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Abstract

For any finitely generated groupG an invariant FZl G �0 is introduced which measures
the “amount of non-amenability” ofG. If G is amenable, then FZl G = 0. If FZl G>0, we
call G uniformly non-amenable. We study the basic properties of this invariant; for example,
its behaviour when passing to subgroups and quotients ofG. We prove that the following
classes of groups are uniformly non-amenable: non-abelian free groups, non-elementary word-
hyperbolic groups, large groups, free Burnside groups of large enough odd exponent, and
groups acting acylindrically on a tree. Uniform non-amenability implies uniform exponential
growth. We also exhibit a family of non-amenable groups (in particular including all non-
solvable Baumslag–Solitar groups) which are not uniformly non-amenable, that is, they satisfy
FZl G = 0. Finally, we derive a relation between our uniform FZlner constant and the uniform
Kazhdan constant with respect to the left regular representation ofG.
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0. Introduction

Amenability is a fundamental concept with many apparently unrelated but logically
equivalent formulations in different branches of mathematics, such as measure the-
ory, representation theory, geometry, and algebra. Following the work of Følner, the
geometric notion of amenability can be paraphrased as follows:

A space is amenable if it can be exhausted by a family of setsAn of finite
volume, with boundaries BdyAn, also of finite volume, such that the ratio Volume
(BdyAn)/Volume (An) tends to 0 asn → ∞.

For a finitely generated groupG the volume of a subsetA of G is simply set to be
its cardinality #A. The boundary�A of A can be defined in several different manners,
each of them usually dependent on the choice of a finite generating setX of G. In this
paper, we use theinner boundaryof A (we will simply say “boundary”)

�XA = {a ∈ A | ax /∈ A for some x ∈ X±1}.

This seems to be the most natural definition from the viewpoint of geometric group
theory (as it measures nicely the isoperimetric quality of the setA), and is used in this
and related contexts by many authors. For the purpose of deciding whether a group is
amenable, that is, whether there exists a family of Følner setsAn ⊂ G with

lim
n→∞

#�An

#An

= 0 ,

all the competing definitions for the boundary�An turn out to be equivalent: one can
consider the so-called Cheeger boundary, the exterior boundary, the above-defined inte-
rior boundary, etc. One of these alternative boundary notions determines the Kazhdan
constantK(�G,G,X) of G with respect to the left regular representation�G of G,
which will be defined in Section2.

This paper, however, focuses onnon-amenable groups, and more precisely, on the
amount of non-amenability a group possesses. In order to measure non-amenability,

one quickly realizes that knowledge of any lower bound on#�XA
#A for all finite A ⊂ G

is worthless, unless it isuniform with respect to all finite generating systemsX of G.
Thus we define theuniform Følner constant

FølG = inf
X

inf
A

#�XA
#A

,

whereA ranges over all non-empty finite subsets ofG and X ranges over all finite
generating sets ofG. Note that FølG is, in a rather subtle way, sensitive to the choice
made among the competing definitions for the boundary ofA.



G.N. Arzhantseva et al. /Advances in Mathematics 197 (2005) 499–522 501

In this paper, we prove in particular that, ifG is a group generated byn elements,
then one has:

0�FølG� 2n − 2

2n − 1
.

The lower bound is achieved ifG is amenable; correspondingly we call groupsG with
non-zero Følner invariant, FølG > 0, uniformly non-amenable.

In Section13 we show that there exist non-amenable groups which arenot uniformly
non-amenable. They deserve special interest, as, by a result of Osin[23], the much
sought for examples of groups with exponential but not uniform exponential growth
must be either amenable but not elementary amenable, or else non-amenable, while we
show in Section1 that the uniform growth rate�(G) is bounded below by 1

1−FølG .
Together with the above-mentioned Kazhdan constant, also uniformized over all finite
generating systems, the situation can be summarized as follows (compare Propositions
1.4 and 2.4): Every finitely generated groupG satisfies

0� 1

2
K(�G,G)2�FølG�1− 1

�(G)
.

The maximal value, FølG = (2n − 2)/(2n − 1), is achieved forG free of rankn,
and by no other group generated byn elements, see Section5. For surface groupsSg
we give fairly close lower and upper bounds for FølSg in Section6. A less precise
lower bound is computed in Section8 for virtually free groups. While the computation
for free groups follows directly from geometric arguments in the Cayley graph, our
proof for surface groups is the model for a much larger class of groups, for which
uniform non-amenability is summarized in Theorem below.

It relies on two basic good properties of the uniform Følner constant (see Sections
4 and 7):

(1) FølG�FølG/N for any normal subgroupN of G, and
(2) FølXG� 1

C
FølYH for any subgroupH of G,

where the constantC depends only on the cardinality of the generating systemY of H
and the maximal length of the elements ofY with respect to the generating systemX
of G (the terminology is given in Section1 below).

With these tools we can establish the following theorem. Our proofs are inspired by
the previously known results on uniform growth.

Theorem. The following classes of groups G are uniformly non-amenable:

(1) non-elementary word-hyperbolic groups;
(2) large groups(i.e. groups containing a finite index subgroup that surjects onto a

non-abelian free group);
(3) free Burnside groups of large enough odd exponent;
(4) groups which act acylindrically on a simplicial tree without global fixed points.
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Finally, we would like to direct the readers attention to recent work of[24] by
Osin, which, in a late state of our work, was communicated to us by de la Harpe.
The last section of our paper has been influenced by looking at this paper and at its
“predecessor” by Meier[21].

1. Definitions

Let G be a group and letA be a non-empty finite subset ofG.

Definition 1.1. The boundary ofA ⊂ G with respect to the finite subsetX ⊂ G is
defined as

�XA = {a ∈ A | ax �∈ A for somex ∈ X±1}.

