ON THE CAYLEY GRAPH OF A GENERIC FINITELY
PRESENTED GROUP.
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ABSTRACT. We prove that in a certain statistical sense the Cayley graph of
almost every finitely presented group with m > 2 generators contains a subdi-
vision of the complete graph on [ < 2m + 1 vertices. In particular, this Cayley
graph is non planar. We also show that some group constructions preserve the
planarity.

1. INTRODUCTION

To any finite presentation of a group in terms of generators and defining relations
there is an associated Cayley graph. This graph depends on the choice of the group
generating set. So, in general, the same group has completely different Cayley
graphs (from the graph theory viewpoint). In particular, it is not hard to find a
group and two different sets of generators such that the Cayley graph with respect
to one generating set is planar and not planar with respect to the other. As an
example, take the cyclic group Z /57 of order five and two generating sets. The
first one consisting of a single non trivial element and the other one consisting of
all non trivial elements. Then with respect to the first generating set, the Cayley
graph is a cycle, so it is planar, but with respect to the second one it is not, as it
1s the complete graph on five vertices.

On the other hand, the existence of planar Cayley graph may give an informa-
tion about algebraic structure of a group. In fact, groups having planar Cayley
graphs are rather scarce. In 1896, applying Cayley’s method of the graphical pre-
sentation of a group, in particular, to rotation groups of the regular three- and
four-dimensional bodies, Maschke classified all finite groups with planar Cayley
graphs [15]. These are the finite subgroups of the special orthogonal group SO(3)
(i.e. cyclic, dihedral, and the rotational symmetry groups of the regular solids)
and their direct products with the group of order 2. It is worth to notice that for
finite graphs the way given in [15] to define the planarity is very natural and it is
not ambiguous. The situation for infinite graphs is more complicated. In this case
there are two nonequivalent definitions of planarity.

Definition 1.

(I) A graph is planar without accumulation points if there is an embedding of
the graph in R? such that there are no accumulation points for its set of
vertices.

(I1) A graph is planar if there is an embedding of the graph in R2.
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Infinite groups admitting planar Cayley graphs without accumulation points
of vertices were treated by Levinson. In [14], he and Rapaport find all ”special
planar” presentations. ”Special planar” means that the Cayley graph can be chosen
point-symmetric (with the same counterclockwise succession of the edges at each
vertex) and locally finite (without accumulation points of vertices). They gave also
some conditions on the set of defining relations which are necessary to make the
presentation special planar. In [13], Levinson produces moreover an algorithm to
decide whether or not a Cayley graph of a group with solvable word problem is
planar without accumulation points of vertices.

A different geometrical approach of group planarity was initiated by Poincaré [17].
It gave rise to the following question : Which groups have a planar Cayley com-
plex 7 Now there exists a complete classification of such groups. These are Fuchsian
groups and free products of countably many cyclic groups [11, Prop. 111.5.4], [20,
Ch. 4]. Planarity of the Cayley complex implies planarity of the Cayley graph,
but the converse is not true. An example of a planar group without planar Cayley
complex is the free product of Z2 by Z, see Figure 1.

7

Va

FIGURE 1. Part of ball of radius 3 in Z2 % 7Z

To allow accumulation points in the definition of planarity gives more freedom, so
we ask ourselves whether or not the planarity with accumulation points of vertices is
frequent. The aim of the present paper is to show that for any m > 2 and [l < 2m+1
one can find a subdivision (see Section 2.1 for the definition of subdivision) of the
complete graph K; (and hence of every finite graph on at most [ vertices) in the
Cayley graph of almost every finite presentation of a group with m generators and
long enough defining relations. In particular, the Cayley graph of such a generic
group is non planar (even with the above mentioned relaxation of the notion of
planarity).
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More precisely, for any fixed m and n, let N = N(m, n,t) denote the number of
all group presentations

(1) G=(z1,...;am | =1,...,m = 1),

where {r1, ..., r,} are cyclically reduced words in the alphabet X,, = {xfl, okl
of length |r;| < t. Let N; = N;(m,n,t) denote the number of all such group pre-
sentations whose Cayley graphs contain a subdivision of the complete graph K; on
[ vertices.

Theorem 1. For any m>2,n >0 andl <2m+1
lim N;/N = 1.
t— o0
Moreover, there is a real number ¢ > 0 depending on m and n such that

1— Ny/N < exp(—ct) for allt > 0.

Let Npp = Npp(m,n,t) denote the number of all group presentations (1) with
non planar Cayley graphs. The previous theorem together with Theorem 5 below
imply immediately the following result.

Theorem 2. For any m > 2 and n > 0
lim N,,/N =1.

t—00

Moreover, there is a real number ¢ > 0 depending on m and n such that

1 — Npp/N < exp(—ct) for allt > 0.

By a result of Levinson [12], the Cayley graph of an infinite finitely generated
group has the genus either 0 (hence the group is planar) or the infinity. Thus the
previous theorem implies that the genus of a generic finitely presented group (that
1s the minimum of genus of its Cayley graphs taken over all generating sets, see
Section 2.1) is the infinity.

To prove Theorem 1 we use firstly that the metric small cancellation condition
C'(A) with A > 0 is verified for a generic (in the above defined statistical sense)
finitely presented group, see, for example, [1, 2]. Then we apply the technique of
small cancellation theory to find the complete graph K; with [ < 2m 4+ 1 in the
Cayley graph of a generic group presentation with m generators.

