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ABSTRACT. We construct a class of finitely presented groups where the isomorphism
problem is solvable but the commensurability problem is unsolvable. Conversely, we
construct a class of finitely presented groups within which the commensurability prob-
lem is solvable but the isomorphism problem is unsolvable. These are the first examples
of such a contrastive complexity behavior with respect to the isomorphism problem.

1. INTRODUCTION

The purpose of this paper is to study the relative algorithm complexities of the fol-
lowing two major group theoretical decision problems: the isomorphism problem and
the commensurability problem.

Both of these problems have a long history [12, 26], a meaningful topological inter-
pretation [27, 5], and a number of famous solutions for specific classes of groups [13, 20,
21]. However, their comparison from the algorithmic point of view seems not to have
been done up to now. Moreover, there have been numerous results comparing decision
problems dealing with elements in a single group, such as the word problem, conjugacy
problem, power problem, etc. (see, for instance, [18, 21]). In contrast, there have so
far been no comparative results involving the isomorphism problem. We remedy this
situation, by establishing the following two complementary theorems:

Theorem 1.1. There exists a recursively enumerable class C1 of finite presentations of
groups, with uniformly solvable word problem, such that the isomorphism problem is
solvable but the commensurability problem is unsolvable within this class.

Theorem 1.2. There exists a recursively enumerable class C2 of finite presentations of
groups such that the commensurability problem is solvable but the isomorphism problem
is unsolvable within this class.

These results are all the more unexpected as Thomas [30, Thm. 1.1] showed that
the isomorphism and commensurability problems have the same complexity from the
viewpoint of descriptive set theory.

Let us now explain the terminology and the meaning of our main theorems.
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A class C of finite presentations of groups has uniformly solvable word problem
if there is an algorithm which takes as input a presentation P ∈ C and a word in the
generators of this presentation, and decides whether or not this word represents the
identity element of the group given by P.

Two groups G1, G2 are commensurable if there exist two subgroups of finite index
Hi 6 Gi for i = 1,2, such that H1 and H2 are isomorphic. It is not difficult to see that
commensurability is an equivalence relation.

Given a class C of finite presentations of groups, we say that the isomorphism prob-
lem is solvable within C [commensurability problem is solvable within C ] if there is an
algorithm, taking on input two group presentations from C and deciding whether or not
these presentations define isomorphic [commensurable] groups.

Often, when considering the isomorphism problem, one is looking at a certain class G
of finitely presented groups. This actually means the class of all finite presentations of
groups from G . At first glance, it might seem that our Theorems 1.1 and 1.2 are some-
what more restrictive, as we are only picking out some specific family of presentations.
Let us clarify this issue.

Let G1 denote the collection of all groups defined via the presentations in the class
C1 appearing in Theorem 1.1, and let Ĉ1 denote the class of all finite presentations of
groups from G1 (so clearly C1 ⊂ Ĉ1). It follows immediately from Theorem 1.1 that
the commensurability problem is unsolvable for the class Ĉ1 of finite presentations of
groups, as it is already unsolvable within the subclass C1. On the other hand, the iso-
morphism problem is still solvable within the class Ĉ1. Indeed, given any presentation
P ∈ Ĉ1, one can start applying Tietze transformations to it; simultaneously we can start
writing down the finite presentations from C1, because the class C1 is recursively enu-
merable. At each step we can compare the transformations of P, obtained so far, with
the presentations from the class C1, written down by this step. After finitely many steps
we will find a finite presentation P′ ∈ C1 which defines the same group (up to isomor-
phism) as P (see [19, II.2.1])). This easily yields an algorithm that identifies a pair of
presentations from C1 which define the same groups as the given pair of presentations
in Ĉ1. Taking the resulting pair of presentations in C1, we can then apply the algo-
rithm for deciding the isomorphism problem within the subclass C1. As such, we view
Theorem 1.1 as a statement about the corresponding class of groups G1.

Similarly, let G2 denote the collection of all groups defined via the presentations in the
class C2 appearing in Theorem 1.2, and let Ĉ2 denote the class of all finite presentations
of groups from G2 (so again, we have C2 ⊂ Ĉ2). By an argument, identical to the one in
the previous paragraph, we have that the isomorphism problem is unsolvable in the class
Ĉ2, but the commensurability problem is solvable. This allows us to view Theorem 1.2
as a statement about the corresponding class of groups G2.