Usually X will be a finite generating set forG. The boundary ofA is the set of
group elements which are at distance one from the complement ofA in the word metric
relative toX. The boundary can be defined a priori for any subset ofG, but it will be
used mostly for finite sets.

Definition 1.2. We define theFølner constantof G with respect to the generating set
X as the number

FølXG = inf
A

#�XA
#A

,

whereA runs over all non-empty finite subsets ofG. The uniform Følner constantfor
G is defined as

FølG = inf
X

FølXG,

whereX runs over all finite generating sets ofG.

Our definitions are motivated by the well-knownFølner conditionon a group which
is equivalent to the amenability of the group. Using the above-introduced notation this
characterization can be stated as follows: a finitely generated groupG is amenable
if and only if FølXG = 0 for some (and hence for every) generating setX, see for
instance[30,13]. Clearly then, every amenable group has uniform Følner constant zero.
Following [14] (for instance), we will use the following term:

Definition 1.3. A finitely generated groupG is said to beuniformly non-amenableif
FølG > 0.



G.N. Arzhantseva et al. /Advances in Mathematics 197 (2005) 499–522 503

Amenability originates from a more general context which will be indicated in the
next section. It is worth noticing that in Section13 we give examples ofnon-amenable
groups with uniform Følner constant zero.

Recall that associated naturally to a groupG and a finite generating setX there is a
locally finite connected graph, theCayley graph, which can be considered as a metric
space by associating length 1 to every edge. It realizes on its vertex setG the word
metric relative toX. A family of Følner sets can be viewed as an analogue of the
sequence of ballsBX(n) of radiusn around the origin 1∈ G, and FølXG measures in
some sense the growth of these “generalized balls”.

On the other hand, thegrowth rateof G with respect toX is defined to be

�X(G) = lim
n→∞

n
√

#BX(n)

(the existence of this limit follows from the submultiplicativity property of the function
#BX(n): #BX(m+n)�#BX(m)#BX(n) for n,m�0, see for example[11]). Theuniform
growth rateof G is defined as

�(G) = inf
X

�X(G),

where the infimum is taken over all finite generating setsX for G.
It is not hard to show that the growth rate of a free groupFk of rank k, with respect

to a free basisXk, is �Xk
(Fk) = 2k − 1. In fact this is the uniform growth rate of the

free group of rankk, see for instance[11].
An important open problem on uniform growth rates, posed by Gromov[12, Re-

marque 5.12], is the question whether there exist groups of exponential growth (i.e.
�X(G) > 1 for all generating setsX) but with uniform growth rate equal to�(G) = 1.
(Wilson [31] has recently produced a non-amenable example of such a group.) In view
of the following result such groups must have uniform Følner constant zero.

Proposition 1.4. Let G be a finitely generated group, and let X be a finite generating
set. Then

FølXG�1− 1

�X(G)

and hence,

FølG�1− 1

�(G)
.

Proof. The Følner constant is an infimum taken over all non-empty finite subsets of
G. Since�XBX(n) ⊆ BX(n) − BX(n − 1), we have

FølXG� #�XBX(n)

#BX(n)
�1− #BX(n − 1)

#BX(n)
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for all n�1. And, since

lim inf
n→∞

#BX(n)

#BX(n − 1)
��X(G),

we deduce

FølXG�1− 1

�X(G)
. �

Note that the inequalities in Proposition1.4 may very well be strict. However, in a
recent paper[2] which has appeared while this paper was in final revision, Arzhantseva,
Guba and Guyot have shown that there arek generator amenable groups with growth
rates arbitrarily close to 2k−1, and thus with uniform Følner constant 0, but such that
the upper bound of the inequality is arbitrarily close to2k−2

2k−1. The Baumslag–Solitar
groupBS(1,2) (see Section13 for the definition) provides an example of an amenable
group, hence with the Følner constant zero, whose uniform growth rate is different
from 1 [4]. In general, for amenable groups with exponential growth, the inequalities
involving a fixed generating set are always strict. We also see that�(G) > 1 whenever
FølG > 0:

Corollary 1.5. Uniformly non-amenable groups have uniform exponential growth dif-
ferent from one.

2. Amenability and Kazhdan’s constants

A locally compact group� is calledamenableif there exists a left-invariant, finitely
additive measure� defined on all Borel subsets of� and satisfying�(�) = 1. For
more information and background on amenability, see for instance[9,13,30] and the
references therein. The characterization of amenability which we shall use throughout
this paper is the existence of a family of Følner sets, that is, a sequence{An} of subsets
of � of finite Haar measure such that for allg ∈ � we have

lim
n→∞

#(An�gAn)

#An

= 0. (2.1)

(We use # to denote Haar measure; later we shall simply consider cardinality of finite
sets.)

Amenability can also be characterized from the point of view of representations. Let
�� be the left regular representation of� on the Hilbert spaceH = L2(�), that is,
��(g)u(f ) = u(g−1f ) for u ∈ L2(�) and f, g ∈ �.

Definition 2.1. Let � be a locally compact group, and let�� be the left regular repre-
sentation of�. We say that the trivial representation isweakly containedin �� if, for
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any ε > 0 and any compact subsetS ⊂ �, there existsu ∈ L2(�) with ‖u‖ = 1 such
that

|〈u, ��(s)u〉 − 1| < ε (2.2)

for any s ∈ S.

Theorem 2.2 (Hulanicki [16] ). A group� is amenable if and only if the left regular
representation of� weakly contains the trivial representation.

Related to Følner constants are the well-known Kazhdan constants, which are defined
in terms of unitary representations.

Let � be a locally compact group,H a separable Hilbert space, andS ⊂ � a compact
set. For a unitary representation(�,H) of � we define the number

K(�,�, S) = inf
0�=u∈H

max
s∈S

‖�(s)u − u‖
‖u‖ .

