QUANTIFYING METRIC APPROXIMATIONS OF DISCRETE GROUPS

GOULNARA ARZHANTSEVA AND PIERRE-ALAIN CHERIX

ABSTRACT. We introduce and systematically study a profile function whose asymptotic be-
haviour quantifies the dimension or the size of a metric approximation of a finitely generated
group G by a family of groups F = {(Ga,da,ka,ca)}acr, where each group G, is equipped
with a bi-invariant metric d, and a dimension k., for strictly positive real numbers €, such that
info €4 > 0. Through the notion of a residually amenable profile that we introduce, our ap-
proach generalises classical isoperimetric (aka Fglner) profiles of amenable groups and recently
introduced functions quantifying residually finite groups. Our viewpoint is much more general
and covers hyperlinear and sofic approximations as well as many other metric approximations
such as weakly sofic, weakly hyperlinear, and linear sofic approximations.

1. INTRODUCTION

Approximation is ubiquitous in mathematics. In the theory of groups, it is particularly natural
to approximate infinite groups by finite ones. A fundamental realisation of this idea has lead
Malcev (1940’s) and P. Hall (1955) to the notion of a residually finite group: a group where the
algebraic structure on any finite fixed set of elements is exactly as if these elements were in a
suitable finite quotient of the group.

Once a concept of approximation is coined, a crucial question is how to compare distinct
approximations of the same object, and, in particular, how to quantify the way an object is
approximated. For residually finite groups, there are two main ways of quantifying the approx-
imation of an infinite group by finite ones. The first way is to compute how many subgroups
of a given finite index the group possesses. This is a classical subject of research on the sub-
group growth, initiated by M. Hall (1949), which allows to enumerate how the group can be
approximated by a finite quotient of a prescribed cardinality. The second way of quantifying is
to compute the minimal cardinality among all possible finite quotients that detect the algebraic
structure of the fixed finite set of elements of the residually finite group. This viewpoint is more
recent and it is about the so-called full residual finiteness growth, see below for the definition.

In this paper, we push this second idea of quantifying of approximations of infinite groups
significantly beyond the class of residually finite groups and apply it to much more general
metric approximations of infinite groups in contrast to classical algebraic approximations. Metric
approximations are approximations by groups equipped with bi-invariant metrics (see the next
section for precise definitions) and they are very natural to study. Intuitively, we require that
the algebraic operation on a finite set of group elements of the approximated group is almost as

if these elements were in the approximating group, where ‘almost’ refers to the fixed bi-invariant
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metric. This simple idea has gained a major importance following Gromov’s introduction of
sofic groups (= groups metrically approximated by symmetric groups of finite degrees, endowed
with the normalised Hamming distance) and his settlement, for sofic groups, of Gottschalk’s
surjunctivity conjecture (1973) in topological dynamics. Another renowned example of metric
approximation is that by unitary groups of finite rank, endowed with the normalised Hilbert-
Schmidt distance. This defines the class of hyperlinear groups, appeared in the context of
Connes’ embedding problem (1972) in operator algebra.

We encompass both sofic and hyperlinear groups as well as their generalisations such as linear
sofic groups, weakly sofic groups, and weakly hyperlinear groups into a general framework of
metric approximations by groups with, in addition to a prescribed bi-invariant metric, a dimen-
sion or a size, associated with each of the approximating groups. For instance, the dimension
of a finite symmetric group is chosen to be its degree, of a unitary group — its rank, of a finite
group — its cardinality, etc. Our general quantification function, called metric profile, is then
defined to be, given a finite set of group elements in the approximated group, e.g. the ball of
finite radius with respect to the word length metric, the minimal dimension among all possible
metric approximations which ‘almost’ preserve the algebraic structure of this finite set. Viewed
within sofic groups, our approach is orthogonal to the recently emerged theory of sofic entropy
started in the seminal work of L. Bowen (such a theory is not yet available for an a priori wider
class of hyperlinear groups). Restricted to residually finite groups, the contrast between Bowen’s
viewpoint and our approach is exactly the distinction between the subgroup growth of a group
and the full residual finiteness growth, respectively.

Since metric approximations generalise classical algebraic approximations, the previously
known functions, quantifying ‘exact’ approximations (versus ‘almost’ ones), occur to be up-
per bounds for our metric profile. For example, a knowledge about the full residual finiteness
growth of a residually finite group gives an estimate on the sofic and on the hyperlinear profiles
of such a group. If the approximating groups are amenable, then besides a chosen dimension,
they carry an associated isoperimetric function, the famous Fglner function. We make use of this
classical function and of our metric profile philosophy to define the residually amenable profile
for every residually amenable group (and more generally, for every group locally embeddable
into amenable ones). This allows to extend a classical study of Fglner functions of amenable
groups to non-amenable groups metrically approximable by amenable ones.

The main aim of this paper is to provide a necessary theoretical base for a further more specific
quantitative analysis of metric approximations of concrete discrete groups. We meticulously
compare our metric profile with previously investigated quantifying functions alluded to above.
Since the classes of groups we study are preserved under several group-theoretical operations
such as taking subgroups, direct and free products, extensions by amenable groups, restricted
wreath products, etc., we also provide the corresponding estimates on the suitable metric profiles.

On the way, we collect some crucial examples and finally formulate a number of open problems.
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2. F-APPROXIMATIONS AND F-PROFILE

Let I denote an index set. We let F = (Ga,do, ka,€a)qecr, Where G is a group with a bi-
invariant distance d, and identity element e, k. is a natural number that can be thought as
the dimension of G, and ¢, is a strictly positive real number such that inf, e, > 0.

Let G be a countable discrete group with identity es and a distinguished generating set
S C G. We denote by |g|g the length of an element g € G with respect to the word length
metric defined by S. We let Bg s (n) be the ball of center eg and radius n with respect to the
word length metric induced by S — that is, Bg,s(n) = {g € G | |g|g < n}.

Definition 1 (Approximation). Let n € N and ¢, > 0. An (n,e,)-approzimation of (G,S) by
a group G, is a function 7: G — G, satisfying the following:
(1) do (7 (g) 7 (h), 7 (gh)) < 1/n for every g,h € Bg,s (n) with gh € Bg g (n), and
(2) do (7 (g),m(h)) > eq —1/n for every g,h € Bg g (n) such that g # h.
Such an (n, e, )-approximation is said to be of dimension k.
An F-approrimation of (G,S) is a sequence (7,),y such that, for every n € N, m, is an
(n,eq)-approximation of (G, S) by G, for some « € I.
A finitely generated group G is F-approzimable if (G, S) admits an F-approximation for some
(or, equivalently, any) finite generating set S C G.

The above condition (1) is often called ‘almost homomorphism on the ball” while condition
(2) is termed as ‘uniform injectivity’.

In the definition below we convene that the minimum of the empty set is 4oc0.

Definition 2 (Profile and dimension). Let G be a finitely generated group with a finite gener-
ating set S. The F-profile of G is the function Dg}sz N — NU {400} defined by

Dg}s (n) = min{k € N| 3 an (n,e,)-approximation of G by G, of dimension k, = k}.
The F-dimension of G is defined by

1
dimés = limsup — log Dés (n).
n—+oo M
Observe that G is F-approximable if and only if the function Dg’ g is everywhere finite. We

write simply Dg s when the family is irrelevant.

Remark 3. One can consider families F as above where d,, is not necessarily a metric but just
a bi-invariant pseudometric. One can always reduce to the case of bi-invariant metric (rather
than pseudometric) by replacing (G, dy) with (Ga /Na,aa)7 where N, is the normal subgroup
{g € Gq:dy(g,eq) =0} and d, is the bi-invariant metric induced by d, on the quotient.

We consider the quasi-order < for functions Dy, Dy: N — N defined by D1 < D, if and only
if there exists a constant C' € N such that D; (n) < CD3 (Cn) for every n € N. We also let ~

be the equivalence relation associated with the quasi-order <. Thus D; ~ Dy iff D; < Dy and
Dy < Ds.
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If S,S" are two finite generating sets of G, then there exists C' € N such S C Bg ¢ (C) and
S" C Bg,s (C). Therefore Bg,s (n) € Bgs' (Cn) and Bg.s (n) € Bg,s (Cn) for every n € N.
This easily implies that Dg s (n) < Dg,s (Cn) and Dg s (n) < Dg,s (Cn). In particular, the
~-equivalence class of Dg g does not depend on the choice of the finite generating set S. We

denote such an equivalence class by Dg-.

Lemma 4. Let G be a group and FF C G be a finite symmetric subset containing the identity
eq of G. Let e > 0 and H be a bi-invariant metric group with metric dg and w: G — H be a
function such that dg (7 (g) 7w (h), 7 (gh)) < € for every g,h € F such that gh € F.

For every n € N and g,g1,...,9n € G such that g,gx, g5* -+~ g;F € F for every e1,...,en €
{+1,—-1} and k € {1,2,...,n} the following assertions hold:

(1) du (7 (eq) e )<5

(2) dg(m (g~ ) 1) < 2;

(3) dp (7 (g1 -- )a (g1) - 7 (gn)) < (n—1)e, whenever n > 1;
(4) dp (w (gil) e (gir),m (91)81 com (gn)T™) < 2ne;

(5) du (m (95" - g57) ,m(91)"" - 7 (gn)") < (Bn—1)e.

Proof. Since eg € F', using the hypothesis on 7 and the bi-invariance of dyy we have

dy (7 (ec),en) = du(m (eq)” 7 (eq)) < e.

This proves (1). Similarly, for (2) we have

du(m (97", 7(9)™") =du(r (9) 7 (¢7") ,en) < du (m (eq),en) + & < 2.

One can easily prove (3) by induction on n using the hypothesis, and (4) using (2). Finally (5)
follows from (3) and (4). O

In the following we suppose that G is a finitely generated group with a presentation (X | R)
given by generators X and relators R. We denote by S the symmetric generating set of G
associated with X, i.e. S = X LU X', Without loss of generality, we assume that R = R™!, i.e
R contains inverses of all of its elements. We denote by Fx the free group over the alphabet
X. For a word w over the letters from X U X! we let ]w\FX be its length. In this situation,
in order to define a homomorphism from G to another group H, it is often convenient to define
a homomorphism from Fx to H, in such a way that any word in R is mapped to the identity
element ey € H. This defines a unique group homomorphism from G to H, and any group
homomorphism arises in this way. In this spirit, we define natural variants of the F-profile as

follows (recall our convention that the minimum of the empty set is +00):

° Wg’;s (n) is the least k& € N such that for some « with k, = k there exists a ho-
momorphism ¢: Fx — G, such that for any word w € Fx of length at most n one
has that d, (p(w),eq) > €4 — 1/n if w does not represent the identity of G and
do (p (W), eq) < 1/n otherwise;

. Rg g (n) is the least k € N such that for some o with k. = k there exists a homomorphism
p: Fx — G, such that for any word w € Fx of length at most n that does not represent
the identity of G one has that d, (¢ (w),eq) > €4 — 1/n, and d, (¢ (1), e4) < 1/n for

any relator r € R of length at most n.
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In the following proposition, we establish precise quantitative relations among the notions of
profile D]GE’ 5 Wg S,Rg, g we have just introduced. To begin with, we recall some notions from
combinatorial group theory.

If w € Fx is a word that represents the identity of G = (X | R), then the corresponding
combinatorial area Ag s (w) is defined to be the least ¢ such that w can be written as a product
of £ conjugates of relators from R. The Dehn function, denoted by Dehng,s (m), is defined to be
the largest combinatorial area Ag s (w), where w ranges among all the words of length at most
m representing the identity of G. We let Ng g (m) be the minimum, among all representations
w = (7717“1771_1) e (ngrm[l) as product of £ < Dehng s (m) conjugates of relators r1,...,r, € R,
of the maximum of the length of r1,..., 7.