The fact that the isomorphism problem is unsolvable within the class C2 implies,
in particular, that there are infinitely many pairwise non-isomorphic groups within G2.
More precisely, the set of representatives of isomorphism classes of groups from G2 is
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not recursively enumerable. This fact is of particular interest because it cannot be seen
directly from our construction of the class C2 below.

The proofs of both theorems rely on a combination of various embedding theorems
from combinatorial and geometric group theory involving finitely presented infinite sim-
ple groups and infinite groups with no finite quotients. The main idea is to start with a
single group G and construct a class K , of mapping tori of G, for which the isomor-
phism problem is directly related to the word problem in G. Similarly, the commen-
surability problem in K will be directly related to the torsion problem in G. Thus the
solvability/unsolvability of the word [resp. torsion] problem in G will yield the same
for the isomorphism [resp. commensurability] problem in K .

Besides isomorphism and commensurability, there are other natural equivalence rela-
tions on the class of finitely presented groups such as virtual isomorphism, bi-Lipschitz
equivalence, quasi-isometry, etc. We discuss the corresponding algorithmic problems in
the last section, where we also state some open questions.

2. MAPPING TORI OF GROUPS WITHOUT PROPER FINITE INDEX SUBGROUPS

Let G be a group and ϕ ∈Aut(G) be an automorphism of G. Let Gϕ :=Goϕ Z denote
the associated mapping torus. As a set, Gϕ = G×Z and the group product is defined
by (g,n)(g′,m) := (g ·ϕn(g′),n+m), where ϕn denotes the automorphism of G which
is the n-fold composition of ϕ , with the convention that ϕ0 = idG, where idG ∈ Aut(G)
the identity automorphism of G.

We shall consider the class of groups KG,Φ =
{

Gϕ | ϕ ∈Φ
}

, where Φ is some subset
of Aut(G), and analyze the isomorphism problem within the corresponding class of
group presentations. We denote by ϕ the image of ϕ under the canonical epimorphism
Aut(G) � Out(G) := Aut(G)/Inn(G) onto the quotient of Aut(G) by the subgroup
consisting of inner automorphisms.

Proposition 2.1. Suppose that G is a group which has no epimorphisms onto Z, and
ϕ,ψ ∈ Aut(G). Then the following are equivalent.

(i) Gϕ is isomorphic to Gψ ;
(ii) ϕ ∈ Out(G) is conjugate to one of the two elements ψ,ψ−1 ∈ Out(G).

Proof. Suppose that Gϕ is isomorphic to Gψ via an isomorphism

ρ : Goϕ Z−→ Goψ Z.
Let τ : G→ Z be the homomorphism defined by the composition

G ↪→ Goϕ Z ρ−→ Goψ Z� Z,
with the natural inclusion and epimorphism maps. It follows that τ is trivial as by
hypothesis we know that G does not map onto Z. Therefore, the restriction of ρ to G has
image entirely contained in G6 Gψ . Applying the same argument to ρ−1 and recalling
that ρ−1 ◦ρ = idGϕ

, we can conclude that ρ maps the G-factor in Gϕ isomorphically
onto the G-factor in Gψ .
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On the other hand, a generator t of the Z−factor in Gϕ = Goϕ Z has to map to a
generator under the composition

〈 t 〉= Z ↪→ Goϕ Z ρ−→ Goψ Z� Z.

Indeed, the composition map Gϕ

ρ−→ Gψ � Z is surjective as ρ is an isomorphism.
Since G 6 Gϕ is contained in the kernel of this map, the image is determined by the
image of the quotient group Gϕ/G. However, such an image coincides with 〈 t 〉 through

the short exact sequence {1} → G ↪→ Gϕ�Z→ {1}. Thus, the surjectivity of Gϕ

ρ−→
Gψ � Z implies that t ∈ Gϕ maps to a generator s±1 of the Z−factor in Gψ .