Then theKazhdan constantwith respect to the setS is defined as

K(�, S) = inf
�

K(�,�, S),

where the infimum is taken over unitary representations� having no invariant vectors.
We also define theuniform Kazhdan constant (with respect to�) as

K(�,�) = inf
S

K(�,�, S),

where the infimum is taken over all compact setsS.
A group � is said to haveKazhdan property(T) (or to be a Kazhdan group) if

there exists a compact setS ⊂ � with K(�, S) > 0. There are explicit computations
or estimates of Kazhdan constants in the literature[3,5,6,8,22,27,28,32].

Observe that according to the Definition2.1 and Theorem2.2, the group� is
amenable if and only ifK(��,�, S) = 0 for all compactS ⊂ �.

Let us now return to finitely generated groups, i.e.� is replaced byG, S by a finite
generating systemX, andL2(�) by �2(G). We can rewrite condition (2.1) in terms of
the boundaries of finite sets{An} forming a Følner family, see for instance[9]. Thus,
using the notations above and results already mentioned, we can summarize several
equivalent characterizations of amenability as follows:

Proposition 2.3. Let G be a finitely generated group. The following conditions on G
are equivalent.

(i) G is amenable;
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(ii) There exist a finite generating set X of G and a sequence of non-empty finite
subsets{An} of G satisfying

lim
n→∞

#�XAn

#An

= 0;

(iii) FølXG = 0 for every finite generating set X;
(iv) K(�G,G,X) = 0 for every finite generating set X.

The uniform Kazhdan constant of the left regular representation is related to the
Følner constant as follows:

Proposition 2.4. Let G be a finitely generated group. Then one has

FølG� 1

2
K(�G,G)2.

In particular, if FølG = 0 thenK(�G,G) = 0.

Proof. For anyε > FølG there exist a finite generating setX for G and a non-empty

finite subsetA ⊆ G so that
#�XA
#A

< ε. Let �A−1 be the characteristic function ofA−1.

Then for x ∈ X and u = �A−1√
#A

of norm ‖u‖ = 1 we obtain

‖�G(x)u − u‖2 = 1

#A

∑
g∈G

(
�A−1(x

−1g) − �A−1(g)
)2

�2
#�XA
#A

�2ε .

This impliesK(�G,G,X)�
√

2ε, so K(�G,G)�
√

2FølG. �

It is a subtle question whether the implication in the last sentence of Proposition
2.4 can be reversed. In particular, it would be interesting to know whether the 2-
generator infinite periodic groupsG with K(�G,G) = 0 exhibited in[24], which are
not amenable, satisfy FølG = 0: If so, they would be examples of non-amenable but not
uniformly non-amenable groups which do not contain non-abelian free subgroups.1

It follows from Propositions2.4 and1.4 that K(�G,G) > 0 implies thatG has uni-
form exponential growth. In[28], Shalom shows thatK(�G,G) > 0 for non-elementary
residually finite word hyperbolic groups. In[18], Koubi proves that non-elementary

1 The referee has pointed out that the 2-generator infinite periodic groupQ constructed in[24] actually
does have zero Følner constant. This is becauseQ is a quotient of all non-elementary word hyperbolic
groups, and the infimum of their uniform Følner constants is zero since the closure of the set of
non-elementary word hyperbolic groups in the space of marked groups contains an amenable group[25].
Applying Lemma13.2 and Theorem4.1, it follows that FølQ = 0.
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word hyperbolic groups have uniform exponential growth, a result that we will use
later.

3. Subgroups

Before beginning with the computation of the Følner constants of free groups, we
establish some results which relate the Følner constants of a group to those of its
subgroups and quotients.

Lemma 3.1. Let G be a finitely generated group, X a finite generating system, and
g ∈ G. Let Y = X ∪ {g}. Then

FølXG�FølYG.

Proof. The Cayley graph ofG with respect toY is the same as the one with respect
to X, but at each vertexv there is an extra edge labelledg leaving v and an extra
edge labelledg arriving at v. Consider a non-empty finite subsetA. Obviously, adding
edges to a Cayley graph cannot move a boundary point ofA to the interior. The only
thing that can happen is that an interior point now becomes a boundary point if its
corresponding edgeg or g−1 has its other endpoint outsideA. So the boundary with
respect toY is at least as large as the boundary with respect toX. �

The following result gives lower bounds on the Følner constants of a group in terms
of those of certain subgroups:

Theorem 3.2 (First subgroup theorem). Let G be a group, and let X = {x1, . . . , xn}
be a finite generating set of G. Letm�n, and let H be the subgroup of G generated
by the setY = {x1, . . . , xm}. Then,

FølXG�FølYH.

Proof. Let A be a non-empty finite subset ofG, and choosey1, . . . , yk elements ofG
in such a way thatyiH ∩ yjH = � if i �= j , andA ∩ yiH �= �. Namely, theyi are
representatives of the cosets ofH which intersectA. Let Ai = A ∩ yiH .

The Cayley graph ofH with respect toY sits inside the Cayley graph ofG with
respect toX. Considering only the edges labelled inY, the cosets forH form disjoint
“parallel” copies of the Cayley graph ofH. Note thatAi is a finite subgraph of the
component corresponding to the cosetyiH . Clearly, by the definition of the Følner
constant, we have

#�YAi

#Ai

= #�Y(y−1
i Ai)

#(y−1
i Ai)

�FølYH.
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Now, using the argument of the lemma above, it is clear that the boundary forA using
only elements ofY is smaller than theX-boundary ofA. Then,

#�XA
#A

� #�YA
#A

=
∑

i #�YAi∑
i #Ai

�FølYH,

which concludes the proof.�

This result has many interesting applications. For instance, it allows us to prove the
following proposition, which is a special case of the main result of the next section.