Proposition 5. Under the notation above, the following relations between the functions Dés,
Wgs, Rg,s hold for all sufficiently large m’s:

(1) Wi s (m) < Df 5 ((3m + 1)m);
(2) DE g (m) < WE 5 (3m);
(3) Wg,s (m) < Rg,s (max {Dehng (m)m, Ng,s (m)});
(4) RE.5 (m) S WE 5 (m).
In particular, if one of the functions Dgs, va,& Rés is everywhere finite, then all the others

are everywhere finite.

Proof. We prove the nontrivial inequalities below.

(1): Fix m € N and consider n = (3m + 1)m. If k = ngs (n), then for some a with ko = k
there exists an (n,e,)-approximation 7: G — G4. Let ¢: Fx — G, be the homomorphism
induced by the restriction of m to X. Suppose that w = z1---x; is a word in Fx of length
I < m. If w represents the identity e € G, then by the triangle inequality and by (1) and (5)

of Lemma 4 we have that
do (@ (W) ,eq) < do (@ (w),m(eq)) +do (7 (eg),eq) < (Bm—1)/n+1/n < 1/m.

Suppose now that w represents a nontrivial element g of G. Then we have again, by the triangle

inequality together with (1) and (5) of Lemma 4,

da (90 (w) 7ea) = dg, (7[' (Q) ) T (eG)) —dq (7T (6g) 7606) —do (77 (g) P (w)) > Ea — 1/m'

(2): Suppose that m € N and set n = 3m. If k = Wg,s (n), then for some o with k, = k there
exists a homomorphism ¢: Fx — G, such that for any word w € Fx of length at most n one has
that dy (¢ (W), eq) > €q —1/n if w does not represent the identity of G and dy, (¢ (W), eq) < 1/n
otherwise. One can choose for any element g € Bg s (m) a word wy, € Fx of minimal length
that represents g in such a way that w,-1 = wg_l for g € G. Define then 7 (g) = ¢ (wy) for every
g € Bg s (m) and arbitrarily for g ¢ Bg s (m). We claim that 7 is an (m, ,)-approximation for
G. Indeed, suppose that g,h € Bg s (m) are such that gh € Bg g (m). Observe that the word
wgwhw;hl € Fx has length at most n and represents the identity of G. Hence, by assumption,
we have that

do (m(g) 7 (h), 7 (gh)) = da(gp(wgwhw;}g),ea) <1l/n<1/m.



6 GOULNARA ARZHANTSEVA AND PIERRE-ALAIN CHERIX

Suppose now that g, h are distinct elements of Bg g (m). We have that wgw,:1 is an element of
Fx of length at most 2m < n that does not represent the identity of G. Hence

do (7 (9),7 () = do (¢ (wgw;, ') yeq) > a — 1/n > eq — 1/m.
(3): Fix m € N. Set n = max {Dehng s (m)m,Ngs(m)}. If k = R]GiS (n), then for some «
with k, = k there exists a homomorphism ¢: Fx — G, such that for any word w € Fx of length
at most n that does not represent the identity of G one has that d, (¢ (w),eq) > €4 —1/n, and
do (¢ (1), eq) < 1/n for any relator r € R of length at most n. Suppose now that w is a word in
G of length at most m that represents the identity of G. Then we can write w as the product
(nlrmfl) e (nﬂm[l) where ¢ < Dehng,s (m), r; € R have length at most Ng g (m) < n and
n; € Fx. Thus, we have, for each i < ¢,

do (¢ (mirin; ) €a) = da (¢ (ri) s €a) < 1/n
and, hence, d,, (¢ (w),eq) < Dehng,s (m) /n < 1/m. O

Proposition 6. Let F = (G, da, ka,€a)qer be a family as above such that
(i) for every k € N, {a € I : ko < k} is finite, and
(ii) for every a € I the bi-invariant metric group (Go,dy) is compact.
If G is a finitely generated group, then the following assertions are equivalent:
(1) the F-profile Dgﬁ of G is bounded (equivalently, each of the profiles W(];,S’R]G:,S s
bounded);

(2) there exists an injective group homomorphism v: G — G, for some o € I such that

do (L(g),t(h)) > eq for every g,h € G such that g # h.

Proof. The implication (2)=-(1) is obvious, so we focus on the implication (1)=-(2). Fix a finite
generating set S for GG. Suppose that the F-profile of G is bounded. Then there exists k € N
such that for any n € N there exist a,, € I such that k,, < k and an (n, €,,, )-approximation
¢on: G — G, . Since by assumption {« € I : k, < k} is finite, without loss of generality we can
assume that o, = «a does not depend on n, and thus ¢,: G — G, for every n € N. Fix a
nonprincipal ultrafilter & over N and define ¢: G — G, by ¢ (g) := lim,_; v (g). Observe
that this is well defined since, by assumption, (G4, d,) is compact. Since, for every n € N, ¢, is

an (n, €, )-approximation, it follows that ¢ is an injective group homomorphism as required. [

Remark 7. 1t is clear from the preceding proof that assumption (ii) can be weakened. For
example, Proposition 6 remains true under condition (ii’) that (Ga,ds) is a proper metric space
(i.e. a metric space where every closed ball is compact) and for each g € G and some [ > 0 we
have {n € N | do(¢n(9),€qa) <1} € U, where « is the index appearing in the proof. Indeed, such

(ii’) ensures that lim, s ¢n (g) exists and is unique.

2.1. F-approximations and metric ultraproducts. Adopting the notation from the be-
ginning of the section, we let F be the family (Ga,da,ka,ca),cr, Where k, is a nonzero nat-
ural number, €, is a strictly positive real number such that inf,e, > 0, and G, is a bi-
invariant metric group with distance d,, and identity element e,. Fix a non-principal ultrafilter
U over the index set I. The metric ultraproduct [[;,(Ga,da) of the family of bi-invariant
metric groups (Ga,da),c; can be defined as in [38, Section 4]. This is the quotient of the
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direct product [],.;

limg ¢ do (o, €a) = 0 . The metric ultraproduct [[;, (Ga,dq) is endowed with a canonical

G, by the normal subgroup consisting of those elements (g,) such that

bi-invariant metric dy;, obtained as the quotient of the bi-invariant pseudometric on [[,.; Ga
defined by diy ((9a) , (ha)) = limg—s da (gas ha)- Such a construction is in fact a particular in-
stance, in the case of bi-invariant metric groups, of the notion of ultraproduct in the logic for
metric structures; see [7, Section 5] and [16, Section 2.6].

In the case when the family (¢4),¢; is constantly equal to a given strictly positive real number
€, one can reformulate the notion of F-approximability in terms of embeddings into a metric
ultraproduct [];, (Ga,ds). Precisely, a countable group G is F-approximable if and only if
there exist an ultrafilter ¢ over I and a group homomorphism ¢: G — [[;; (Ga,da) such that
dy (¢(g),t(h)) = € for every distinct g, h € Gj see also [46, Proposition 1.8].

Example 8 (Varieties and non-varieties). It follows from the preceding paragraph that if C is a
class of groups that is closed under taking arbitrary direct products, subgroups, and quotients
(equivalently, by the Birkhoff theorem, if C is a variety of groups, i.e. a class of groups defined
by a given set of identities or, using an alternative terminology, laws), and that contains G,, for
every « € I, then C contains every F-approximable group.

For instance, for any positive integer ¢, groups approximable by solvable groups of derived
length at most ¢ are solvable of derived length at most £. In contrast, there exists a non-solvable
group which is approximable by solvable groups (with no uniform bound on the derived length).
These are not using any consideration about a metric’.

A more ‘metric’ example is given be the family Fiin = (Hp, dS6) |Hal, 1)aer, see Section 3.4,
where H,, o € I are all finite groups. It is clear that there exists an ]-'C{;m—approximable group
which does not belong to .Fcfci " but, moreover, there exists a finitely presented group, the famous

Higman group, which is not Fli "_approximable [46], cf. Question 49.

Example 9 (Constant dimension). Let G be a finitely generated F-approximable group. As-
sume that k, = k for all a € I and a fixed k£ > 0. By Definition 2, the F-profile Dés and,
by Proposition 5, profiles Wg S,Rg g are constant. In particular, (1) of Proposition 6 holds.
However, (i) of Proposition 6 is not fulfilled. It is natural to ask whether or not conclusion (2)
of Proposition 6 remains true in this case of constant dimension of approximating groups.

For instance, if G, are finite for all « € I and k, = |G4| = k for some k > 0, is the fixed
cardinality of these finite groups?, then Definition 1(2) implies that G is finite and injects in some
Gy (cf. Section 3.4, for a general setting when sizes of finite groups vary). Thus, Proposition 6(2)
does hold in this case.

In the same vein, let G, = GL(k,K,) be the group of k£ x k invertible matrices for a fixed
k > 0, with coefficients in a field K,, and equipped with the trivial {0, 1}-valued metric dfo1}
for a € I, defined by dyg13(g,h) = 1 if g # h and 0 otherwise. Then G is linear, i.e. G is
a subgroup of GL(n,K) for some positive integer n and a field K (which is not required to
coincide with K, for some a € I). Indeed, n can be chosen to be k and K to be the algebraic
ultraproduct of fields K,. This result is due to Malcev [36] and it can be also formulated using

1n fact, the metric is the trivial {0, 1}-valued metric dyg 1}, see Example 9.

2There are finitely many finite groups of given cardinality, that is, at least one group among G., o € I appears
infinitely many times in the metric ultraproduct [[,, (Ga,da).
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the language of the first-order classical logic: if the universal first-order theory of G contains
that of a linear group GL(k,KK,) (this is the case, for instance, when G and GL(k,KK,) have the
same elementary theories), then G is linear.

Note that we can relax the assumption on finite generation of G as by Malcev’s local theorem
a group has a faithful linear representation of degree n over a field of characteristic p > 0 if
and only if each of its finitely generated subgroups has such a representation over a field of
characteristic p [36].

Since we deal with metric ultraproducts (associated to arbitrary bi-invariant distances dg) it
is natural to ask whether or not Malcev’s result still holds in the continuous logic setting, see
Question 50.

However, it is clear that for an arbitrary group G, one cannot expect that an embedding of
G into an ultrapower of G, induces an embedding G — G,. Here is a concrete example in
the case of algebraic ultrapower: if G, = Fx is a free non-abelian group, then, by a result of
Remeslennikov [41], a finitely generated subgroup G of an algebraic ultrapower of Fx is a fully
residually free group. Take such a non-free group G, i.e. any non-free Sela’s limit group. See

also Question 53.

3. CLASSES OF F-APPROXIMABLE GROUPS

The notion of F-approximable group for various choices of F captures many classes of groups
that are currently a subject of intensive study. We mention only main examples below, for more
details about these wide classes of groups and a broad range of applications see [39, 38, 18, 1, 3,
16]. The reader is also invited to analyze the F-profile and F-dimension, given her/his favorite
family F. Moreover, note that our quantifying of metric approximations extends immediately
to quantifying of constraint metric approximations [4], using suitable constraint metric profiles.

Observe that the classes of groups below are so that all residually finite and all amenable

groups belong to these classes.

3.1. Sofic groups. This class of groups has been first introduced by Gromov in [30] in the
context of symbolic dynamics; see also a work of Weiss [50].
Let F*°f be the collection of permutation groups Sym(n),n € N, endowed with the normalised

Hamming distance: for permutations o, 7 € Sym(n), we define
1yr. . .
diam (o, 7) = EHZ | o(i) # T(Z)}’

Definition 10 (Sofic group via permutations; sofic profile and dimension). A group G is said
to be sofic if it is approximable by F*°f = (Sym(n), diam, 7, 1)nen, in the sense of Definition 1.
We call sofic profile Dg)f and sofic dimension dimgf of a sofic group G the F*°/-profile and

Feof_dimension (respectively) for such a choice of the approximating family F = Fs°f.

We stipulate that the dimension k,, of Sym(n) is chosen to be equal to n and ¢, = 1 for every
n € N. Equivalently, €, can be chosen to be constantly equal to a fixed strictly positive real
number ¢ < 1.