Thus, in terms of splittings, the isomorphism ρ is of the form:

(x,0)
ρ7→ (α(x),0)

(e,1)
ρ7→ (g,±1)

for any x ∈ G and some fixed α ∈ Aut(G) and g ∈ G (e ∈ G is the identity element).
Let us now focus on the case where (e,1)

ρ7−→ (g,1). Since the map ρ is assumed to
be an isomorphism, it must preserve the relations of the group Gϕ . Evaluating ρ on the
relation (e,1)(x,0)(e,1)−1 = (ϕ(x),0) yields the required constraint on the automor-
phisms. Indeed, evaluating the left hand side, we obtain

ρ
(
(e,1)(x,0)(e,1)−1)= (g,1)(α(x),0)(ψ−1(g−1),−1) =

(
gψ(α(x))g−1,0

)
,

while evaluating the right hand side, we obtain

ρ
(
(ϕ(x),0)

)
=
(
α(ϕ(x)),0)

)
.

We deduce that the automorphism α ∈ Aut(G) and the element g ∈ G are related to the
given automorphisms ϕ,ψ ∈ Aut(G) as follows:

α ◦ϕ = cg ◦ψ ◦α,

where cg ∈ Aut(G) is the inner automorphism defined by cg(y) = gyg−1 for all y ∈ G.
Passing to the outer automorphism group, we see that we have to have α ◦ϕ = ψ ◦α ,

that is, the classes ϕ and ψ are conjugate in Out(G).

Conversely, if the classes ϕ,ψ ∈Out(G) are conjugate by some α ∈Out(G), then one
can find an element g ∈G so that α ◦ϕ = cg ◦ψ ◦α. It is now immediate that Gϕ

∼= Gψ ,
via the isomorphism map defined by (x,0) 7→ (α(x),0) and (e,1) 7→ (g,1).

A similar analysis can be done in the case (e,1)
ρ7−→ (g,−1). This yields the relation

α ◦ ϕ = cg ◦ψ−1 ◦α, that is, the classes ϕ and ψ
−1 are conjugate in Out(G). This

finishes the proof. �

In order to facilitate the notation let us give the following

Definition 2.2. We will say that group G is NFQ (‘No Finite Quotients’), if the only
finite quotient of G is the trivial group.
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Since every finite index subgroup contains a finite index normal subgroup, a group G
is NFQ if and only if G has no proper subgroups of finite index. It is easy to see that
any NFQ group G has no epimorphisms onto Z, and thus it satisfies the assumptions of
Proposition 2.1. Basic examples of NFQ groups are infinite simple groups.

To study the commensurability problem within the class KG,Φ, we need to know the
structure of subgroups of finite index in the corresponding mapping tori. The following
observation shows that all such subgroups are “congruence subgroups”:

Proposition 2.3. Let G be a NFQ group, and ϕ ∈ Aut(G). Let π : Gϕ � Z be the
canonical projection onto the Z−factor of the mapping torus. Assume that H 6 Gϕ is
a finite index subgroup of Gϕ . Then H = π−1(kZ)∼= Gϕk , where k is the index of H in
Gϕ (and in particular, H must be normal in Gϕ ).

Proof. By the assumptions, [Gϕ : H] < ∞, hence [G : (G∩H)] < ∞, therefore kerπ =

G6 H as G is NFQ. This forces H to be of the form π−1(kZ) for some k. The value of
k can then be easily deduced:

k = [Z : kZ] = [Gϕ : π
−1(kZ)] = [Gϕ : H],

as stated in the proposition. �

Combining Propositions 2.1 and 2.3, we immediately obtain

Corollary 2.4. Let G be a NFQ group, and ϕ ∈ Aut(G). Then Gϕ is commensurable
with GidG

∼= G×Z if and only if the element ϕ ∈ Out(G) has finite order.

Given two groups A and B, consider their free product G = A ∗B. For any element
a∈ A we can define a natural automorphism τa ∈Aut(G) by τa(x) := a−1xa for all x∈ A
and τa(y) := y for all y ∈ B. Note that (τa)

k = τak in Aut(G) for all k ∈ Z.

Lemma 2.5. Suppose that B 6= {1}, a ∈ A and G = A∗B. Then τa ∈ Inn(G) if and only
if a belongs to the center of A.