Proposition 3.3. Suppose that G is a finitely generated group, and that there is a
surjective homomorphism� :G → F2. Then

FølG�FølF2.

Proof. Let X = {x1, . . . , xn} be a finite set of generators forG. For 1� i < j �n, the
subgroup〈�(xi),�(xj )〉 of F2 generated by the images�(xi),�(xj ) is either free of
rank 2, or cyclic. As�(G) = F2, there are generatorsxi, xj such that〈�(xi),�(xj )〉
is free of rank 2, and hence〈xi, xj 〉 is a free non-abelian subgroup ofG. The result
now follows from the first subgroup theorem.�

4. Quotients

The Følner constant of a group is bounded below by the constants of its quotients
as follows:

Theorem 4.1. Let G be a finitely generated group and let X be a finite generating
system for G. Let N be a normal subgroup of G, � the canonical homomorphism of G
ontoG/N and X′ = �(X). Then,

FølXG�FølX′G/N

and hence,

FølG�FølG/N.

Proof. It is clear that the second inequality follows from the first, because the first
inequality is valid for any finite generating system ofG. We have

FølXG�FølX′G/N�FølG/N,

so the infimum of FølXG has the same lower bound.
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To prove the theorem, consider a finite setA ⊂ G, and letB = �(A). By definition,

#�X′B

#B
�FølX′G/N.

For all i�1, we define thei-level subset ofB as

Bi = {b ∈ G/N | #
(
�−1(b) ∩ A

)
� i} ⊆ B.

Note thatB1 = B and thatBi = ∅ wheneveri > #A.

We need the following lemma:

Lemma 4.2. Let b, c ∈ G/N such that there existsx ∈ X with image x′ = �(x)
satisfyingbx′ = c (i.e. b and c are at distance at most one inG/N ). Supposeb ∈ Bi

and c ∈ Bj − Bj+1, for somei > j �0. Then, there exist at leasti − j points in the
set �XA ∩ �−1(b).

Proof. Let a1, . . . , ai be i different points in�−1(b) ∩ A and consider the elements
a1x, . . . , aix. These points are all in�−1(c), but at mostj of them are inA, since
�−1(c)∩A has exactlyj elements. Hence, there are at leasti − j points in�−1(b)∩A

which are in the boundary ofA. This completes the proof of the lemma.�

We have the inequality

FølX′G/N� #�X′Bi

#Bi

for all non-emptyBi , so

FølX′G/N�
∑

i�1 #�X′Bi∑
i�1 #Bi

=
∑

i�1 #�X′Bi

#A
.

The proof will conclude when we prove that

∑
i�1

#�X′Bi �#�XA .

So let nowb be a point in some�X′Bi , and let i0 = #(�−1(b) ∩ A)� i. We want to
consider the neighbour ofb which has the least number of preimages: let

i1 = min
x′∈X′ {j | bx′ ∈ Bj − Bj+1}.
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Then, sinceb hasi0 preimages inA, and it has a neighbour with exactlyi1 preimages,
the contribution ofb to

∑
i�1

#�X′Bi

is exactly zero ifi0� i1 and i0 − i1 otherwise, sinceb appears in all the sets�X′Bj for
all j = i1 + 1, . . . , i0. But now, according to Lemma4.2, in the preimage ofb there
must be at leasti0 − i1 points in the boundary�XA. So the conclusion is that

∑
i�1

#�X′Bi �#�XA,

as desired. �

5. Free groups

The quintessential examples of non-amenable groups are free non-abelian groups. So
it is reasonable to start our computations by calculating their Følner constants. However,
all computations below depend only on the combinatorial properties of Cayley graphs
of free groups with respect to free bases. Such Cayley graphs are always regular trees.
It is remarkable to observe that the computations agree with the situation for a free
group of rank one, that is, the group of integers. All results will be stated including
this special case.

Let Fk be the free group onk�1 generators, and letXk = {x1, . . . , xk} be a basis
for Fk. The growth rate of a free groupFk with respect to a free basis is 2k−1. From
Proposition1.4 we immediately obtain:

Lemma 5.1. Let Fk be a free group of rank k. Then

FølFk �FølXk
Fk � 2k − 2

2k − 1
.

We will devote the rest of this section to proving that these two inequalities are indeed
equalities, i.e. the uniform Følner constant for free groups is achieved by considering
balls and free bases.

Recall that the Cayley graph of the free group of rankk with respect to a free basis
is a 2k-regular tree. A subsetA ⊂ Fk can also be considered as a subgraph of this
Cayley graph; in this way,A is a forest.

Proposition 5.2. Let A be any non-empty finite subset ofFk, with k�1. Then,

#�Xk
A

#A
>

2k − 2

2k − 1
.
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Proof. We can assume that the graphA (i.e. the vertices inA together with all edges
with both ends inA) is connected, because if the result is satisfied by all the connected
components, then it is clearly satisfied by their union.

Let Vi denote the number of vertices of valencei in A, i = 1, . . . ,2k. SinceA is a
tree its Euler characteristic must be zero,

1− (V1 + · · · + V2k) + V1 + 2V2 + · · · + 2kV2k

2
= 0.

So, V1 = 2 + ∑2k
i=3(i − 2)Vi . Now,

#�Xk
A

#A
= V1 + · · · + V2k−1

V1 + · · · + V2k

= 1− V2k

V1 + · · · + V2k

= 1− V2k

2 + V2 + ∑2k
i=3(i − 1)Vi

> 1− 1

2k − 1

= 2k − 2

2k − 1
. �

This last result, together with the upper bound obtained from the growth rate, com-
pletes the proof of the calculation of the Følner constant for free groups with respect
to free bases:

Proposition 5.3. If Xk is a basis for the free groupFk, then

FølXk
Fk = 2k − 2

2k − 1
.

