface groups, appear to
confirm this.

The calculation of the exact uniform Fglner constant as well as the exact uniform
growth rate of surface groups is an open problem.

7. Subgroups revisited

The subgroup theorem obtained in Sect®only applies to those subgroups which
were generated by a subsystem of the system of generators for the group. In this section
we will state a general result which can be used for any subgroup and any system of
generators, but which will give worse bounds for the Fglner constants.

Theorem 7.1 (Second subgroup theorgmiet G be a finitely generated group and let
X = {x1,...,x,} be a system of generators for G. LEt< G be a subgroupgenerated
itself by a systent = {y1,..., y»}. Choose expressions; for the y; as words on
X*1, and let L be the maximum among their lengths. Then

1
FalyG> Faly H .
X 1—|—mL Y

Proof. Let A be a non-empty finite subset &. As in Theorem3.2, we consider
A as a finite union of intersectiond; of A with right cosets ofH, and we write
0yA = U;0yA;, viewing eachA; as existing inside a copy of the Cayley graphtbf
with respect toY. With the same argument as in Theor@m, we have FglH < #;gA,

even if A is not a subset oH.
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By definition, every elemenf € dyA; can be joined with a point outsidé;, and so
outsideA, by multiplication by somey;, which we think of as a path labelled; in
the generatorX. If { € 0xA, then this path begins &t If { ¢ dxA, then the path must
necessarily pass through a vertexdigA, which is not the final vertex of the path, just
before leavingA. Consider a vertex € 0xA; it may be thatz € dyA. Otherwise, there
are at most(w;) — 1<L — 1 ways in which a path labelled; may pass througl
in such a way that is neither the initial nor the final vertex.

Thus a vertex € dxA corresponds to at mos&lz’le(ﬁ(wj)—l) <1+mlL different
vertices indyA (and each vertex idyA has at least one corresponding vertex)j).

It follows that

m
#OyA< | 1+ ) (L(w)) — 1) | #0xA < (1+ mL)#OXA .
j=1

Since the previous inequality is valid for any non-empty finite subs&,afie deduce
the result. O

Remark 7.2. Observe that the only obstacle to the second subgroup theorem providing

a lower bound for the uniform Fglner constant fGris the fact that, for different
generating systems db, the lengths of the generators bf, and their number, can

grow arbitrarily. So, for all those examples where one can find bounds on these numbers,
the second subgroup theorem can be used to estimate the uniform Fglner constant, as
we shall see in the next three sections, where we find such bounds for virtually free
groups, large groups and hyperbolic groups.

8. Virtually free groups

Shalen and Wagreicf26] showed that, for a subgroup of finite indexk in a group
G, the uniform growth rates are related by G)>w(H)Y@~D This bound can be
improved tow(G) > w(H)Y*+D using Lemmas.1 below.

The second subgroup Theoréhi can be used to give a lower bound for the uniform
Falner constant for virtually free groups. This is a special case of Thedafefn but
is treated here separately: the proof below is much more direct, the method employed
is interesting in itself, and it is also used again in Sec8ion

Let G be a finitely generated group, and létbe a finite index subgroup, of index
k =[G : H]. The length of the generators is controlled by the following lemma, which
is a direct consequence of the fact that a subgroup of irhdm(%-quasiconvex:

Lemma 8.1. Let G be a group and H be a subgroup of index k. Given a generating
set X for G there exists a generating system Y for H where all the generators have
length at most + 1 with respect to X
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Theorem 8.2. Every virtually free group G is uniformly non-amenable. More precisely
if G contains a non-abelian free subgroup H of indexthen

1 2 2

FolG> — .
1+2k+1) 3 6k+09

Proof. Let X be a generating system f@ and letH be a free subgroup of rank
and indexk. Using the lemma above, we know that there exists a system of generators
Y for H whose elements have length at mést 1 with respect toX.

As H is non-abelian and free, there is a pair of generaldrsc Y which freely
generate a free subgrou’ of rank two. The second subgroup theorem applie#/to
and we have

Faly G > L Foly H > L 2 2
> H > - > .
P12k Y 1+2k+13 6k+9

9. Large groups

We can now use our results concerning subgroups to prove that certain classes of
well-known groups are uniformly non-amenable.