Proof. Clearly, if a is central in A, then τa = idG ∈ Inn(G). Conversely, suppose that
there is c ∈ A such that a−1ca 6= c in A. Take any b ∈ B\{1} and consider the element
g := cb ∈ G. Then τa(g) = a−1cab is not conjugate to g in G = A∗B by the criterion of
conjugacy in free products (see [19, IV.1.4]). Hence τa /∈ Inn(G), as required. �

Since the free product of two NFQ groups is again a NFQ group, we can put together
Proposition 2.1, Corollary 2.4 and Lemma 2.5 to achieve

Corollary 2.6. Let A and B be NFQ groups such that B 6= {1} and A has trivial center.
Then for G = A∗B and any a ∈ A the following are true:

• Gτa is isomorphic to GidG if and only if a = 1 in A;
• Gτa is commensurable with GidG if and only if a has finite order in A.
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3. WORD AND TORSION PROBLEMS IN NFQ GROUPS

For a finite set X , we use X∗ to denote the set of words with letters from X±1. Let
R be a set of words from X∗ and suppose that G is a group given by the presentation
P = 〈X ‖R〉.

For a subset Z ⊆ X∗, we say the word problem for Z in G is solvable if there is an
algorithm, which takes on input a word w ∈ Z and decides whether or not this word
represents the identity element of G. If Z = X∗, then the word problem for Z in G
is simply known as the word problem in G. The word problem is one of the three
fundamental group-theoretical decision problems introduced by Max Dehn [12] in 1911
(other two being the conjugacy and the isomorphism problems). It is well known that
if the word problem for G is solvable with respect to one finite generating set, then it is
solvable with respect to any other finite generating set of G.

For an arbitrary subset Z ⊆ X∗, one can also consider the torsion problem for Z in
G, asking whether there exists an algorithm which inputs a word w ∈ Z, and decides
whether or not w represents an element of finite order in G. This is closely related to
some decision problems considered by Lipschutz and Miller in [18] (for instance, it is a
special case of the power problem).

Proposition 3.1. Every finitely presented group H can be embedded into a finitely pre-
sented NFQ group A with trivial center. Moreover, if the word problem in H is solvable
then it is also solvable in A.

Proof. Take any infinite finitely presented simple group S (for instance, Thompson’s
group T or V [17], or see [6, 7, 8, 9] for other such groups) and consider the free product
G= S∗S. Then G is NFQ and hyperbolic relative to these two copies of S. Therefore, by
Theorem 1.1 from [3], H can be isomorphically embedded into some quotient Q of G.
Moreover, from the proof of this theorem, it follows that Q can be obtained from H ∗G
by adding only finitely many defining relations. Consequently, as both H and G are
finitely presented, Q will also be finitely presented. The group Q is NFQ as a quotient
of the NFQ group G. One can check that the center of the group Q, obtained from [3,
Thm. 1.1], is in fact trivial. However, it is easy to bypass this, by setting A := Q∗S and
observing that A is still finitely presented, NFQ, has trivial center (as a non-trivial free
product – see [24, 6.2.6]) and contains a copy of H.

Now, suppose that the word problem in H is solvable. Note that the same is true
in S, because the word problem is solvable in any recursively presented simple group
([19, IV.3.6]). By [3, Thm. 1.1] the group Q above is hyperbolic relative to the family of
subgroups, consisting of H and two copies of S. Therefore Q has solvable word problem
(see [14, Thm. 3.7] or [22, Cor. 5.5]). Finally, the word problem is solvable in A = Q∗S
by [19, IV.1.3]. �

Proposition 3.2. There exists a NFQ group A1, with trivial center and finite presentation
P1 = 〈X1 ‖R1〉, and a recursively enumerable subset of words Z1 = {z1,z2, . . .} ⊂ X∗1
such that the word problem in A1 is solvable but the torsion problem for Z1 in A1 is
unsolvable.
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Proof. Let H0 be the center-by-metabelian group constructed by P. Hall in [15, p. 435].
Namely, H0 is generated by two elements a,b, subject to the relations

[[bi,b j],bk] = 1, for i, j,k = 0,±1,±2, . . . , where bi := a−ibai, [x,y] := x−1y−1xy, and

ci, j = ci+k, j+k, for j > i, i, j,k = 0,±1,±2, . . . , where ci, j := [b j,bi].

As Hall proved in [15, p. 435], the center of H0 is the free abelian group with free
abelian basis {d1,d2, . . .}, where dr := c0,r = [a−rbar,b], r = 1,2, . . . .

Let 〈a,b‖R0〉 be the above presentation for H0. Clearly this presentation is recursive.
Now, consider a computable (recursive) function f : N→ N with non-recursive range
f (N) ⊂ N. Let H1 be the quotient of H0 by the central subgroup 〈dn

f (n) | n ∈ N〉 where
dr, r ∈ N, are as above. Then H1 has the presentation〈

a,b
∥∥∥R0,

(
[a− f (n)ba f (n),b]

)n
, n ∈ N

〉
.