To conclude the computation of the uniform Følner constant of the free groups, we
only need to use the first subgroup theorem.

Proposition 5.4. One has

FølFk = 2k − 2

2k − 1
.
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Proof. Let Y be any finite generating system forFk. Let � be the abelianization map

� : Fk −→ Zk

and let Y ab = �(Y ). Since Y ab generatesZk, we can findy1, . . . , yk ∈ Y such that
�(y1), . . . , �(yk) ∈ Y ab are linearly independent, and hence, they generate a subgroup
of Zk which is isomorphic toZk. Then,H = 〈y1, . . . , yk〉 is a subgroup ofFk which
is also isomorphic to a free group of rankk since it maps ontoZk which cannot be
generated by less thank elements (note that, in general,H is not necessarily equal to
the originalFk). Thus, using the first subgroup theorem, we can deduce that

FølYFk �Føl{y1,...,yk}H = 2k − 2

2k − 1

and sinceY is any finite generating system ofFk, we conclude the desired result, by
using Proposition5.3. �

The above result can be improved to say that the free group of rankk is the unique
group with Følner constant2k−2

2k−1, among groups admitting a system of generators with
k elements. This follows from the analogous result about the growth rate proved by
Koubi [19].

Proposition 5.5. Let G be a group generated by a set X such that|X| = k�2. Then
FølXG� 2k−2

2k−1, and the equality holds if and only if G is free with basis X.

Proof. As G hask generators, it is clear that�X(G)�2k − 1. From Proposition1.4,
we have the upper bound

FølXG�1− 1/�X(G)� 2k − 2

2k − 1
.

If FølXG = 2k−2
2k−1, we see that�X(G)�2k − 1, and thus�X(G) = 2k − 1. Koubi’s

Proposition 1.2 in[19] states that�X(G)�2k − 1 with equality if and only ifG is
free with basisX. In our case�X(G) = 2k − 1 and so, by Koubi’s result,G is free
with basisX.

Conversely, ifG is free onX, the equality holds by Proposition5.3. �

Analogously, the same can be said with the uniform Følner constant.

Theorem 5.6. Let G be a k-generated group, k�2. Then, FølG� 2k−2
2k−1, and the equal-

ity holds if and only if G is free of rank k.

Now that Følner constants for free groups have been calculated exactly, using the
quotient theorem, we see that knowledge of the Følner constant of a group gives
information about its rank and about the rank of its free quotients.
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Corollary 5.7. Let G be a finitely generated group. If k is a positive integer such that

2k − 2

2k − 1
�FølG

then the rank of G is at least k.

Corollary 5.8. Let G be a finitely generated group. If k is a positive integer such that

FølG� 2k − 2

2k − 1

and G admits a free quotient of rank�, then ��k.

6. Surface groups

Let Sg be the fundamental group of a closed orientable surface of genusg. The
rank of Sg is 2g, so that(4g − 2)/(4g − 1) is an upper bound for its uniform Følner
constant.

A lower bound for the Følner constants forSg can be obtained as follows. LetX be
the usual set of 2g generators forSg. By Magnus’ Freiheitssatz, any subset of 2g − 1
elements ofX generates a free group of rank 2g − 1, and the first subgroup theorem
applies to conclude that the Følner constant forSg with respect toX has a lower bound
given by the constant forF2g−1. In fact this bound is uniform.

Theorem 6.1. Let Sg be the fundamental group of a closed orientable surface of
genus g. Then

4g − 4

4g − 3
�FølSg <

4g − 2

4g − 1
.

Proof. LetY be any finite set of generators forSg. Since the abelianization ofSg is Z2g,
there is a subsetY ′ consisting of 2g elements ofY whose images in the abelianization
are linearly independent. LetY ′′ be a subset ofY ′ with 2g − 1 elements. Since every
subgroup of a surface group is either free or else a surface group of higher rank,〈Y ′′〉
is necessarily free. And since〈Y ′′〉 maps ontoZ2g−1, which cannot be generated by
less than 2g − 1 elements, we see that〈Y ′′〉 has rank 2g − 1. Now, the First Subgroup
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Theorem and Proposition5.3, tell us that

4g − 4

4g − 3
= FølY ′′(〈Y ′′〉)�FølY Sg,

which is valid for everyY.
Finally, the second inequality is consequence of the fact thatSg has rank 2g,

and it is strict becauseSg is not free (and equality would therefore contradict
Theorem5.6). �

Notice that the subsetY ′ in the above proof generates a subgroup which is either free
of rank 2g, or Sg itself. The first subgroup theorem implies that either FølY Sg � 4g−2

4g−1
or Y ′ is a minimal set of generators forSg. In the first case, FølY Sg is bounded
away from the uniform Følner constant. Thus to obtain a Følner constant close to the
uniform one, it suffices to consider minimal sets of generators. The definition of the
Følner constants and the first subgroup theorem already suggest that this should be true
in general, as larger sets of generators will apparently provide larger boundaries. The
examples of the free groups, together with this behaviour for surface groups, appear to
confirm this.

The calculation of the exact uniform Følner constant as well as the exact uniform
growth rate of surface groups is an open problem.

7. Subgroups revisited

The subgroup theorem obtained in Section3 only applies to those subgroups which
were generated by a subsystem of the system of generators for the group. In this section
we will state a general result which can be used for any subgroup and any system of
generators, but which will give worse bounds for the Følner constants.

Theorem 7.1 (Second subgroup theorem). Let G be a finitely generated group and let
X = {x1, . . . , xn} be a system of generators for G. LetH �G be a subgroup, generated
itself by a systemY = {y1, . . . , ym}. Choose expressionswj for the yj as words on
X±1, and let L be the maximum among their lengths. Then,

FølXG� 1

1+ mL
FølYH .