Definition 9.1. A group is said to bdarge (or as large asr) if it contains a finite
index subgroup which has a quotient isomorphic/g the free group of rank two.

Many classes of groups are known to be large: groups with deficiency 2 presentations,
not virtually abelian Coxeter groud&0], torsion-free one-relator groups, deficiency 1
presentations where no relator is a proper power and most generalized triangle groups,
see[15] for bibliography and more such classes.

Proposition 9.2. Large groups are uniformly non-amenable.

Proof. Let G be a large group an#i a subgroup of index which admits a quotient
isomorphic to F». Let X be a generating system f@&. From Lemma8.1, we can
construct a set of generatovsfor H whose elements all have length at mast 1.
We have no control on the size of but, because of the existence of a quotient of
H isomorphic to F>, we can choose two elements ¥fwhich are a basis of a free
subgroup ofH. Since the length of these two elements is bounded by, the second
subgroup theorem can be used to obtain a uniform lower bound fgrEdrhis implies

10. Hyperbolic groups

A result of Koubi[18] proves that a non-elementary hyperbolic group has uniform
exponential growth. The precise statement used here is as follows:
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Theorem 10.1(Koubi [18]). Let G be a non-elementary word hyperbolic group. Then
there exists a constan¥(G) > 0 such that for any generating set X of G there are
two elements f and g of lengthg|x, |g|x <N(G) freely generating a non-abelian free
subgroup.

This result establishes the necessary upper bound on the number of generators (two)
and their lengths, so that Remavk2 enables to use the Second Subgroup Theorem
7.1to give a lower bound on Fglner constants: 624 1+2]{,(G)% > TN

Corollary 10.2. Let G be a non-elementary word hyperbolic group. Then G is uniformly
non-amenable.

11. Burnside groups

In [1] Adian proved that for anyn>2 andn>665 odd the free Burnside group
B(m,n) = F,/F). is non-amenable. The following results follow from Theorem 41
[17, p. 303]

Given integersz > 0 odd and large enough angh >2, there exist words:(x, y),
v(x, y) in the alphabet{x, y} such that if a,b are two non-commuting elements of
B(m, n), then the subgroup H generated By= {u(a, b), v(a, b)} is isomorphic to the
free Burnside groupB(2, n).

In particular one has FgH > 0. As any generating systed of B(m,n) must
contain at least two non-commuting elemesisx;, we consideH for a = x;, b = x;
and apply Remark/.2 to obtain directly from the second subgroup Theorér the
following:

Corollary 11.1. For m>2 and n odd large enough the free Burnside groBpn, n)
is uniformly non-amenable.

12. Groups acting on trees

Recall that in[4], Bucher and de la Harpe studied uniform exponential growth of
HNN-extensions and amalgamated products of groups. The next result provides, in
some sense, a generalization of their work by asserting that a group which acts in
a proper way on a tree is uniformly non-amenable. Let us point out, however, that
some attention should be given to the hypotheses: Among the groups acting on trees
for which uniform exponential growth was shown [4] there are in particular non-
amenable Baumslag—Solitar groups. Those, however, do not satisfy the acylindricity
condition in the proposition below. The fact, proved in Sect®) that they give
examples of non-amenable grou@sthat satisfy FgG = 0, shows that our conditions
on the tree action are sharp, although they are more restrictive than the of#s in

Proposition 12.1. Let G be a finitely generated group which is not virtually cyclic
and assume that G acts on a simplicial tree T without a global fixed paird such
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that, for somek >0, the action is k-acylindrical in the sense of Sdlee. for any
g € G — {1} the set of fixed pointEix(g) C T has diameter<k, with respect to the
simplicial metrig.

Then for every finite generating system X of tBere exist two elements b € G
which generate a free subgroup of rarkk and satisfy|a|y, |b|x < max8k, 16). In
particular, the group G is uniformly non-amenable.

Proof. Notice first that, given any two elementsb € G which act hyperbolically on

T, such that their axes are disjoint or intersect in a segrdenvitich is shorter than the
translation length of both, then it follows from a standard ping-pong argument that the
subgroup generated keyandb is isomorphic toF,. Hence our goal is to produce such
elements which are of bounded length with respect to an arbitrary fixed generating
systemX = {x1,...,x,} of G.