More precisely, €, = 1 and €, = € < 1 in Definition 10 yield the same class of sofic groups

but the corresponding sofic profile functions are not necessarily ~-equivalent. Indeed, one can
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enlarge a fixed € using the so-called “amplification trick” (see the discussions in [39, §3] and [3,
Section 5]) but this enlarges the dimension of permutation matrices from n to n!, whenever
amplification steps are required.

sof

In contrast, the ~-equivalence class of D,” and, hence, the value of dimg)f , do not change if

one defines the sofic profile only considering an F*°/-approximation, i.e. a sofic approximation,

-1

defined by maps g — o4 such that o is the identity permutation and, for g # eg, 041 =0,

has no fixed points; see [16, Exercise 2.1.10].

It follows from Proposition 6 that a finitely generated group has bounded sofic profile if and
only if it is finite.

Gromov’s original definition of soficity of a group G uses approximations of its Cayley graph

by finite labeled graphs.

Definition 11 (Sofic group via graphs). A group G with a finite symmetric generating set S is
called sofic, if for each 6 > 0 and each n € N there is a finite directed graph I' edge-labeled by
S, and a subset I'g C I' with the properties, that:
(i) For each point v € 'y there is a map ,: Bg,s(n) — I' which is a label-preserving
isomorphism between the ball Bg s (n) in the Cayley graph of G with respect to S and

the n-ball in I' around v, and
(i) [Tol = (1 = d)[T].
Such a graph T is called an [n, §]-approximation of the Cayley graph Cay(G, S).

We can now give another, in addition to the above-defined Dsof (and, hence, Wgoé and Rsof )
natural definition of a profile of a sofic group:
o gsof (n) is the least cardinality (= number of vertices) of the graph T" in an [n,1/n]-
approximation of the Cayley graph Cay(G, S).

This new profile is ~-equivalent to our initial definition of the sofic profile.
Proposition 12. gs"f( )~ Dgf; (n).

Proof. The above two definitions of soficity, via permutations and via graphs, are equivalent, see,
for instance, the proof of the equivalence of Definition 4.2 and Definition 4.3 in [23]. Analysing
the details of this proof, we see that gsof (2n) > Dé?f (n) and Qsof (n) < Dsof (2n + 2), whence

the ~-equivalence of the two functions. O

Example 13 (Sofic profiles of free abelian groups). We begin with the group of integers: G = Z
and S = {+1,—1}. Clearly, D%‘g (n) < 2n + 1 by considering the sofic approximation coming
from the action v of Z on Z/(2n + 1)Z defined by
v(i) + Z/2n+1)Z — Z/(2n+1)Z
J = () (f) =i+,

where i,j € Z and j + j is the canonical epimorphism Z — Z/(2n + 1)Z. This shows that
D3 (n) < n.

Let us check that D3 (n) ~ n. Suppose that k < 2n+ 1 and assume that ¢: Z — Sym(k) is
a (2n, 1)-approximation of Z. Then, since dpam has values in {0,2/k,...,(k—1)/k,1}, we have
that for every i,j € [-n,n], p(i+j) = ¢ (i) p(j) and ¢ (i) is a nontrivial element of Sym(k)
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whenever i # 0. In particular, ¢ (i) = ¢ (1)" and ¢ (1) is an element of order > n. We stipulate
that ¢ = 1, then for every ¢ € [—n,n] such that i # 1 we have
p 1

daam (e (1), (1)) > 1 - o

This implies diam (¢ (1), (1)") = 1. Therefore, ¢ (1) is a cycle of length > n. Hence, k > n.

This shows that n < D%Of (n). It follows from this and Proposition 34 that any virtually-Z

group G has D‘z;of (n) ~ n. It also follows from this and the estimate on the sofic profile of the

direct product that D;Zf (n) < n? for every d € N, see Section 5.2. Moreover, Dz?if (n) ~ n

and Déof (n) ~ n¢ for any virtually-Z? group G. This follows from the same argument as above

combined with a result on the stability of the commutator relator words with respect to the

Hamming distance [2, Corollary 6.5], see Corollary 32 and Example 33.

3.2. Hyperlinear groups. This class of groups appeared in relation to the concept of hyper-
linearity in operator algebras. The definition below is due to a result of Radulescu [42]; see also
[16, Proposition 2.2.9] and [34, Section 4.2].

Let F™P be the collection of finite-rank unitary groups U(n),n € N, endowed with the

normalised Hilbert-Schmidt distance: for unitary matrices u = (uj;),v = (vi;) € U(n), we define

n

dus(u,v) = [lu — vz = :%;1‘% —vi|* = \/Tlltr((u —v)*(u—v)).
Definition 14 (Hyperlinear group; hyperlinear profile and dimension). A group G is said to be
hyperlinear if it is approximable by F™P = (U(n), dus, n, v2)nen, in the sense of Definition 1.
We call hyperlinear profile Dgyp and hyperlinear dimension dimgyp of a hyperlinear group G
the F"P-profile and FP-dimension (respectively) for such a choice of the approximating family
F = Flwp,

Again we convene that the dimension k, of U(n) is equal to n and &, = /2 for every n € N.
Equivalently, €, can be chosen to be constantly equal to a fixed strictly positive real number
e < V2. That is, we obtain the same class of hyperlinear groups.

The flexibility in the choice of ,, that we observe in the definitions of both sofic and hyperlinear
groups does not hold a priori for arbitrary F-approximations. Indeed, it strongly depends on
specific properties of the metric we use. In fact, both the Hamming and the Hilbert-Schmidt
metrics behave well under the above mentioned “amplification trick”, whence this freedom in
the choice of g,,’s in the definitions of sofic and hyperlinear groups, respectively.

It follows from Proposition 6 that a finitely generated group has bounded hyperlinear profile
if and only if it embeds into U(n) for some n € N.

Given two permutations o, 7 € Sym(n), let u,, v, € U(n) denote the corresponding permuta-

tion matrices. Then,
1
dHam(Ua T) = i(dHS(Um UT))Q'

It follows that sofic groups are hyperlinear. Noting B s(n) C Bg,s(2n?), we immediately obtain

that, for a sofic group G, we have:

D% (n) < DE%(2n?).
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The converse is not yet known: whether or not all hyperlinear groups are sofic is a well-known
open problem. Observe that the Hamming distance is an ¢'-type metric and the Hilbert-Schmidt
distance is the Euclidean, hence, an £2-type metric. Therefore, the above square root distortion of
the distance under the canonical map Sym(n) < U(n) sending permutations to the permutation
matrices: o — u,, T — v;, can a priori not be improved into an isometric embedding. However,

we deal with approximations, whence the following
Conjecture 15. If G is sofic, then DSGOf(n) < Dgyp(n).

The conjecture holds for sofic F™P-stable groups (see Definition 30), e.g. for virtually abelian
groups and the Heisenberg groups, see Corollary 32(2) and Example 33. See also Question 51
and Question 52.

Here is a useful modification of the hyperlinear profile. The finite-rank unitary groups
U(n),n € N, can be endowed with the normalised projective Hilbert-Schmidt pseudo-distance:

for unitary matrices u,v € U(n), we define

dig(u,v) = inf \/itr ((u — A)*(u — Av)),

AeT
where T denotes the set of complex numbers of modulus 1

Definition 16 (Projective hyperlinear profile and dimension). Let G be a finitely generated
group with a finite generating set S. The pmjective hyperlinear profile of G is the function
Dhyp N — N U {400} defined by setting D ’s (n) to be the least k such that there exists a
function o G — U (k) such that

(1) dus (0 (g9) o (h),0 (gh)) < 1/n for every g,h € Bg s (n) with gh € Bg, g (n), and

(2) dgs (o (9),0(h)) > V2 —1/n for every g,h € Bg,s (n) such that g # h.

The projective hyperlinear dimension of G is defined by

dlmGS = lim sup log Dhyp( ).
n—+o00

Two distinct (pseudo)distances on U (k) are used in the two conditions above. One might
consider the existence of a map o: G — U (k) from Definition 16 as an alternative definition
of a hyperlinear group. Indeed, a result of Radulescu [42] is that this is actually equivalent to
Definition 14. Our next result shows a precise relationship between these two approaches on the
quantifying level.

For the proof of the following proposition, observe that dyg (u, eU(n))2 =2— %Re (tr (u)), and
digs (u, eU(n)) =2— 2tr (u)| for u € U (n). Observe furthermore that dgg (u,v) < dus (u,v)
for u,v € U (n). Our next result is based on the “amplification trick”; see [42], [16, Proposition
2.2.9], [34, Section 4.2].

Proposition 17. Let G be a group with a finite generating set S. Then
D% (n) < D% (n)

42 -1
and, forn > <? — 1) ,

— L
h h
D% (n) < (2095 (80m))
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where £ = [log (\/511) log (i)_l-‘ .
20n " 200n2

Proof. The first inequality is obvious. Let us check the second inequality. For u € U (k),
-1
we set 7(u) = ftr(u). Suppose that n > (4?“/5 - 1) . Suppose that o: G — U (k) is a
(80n, v/2)-approximation for (G, S). Then for g € Bg s (n) such that g # eg, using the triangle
inequality, the uniform injectivity condition, and Lemma 4 (1), we have that dpg (a (9) an(k)) >
dus (0 (g) y O (eG)) — dps (0-( ) ) > \/> 80n 80n = \/i - ﬁ Therefore,
1

2= 2Re (7 (7 ())) = duis (7 (9)  evw)” > 2= 7.

Hence Re (7 (0(g))) < 5a-. Consider the map ¢: G — U (2k) defined by

1
Then one has that, since n > (%ﬁ 1)
~ [L+7 (ool V2t 1t g 4
\ n < n g -
@)l < : I
_ V2
Set 0 := of,, 200 s->—. Fix £ € N such that

5 1
— > — .
llog <4> > log <5>

Consider the map 6%°: G — U ((2k)") defined by 6% (g9) = 5 (9) ® 5 (9) ® --- ® 5 (g). Then
we have that, for g € Bg g (n) such that g # e, since the trace is multiplicative under tensor

products,

Therefore, we have that

dis (T (9) s ep(ary)? = 2 — 2 ’T (5@)[ (g))’ > 2 — 2.
Hence,
(G (9) . euary) = V2 — 28 > V2 — 1/10n.

Observe now, using the bi-invariance of dgrg, the mixed-product property of the tensor product,
and the definition of o, that for g, h € Bg,s (n) with gh € Bg s (n) one has that

dus (7" (9) 5% (h) 5" (gh)) < dus(o (9) o (h) 0 (gh)) < 1/80n < 1/n.
Finally, if g, h € Bg,s (n) are such that g # h, then, using the bi-invariance of dg, the triangle
inequality, and the almost homomorphism condition on dpg, and hence on dgg, (cf. Lemma 4
(5)) we have that

dis (3% (h), 5" (g)) i

drs(@® (97'R) s epqanyn) — 3on
> V2-1/10n—1/16n > V2 — 1/n.

WV

This concludes the proof. [l
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3.3. Linear sofic groups. This class of groups has been introduced and systematically studied
by Arzhantseva-Paunescu [3]. The next definition is due to [3, Proposition 4.4].

Let F'" be the collection of groups GL(n,K) of n x n invertible matrices with coefficients
in a given field K, endowed with the normalised rank distance: for invertible matrices u,v €
GL(n,K), we define

1
dyank (U, v) = ﬁrank(u — ).

Definition 18 (Linear sofic group; linear sofic profile and dimension). A group G is said to be
linear sofic over a field K if it is approximable by F'™ = (GL(n,K), drank, ", 1/4)nen, in the
sense of Definition 1.