The group H1 will be recursively presented since R0 is recursively enumerable and f is
computable.

By abusing notation, we will continue writing a,b,bi,dr for the images of the cor-
responding elements of H0 in H1. We can solve the word problem in H1 as follows.
Given a word w, over the alphabet {a±1,b±1}, we want to determine whether w = 1
in H1. First we compute the sum εa(w) of all exponents of a in w. If εa(w) 6= 0, then
w 6= 1 in H1 as there is a homomorphism α : H1→〈a〉, whose kernel is generated by bi,
i ∈ Z, such that α(w) = aεa(w) 6= 1. If εa(w) = 0, then w ∈ B := 〈bi, i ∈ Z〉 and we can
re-write w as a word w1 in letters bi, i ∈ Z. If for some i ∈ Z, εbi(w1) 6= 0, then, again,
w 6= 1 in H1, because its image will be non-trivial in the abelianization of B. Otherwise,
w will represent an element of the center C := 〈dr,r ∈ N〉 of H1, and we can re-write
w1 as a word w2 ≡ dn1

r1 dn2
r2 · · ·d

nl
rl , where l > 0, 1 6 r1 < r2 < · · · < rl , and n j ∈ Z\{0}

for j = 1, . . . , l. Note that C =
⊕

r∈N〈dr〉 by definition. If l = 0 then w = w2 = 1 in
H1. If l > 0, then w2 = 1 in C if and only if the order of dr j in H1 divides n j for all
j = 1,2, . . . , l. The latter can be verified as follows: for every positive divisor m of n j,
we compute f (m) and check if it is equal to r j. If this happens for some divisor m of
n j, then the order of dr j in H1 is m, by construction, and so dn j

r j = 1. If this is true for all
j = 1, . . . , l, then w = w2 = 1 in H1. As each n j has only finitely many divisors, this can
be checked in finitely many steps. Finally, if there is j ∈ {1, . . . , l} such that for every
positive divisor m of n j, f (m) 6= r j, then the order of dr j in H1 does not divide n j, and
hence w = w2 6= 1 in H1.

Thus H1 is a finitely generated recursively presented group with solvable word prob-
lem. By a theorem of Clapham [10, Thm. 6], H1 can be embedded in a finitely presented
group H2 with solvable word problem. Now we can use Proposition 3.1 to embed H2
into a finitely presented NFQ group A1, with trivial center and solvable word problem.
Let P1 = 〈X1 ‖R1 〉 be some finite presentation for A1. Since H1 6 A1, the generators
a,b of H1 can be represented by some words w1, w2 (respectively) in the alphabet X±1

1 ,
and hence every word in letters from {a±1,b±1} can be effectively re-written in letters
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from X±1
1 . So, for every r ∈ N we can effectively compute a word zr ∈ X∗1 representing

dr in A1 and set Z1 := {zr | r ∈N} ⊂ X∗1 . By construction, Z1 is recursively enumerable.
Suppose that the torsion problem for Z1 in A1 is solvable. Then for any r ∈ N we

can compute the word zr ∈ Z1, representing dr in A1, and check if dr has finite order in
A1. But the latter happens if and only if r ∈ f (N). Thus we would be able to determine
whether or not r belongs to the range of f , contradicting to the choice of f . Therefore
the torsion problem for Z1 in A1 is unsolvable and the proposition is proved. �

The next statement suggests a construction which is in some sense opposite to the
construction of Proposition 3.2.

Proposition 3.3. There exists a NFQ group A2, with trivial center and finite presentation
P2 = 〈X2 ‖R2〉, and a recursively enumerable subset of words Z2 = {z1,z2, . . .} ⊂ X∗2
such that every word from Z2 represents an element of order at most 2 in A2 but the
word problem for Z2 in A2 is unsolvable.

Proof. Again, let us start with Hall’s group H0, used in the proof of Proposition 3.2,
keeping the same notation as before. Let f : N→ N be a computable function with
non-recursive range. We now let H1 be the quotient of H0 by the central subgroup
〈d2

n ,d f (n) | n ∈ N〉.
As before, H1 will be finitely generated and recursively presented, however, the word

problem in H1 will be unsolvable (since the set f (N) is not recursive). By the celebrated
theorem of Higman [16], one can embed H1 into a finitely presented group H2, and
applying Proposition 3.1, we can embed H2 into a finitely presented NFQ group A2 with
trivial center.