Proof. Let A be a non-empty finite subset ofG. As in Theorem3.2, we consider
A as a finite union of intersectionsAi of A with right cosets ofH, and we write
�YA = ∪i�YAi , viewing eachAi as existing inside a copy of the Cayley graph ofH

with respect toY. With the same argument as in Theorem3.2, we have FølYH � #�YA
#A ,

even if A is not a subset ofH.
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By definition, every element� ∈ �YAi can be joined with a point outsideAi , and so
outsideA, by multiplication by someyj , which we think of as a path labelledwj in
the generatorsX. If � ∈ �XA, then this path begins at�. If � �∈ �XA, then the path must
necessarily pass through a vertex in�XA, which is not the final vertex of the path, just
before leavingA. Consider a vertexz ∈ �XA; it may be thatz ∈ �YA. Otherwise, there
are at most�(wj ) − 1�L − 1 ways in which a path labelledwj may pass throughz
in such a way thatz is neither the initial nor the final vertex.

Thus a vertexz ∈ �XA corresponds to at most 1+∑m
j=1(�(wj )−1)�1+mL different

vertices in�YA (and each vertex in�YA has at least one corresponding vertex in�XA).
It follows that

#�YA�


1+

m∑
j=1

(�(wj ) − 1)


 #�XA�(1+ mL)#�XA .

Since the previous inequality is valid for any non-empty finite subset ofG, we deduce
the result. �

Remark 7.2. Observe that the only obstacle to the second subgroup theorem providing
a lower bound for the uniform Følner constant forG is the fact that, for different
generating systems ofG, the lengths of the generators ofH, and their number, can
grow arbitrarily. So, for all those examples where one can find bounds on these numbers,
the second subgroup theorem can be used to estimate the uniform Følner constant, as
we shall see in the next three sections, where we find such bounds for virtually free
groups, large groups and hyperbolic groups.

8. Virtually free groups

Shalen and Wagreich[26] showed that, for a subgroupH of finite indexk in a group
G, the uniform growth rates are related by�(G)��(H)1/(2k−1). This bound can be
improved to�(G)��(H)1/(k+1) using Lemma8.1 below.

The second subgroup Theorem7.1 can be used to give a lower bound for the uniform
Følner constant for virtually free groups. This is a special case of Theorem10.1, but
is treated here separately: the proof below is much more direct, the method employed
is interesting in itself, and it is also used again in Section9.

Let G be a finitely generated group, and letH be a finite index subgroup, of index
k = [G : H ]. The length of the generators is controlled by the following lemma, which
is a direct consequence of the fact that a subgroup of indexk is k

2-quasiconvex:

Lemma 8.1. Let G be a group and H be a subgroup of index k. Given a generating
set X for G, there exists a generating system Y for H where all the generators have
length at mostk + 1 with respect to X.
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Theorem 8.2. Every virtually free group G is uniformly non-amenable. More precisely,
if G contains a non-abelian free subgroup H of index k, then

FølG� 1

1+ 2(k + 1)

2

3
>

2

6k + 9
.

Proof. Let X be a generating system forG and letH be a free subgroup of rankp
and indexk. Using the lemma above, we know that there exists a system of generators
Y for H whose elements have length at mostk + 1 with respect toX.

As H is non-abelian and free, there is a pair of generatorsY ′ ⊂ Y which freely
generate a free subgroupH ′ of rank two. The second subgroup theorem applies toH ′
and we have

FølXG� 1

1+ 2(k + 1)
FølY ′H ′ � 1

1+ 2(k + 1)

2

3
>

2

6k + 9
. �

9. Large groups

We can now use our results concerning subgroups to prove that certain classes of
well-known groups are uniformly non-amenable.

Definition 9.1. A group is said to belarge (or as large asF2) if it contains a finite
index subgroup which has a quotient isomorphic toF2, the free group of rank two.

Many classes of groups are known to be large: groups with deficiency 2 presentations,
not virtually abelian Coxeter groups[20], torsion-free one-relator groups, deficiency 1
presentations where no relator is a proper power and most generalized triangle groups,
see[15] for bibliography and more such classes.

Proposition 9.2. Large groups are uniformly non-amenable.

Proof. Let G be a large group andH a subgroup of indexk which admits a quotient
isomorphic toF2. Let X be a generating system forG. From Lemma8.1, we can
construct a set of generatorsY for H whose elements all have length at mostk + 1.
We have no control on the size ofY but, because of the existence of a quotient of
H isomorphic toF2, we can choose two elements ofY which are a basis of a free
subgroup ofH. Since the length of these two elements is bounded byk+1, the second
subgroup theorem can be used to obtain a uniform lower bound for FølXG. This implies
FølG� 1

1+2(k+1)
2
3 > 0. �

10. Hyperbolic groups

A result of Koubi [18] proves that a non-elementary hyperbolic group has uniform
exponential growth. The precise statement used here is as follows:
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Theorem 10.1(Koubi [18] ). Let G be a non-elementary word hyperbolic group. Then
there exists a constantN(G) > 0 such that for any generating set X of G there are
two elements f and g of lengths|f |X, |g|X�N(G) freely generating a non-abelian free
subgroup.

This result establishes the necessary upper bound on the number of generators (two)
and their lengths, so that Remark7.2 enables to use the Second Subgroup Theorem
7.1 to give a lower bound on Følner constants: FølG� 1

1+2N(G)
2
3 > 1

3(1+N(G))
.

Corollary 10.2. Let G be a non-elementary word hyperbolic group. Then G is uniformly
non-amenable.