We call linear sofic profile Dg” and linear sofic dimension dimg" over a field K of a linear
sofic group G over a field K the F'"-profile and F*"-dimension (respectively) for such a choice

of the approximating family F = F",

Thus, the dimension k,, of GL (n,K) is declared to be n and &, is constantly equal to 1/4.
Definition 18 is an equivalent characterisation of linear soficity proved in [3, Proposition 5.13]
(see also [3, Pages 2289-2290] for the case of an arbitrary field K). The value of 1/4 comes from
the so-called rank amplification, a construction introduced in [3]. It is not known whether 1/4
can be replaced by a larger value (fixed or arbitrarily chosen between 1/4 and 1), see Question 55.

It follows from Proposition 6 that a finitely generated group has bounded linear sofic profile
over a field K if and only if it is linear over K, namely, if and only if it embeds into GL (n, K)
for some n € N.

As above, we represent permutations by permutation matrices: Sym(n) 3 o — u, € GL (n,K),
for a fixed arbitrary field K. Observe that [3, Proposition 4.5]:

drank(u0'7 eGL(n,K)) < dHamm(U7 eSym(n)) < 2drank(uaa eGL(n,]K))'
Therefore, sofic groups are linear sofic over any given field K and, for a sofic group G, we have:
Dls(n) < D (n).

Here is a useful modification of the linear sofic profile, which is inspired by the projective
variant of the hyperlinear profile. The groups GL (n,K),n € N, can be endowed with the
normalised Jordan or projective rank pseudodistance: for matrices u,v € GL (n,K), following
[34], we define

d—(u,v) = - f&lﬁi rank (u — Av),

where F is the algebraic closure of K and the rank is computed in F".

Definition 19 (Projective linear sofic profile and dimension). Let G be a finitely generated
group with a finite generating set S. The projective linear sofic profile of GG is the function
DICTS: N — N U {400} defined by setting DlGifLS (n) to be the least k such that there exists a
function o: G — GL (k,K) such that

(1) drank (0 (g) o (h),0 (gh)) < 1/n for every g,h € Bg s (n) with gh € Bg,s (n), and
(2) d5: (0 (g9) 0 (h)) > 3 — 1/n for every g, h € Bg,s (n) such that g # h.

rank
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The projective linear sofic dimension of G is defined by

lé’?’s = limsup — log DZ{LS (n).
n—+oo M

dim

As in the projective hyperlinear case, two distinct (pseudo)distances on GL(k,KK) are used in
the two conditions above and one might consider the existence of a map o: G — GL(k,K) from
Definition 19 as an alternative definition of a linear sofic group. Indeed, a result of Arzhantseva-
Paunescu [3, Theorem 5.10] shows that this is actually equivalent to Definition 18. Moreover,

our next result is that these two approaches are equivalent on the quantifying level as well.

Proposition 20. Let G be a group with a finite generating set S. Then DZG"’IS (n) < D@S (n)
and DlGif‘S (n) < 217%75 (2n).

Proof. The first inequality is obvious. The second inequality is proved in [34, Proposition 4.8],
using [3, Theorem 5.10]. O

We obtain further useful variations of Dlé”s when restricting to other meaningful classes of

3

matrices, still equipped with the normalised rank distance”. For example, we use D& g when

approximate by unitary matrices, D¢’ (n) by self-adjoint matrices and Dg’g (n) by normal

matrices with respect to dank. See also Question 63.

3.4. Weakly sofic groups. This class of groups has been introduced by Glebsky-Rivera [28].

Let F7™ be the collection of all finite groups H,,a € I, each of which is endowed with
a normalised bi-invariant distance d,. For example, such a distance can be induced by the
bi-invariant distances on the ambient groups via Cayley’s embeddings H, — Sym(|H,|) —
U(|H,|), where |H,| denotes the cardinality of H,,.

Definition 21 (Weakly sofic group; weakly sofic profile and dimension). A group G is said to
be weakly sofic if it is approximable by Ff" = (H,,dqy,|Ha|,1)acr, in the sense of Definition 1.

We call weakly sofic profile Dém and weakly sofic dimension dimg " of a weakly sofic group G
the F/™-profile and F/™-dimension (respectively) for such a choice of the approximating family
F = Fim,

Here, the dimension k, is the cardinality |H,| of the finite group H, and ¢, = 1 for every
a € 1. Tt follows from Proposition 6 that a finitely generated group has bounded weakly sofic
profile if and only if it is finite.

Sofic groups are clearly weakly sofic and, for a sofic group G, we have (‘I denotes the factorial):
DL (n) < DFh(n)!

Linear sofic groups are weakly sofic [3, Theorem 8.2]. However, for a linear sofic group G, the
exact relationship between Dgg(n) and DZGZ"S(n) yet remains to establish. See Questions 56, 57,
and 58.

An interesting subclass of weakly sofic groups has been introduced by Thom [46]. Namely,

it FLm = (Hq,dS¢, |Hol, 1)aer is a family of finite groups where each bi-invariant distance

3Naturally, one can also vary the distance by taking, for example, the normalised operator norm, the Frobenius
norm, the p-Schatten norm with 1 < p < oo, etc.
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dS¢ is in addition commutator-contractive, then the famous Higman group Hy is not JZ”-
approximable [46], hence, the corresponding metric profile of the Higman group diverges (i.e.
Dg{{; (n) = 4o for a large enough n € N).

A great freedom in the choice of bi-invariant distances d, on finite groups H,, a € I suggests
that sofic groups might be a proper subset of weakly sofic groups. This is unknown. It is intrigu-
ing that the Hamming distance on symmetric groups Sym(n),n € N plays a distinguished role:
the soficity can be defined with no reference to any distance [27], or accurately speaking, with a

reference to the trivial {0, 1}-valued distance do,1} only, see Example 9. See also Question 67.

3.5. Weakly hyperlinear groups. This class of groups has been introduced by Gismat-
ullin [25].

Let F¢ be the collection of all compact groups H,,« € I, each of which is endowed with
a normalised bi-invariant distance do. Examples of such distances are the trivial {0, 1}-valued
distance dyg 1} and the (normalised) Alexandroff-Urysohn distance* day or, in specific compact
groups, the conjugacy distance d.onj induced by the Haar measure on centerless compact groups’

and the well-known bi-invariant Riemannian distances on compact Lie groups.

Definition 22 (Weakly hyperlinear group; weakly hyperlinear profile and dimension). A group
G is called weakly hyperlinear if it is approximable by F = (H,, d, dim Hy, 1)aeg, in the sense
of Definition 1.

We call weakly hyperlinear profile Dg and weakly hyperlinear dimension dimg of a weakly
hyperlinear group G the F-profile and F“-dimension (respectively) for such a choice of the
approximating family F = F¢.

Here, the dimension k, = dim H, can be the Lebesgue covering dimension or cohomological
dimension of the compact group H,, and €, = 1 for every a € I. Hyperlinear groups are clearly

weakly hyperlinear and, hence, for a hyperlinear group G, we have:
h
DG s(n) < Des(n),
whenever dim U(n) of the unitary group U(n) € F is chosen to be at most n.

3.6. LE-F groups. The introduction of these classes of groups goes back to Malcev [36], see
also a work of Vershik-Gordon [48].

Let us consider an arbitrary family Fyg 1) of discrete groups, where a discrete group is endowed
with the trivial {0, 1}-valued metric dgo,1y (induced by the length function such that the length
of each non-trivial element is 1). In this case, the choice of the parameters e, is of course
irrelevant. We call an Fyq 1)-approximable group simply an LE-F-group. For example, the
famous class of groups that are locally embeddable into finite groups (LEF) coincides with the

class of f{éq}—approximable groups, where }—{fgq} = (Ha,do,1y,|Hal,1)acr is the collection of

all finite discrete groups each of which is endowed with the trivial metric d¢g ;. When }"f{lo 1} is

4In a topological group H, if {U. 152, is so that for all h € H,n > 0, one has U,, = U;' = hU,h™* C H
and Uy = H,ey € Upn, U2, C Uy, then day(g,h) = inf{l(s1) +... +1(sx) | 8i € Hygh™ = s1---s5}, where
I(s;) =inf{27" | s; € Uy}, is a bi-invariant distance on H. For a compact H, this distance is continuous, (H, dav)
is of finite diameter, and day is compatible with the topology if and only if H is first-countable.

5dconj (9,h) = %, where C(gh™") denotes the conjugacy class of element gh™' for g,h € H, and p

is the Haar measure on a compact group H with u(H) # 1 and p(C(gh™")) # 0.
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the family of all amenable groups endowed with the trivial metric dyg 1y, one obtains the notion
of an initially subamenable group or, in other terminology, of a group locally embeddable into
amenable groups (LEA). Accordingly, we have the concepts of the LE-F profile (also called
the LE-F growth in this case, see Definition 27 below) and dimensions. In particular, we have
the LE-F/" and LE-F¢ profiles whenever the dimensions of groups from F {gﬁ} and ]:30,1} are
chosen. For instance, for a finite group one can again take its cardinality and for an amenable
group its asymptotic dimension or its cohomological dimension. Alternatively, generalising our
approach further, one can use a non-constant ‘dimension’ function of approximating groups. For
instance, for approximating amenable groups one can use their Fglner functions; we formalise

this in more detail below by introducing the concept of the LEA profile, see Section 4.3.

4. RELATIONS TO OTHER FAMOUS QUANTIFYING FUNCTIONS

Many examples of quantifying functions associated with a given finitely generated group have
been investigated in the literature. Since any group is trivially approximated by itself equipped
with the trivial metric dyg 1}, we can consider such quantifying functions as very specific instances
of our much more general approach.

Residually finite groups and amenable groups (and, hence, residually amenable groups) are
basic examples of groups which are approximable by families we have mentioned in the preceding
subsection. Therefore, functions quantifying the residual finiteness and amenability can be used
to produce interesting upper bounds to our metric F-profiles.

Lower bounds are more difficult to provide as our general setting of F-approximable groups

encompasses many different classes of groups with a priori very distinct quantifying features.

4.1. Growth of balls and the metric profile. A famous quantifying function associated to

every finitely generated group is the growth function

Ba,s(n) = |Ba,s(n),

the cardinality of the ball at the identity of G’ with respect to the word length distance induced
by the generating set S. This function gives a lower bound for an arbitrary F-profile. Indeed,
the uniform injectivity condition, condition (2) of Definition 1, ensures that the ball Bg g(n)
is injected into the corresponding group G,. It remains to estimate from below the minimal
dimension k, such that GG, can have this fixed ball injected. Usually, such an estimate of k is
immediate (although, in general, it depends on the dimension one has chosen for each G). For

example, for a sofic group G, we have:
Be.s(n) < DLs(n) < DFE(n)!

4.2. Fglner function. This renowned function has been introduced by Vershik [47]. Let G be
a group with finite symmetric generating set S. The Fglner function of G with respect to S,
denoted by Folg g (n), is defined to be the smallest size |A| of a finite subset A C G with the
property that
> 1gAN A< A /n,
9€Bg,s(n)

with Folg g (n) = oo whenever there is no such a subset A C G with respect to S; see [37].
Such a subset A is called %—Fﬂlner set corresponding to the ball Bg g (n). It is clear that the
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~-equivalence class Folg of this Fglner function does not depend on the chosen finite generating
set S.

Remark 23. There is a great flexibility in the choice of the definition of a Fglner function as
it is in the choice of the definition of a Fglner set. For instance, instead of the symmetric
difference above one can take [gA \ A| or instead of left translation by g € Bg g (n) in gA A A
one can use right translation Ag A\ A, etc. We leave to the reader to check that all these natural
variations lead to ~-equivalent Fglner functions and they do not depend on the choice of the

finite generating set of G.

It follows from the proof that amenable groups are sofic—see for instance [39, Example 4.4]—

that, for an amenable group G, we have:
DL (n) < Folg,s (2n).
This gives
D'y (n) < Folg,s (2n) and Dg{’g (n) < Folg.s (4n?) .
Basic examples of amenable groups include groups of subexponential growth and elementary
amenable groups. Among the latter are virtually nilpotent groups. It is not hard to estimate

the Folner functions of such groups® and, hence, to obtain the upper bounds for their metric

profiles using the preceding inequalities. On the lower bound see Question 59.