Let P2 = 〈X2 ‖R2 〉 be some finite presentation for A2. Fix some words w1,w2 ∈ X∗2
representing the generators a, b (respectively) of H1 in A2. Clearly there is an algorithm
which takes on input a word in the alphabet {a±1,b±1} and outputs a corresponding
word in the alphabet X±1

2 (substituting every a-letter by w1 and every b-letter by w2).
For each r ∈ N, let zr ∈ X∗2 be the word representing dr ∈ H1, obtained this way, and
set Z2 := {zr | r ∈ N} ⊂ X∗2 . Evidently the set of words Z2 is recursively enumerable
and every word from this set represents an element dr, which has order at most 2 in A2.
By construction, zr = 1 in A2 if and only if dr = 1 in H1, which happens if and only if
r ∈ f (N). Since f (N) is non-recursive, we see that the word problem for Z2 in A2 is
unsolvable. �

4. PROOFS OF THE THEOREMS

We are now ready to establish our two theorems.

Proof of Theorem 1.1. We start with the presentation P1 = 〈X1 ‖R1〉 of the group A1,
and the recursively enumerable set of words Z1 = {z1,z2, . . . ,} ⊂ X∗1 , which were con-
structed in Proposition 3.2. Take some infinite finitely presented simple group B and
fix some finite presentation 〈Y ‖S〉 of it; recall that the word problem in B is solvable
by [19, IV.3.6]. Let z0 ∈ X∗1 be the empty word. For each r ∈ N∪{0}, let dr denote



Isomorphism versus commensurability for a class of finitely presented groups 9

the element of A1 represented by the zr ∈ Z1; let G := A1 ∗B and let Cr+1 be the cyclic
group of order r+1. Then the group Kr := Gτdr

×Cr+1 has the presentation

P1,r :=
〈
X1,Y, t,u

∥∥R1,S, t−1x−1tz−1
r xzr, t−1y−1ty, u−1x−1ux,

u−1y−1uy, u−1t−1ut, ur+1, for all x ∈ X1 and y ∈ Y
〉
.

Since the sets X1, Y , R1 and S are finite, for every r ∈ N∪{0}, P1,r is a finite presen-
tation of a group. Note that the presentation P1,0 defines the group K0 ∼= GidG

∼= G×Z.
Now, consider the class of group presentations C1 := {P1,r | r ∈ N∪{0}}. We can

make the following observations.
(a): the class C1 is recursively enumerable by definition.
(b): the word problem in C1 is uniformly solvable. This easily follows from the

fact that the word problem in G = A1 ∗B is solvable and for each r ∈ N∪{0},
GCKr and Kr/G∼= Z×Cr+1.

(c): the isomorphism problem within C1 is trivially solvable. This is because for
any r ∈ N∪{0}, the abelianization of the group Kr is isomorphic to Z×Cr+1
(as G is NFQ), hence for any q ∈N∪{0}, q 6= r, the group Kr is not isomorphic
to Kq since their abelianizations have different torsion subgroups. Thus any two
distinct presentations from C1 define non-isomorphic groups.

(d): the commensurability problem within C1 is unsolvable. Indeed, since the
index [Kr : Gτdr

] = r+1 is finite, the group Kr is commensurable with the group
Gτdr

for each r ∈ N∪{0}. So, if we could decide whether Kr is commensurable
with K0, then we would be able to decide whether Gτdr

is commensurable with
GidG , which, by Corollary 2.6, would imply that the torsion problem for Z1 in
G = A1 ∗B is solvable, contradicting to the claim of Proposition 3.2.

Thus the class of group presentations C1 satisfies all of the required properties. �

Proof of Theorem 1.2. Now we start with the presentation P2 = 〈X2 ‖R2〉 of the group
A2, constructed in Proposition 3.3, and the recursively enumerable set of words Z2 =
{z1,z2, . . . ,} ⊂ X∗2 . Take some infinite finitely presented simple group B and fix some
finite presentation 〈Y ‖S〉 of it; then B will have solvable word problem ([19, IV.3.6]).
Let z0 ∈ X∗2 be the empty word. For each r ∈ N∪{0}, let dr denote the element of A2
represented by the zr ∈ Z2 and let G := A2 ∗B. Then the group Gτdr

has the presentation

P2,r :=
〈
X2,Y, t

∥∥R2,S, t−1x−1tz−1
r xzr, t−1y−1ty, for all x ∈ X2 and y ∈ Y

〉
.