11. Burnside groups

In [1] Adian proved that for anym�2 and n�665 odd the free Burnside group
B(m, n) = Fm/F

n
m is non-amenable. The following results follow from Theorem 41

[17, p. 303]:
Given integersn > 0 odd and large enough andm�2, there exist wordsu(x, y),

v(x, y) in the alphabet{x, y} such that, if a, b are two non-commuting elements of
B(m, n), then the subgroup H generated byY = {u(a, b), v(a, b)} is isomorphic to the
free Burnside groupB(2, n).

In particular one has FølYH > 0. As any generating systemX of B(m, n) must
contain at least two non-commuting elementsxi, xj , we considerH for a = xi, b = xj
and apply Remark7.2 to obtain directly from the second subgroup Theorem7.1 the
following:

Corollary 11.1. For m�2 and n odd large enough the free Burnside groupB(m, n)

is uniformly non-amenable.

12. Groups acting on trees

Recall that in[4], Bucher and de la Harpe studied uniform exponential growth of
HNN-extensions and amalgamated products of groups. The next result provides, in
some sense, a generalization of their work by asserting that a group which acts in
a proper way on a tree is uniformly non-amenable. Let us point out, however, that
some attention should be given to the hypotheses: Among the groups acting on trees
for which uniform exponential growth was shown in[4] there are in particular non-
amenable Baumslag–Solitar groups. Those, however, do not satisfy the acylindricity
condition in the proposition below. The fact, proved in Section13, that they give
examples of non-amenable groupsG that satisfy FølG = 0, shows that our conditions
on the tree action are sharp, although they are more restrictive than the ones in[4].

Proposition 12.1. Let G be a finitely generated group which is not virtually cyclic,
and assume that G acts on a simplicial tree T without a global fixed point, and such
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that, for somek�0, the action is k-acylindrical in the sense of Sela(i.e. for any
g ∈ G − {1} the set of fixed pointsFix(g) ⊂ T has diameter�k, with respect to the
simplicial metric).
Then, for every finite generating system X of G, there exist two elementsa, b ∈ G

which generate a free subgroup of rank2 and satisfy |a|X, |b|X� max(8k,16). In
particular, the group G is uniformly non-amenable.

Proof. Notice first that, given any two elementsa, b ∈ G which act hyperbolically on
T, such that their axes are disjoint or intersect in a segmentJ which is shorter than the
translation length of both, then it follows from a standard ping-pong argument that the
subgroup generated bya andb is isomorphic toF2. Hence our goal is to produce such
elements which are of bounded length with respect to an arbitrary fixed generating
systemX = {x1, . . . , xq} of G.

If one of thexi defines a hyperbolic action onT, we setg = xi . If all of the xi act
as elliptic elements onT, and any two of them have a common fixed point, then, as
X is finite (andT a tree), there would be a common fixed point for all thexi , which
contradicts the hypothesis thatG has no global fixed point onT. Thus we can assume
that Fix(x1) ∩ Fix(x2) is empty, which implies thatg = x1x2 is a hyperbolic element,
whose axis will be denoted by ax(g).

If one of the xj fixes one end of ax(g), then the commutatorxjgx
−1
j g−1 fixes

pointwise an infinite subarc of ax(g) which defines that end. Hence from our hypothesis
of k-acylindricity of the action, this commutator must be trivial, and in particularxj
leaves ax(g) invariant.

Thus, if each of thexj fixes an end of ax(g) or interchanges its ends, then all of
G acts on ax(g), which means that eitherG is virtually cyclic, or else the commutator
subgroup contains elements of infinite order which fix all of ax(g), so that the action
of G would again not bek-acylindrical.

Thus we find an elementh = xjgx
−1
j which is also hyperbolic and has the property

that J = ax(g)∩ax(h) is empty or has finite diameterd�0. Without loss of generality
we can assume that, ifJ is non-empty, theng andh shift their axes alongJ in the same
direction. If d

4 is greater than or equal to the translation length of bothg and h, then
g−1h−1gh fixes pointwise a final segment ofJ of length � d

2 , and the acylindricity
hypothesis implies that 2k�d. It follows that the elementsa = g2k and b = h2k have
the desired properties, since every edge inT has length 1.

If d
4 is smaller than the translation length ofg (or of h), then we can definea = g4

and b = hg4h−1 to find the desired elements.
If J is empty, then one can takea = g and b = h. �

13. Non-amenable groups with Følner constant zero

Let Qm denote the set of markedm-generated groups, that is, the set of all quo-
tients of the free groupF(X) where X is a fixed free generating set containing
m�2 elements. The setQm can also be considered as the set of all normal sub-
groups of F(X) or, geometrically, as the set of all corresponding Cayley graphs
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C(F (X)/N,X) (where, abusing notation,X denotes also the generating set of the
quotientF(X)/N ).

We define a metric (hence a topology, known as the Cayley topology) onQm as
follows. Given two normal subgroupsN1, N2�F(X), let Ci , for i = 1,2, be the Cayley
graph forF(X)/Ni . Then, the distance betweenN1 andN2 is defined as

D(N1, N2) = inf

{
1

n + 1
;BC1(n) is isometric toBC2(n)

}
,

whereBC(n) is the ball of radiusn in the Cayley graphC centred at the identity, and
the isometry preserves the edge labels. This topology was introduced in[10], see also
[29,7] for background and interesting applications.

For a sequence of normal subgroups{Nk}∞k=1, we say thatN is the limit normal
subgroup of the sequence if

lim
k→∞ D(N,Nk) = 0.

The corresponding quotientG = F(X)/N is called the limit group of the sequence
{Gk}∞k=1 with Gk = F(X)/Nk. In particular, if N1�N2�N3� · · · form a chain of
normal subgroups, then the limit normal subgroup isN = ⋂∞

k=1 Nk. Similarly, if
N1�N2�N3� · · · is now an ascending chain, then the limit is the unionN =⋃∞

k=1 Nk.