Example 24 (Groups of subexponential growth). Suppose that G has subexponential growth
and S is a finite generating set of G. Define a,, to be the size of the ball Bg g (n) for n € N.

Since G has subexponential growth we have that lim, ,., #/a, = 1 and hence lim,, a2+1 =1
1

[18, Lemma 6.11.1]. Given n € N, let m € N be so that ag11/a; < (1 + ok )% for every k > m,

2nan

then we have that, for every g € Bg s (n),

|gBG,S (m) \BG,S (m)‘ < Ap4+m — Qm < 1

|Bg,s (m)] = am = 2nay,
and hence . )
Bas (m)] Z l9Bc,s (m) A Bg,s (m)| < o
G’S gEBG“g(TL)

This shows that, for a group G of subexponential growth, we have:

1
1 \n
Dg’f (n) < Folg (n) < min {m:ak+1/ak< <1+2 ) fork}m}.
nan,

Example 25 (Virtually nilpotent groups). Suppose that G is a virtually nilpotent group with
finite generating set S. By Wolf’s result [51] (cf. Gromov’s polynomial growth theorem [29]),
G has polynomial growth. Let d be the order of polynomial growth of G. Then, using the
notation of Example 24, for some constant ¢ = c¢g > 0 one has, for all but finitely many n € N,
n/c < an < en®. Therefore, we have that ami1/am < 2 (1+1/m)? and (1+ (2nay,)~H)" >

1

(1+ n~(d+1) ) 2c) ™. Hence, we get from Example 24 that

1\
(1 + and+1> -1

6 We give direct estimates. A more careful study can be done for specific groups and classes of groups.

-1

SIS

Folg s (n) < (c_
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This gives, for example, in case ¢ = 1 that
Folg s (n) < 2dn*? + dn.

Indeed, observe that, for any number x > 0,

%log (1+2z)> ﬁ

and hence,
1 x

(I4+x)» >1+ n )

Therefore,
1
(1 + 1> " 1> .

2nd+tl dn(2nd+1 4 1)

and

-1

1
1 dn

It follows that, for such a virtually nilpotent group G, we have:

D (n) < Folg (n) < 2dn®? + dn.

The two examples above use the fact that in these groups subsequences of balls form a col-
lection of Fglner sets. Since the growth of balls is prescribed one can erroneously expect to
have this prescribed (e.g. subexponential or polynomial) behaviour of the corresponding Fglner
functions. However, our quantitative statements on Fglner functions require more information
than just the knowledge of the asymptotic type of the growth function or of the classical isoperi-
metric profile of an amenable group. By Definition 1, given n € N, one has to determine an
exact dependence between the radius N of the %-F@lner set Bg,s(IV) corresponding to the ball

B¢, s(n) and n. This dependence is exponential in our direct estimates above.

4.3. LE-F growth and LEA profile. Suppose that G is a residually finite group with a
finite generating set S. Quantifying functions associated with residually finite groups have been
investigated, for example, in [9, 12, 13, 11, 14]. The most popular such a function is the residual
finiteness growth (also called, the depth function), denoted by Fg g (n): it is defined to be the
least integer k£ > 0 such that for any nontrivial element g € Bg,g(n) there exists a normal
subgroup of G of index at most k that does not contain g.

Our approach is closer in the spirit to another, less known, function quantifying residual
finiteness, the full residual finiteness growth (or the full depth function), denoted by ®¢ g (n):
it is defined to be the least k£ such that there exists a normal subgroup N < G of index at most
k that meets Bg g (n) only at the identity. It is clear that the ~-equivalence class of ®¢ g(n)
does not depend from the generating set S, and can be denoted by ®.

By Cayley’s theorem, a finite quotient G/N embeds into the symmetric group acting on the
quotient itself: G/N < Sym(|G/N|). Therefore, for a residually finite group G, we have:

DL (n) < as(n), D% (n) < Bas(n), Di's (n) < ®g,s(n) and

Ba.s(n) < DE(n) < g ,s(n).
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Example 26 (Linear / Nilpotent / Virtually abelian groups). Finitely generated linear groups
have at most exponential function ®¢ g (n), see [10] (where the full residual finiteness growth is
termed the residual girth and the normal systolic growth). It follows that all the main metric
profiles, D?f{g (n) ,DSGOi; (n) ,Dg?s (n) and Dé“fg(n), are at most exponential. If, in addition,
such a group is not virtually nilpotent then it has at least exponential growth. We conclude
that Déf%(n) is exponential whenever G is a finitely generated linear group that is not virtually
nilpotent. See also Question 61.

If G is a finitely generated nilpotent group, then 8g g(n) ~ ®¢ s(n) if and only if G is virtually
abelian [14]. Hence, Dg’g(n) ~ fa,s(n) ~ ®q s(n) if and only if G is virtually abelian. Classical
examples of nilpotent groups which are not virtually abelian include discrete Heisenberg groups
Hsp1 = Ho941(Z) of dimension 2] + 1 with { > 1. By the Bass-Guivarc’h formula [32, 5]
for growth in terms of the derived series of a finitely generated nilpotent group, Bm,,,,,s5(n) ~
n?*2, The upper and lower central series of Hy; coincide, then by [14, Theorem 1] we have
Oy, 5(n) = n22HD That is, n2+2 5 Dggﬂ,s(”) < 21,

If Hy .y is Ff™-stable, then by Corollary 32(2), we have D{;;rhs(n) ~ n2(2+1)  See Conjec-

ture 64 and more generally Conjecture 65. See also Example 33.

The above way of quantifying and the above estimates extend immediately from the class of
residually finite groups to a more general setting of LE-F groups, discussed in Section 3.6: one

can introduce the corresponding quantifying function <I>5 g (n) as follows.

Definition 27 (LE-F growth). Let G by a finitely generated group with a finite generating set
S. The LE-F growth of G is the function @55: N — NU {400} defined by

@g’s (n) =min{k € N| 3 a group Gy, € F of size ko, = k with Bg s(n) — G.},

where Bg s(n) < G, is a monomorphism on the ball, that is, it preserves the algebraic operation
of G on the elements from Bg g(n) (i.e., it is a homomorphism on those elements) and it is an

injection.

Observe that this LE-F growth is nothing else that our Fyq 1)-profile and, for an LE-F group

G, we have:
]:
Df g (n) < ¥ g(n) = Dgls™ (n),

whenever Bg s(n) — Go € Fyo,1y satisfies the uniform injectivity condition with respect to da.
This applies to an arbitrary fixed family F = {(Gq, do, ka,€a) tacT-

When F = F {8311}, that is, for an LEF group G, the inequalities above specify to

fin Flony Flony
Ba,s(n) < Dg.s (n) < Pes (n) = D¢'s (n).

It would be interesting to find an example of an LEF group with the second inequality being
strict, cf. Question 66.

When F = }'{“0’1} is a family of amenable groups, every amenable group G, € ]:{“0’1} generated
by a finite generating set S, has the associated Fglner function Felg, g, (n). Therefore, for an

]-"?0 1}—approximable group we extend our quantifying viewpoint further.
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Definition 28. (LEA-F“ profile) Let G by a finitely generated group with a finite generating
set S. The LEA-F® profile of G is the function LEAg:IS: N — NU {400} defined by

LEAL' (n) = min {F@lgm 5.(n) | 3 a group G € Ffy 1y with B,s(n) < Ga} :

where S, is a finite generating set of G, fixed in advance and the minimum is taken over all

such monomorphisms on the ball.

This allows to study Fglner like profile functions for non-amenable groups which possess
‘exact’ approximations by amenable groups. If .7-"?0’1} consists of all amenable groups, we denote
the corresponding LEA profile by LEAg g (n). Also, if “{1071} consists of amenable quotients of
G, this gives the residually amenable profile, denoted by RAq s(n). Without loss of generality,
we assume no any relationship between the generating sets S and S,. Also, the assumption on
the finiteness of Sy, € I, is not necessary. If the approximating groups G, are not finitely
generated, given a group G, with Bg s(n) < G4, we can consider a subgroup of G, generated by
finitely many images under this injection of elements from B¢ g(n) and take the Fglner function
of this finitely generated subgroup of G,. Properties of usual Fglner functions immediately
extend to our LEA profile and RA profile. In particular, the ~-equivalence class of LEAg g,
respectively of RAq g, does not depend on the choice of the finite generating set S.

For a group G, and a family F O F® D { amenable quotients of G}, we have:

Dé:s (n) < LEAGS (n) < RAG’S(TL) < FQIG’S(’H),

whenever Bg g(n) = Go € .7:?071} satisfies the uniform injectivity condition with respect to d.
Here, Folg g(n) = oo whenever G is non-amenable and the dimensions of G, € F* approximat-
ing Bg,s(n) satisfy ko < Folg, s, (n). See also Question 60.

Subsequent to the present work and partially on the suggestion of the first author, the func-
tions LE-F/™" LEAg s (n) and RAg s(n) have been also studied in [8] and [17].

4.4. Metric profiles of stable metric approximations. As above, G denotes a group gener-
ated by a finite set S = X LI X1, with, say, X = {x1,..., 2}, subject to a finite set of relators
R C Fy, = Fx and F = (Gq,da, kas€a) ey is an approximating family of G.

If r € F,, and g1,...,gm are elements in a group H, we denote by 7(g1,...,9m) € H the

image of r under the unique group homomorphism F,,, — H such that x; — g;.

Definition 29 (Solution and almost solution). Elements gf, ..., g% € G4 are a solution of R
in G, if

r(gf, ..., 9m) = €a, Vr € R,
where e, denotes the identity of G,.

Elements ¢f, ..., 95, € G, are a d-solution of R in G, for some § > 0, if

do (T(g%, - g0),eq) <0, Vr € R.
The following notion is due to Arzhantseva-Paunescu [2], see also [4] for a more general setting.

Definition 30 (F-stable groups). The set R is F-stable if Ve > 035 > 0Va € IVgy,...,gm € G
a d-solution of R, there exist g1,...,Jm € G4 a solution of R such that d,(g;, g;) < .
The group G = F,,,/{(R)) is called F-stable if its set of relator words R is F-stable.
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The definition of F-stability does not depend on the particular choice of finite presentation
of the group: Tietze transformations preserve stability as the metrics d, are bi-invariant, see [2,
Section 3]. The following theorem is due to Arzhantseva-Paunescu, cf. [2, Definition 4.1, Theo-

rem 4.2 and lines after it, and Theorem 4.3|, see again [4] for a more general variant.

Theorem 31. Assume that (£4)acs S constantly equal to a real number ¢ > 0. Then the
following holds.
(1) The set R is F-stable if and only if any group homomorphism v: G — [[;, (Ga,ds) lifts
to [Toer Ga-
(2) Assume that all subgroups of every G, € F belong to F. If G is F-approzimable and
F-stable, then G is LE-F, equivalently, fully residually-F.

A homomorphism ¢ is not necessarily injective and the lifting property means that there exists
g, € Go,i=1,...,msuch that {g},..., g™} is a solution of R for any « € I and ¢(z;) = [[;, g4,
see [2, Definition 4.1]. A group G is fully residually-F if for every finite subset F' of G there
exists a normal subgroup N < G such that F' injects into G/N and G/N = G, for some «a € I.
The equivalence between the LE-F property and the fully residually F property is because, in

this section, G is assumed to be finitely presented.

Corollary 32. Under the hypothesis above, we have the following inequalities.
(1) If the set R is F-stable, then

‘F
Dgls" (n) < Dfs (n).

(2) If G is F-approxzimable and F-stable, then
f
Ol 5 (n) = Dg'g" (n) =~ Df s (),

whenever Bg s(n) — Ga € Fo1y satisfies the uniform injectivity condition with respect
to dg.