Since the sets X2, Y , R2 and S are finite, for every r ∈ N∪{0}, P2,r is a finite presen-
tation of a group. As before, the presentation P2,0 defines the group GidG

∼= G×Z.
For the class of finite presentations C2 := {P2,r | r ∈ N∪{0}} we can observe the

following.
(a): the class C2 is recursively enumerable by definition.
(b): the commensurability problem within C2 is trivially solvable, because any

presentation from this class defines the group Gτdr
, for some r ∈N∪{0}, which

is commensurable with GidG by Corollary 2.6, as the element dr ∈ A2 has finite
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order by construction. Thus any two presentations from C2 define commensu-
rable groups.

(c): the isomorphism problem within C2 is unsolvable. Indeed, according to Corol-
lary 2.6, for any r ∈ N, the group Gτdr

, defined by P2,r is isomorphic to GidG ,
defined by P2,0, if and only if zr = 1 in G. Thus the isomorphism problem
within C2 is equivalent to the word problem for Z2 in A2, which is unsolvable
by construction.

Thus the class C2 satisfies all of the needed properties. �

5. DECISION PROBLEMS IN GEOMETRIC GROUP THEORY

From the viewpoint of geometric group theory, besides the isomorphism and com-
mensurability relations, there are several other equivalence relations on groups which
are of natural interest:

• Two finitely generated groups G1,G2 are virtually isomorphic (sometimes also
called commensurable up to finite kernels) if there exist a pair of finite index subgroups
Hi 6 Gi, and some further finite normal subgroups Ni E Hi, i = 1,2, with isomorphic
quotients H1/N1 ∼= H2/N2.

• Two finitely generated groups G1,G2 are quasi-isometric if there exists a map
f : G1→ G2 and a constant K > 0 so that for all x,y ∈ G1

1
K

d1(x,y)−K 6 d2
(

f (x), f (y)
)
6 K ·d1(x,y)+K

and the K-neighborhood of f (G1) is all of G2 (the di are word metrics on the Gi, i= 1,2).

• Two finitely generated groups are bi-Lipschitz equivalent if there is a bi-Lipschitz
map between (G1,d1) and (G2,d2), where again the di are word metrics (this is equiva-
lent to the existence of a bijective quasi-isometry between them - see Whyte [32]).

We can now state the corresponding decision problems: the virtual isomorphism
problem (respectively, quasi-isometry problem or bi-Lipschitz problem) asks whether
there exists an algorithm which, given two finite presentations of groups, can decide
whether or not they define virtually isomorphic (resp. quasi-isometric or bi-Lipschitz
equivalent) groups. Several of these problems have been studied from the viewpoint
of descriptive set theory by Thomas [28, 29, 30, 31]. Note that a group is bi-Lipschitz
equivalent to the trivial group if and only it is trivial, and that it is virtually isomorphic,
commensurable, or quasi-isometric to the trivial group if and only if it is finite. Since
the problem of deciding whether a finitely presented group is finite (or trivial) is un-
solvable (this follows from the famous Adian-Rabin theorem, see [2, 1] and [23]), we
immediately obtain

Lemma 5.1. Within the class of all finite presentations of groups, the virtual isomor-
phism, quasi-isometry, bi-Lipschitz, and commensurability problems are all unsolvable.
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It would be of some interest to study the relative complexity of these various decision
problems. A straightforward consequence of our construction appearing in the proof of
Theorem 1.2 is the following:

Corollary 5.2. There exists a recursively enumerable class of finite presentations of
groups within which the isomorphism problem is unsolvable, but the virtual isomor-
phism, quasi-isometry, and bi-Lipschitz problems are all (trivially) solvable.

Proof. In the notations from the proof of theorem 1.2, let Φ := {τdr | r ∈ N∪{0}} ⊂
Aut(G). Then the class of finite presentations C2, constructed in the proof of Theo-
rem 1.2, defines the class KG,Φ =

{
Gτdr
| r ∈ N∪{0}

}
of finitely presented groups.