Proposition 13.1. Let G = F(X)/N be the limit group of a sequence{Gk}∞k=1 with
Gk = F(X)/Nk, for k�1. Then

FølXG� lim sup
k→∞

FølXGk.

Proof. We denote byC andCk the Cayley graph relative toX of G andGk, respectively.
For an arbitraryε > 0, by definition of FølXG, there exists a finite setA ⊂ G satisfying

FølXG� #�XA
#A < FølXG + ε. Since A is finite, it is contained in some ballBC(n)

of radius n = n(A) in C. By definition of the limit normal subgroup, there exists
K = K(n) > 0 such that for anyk > K(n) we haveD(Nk,N) < 1

n+2. That is, for
such indicesk, the ballsBC(n + 1) andBCk

(n + 1) are isometric via an isometry�k.

Putting Ak = �k(A) ⊂ Gk we obtain FølXG� #�XAk

#Ak
< FølXG + ε. It implies that

FølXGk < FølXG + ε for any k > K(n). Hence lim supk→∞ FølXGk �FølXG. �

Corollary 13.2 (cf. Osin [25] ). If the limit groupG = F(X)/N is amenable then

lim
k→∞ FølXF(X)/Nk = 0.
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We recall that the Baumslag–Solitar groups are given by the presentations

BS(p, q) = 〈a, t, | t−1apt = aq〉, p, q ∈ N.

Using Britton’s lemma for HNN-extensions, it’s easy to see that, ifp, q > 1, then the
elementst and a−1ta generate a free subgroup of rank 2 inBS(p, q). It follows that
the group is non-amenable.

Proposition 13.3. For relatively primep �= 1, q �= 1 the groupBS(p, q) is a non-
amenable group withFølBS(p, q) = 0.

Proof. We have to show that FølG = 0 for G = BS(p, q) with relatively prime
p �= 1, q �= 1. We define a homomorphism� : G → G as follows:

a �→ ap,

t �→ t.

Since p and q are relatively prime, we have that� is surjective. We denote byNi

its iterated kernel, i.e.Ni = ker �i , i�1. Note thatN1�N2� · · ·. Let L denote the
corresponding limit group, that is,L = G/

⋃∞
k=1 Nk. Then this group is amenable.

Indeed, the kernel of the homomorphismL → Z defined by a �→ 1 and t �→ t

is abelian, since it is generated by{t−natn, n ∈ Z}. Any two such generators are
conjugate to elementst−�at� and a, for some � ∈ N. These elements commute in
��(G) and hence inL. ThusL is an extension of an abelian group by a cyclic one, so
it is solvable and hence amenable. By the previous corollary, limk→∞ FølXF2/Nk = 0
whereX = {a, t}. But for all k�1 there is an isomorphism between the quotientF2/Nk

and the groupG. It follows that FølG = 0, which completes the proof.�

The previous result can be extended to a more general class of groups.

Theorem 13.4.Let A = 〈x1, . . . , xm | R〉 be an amenable group with a set of defining
relationsR. Let �, 	 :A → A be injective homomorphisms satisfying

(i) � ◦ 	 = 	 ◦ �;
(ii) �(A) ∪ 	(A) generate A.

Then for the groupG = 〈t, A | t−1�(xi)t = 	(xi)〉 we haveFølG = 0.
If in addition,

(iii) �(A) ∪ 	(A) �= A,

then G is a non-amenable group withFølG = 0.

Proof. Let � :G → G be defined by�(t) = t , �(xi) = �(xi), i = 1, . . . , m. Condition
(i) implies that� is homomorphism, (ii) that� is surjective. Considering the iterated
kernels of�, we obtain the limit groupL = G/

⋃∞
k=1 Ker �k which is amenable by
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the hypothesis onA. Indeed, as above, we consider the kernelK of the homomorphism
L → Z defined byxi �→ 1, i = 1, . . . , m, and t �→ t . We claim that it is amenable.
Then L is amenable as an extension of an amenable group by a cyclic group. Hence,
as in Proposition13.3, we have FølG = 0.

In order to prove our claim we recall that a countable group is amenable if and only
if every finitely generated subgroup of this group is amenable. Every finitely generated
subgroupH of K is generated by finitely many products of finitely many conjugates
t−nxi t

n with i = 1, . . . , m and n ∈ Z. Taking a conjugate ofH (if necessary) by an
appropriate power oft, we assume thatn ∈ N in these conjugates. Then using the
defining relationt−1�(xi)t = 	(xi) of G we find a number� ∈ N such that��(h) ∈ A

for each generatorh of H. Hence��(H)�A. This image is amenable because it is a
finitely generated subgroup of the amenable groupA. Since� is an isomorphism ofL
we obtain the amenability ofH and hence that ofK. This proves the claim.

Condition (iii) provides a free subgroup of rank 2 inG and hence non-amenability
of G. Namely, using Britton’s lemma for HNN-extensions, one can check that it is a
subgroup freely generated byb and b−1tb, for any b ∈ A − (�(A) ∪ 	(A)). �

Remark 13.5. Groups satisfying conditions (i), (ii), and (almost) (iii) above withA
being abelian or a direct productwere introduced by Meier in order to construct
non-hopfian HNN-extensions[21]. In particular, such groups are non-hopfian.

As an immediate corollary of Theorems2.4 and 13.4 we see thatK(�G,G) = 0
for a groupG satisfying (i) and (ii) above (i.e. the left regular representation is not
uniformly isolated from the trivial representation for these groups). If in addition (iii)
holds we obtain such a non-amenable group. This provides further examples of a
negative answer to a question of Shalom[28], solved first by Osin[24], where groups
with similar conditions and anabelian groupA were considered.
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