Proof. (1): By convention, the upper bound is +oo, whenever G does not admit any F-
approximation. Otherwise, by definition of F-stability, an almost homomorphism on the ball lifts
to a homomorphism on the ball. It follows that (as uniform injectivity lifts to injectivity), given
an (n,e)-approximation by (Gg,dy) € F of dimension k,, there exists an (n, 1)-approximation
by (Ga,do,1}) € Fio,1} of the same dimension k,.

(2): This is immediate from (1) and our observation in Section 4.3. O

In particular, for such an F*°/-stable sofic group G one has
(I)Gﬁ (n) ~ ngfs (n) .

Similarly, for an F™P-stable hyperlinear, respectively F'"-stable linear sofic, and yet, respec-
tively F/"-stable weakly sofic group G one has ®¢ g (n) ~ Dgyg (n), respectively ®¢ g (n) ~
Dg{‘s (n), and yet, respectively ®¢ g (n) ~ ’Défg (n) . Here we imply that, under the hypothesis
of Corollary 32(2) and by definitions of the growths, the corresponding LE-F growths coincide,
up to the ~-equivalence, e.g. @gi;f (n) >~ &g s(n), ete.
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The assumption on finite presentation of G can be relaxed, cf. [4, Remark 2.10]. Moreover, the
above statements can be generalised to a wider context of constraint metric approximations [4].

Corollary 32 allows us to explicit various metric profiles for groups known to be stable.

Example 33 (F-profiles of F-stable groups).
(1) Let G be a finitely generated virtually abelian group and rank G denote the rank of any

finite index free-abelian subgroup of G. Then
h i r
Dg{; (n) ~ DG%S (n) ~ Dgg (n) ~n ank G

Indeed, we use [2] for F*°/-stability, [26] for F"¥P-stability, Example 26 for Dg’g (n), [14] for

rank G (

Pos(n) ~n or simply argue as in Example 13) and Corollary 32(2) together with Propo-

sition 34(ii) for conclusion. See Conjecture 62 on Dlgfs (n).

(2) Let G be a finitely generated virtually nilpotent group so that a finite-index nilpotent
subgroup H < G satisfies [Z(H) : v.(H)] < oo, where Z(H) and v.(H) denote the center and
the last nontrivial term of the lower central series of H (i.e. c is the nilpotency class of H).
Let dim H denote the number of infinite cyclic factors in a composition series of H with cyclic

factors. Then
Dg”; (n) ~ pdim H

Indeed, we apply Proposition 34(ii) to restrict to a nilpotent group H as above, then [6] for
Fsof stability, [14] for ®p g (n) ~ n9™H and Corollary 32(2) for conclusion. In particular, for
the (21 + 1)-dimensional Heisenberg group we have D;}ZH,S (n) ~ n2(H+1),

The assumption [Z(H) : 7.(H)] < oo is required by [14, Theorem 1]. For an arbitrary virtually
nilpotent group, analogous conclusions hold using [14, Theorem 2] which provides a polynomial
upper bound on ®¢ g (n), and hence, by Corollary 32(2), on the sofic profile D‘éo]; (n). This
improves the upper bound from Example 25.

Furthermore, all virtually {polycyclic-by-finite} groups which are not virtually nilpotent have
exponential D‘g){; (n). For we use Proposition 34(ii) to restrict to a polycyclic-by-finite group
H, then [6] for F*°/-stability, [10] for ®z g (n) ~ 2" (note that every polycyclic-by-finite group
is linear [43, Section 5.C]) and Corollary 32(2) for conclusion.

On the hyperlinear profile, we have D%ﬁrhs (n) ~ n?+D for the (21+1)-dimensional Heisen-
berg group, since it is F"P-stable [33] (the argument extends from 3-dimensional to (21 + 1)
dimensional Heisenberg group) and ®p,,,, s (n) ~ n?2+1) (14, Theorem 1].

See Conjecture 64 on other metric profiles of the Heisenberg groups and Conjecture 65 on

arbitrary finitely generated virtually nilpotent groups.

4.5. Other metric profiles. Subsequent to our work other metric profiles have been intro-
duced, with alternative (not equivalent!) to Definition 2 formulations, and restricted to certain
metric approximations. Notably, a sofic profile was introduced in [19] and, by analogy, a hy-
perlinear profile in [44]. In both cases, the formulation is ‘transversal’ to our line of thought.
Indeed, one can parametrise an F-approximation by two parameters m and n (instead of one
parameter n in Definition 1): m being the radius of the ball to be approximated and 1/n being
the constant involved in the definitions of almost homomorphism and uniform injectivity on that

ball. This can seem to give a greater flexibility but in fact provides an equivalent definition of an
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F-approximation. Even so, this yields distinct approaches to quantifying when one prescribes
different constraints on the corresponding quantifying function D]GE, g (m, n) of two variables. Our
Definition 1, and hence Definition 2, take m = n so that we consider the values of the quantifying
function on the diagonal of m-n plane (viewing, for example, m on the horizontal and n on the
vertical axes). In contrast, both [19] and [44] choose to fix m and consider such a function on
the vertical n-line, when n varies. A careful reader is invited to pay attention to such differences
and variations in the existing terminology. See also the notion of sofic dimension [21] which

mirrors an ‘orthogonal’ concept of subgroup growth we alluded to in the introduction.

5. METRIC PROFILE AND GROUP-THEORETICAL CONSTRUCTIONS

In this section, we observe how the F-profile behaves with respect to various group-theoretical

constructions such as taking subgroups, direct and free products, and restricted wreath products.

5.1. Subgroups. It follows from Definition 1 that every subgroup of an F-approximable group
is F-approximable and from definition of an LE-F group in Section 3.6 that a subgroup of an
LE-F group is an LE-F group. Quantifying these statements we obtain the following easy but

instructive result.

Proposition 34. Let G be a finitely generated F-approximable group and H be a finitely
generated subgroup of G. Then the following holds.
(i) Df; < DE.
(ii) If H has finite index in G, then DSGOf ~ Df})f, Dgyp ~ D}}{yp, and D4 ~ Dhin,
(iii) If G is an LE-F group, then ®7; (n) < ®% (n).
(iv) If G is an LEA group, then LEAg(n) X LEAg(n).

Proof. The first assertion is clear and it holds for an arbitrary F-profile. The statements about
LE-F and LEA profiles are by definitions.”

We now prove the second assertion. By (i) above, it suffices to show that Dg)f =< D;;f .
We proceed as in the definition of an induced linear representation and define an induced F-
approximation of G starting from a given F-approximation of H. Let £ be the index of H in
G, and T = {g1,...,9¢} be a choice of representatives for left cosets of H in G. Given g, we
denote by g € T the representative of gH. We assume for simplicity that the representative
of H is the identity element e € T. If S is a generating set of GG, then, by Schreier’s lemma,
Sy = {(st)™'st | s € S,t € T} C H generates H. Moreover, B s(n) C T - By s, (n). We
fix these finite generating sets for convenience: the ~-equivalence class of the corresponding
F-profile does not depend on the choice of a finite generating set.

Observe that for every g € G and i < ¢ there exist unique oy (i) < £ and hy; € H such that
99i = Gay(i)hg,i- From the uniqueness of such a representation one can deduce that agoay = agy
and hgk,i = hg,ak(i
now that ¢: H — Sym(m) is an (n, 1)-approximation of H. We define a map ¢: G — Sym({m)

yhi ;. Furthermore, the map i — «, (i) is a permutation of {1,...,£}. Suppose
by identifying Sym(¢m) with the group of permutations of {1,...,¢} x {1,...,m} and defining
¥ (g) to be the map (i,7) — (ag (i), ¢ (hgs) (5)) . It is straightforward to check that for every

"The < inequalities in (i), (iii), and (iv) can be replaced by usual < inequalities, whenever we consider the
metric profiles with respect to fixed finite generating sets S C G and Sy C H such that Sy C S .
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g € G the map v (g) is a permutation and that v is an (n, 1)-approximation of G of dimension ¢m.
For the latter, we use a general fact that given two permutations o € Sym(m) and 7 € Sym(q),
the normalised Hamming distance of the direct sum o @ 7 € Sym(m + q) satisfies

deam(Ua eSym(m)) + quam(Tv eSym(q))

dHam(U o, eSym(erq)) = m+q :

This shows the required Dg’f < Diff . The proofs for the hyperlinear and linear sofic profiles are
analogous, using corresponding properties of the normalised Hilbert-Schmidt and rank distances,
cf. [3, Proposition 2.2]. Namely, we use a general fact that given two unitary matrices u € U(m)
and v € U(q), the normalised Hilbert-Schmidt distance of the block-diagonal matrix v G v €
U(m + q) satisfies

de%IS (u7 eU(m)) + qu2{S (U7 eU(q))
m—+q ’

dI2{S (u @ v, 6U(m—&-q)) =

Similarly, given v € GL(m,K) and v € GL(q,K), the normalised rank distance of the block-
diagonal matrix u @ v € GL(m + ¢, K) satisfies
mdrank(u7 eGL(m,]K)) + qdrank(vv eGL(q,K))

drank(u D, eGL(TfH“LK)) = m—+q ‘

]

Remark 35. Proposition 34(ii) extends to other metric F-profiles. The proof proceeds as
above constructing F-approximations of G induced (as induced representations) by a given
F-approximation of H. For this to work, assumptions on the family F and the distances d,, are
required. For example, one assumes that G, © G is defined and is isomorphic to some G, and
the distances dq, dg, d, satisfy that f(d,) is a convex combination of f(d,) and f(dg) for some
function f. We call such functions f diagonally block-convez, which include so-called diagonally
block-additive functions where the convexity is given by the sum: f(d,) = f(do)+ f(dg). In our
proof above, f(z) = z for the normalised Hamming and rank distances and f(z) = x2 for the
Hilbert-Schmidt distance. Obviously, we can take f(x) = 2P, 1 < p < oo which yields the convex
equality as above for the p-Schatten norm. Therefore, we have the result as in Proposition 34(ii)
for the metric approximations by matrices endowed with the normalised p-Schatten norm, for
1 < p < o0, and hence, for the normalised trace and operator norms (the rank of a matrix can
be viewed as its p-Schatten norm for p = 0). Similarly, Dém ~ Dﬁ”, whenever the distances d,

on the finite approximating groups admit some diagonally block-convex function as above.

5.2. Direct and free products. It follows from Proposition 34 that for every n € N we have
max{Df; (n), Df; ()} < Déypg (n), max{®Z (n),Pf (n)} < gy (n) and

max{LFAqg (n),LEAg (n)} < LEAGgxm (n).

On the other hand, taking a family F € {fs"f, Fhp Ffin cfcm, Flin f{oiq}, ?0 1}}, the known
proofs that if G and H are F-approximable, then G x H is again F-approximable (see, for

example, [24, Theorem 1] for the proof for sofic groups) give

Dfn () < DG (n) Dy (n).
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Analogously, for LE-F groups G and H, we have, under the assumption that F is closed under

taking direct product of two groups,

Pl (n) < O (n) 7 (1)
It is also not hard to check that, for LEA groups G and H, for the Fglner type profile, we have:
LEAc«H (’I’L) < LEAg (TL) LEAg (n) .

The only point in the above estimates is to choose a suitable finite generating set of the direct
product G x H starting from finite generating sets Sg and Sg. A natural choice is satisfactory:
one can take Sgxg = Sa X {em} U {eg} x Su.

The case of free products is less understood. Some of the classes of F-approximable groups
are not known to be closed under taking free products, e.g. it is not yet proved for weak soficity
and for weak hyperlinearity. As usual, we focus on the quantifying aspects.

Let G and H be sofic groups, and F, denote a free group of rank r > 2. It follows from
Proposition 34(iii) that ®g. (n) < ®p, (n). This and Elek-Szabd’s proof of soficity of the free
product G * H [24, Theorem 1] give the estimate

Dt (n) < DT (n) DT (n) D, (n).