As we noticed above, any two groups from this class are commensurable. And since
commensurable groups are automatically quasi-isometric, all the groups in KG,Φ are
quasi-isometric to each other, and the quasi-isometry problem within C2 is (trivially)
solvable.

Moreover, none of the groups Gτdr
, r∈N∪{0}, can contain a non-trivial finite normal

subgroup, for such a subgroup would have to map to the identity under the canonical
projection Gτdr

� Z, and hence it would have to be a normal subgroup in the group
G = A2 ∗B. But a non-trivial free product does not have any non-trivial finite normal
subgroups. This tells us that within the class KG,Φ, two groups are virtually isomorphic
if and only if they are commensurable. Therefore the virtual isomorphism problem
within C2 is also (trivially) solvable.

Finally, noting that G = A2 ∗B is non-amenable, as a non-elementary free product,
and embeds into every Gτdr

, r ∈N∪{0}, we see that all the groups in the class KG,Φ are
non-amenable. The work of Block and Weinberger [4, Thm. 3.1] implies that the groups
in this class all have vanishing 0-dimensional uniformly finite homology. Whyte’s thesis
[32, Thm. 1.1] then implies that commensurability between any two groups from KG,Φ

can be promoted to a bi-Lipschitz equivalence. We conclude that all the groups in KG,Φ

are bi-Lipschitz equivalent to each other, so that the bi-Lipschitz problem within C2 is
also (trivially) solvable. �

More generally, we expect that these various decision problems are fundamentally
unrelated to each other (with the possible exception of the bi-Lipschitz problem, in
view of Whyte’s thesis [32]). To be more precise, we suspect that given any two disjoint
subsets of these decision problems, one can find a recursively enumerable class of finite
presentations of groups such that any problem from the first of these subsets is solvable
within this class, while problems from the second subset are all unsolvable.

In another vein, these algorithmic problems are also open for various natural classes
of groups. For instance, one could focus on certain classes of lattices within a fixed
semi-simple Lie group G of non-compact type. If the R-rank of G is > 2, and one re-
stricts to uniform lattices (so that the quasi-isometry problem is trivially solvable), is
the isomorphism problem or commensurability problem solvable? If one focuses on
G = SO(n,1), n > 4, and restrict to torsion-free non-uniform lattices (so that the iso-
morphism problem is solvable, by Dahmani and Groves [11]), is the commensurability
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problem (equivalent to the quasi-isometry problem, by Schwartz [25]) solvable or not?
Surprisingly, these questions do not seem to have been considered in the literature.
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Études Sci., 82:133–168, 1995.
[26] C. L. Siegel. Symplectic geometry. Amer. J. Math., 65:1–86, 1943.
[27] J. Stillwell. Classical topology and combinatorial group theory, volume 72 of Graduate Texts in

Mathematics. Springer-Verlag, New York, second edition, 1993.
[28] S. Thomas. The virtual isomorphism problem for finitely generated groups. Bull. London Math.

Soc., 35:777–784, 2003.
[29] S. Thomas. On the complexity of the quasi-isometry and virtual isomorphism problems for finitely

generated groups. Groups Geom. Dyn., 2:281–307, 2008.
[30] S. Thomas. The commensurability relation for finitely generated groups. J. Group Theory, 12:901–

909, 2009.
[31] S. Thomas and B. Velickovic. On the complexity of the isomorphism relation for finitely generated

groups. J. Algebra, 217:352–373, 1999.
[32] K. Whyte. Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture. Duke Math. J.,

99:93–112, 1999.

UNIVERSITY OF VIENNA, FACULTY OF MATHEMATICS, NORDBERGSTRAßE 15, 1090 VIENNA,
AUSTRIA

E-mail address: goulnara.arzhantseva@univie.ac.at

THE OHIO STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, 100 MATH TOWER, 231 WEST
18TH AVENUE, COLUMBUS, OH 43210-1174, USA

E-mail address: jlafont@math.ohio-state.edu

SCHOOL OF MATHEMATICS, UNIVERSITY OF SOUTHAMPTON, HIGHFIELD CAMPUS, SOUTHAMP-
TON, SO17 1BJ, UNITED KINGDOM

E-mail address: aminasyan@gmail.com


	1. Introduction
	2. Mapping tori of groups without proper finite index subgroups
	3. Word and torsion problems in NFQ groups
	4. Proofs of the theorems
	5. Decision problems in geometric group theory
	References