If one of thex; defines a hyperbolic action oh we setg = x;. If all of the x; act
as elliptic elements off, and any two of them have a common fixed point, then, as
X'is finite (andT a tree), there would be a common fixed point for all the which
contradicts the hypothesis th@t has no global fixed point ofi. Thus we can assume
that Fix(x1) N Fix(x2) is empty, which implies that = x1x2 is a hyperbolic element,
whose axis will be denoted by &.

If one of thex; fixes one end of ax), then the commutatovc.,‘gxTlg—1 fixes
pointwise an infinite subarc of &) which defines that end. Hence from our hypothesis
of k-acylindricity of the action, this commutator must be trivial, and in particular
leaves akg) invariant.

Thus, if each of thex; fixes an end of ag) or interchanges its ends, then all of
G acts on axg), which means that eithe® is virtually cyclic, or else the commutator
subgroup contains elements of infinite order which fix all ofgax so that the action
of G would again not bek-acylindrical.

Thus we find an elemerit = x,-ng*l which is also hyperbolic and has the property
that J = ax(g) Nax(h) is empty or has finite diametet>0. Without loss of generality
we can assume that, Jfis non-empty, thery andh shift their axes alongd in the same
direction. Ifﬁ—{ is greater than or equal to the translation length of kgptiind h, then
¢ h~1gh fixes pointwise a final segment df of length ><, and the acylindricity
hypothesis implies thatk2>d. It follows that the elements = g% andb = h% have
the desired properties, since every edgd ihas length 1.

If dz is smaller than the translation length @f(or of h), then we can define = g*
andb = hg*h~1 to find the desired elements.

If Jis empty, then one can take=g andb =h. O

13. Non-amenable groups with Fglner constant zero

Let Q,, denote the set of markeah-generated groups, that is, the set of all quo-
tients of the free groupF(X) where X is a fixed free generating set containing
m>2 elements. The se®,, can also be considered as the set of all normal sub-
groups of F(X) or, geometrically, as the set of all corresponding Cayley graphs
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C(F(X)/N, X) (where, abusing notationX denotes also the generating set of the
quotient F(X)/N).

We define a metric (hence a topology, known as the Cayley topology®,pras
follows. Given two normal subgroupss, N2 < F(X), letC;, fori = 1, 2, be the Cayley
graph for F(X)/N;. Then, the distance betweévy and N is defined as

. 1 . .
D(N1, N2) = inf {Tl; Be, (n) is isometric toBcz(n)} ,
n

where B¢ (n) is the ball of radius in the Cayley grapiC centred at the identity, and
the isometry preserves the edge labels. This topology was introdudd®]insee also
[29,7] for background and interesting applications.

For a sequence of normal subgroufo¥};2,, we say thatN is the limit normal
subgroup of the sequence if

lim D(N, Ny) = 0.
k—o00

The corresponding quotien = F(X)/N is called the limit group of the sequence
{Gir}2, with Gy = F(X)/Ni. In particular, if Ny>Np,>N3z> --- form a chain of
normal subgroups, then the limit normal subgroupNs= (72, Ni. Similarly, if
N1<N2<N3<--- is now an ascending chain, then the limit is the unityh =

Ul(:il Nk.

Proposition 13.1. Let G = F(X)/N be the limit group of a sequende; ]2, with
Gy = F(X)/Ng, for k>1. Then

Foaly G > lim supFglx Gy.

k— 00

Proof. We denote by’ andC; the Cayley graph relative t§ of G and Gy, respectively.
For an arbitrarye > 0, by definition of Fay G, there exists a finite set C G satisfying
FQ|XG<#2;§A < FalyG + ¢. Since A is finite, it is contained in some balB-(n)

of radiusn = n(A) in C. By definition of the limit normal subgroup, there exists
K = K(n) > 0 such that for ank > K(n) we haveD(Ny, N) < ﬁ That is, for
such indicesk, the ballsB¢(n + 1) and Bg, (n + 1) are isometric via an isometry,.
Putting Ay = ¢, (A) C Gr we obtain F@Gg% < FalyG + ¢. It implies that
FalyGr < FolyG + ¢ for any k > K (n). Hence limsup_, . FolxGr <FglxG. O

Corollary 13.2 (cf. Osin[25]). If the limit group G = F(X)/N is amenable then

lim Fely F(X)/N; = 0.
k—o00
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We recall that the Baumslag—Solitar groups are given by the presentations
BS(p.q) = {a,t,|t YaPt =af), p,qeN.