Analogously, a free product of linear sofic groups is linear sofic [45, Theorem 5.6] and one
might extract an upper bound on Dlé’l 1 (n) whenever G and H are linear sofic, see Conjecture 68.

A free product of hyperlinear groups is hyperlinear [40, 49] or [15] but a meaningful upper
bound on Dgﬁ’}{ (n), whenever G and H are hyperlinear, seems unknown, see Question 69.

For residually amenable G and H, an upper bound on RAg.m(n) is obtained in [8, Theo-
rem 6.2.7 and lines before Example 6.2.9]. See Question 70 and Question 71.

5.3. Extensions by amenable groups. Let G be a group, A be a finite set of size n, and G4
be the group of all functions from A to G. Let Sym (A) be the group of permutations on A,
which is clearly isomorphic to the group Sym(n) of permutations on {1,2,...,n}.

The permutation wreath product is the semidirect product Sym (A) x G# with respect to
the action of Sym (A) on G4 that permutes the coordinates. An element of Sym (A) x G4 is
represented by a pair (o,b) where o € Sym (A) and b € G4 is a function b: A — G. When G is
a bi-invariant metric group, one can endow Sym (A4) x G4 with a canonical bi-invariant metric,
which was defined in [35, Section 5] as follows. If g, oy € Sym (A) and by, b; € G4, then

dsym(aywaa ((00,b0) , (01, b1)) Z{da bo (a), by (a)) :a € A, o0(a) =01 (a)}+
dSym(A) (007 01) )

where dgyy,(4) denotes the normalised Hamming distance on Sym (A).
We now introduce a useful notion of controlled Fglner function, which is implied by the

controlled Fglner sequence introduced in [20, Section 3.2].

Definition 36 (Controlled Fglner function). Let G be a finitely generated amenable group
with finite symmetric generating set S. The controlled Fglner function of G with respect to S,
denoted by Fgl's (n), is defined to be the smallest k& > n such that there exists a subset A of
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Bg,s (k) of size at most k with the property that

S gAL A< |A|/n.
9€Bg,s(n)
As usual, choosing a different finite generating set would yield a function with the same
asymptotic type of growth. We let Fgl7" be the corresponding ~-equivalence class of functions.
Let now H be a subgroup of G generated by a finite set R. We now recall the notion of

distortion for the subgroup H in G as defined in [31, Chapter 3].

Definition 37 (Distortion function). The distortion function of H in G with respect to R and
S, denoted by Ar<qg,r,s(n), is defined to be the smallest £ > n such that H N Bg g (n) is
contained in By g (k).

Since different choices of generating sets yield functions with the same asymptotic type of
growth, the ~-equivalence class of A< of the function defined above is well-defined.

Let F be an approximating family F = {(Gq,da, kas€a) }acr such that for every a € I, g,
is equal to a fixed strictly positive constant, which up to normalisation can be assumed to be
equal to 1. We furthermore assume that for every a € I and a finite set A there exists § € [
such that kg < |A|ko, and the permutation wreath product Sym (A4) x G4 is isometrically
isomorphic (when endowed with the canonical bi-invariant metric dgyy,(4)xga described above)
to G g. For example, this applies when I = N and, for every n € N, GG}, is the permutation group
Sym(n) endowed with the normalised Hamming distance. The following result can be seen as a

quantified version of [35, Theorem 5.1].

Theorem 38. Let G be a finitely generated group and F be a family as above, N be a normal
subgroup of G such that the quotient G/N is amenable. Then we have:

DZ (n) < Folgy (n) D% (An<a(FalEy ()

Proof. For g € G we denote by g the image of g under the quotient map G — G/N. Similarly,
if A is a subset of G, then we let A be the collection {g: g € A}. Fix a finite symmetric subset
T of G such that T is a generating set of G/N. Fix also a right inverse o: G/N — G for the
quotient map G — G/N such that o(Bg y7(n)) € Ba,r(n) for every n € N. In particular, this

implies that o (eg) = eq and o (£) =t for t € T. Let now R be a finite symmetric generating
subset of N with the property that, for every t € T, t lo (f) € R. Finally, let S be the finite
symmetric generating set RUT for G.

Let n be a natural number. Observe that Bg s (n) C BG/N,T<”> for every n € N. Set k :=
F@lg);‘Nj (10n) > 10n. By definition of the controlled Fglner function of G/N, one has that there
exists a finite subset B of G such that B € B,y 7(k), | B| < k, and ﬁ deBc,s(IOn) |gB A B| <
(10n)~'. By the choice of o, A = ¢ (B) is a subset of Bgr (k) such that B = A. Consider
now a function ¢: G — Sym (A), g — ¢y, such that ¢, (a) = o (ag) if ag € A (and it is defined
arbitrarily otherwise). We have that

A-Bgs(10n) - A~ C Bas (2k + 10n) C Bg,s (20k)

and hence
NNA-Bgg(10n)- A1 C By r (An<g (20k)).
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By definition of D]]\';R, we deduce that there exist a € I such that k, < D]]\';R (An<c (20k)), and
a (20k, 1)-approximation 9: N — G,. By hypothesis on F, there exists § € I such that

ks < |Alka < kDX g (An<c (20k))

and G is isometrically isomorphic to Sym (A) x G4 Define now the function T: G — Sym (A) x
G4 by setting Y (g) = (1, by), where b, € G4 is defined by a — ¢ (0 (ag™!) ga). Then the
argument at the end of the proof [35, Theorem 5.1] shows that T is an (n, 1)-approximation for

G. This concludes our proof. U

Corollary 39. Suppose that G is a finitely generated group, and N is a finitely generated normal
subgroup of G such that the quotient G/N is amenable. Then we have

D' (n) < Folgg)y (n) DX (An<c (Folgy (n))).

5.4. Restricted wreath products. Let G and H be two groups. The regular restricted wreath
product GUH is the semidirect product BxH, where B = @, G is the group of finitely-supported
functions from H to G, and the action v: H ~ B is the Bernoulli shift. An element of G H
can be represented by a pair (b, h) where h € H and b € B,b: H — G. It is clear that if G and
H are finite, then G H is finite and |G H| = |H| \G\‘Hl.

Suppose now that G is a bi-invariant metric group and F' is a finite group. Then the wreath
product G F' = B x F is endowed with a canonical bi-invariant metric, defined in [35, Section
3] as follows. For zg,z1 € F and by, by € B, we set

verdg (b ) if zg = 21,
deur ((bo, o) , (b1, 1)) = { inax erda (b2, () i)tﬁgrwizz.

It is proved in [35, Lemma 3.2] that if G is endowed with a commutator-contractive invariant
length function, then for any finite group F' the bi-invariant metric dgr on G U F' described

above is commutator-contractive.

5.4.1. The metric profile of wreath products by residually finite groups. Let F be an approximat-
ing family F = {(Gq,da, ka,€a) }acr- We assume that €, = 1 for every a € I, and furthermore
that for any o € I and any finite group F' there exists § € I such that kg < |F| ki and Gp
is isometrically isomorphic to the wreath product G, ! F' endowed with the bi-invariant metric
deyr described above. These assumptions are fulfilled for example for F € {F fin 5 " F {g”l}}

Recall that ®¢ g (n) denotes the full residual finiteness growth function of a residually finite
group G, see Section 4.3.

Theorem 40. Let F be a family as above. Let G be a group with finite generating set R, and H
be a group with finite generating set T'. Consider the finite generating set S of GIH = @ Gx H
consisting of the pairs (b,h), where h € T and b € @y G has support contained in {eg} and

range contained in R. Then for every n € N we have:

Dng,S <TL> g (I)HVT (4n) . D£7R ((I)H,T (4n)>@H,T(4n)

Proof. Clearly, we can assume that G is F-approximable and H is residually finite, otherwise
there is nothing to prove. Observe that if n € N then any element of Bgyy g (n) is of the form
(b, h), where h € By (n) and b € @ G has support contained in By 1 (n) and range contained
in Bg r(n). Set m = ®g 1 (4n). Then by definition of ® 5 7 there exists a normal subgroup N



28 GOULNARA ARZHANTSEVA AND PIERRE-ALAIN CHERIX

of H of index at most m such that N N By (4n) = {em}. Also by definition of ngR there
exists a € I and a (m, 1)-approximation ¢: G — G, such that k, < DZ (m). By hypothesis on
F, there exists 8 € I such that kg < m - kT < m-Df (m)™ and Gg is isometrically isomorphic
to Go H/N. Define now the function ¢»: GIH — G,V H/N by setting ¢ (g, h) = (g, hN) where
g: H/IN — G, is defined by

~ e if B n)NkN = &, and

TN ={ Ty i B (o) N = (.
Then the proof of [35, Theorem 3.1] shows that 1 is a (n, 1)-approximation of G H. O

5.4.2. The sofic profile of wreath products of sofic groups by sofic groups. In this section, we
suppose that G and H are groups with finite generating sets R and T, respectively. We let S
be the set of elements of GV H = @ G x H of the form (b, h) where h € T and b € @, G is
such that the support of b is contained in {ex} and the range is contained in R.

Let K denote a group with a bi-invariant distance d. If F' is a finite subset of G and ¢,e > 0,
then a function ¢: G — K is (F,e)-multiplicative if d (¢ (xy),¢ (x)d(y)) < e for z,y € F,
and (F,c)-injective if d (¢ (z),¢ (y)) = ¢ for z,y € F distinct, cf. terminology of Definition 1.
Proceeding as in the proof of [34, Lemma 2.8] gives the following.

Lemma 41. Suppose that V: G H — K 1is a function. Fixn € N and let G, be the set
of elements of @y G whose support is contained in By (n) and whose range is contained in
Bg,r (n). Suppose that W satisfies the following (the identities eqy ¢ and eg are denoted by 1):
d(V(zy,1),¥ (x,1) ¥ (y,1)) < e1 whenever x,y € Gy,

d(¥(1,z)¥(1,y),¥V (1,2y)) < eo whenever x,y € By (n),

U (z,1)¥ (1,y) =¥ (z,y) whenever x € G,, andy € By (n), and

U(Ly) ¥ (z,1) =¥ (vy(2),y).

Then d(¥ (zw), V¥ (2) ¥ (w)) < €9 + €1 for any z,w € Bau,s (n).

Suppose that K is a bi-invariant metric group. Let d’ be any bi-invariant metric on @ 5 K that
restricts to the original metric on K on each copy of K, and d’ is also the corresponding metric
on @z KipSym (B). Consider also the maximum metric dmax on @ g K and the corresponding

metric on @z K (g Sym (B). The proof of [34, Proposition 3.3] gives the following.

Lemma 42. Fiz ¢ > 0. Suppose that o: H — Sym (B) is a (Bur (4n),e)-multiplicative
and (Bur (4n),1 — ¢€)-injective function. Suppose also that 0: G — K is a (Bg,r(4n),¢)-
multiplicative and (Bg,r (4n) ,1 — ¢)-injective function. Then there exists a function
U: GUH - P K 15 Sym (B)
B
that is (Baym,s (n) , 48 |Bu,r (4n) |2 &)-multiplicative with respect to the metric d' and (Ba,s (n),1—
48|Bp 1 (n)|* €)-injective with respect to the metric dmax.

More precisely, [34, Proposition 3.3] states that under the assumptions of Lemma 42, which
are more restrictive than the hypotheses of [34, Proposition 3.3], for any finite subset /' C GV H,
there exists a set £ C H, such that the previously defined function ¥ is (F, &’)-multiplicative, for

¢’ satisfying ¢ < Since the assumptions of Lemma 42 are more restrictive, the set E can

_e
18|EZ"
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be chosen to be By r(4n) and with ¢’ = 48|E|?c. Moreover, applying a stronger version of [34,
Proposition 3.3], formulated in [34, Remark 3.5], gives that U is (Baym.s (n) , 1—48 | By (n)|? ¢)-
injective with respect to the metric dyax-

In a similar manner, a quantitative analysis of the proof of [34, Theorem 4.1] then shows the

following.

Lemma 43. Fiz ¢ > 0. Suppose that o: H — Sym(B) is a (Bur (4n),e)-multiplicative
and (Bu (4n),1 — e)-injective function. Suppose that 0: G — Sym (A) is a (Bg,r (4n),¢)-
multiplicative and (Bg,r (4n),1 — €)-injective function. Let

U: GUH — P Sym (A) 15 Sym (B)
B

be obtained from o and 6 as in Lemma 42. Define

O: @Sym (A) g Sym (B) — Sym (A® x B) by
B

O (m,7): ((ap),b) = ((m,5 (ag)), 7 (b))
Then the composition ©oW: GIH — Sym (B x AP) is (Bam,s (n),48 |Bu,r (4n)|? &)-multiplicative
and (Bau,s (n),1 — 48 |Bur (n)|? &)-injective when Sym (B x AB) is endowed with the nor-
malised Hamming distance.

We extract from Lemma 43 the following upper bound on the sofic profile of the wreath
product of sofic groups. Recall that the sofic profile Dgé (n) of a group G with finite generating
set R is the F-profile Dgﬁ (n) where F is the family F*°/ = (Sym (A) , diam, |A| , 1),,cy where
A is a finite set and Sym (A) is endowed with the normalised Hamming distance.

Recall that S 5 (n) = |Bg,s (n)| is the growth function of G with respect to a finite generating
set S. We let B¢ denote the ~-equivalence class of 3¢, g, which is independent of the choice of
the generating set S.

Theorem 44. Let G be a group with finite generating set R, and H be a group with finite
generating set T'. Consider the finite generating set S of Gt H = @y G x H consisting of the
pairs (b, h) where h € H and b € @ G has support contained in {eg} and range contained in
R. Then for every n € N one has that

sof
Déoz};{,s (n) < Dyph(48Bur (n)*n) - D5 (48811 (n)? n) Pit’r (4850, (0)°n)

5.4.3. The hyperlinear profile of the wreath product of a hyperlinear group by a sofic group.
We adopt the preceding notations: G and H are groups with finite generating sets R and T,
respectively. We let S be the finite generating set for G ! H of elements (b, h) for h € By 1 (n)
and b € @, G with support contained in {ep} and range contained in Bg g (n).

Suppose that B is a finite set. Then we denote by Hp the finite-dimensional Hilbert space
with basis {|b) : b € B}. If H is a finite-dimensional Hilbert space, then we define H®? to be the
tensor product of a family of |B| copies of H indexed by B. We denote by U (H) the group of
unitary operators on H equipped with the projective normalised Hilbert-Schmidt pseudometric
dgg as defined in Section 3.2. We analyze the proof of [34, Section 4.2] and obtain the following.
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Lemma 45. Fiz ¢ > 0. Suppose that o: H — Sym (B) is a (Bur (4n),e)-multiplicative
and (Bpr (4n),1 — ¢)-injective function. Suppose that 0: G — U (H) is a (Bg,r (4n),¢)-
multiplicative and (Bg,r (4n) , 1 — €)-injective function for some finite-dimensional Hilbert space
H. Let V: GV H — @gU (H) 1 Sym (B) be the function obtained in Lemma 42. Define the
function ©: @z U (H) 15 Sym (B) = U (H®P @ Hp) by

O (m,7): @& @ [b) = Q) m, (&) @ o (1)) -
v Y

Then © o U is (Bgus(n),48|Byr (4n) 8%)—multiplicatz've function  and
(Baa,s (n),1 —48|Bur (n)|? 6%)-injective function when U (H®P @ Hp) is endowed with the

normalised Hilbert-Schmidt distance.
We deduce the following.

Theorem 46. Let G be a group with finite generating set R, and H be a group with finite
generating set T'. Consider the finite generating set S of Gt H = @ G x H consisting of the
pairs (b, h) where h € H and b € @ G has support contained in {eg} and range contained in
R. Then for every n € N one has that

hyp so hun sof n)4n2
DY o (n) < DiI(25008,7 (n)* n?) - Dy, (25008, 1 (n)* n?)Prr G5008mr ()5,

5.4.4. The linear sofic profile of the wreath product of a linear sofic group by a sofic group. Let
K be a field. If B is a finite set, then we let KZ to be the K-vector space obtained as the
direct sum of |B| copies of K indexed by B with basis {|b) : b € B}. If V is a finite-dimensional
K-vector space, then we let V®5 be the tensor product of a family of | B| copies of V indexed by
B. We denote by GL (V,K) the group of invertible operators on V' equipped with the projective
normalised rank pseudometric d_—- as defined in Section 3.3. We analyse the proof of [34,

Proposition 4.12 | and obtain the following.

Lemma 47. Fiz ¢ > 0. Suppose that o: H — Sym (B) is a (Bu,r (4n),e)-multiplicative and
(Bu,r (4n),1 — €)-injective function. Suppose also that §: G — GL (V,K) is a (Bg,r (4n),¢)-
multiplicative and (Bg g (4n),1 — ¢)-injective function. Let ¥: G H — @z GL(V,K) 5
Sym (B) be the obtained as in Lemma 42. Let also

©: @ GL(V,K) 15 Sym (B) — GL (V®”  K” K)
B

be defined by
O (m,7): @Qay, @ [b) = Q) my (ay) ® |7 (b)) -
v gl

Then © o W is  (Bau,s(n),48|Bur (4n)|? €)-multiplicative  function and
(Bayr,s (n),1 — 48| By (4n)|? €)-injective function.

The following is an immediate consequence of the preceding lemma.

Theorem 48. Let G be a group with finite generating set R, and H be a group with finite
generating set T. Consider the finite generating set S of GV H = @ G X H consisting of the



QUANTIFYING METRIC APPROXIMATIONS OF DISCRETE GROUPS 31

pairs (b,h) where h € H and b € @ G has support contained in {ey} and range contained in
R. Then for every n € N one has that

e — sof 2
Dy s (n) < Dk (4808 (n)°) - DE R (480D (480 By p (n))) P (8n P e (n)7)
6. FURTHER REMARKS AND OPEN QUESTIONS

The following question incites, in particular, a thorough study of possible definitions of bi-

invariant metrics on solvable groups; see also our observation in Example 8.

Question 49. Does there exist an infinite group which is not approximable by solvable groups

(with no uniform bound on the derived length)?

We denote by ThY(G) the universal theory of G in the continuous logic setting [7]. An

affirmative answer to the next question would generalise Malcev’s result, see Example 9.

Question 50. Let G be a group such that ThY (GL(k,Kq)) € ThY (G) for some k > 0 and a
field K. Is G linear?

Answers to the next two questions will clarify the status of Conjecture 15.

Question 51. Does there exist a sofic group G which is not F™P-stable but satisfies D‘;;f (n) =
DI (n)?

Question 52. Does there exist a sofic group G which is not F*°/-stable but F"P-stable?

Let U = U(R) be the unitary group of the hyperfinite factor R of type I} equipped with the
ultraweak topology. A group G is hyperlinear if and only if G embeds into a metric ultrapower of
U [38, Corollary 4.3]. In [1, Proposition 7], the first author observed that all Gromov hyperbolic
groups G are residually finite (respectively, LE-Ff™ LEA, etc.) if and only if every G embeds

into U.

Question 53. Let G be a non-elementary Gromov hyperbolic group such that G — [[,, (U , d).
Does it imply the existence of an embedding G < U?

A positive answer will establish the following conjecture.

Conjecture 54. [1, Conjecture 2.8] All Gromov hyperbolic groups are residually finite <= all

Gromov hyperbolic groups are sofic.

An answer to the next question will give a better understanding of the rank metric on linear

groups, and hence, of linear sofic groups and their profile functions.

Question 55. [3] Does the class of linear sofic groups, i.e. F'" = (GL(n,K), drank, 7, 1/4) nen-
approximable groups, coincide with the class of (GL(n,K), drank, 7, €n)nen-approximable groups,

where ¢, is constantly equal to a fixed or to an arbitrarily chosen number between 1/4 and 17

The next three questions are about examples of sofic and linear sofic groups with extreme

profile functions with respect to the ambient class of weakly sofic groups.

Question 56. Does there exist a sofic group G such that Dé”g(n) ~n"?
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Question 57. Does there exist an infinite linear sofic group G such that Dl m( )~ Dlm 's(n)?
Question 58. What is a relationship between Dé“fg(n) and Dléns(n) for a linear sofic group G?

If affirmative, the answer to the next question will generalise the famous Coulhon-Saloff-Coste

isoperimetric inequality which is, using our notation: B¢ s(n) < Folg,s (n).
Question 59. Is g s(n) < Dé?{;(n) for a sofic group G?

To answer this rather challenging question one can first focus on subclasses of sofic groups
such as classical matrix groups and (elementary) amenable groups. Here is a variant for groups

locally embeddable into amenable groups.
Question 60. Is ¢ s(n) < LEAg s(n) for an LEA group G?

Recall that a finitely generated linear group that is not virtually nilpotent has exponential

weakly sofic profile Dg%(n), see Example 26.

Question 61. Does there exist a finitely generated linear group of exponential growth with

polynomial /subexponential sofic profile Dsof 5(n)?

Corollary 32 and known stability results on virtually abelian groups, see Example 33, yield

the following.

Conjecture 62. Let G be a finitely generated virtually abelian group. Then Dlm 's(n) ~ prank G

A direct approach to establish Conjecture 62 is to proceed as in Example 13, using the dis-
creteness of values of the rank distance dy.nk. Alternatively, Conjecture 62 would be established
by proving the F!™-stability of virtually abelian groups. This remains unknown, see [22] for
a partial result. In this vein, it is interesting to investigate the (non)-stability of commuta-
tor relator word with respect to the rank distance within various classes of matrices. Unitary,

self-adjoint and normal matrices are natural classes to consider, see Section 3.3 for notation.

Question 63. Let G be a finitely generated virtually abelian group. Is it true that Dg ¢(n) ~
225(n) = DEgy(n) =~ nrowk6?

We have shown that sofic and hyperlinear profiles of the Heisenberg groups Ho; 41 coincide
with the full residual finiteness growth, see Example 33. We expect this to hold for the weakly

sofic and linear sofic profiles as well, cf. Example 26.
Conjecture 64. We have Dfm g(n) =~ D%’;Hhs(n) ~ 202041
Here is an ambitious generalisation of Example 13 and Example 33.
Conjecture 65. Let G be a finitely generated virtually nilpotent group. Then
D7k (n) = DY (n) = Dils(n) = D5 (n) = &g 5(n).

To approach the weakly sofic part of the preceding conjecture from an ambient class of groups,

we consider arbitrary residually finite groups.
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Question 66. Does there exist a finitely generated residually finite group with Dé"g(n) o
D¢, s5(n)?

The next question explores a possibility to describe weakly sofic groups in purely algebraic

terms (see [27] for such a result on sofic groups).

Question 67. Is there a characterisation of weakly sofic groups with no reference to any non-

trivial bi-invariant distances d, on finite approximating groups H,?

In Section 5.2, we give an upper bound on the sofic profile of a free product of sofic groups.

Other profiles of free products remain unexplored. Recall that F5 denotes a free group of rank 2.

Conjecture 68. Let G and H be linear sofic groups. Then
Difity (n) < (DL (n) + Dl (n)) @, ().

Question 69. Let G and H be hyperlinear groups. Find an upper bound on Dggf}l (n) in terms
of DI (n) and DI¥P (n). Ts it true that

h h h
DI () < (DL (n) + D (0)) @, (n)?
Question 70. Let G and H be LE-F groups. Estimate ®7, ; (n) in terms of ®f, (n) and &% (n).

Question 71. Let G and H be LEA groups. Estimate LEAg.p (n) in terms of LEAg (n) and
LEAg (n).

Question 72. Let F € {.Fsof,]-"hyp,fli”,ffm,fd,f{gﬁ}} and m > 3. What is Dng(Z)VS(n)?
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