Using Britton's lemma for HNN-extensions, it's easy to see thap,if > 1, then the
elementst anda~ra generate a free subgroup of rank 2 &S (p, ¢). It follows that
the group is non-amenable.

Proposition 13.3. For relatively primep # 1,4 # 1 the group BS(p, ¢) is a non-
amenable group witlrglBS(p, ¢) = 0.

Proof. We have to show that F@l = 0 for G = BS(p,q) with relatively prime
p #1,q # 1. We define a homomorphisi : G — G as follows:

a +— a?,

r — .

Since p and q are relatively prime, we have that is surjective. We denote bw;

its iterated kernel, i.eN; = ker ¢i,i>1. Note thatN1 < N2< ---. Let L denote the
corresponding limit group, that is, = G/|J{=; Ni. Then this group is amenable.
Indeed, the kernel of the homomorphisin — 7 defined bya +— 1 andt + ¢

is abelian, since it is generated Hy "at", n € Z}. Any two such generators are
conjugate to elements ‘ar’ and a, for some¢ € N. These elements commute in
$*(G) and hence irL. ThusL is an extension of an abelian group by a cyclic one, so
it is solvable and hence amenable. By the previous corollary, lign Faly Fo/N;, =0
whereX = {a, t}. But for all k> 1 there is an isomorphism between the quotiEstN,

and the groupG. It follows that FglG = 0, which completes the proof.[]

The previous result can be extended to a more general class of groups.

Theorem 13.4.Let A = (x1,...,x, | R) be an amenable group with a set of defining
relations R. Let u,v: A — A be injective homomorphisms satisfying

(i) pov=vouy
(i) u(A)Uv(A) generate A

Then for the groupG = (1, A | t Lu(x;)t = v(x;)) we haveFslG = 0.
If in addition,
(ii)) w(A) Uv(A) # A,
then G is a non-amenable group wilBlG = 0.
Proof. Let ®: G — G be defined byd(r) =1, ®(x;) = u(x;),i =1,..., m. Condition

() implies that® is homomorphism, (ii) thatb is surjective. Considering the iterated
kernels of®, we obtain the limit groupL = G/ |J;=; Ker @ which is amenable by



G.N. Arzhantseva et al./Advances in Mathematics 197 (2005) 499-522 521

the hypothesis o\ Indeed, as above, we consider the ketedf the homomorphism

L — Z defined byx; — 1,i = 1,...,m, andr — ¢. We claim that it is amenable.
ThenL is amenable as an extension of an amenable group by a cyclic group. Hence,
as in Propositioril3.3 we have FgG = 0.

In order to prove our claim we recall that a countable group is amenable if and only
if every finitely generated subgroup of this group is amenable. Every finitely generated
subgroupH of K is generated by finitely many products of finitely many conjugates
t™"x;t" with i =1,...,m andn € Z. Taking a conjugate oH (if necessary) by an
appropriate power of, we assume that € N in these conjugates. Then using the
defining relations~1u(x;)t = v(x;) of G we find a number € N such thatd(h) € A
for each generatoh of H. Hence®‘(H) < A. This image is amenable because it is a
finitely generated subgroup of the amenable gréuince® is an isomorphism of
we obtain the amenability off and hence that oK. This proves the claim.

Condition (iii) provides a free subgroup of rank 2 @ and hence non-amenability
of G. Namely, using Britton’s lemma for HNN-extensions, one can check that it is a
subgroup freely generated tyand b=1tb, for anyb € A — (u(A) Uv(A)). O

Remark 13.5. Groups satisfying conditions (i), (i), and (almost) (iii) above with
being abelian or a direct productwere introduced by Meier in order to construct
non-hopfian HNN-extensionR1]. In particular, such groups are non-hopfian.

As an immediate corollary of Theoren&s4 and 13.4 we see thatk (A, G) = 0
for a groupG satisfying (i) and (ii) above (i.e. the left regular representation is not
uniformly isolated from the trivial representation for these groups). If in addition (iii)
holds we obtain such a non-amenable group. This provides further examples of a
negative answer to a question of Shalfi?g8], solved first by Osif24], where groups
with similar conditions and a@abelian group A were considered.
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