A probabilistic point of view on the notion of a generic group was first con-
sidered by Gromov [5], see also [6, 7] and [9, Problem 11.75] for an independent
definition by Ol’shanskii. In [5] Gromov announced that word hyperbolicity of
a finitely generated group is a generic property, in a sense slightly stronger than
the definition above. A proof of this result was given by Ol’shanskii [16], see also
Champetier [2] for more results in case of two defining relations. A survey on the
“random” viewpoint in geometric group theory is recently presented by Ghys in [4].

The model of a generic group (via the asymptotic density) defined above is closely
related to the density model developed by Gromov in [6]. This model depends on
a density parameter d with 0 < d < 1. It consists in choosing at random roughly
(2m—1)% words of a given length £ in the alphabet of m letters (more precisely the
number of chosen words of length ¢ is between C}(2m — 1)% and Cy(2m — 1)% for
two given constants Cy < C), then defining a group presentation on m generators
where these words are defining relations, and finally letting ¢ — oo. Under our
model, one can assume that in a generic presentation all defining relations have
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almost the same length ¢. Indeed, the proportion of reduced words of length at
most ¢(1 —¢) among all reduced words of length at most ¢ decrease exponentially as
(2m—1)~*. Hence the share of corresponding group presentations is exponentially
small. Thus the model we are using in the paper is the case of the density model
with the density parameter d = 0. It is worth noticing that our main result,
Theorem 1, remains true for all groups of density d < 1/12 as such groups are
known to satisfy the small cancellation condition C’(X) with A < 2d [6, Ch. 9.B].
Hence our arguments (see our proof below) work in this case as well.
We also describe some group constructions preserving planarity.

Theorem 3.

(1) Planarity is preserved under free products of groups.

(ii) For j = 1,2, let G; be a group generated by a finite set X; containing a
generator s; of order 2, assume that the Cayley graph C(G;, X;) is planar.
Let G be the amalgamated product of G1 and G along {1,s1} = {1,s2} =
ZJ2Z. Then G is a planar group. More precisely, C(G, X1UX5) is a planar
graph.

Acknowledgments. We are grateful to L. Babai and A. Valette for suggesting
the problem. We also thank P. de la Harpe and A. Yu. Ol’shanskii for their useful
comments. We also want to thank Y. Ollivier whose helpful remarks strongly clarify
the first version of the paper.

2. PRELIMINARY INFORMATION

2.1. Graphs. A graphT consists of two sets E(I') and V/(T'); if there is no ambiguity
we will write E and V instead of E(T') and V(T'). The elements of V" are all vertices
of I'. The elements of E are unordered pairs of distinct vertices, called edges. We
therefore assume that there are no multiple edges between two vertices. A graph
is finite if the vertex set V' is finite, it is infinite otherwise but we assume that an
infinite graph has only countably many vertices.

If e = {u,v} € E, for u,v € V, we say that u and v are adjacent vertices, and
that vertex u and edge e are incident with each other, as are v and e. The degree
of a vertex v is the number of vertices to which v is adjacent. A graph is reqular if
the vertices have the same degree.

We recall that two graphs ' and T' are isomorphic if there exists a one-to-one
mapping ¢ from V(') onto V(1) such that for every g1, g2 in V(I'), {g1,92} is an
edge of T if and only if {¢(g1), #(g2)} is an edge of T".

An elementary subdivision of a graph I' is the replacement of one edge by two
edges incident to a vertex of degree 2. Namely, a graph 'y is obtained from I' by
an elementary subdivision if V(T';) = V(I') U {v} with v ¢ V(T') and E(T;) =
(E(M)\ {e}) U {e1} U {ea}, where e = {uj,us} € E(I') and e; = {uj,v},es =
{v,us}. A subdivision is a finite sequence of elementary ones.

The complete graph K, is the graph with n vertices and an edge for every pair
of vertices. The complete bipartite graph K, ,, is the graph such that V (K, ) is
the disjoint union of two subsets V; and V5 of cardinality n and m respectively such
that for every v € V; and w € V5 there exists one edge joining v and w, and these
are the only edges of K, ,,,. It is not hard to see that there exists a subdivision of
K, which is a subgraph of the bipartite graph K, ,, see Figure 2 for n = 3.
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FIGURE 2. A subdivision of K3 in K33

Let I'y and I's two graphs and let u be a vertex of I'; and v be a vertex of I's, we
denote by (I'y,u) * (s, v) the graph consisting of the union of I'y and T’y where u
and v are identified. We call (I'1, u) * (I'2, v) the gluing of (I'1, u) and ('3, v) along
u and v. Similarly, we define the gluing along two edges.

A geometric realization of a finite graph in R3 is a configuration in R3, where the
vertices of the graph are represented by distinct points, and each edge e of the graph
is a Jordan arc, i.e. the image of an injective continuous function ¢ : [0,1] — R3.
Two arcs intersect only at a point representing common terminal vertices of two
corresponding edges. It is clear that any finite graph may be realized in such a way
in R3. If such a geometric realization of a finite graph exists in R? instead of R3, it
is natural to say that the graph is planar.

It is easy to see (and well known) that K5 and K33 are non planar.

Theorem 4 (Kuratovski [10]). A finite graph T is planar if and only if T' contains
no subdiwvision of Ky or K33 as a subgraph.

Kuratovski’s original proof of this theorem is topological, see [10]. For a readable
combinatorial proof, see [19].

The notion of a geometric realization in 23 can be extended directly to infinite
graphs. It is well-known that any graph with countably many vertices can be
geometrically realized in R3. However, as seen in the introduction, the planarity
for infinite graphs can be defined in different ways. If accumulation points of vertices
are accepted, an analogous result to Kuratovski theorem is proved in [3].

Theorem 5 (Dirac and Schuster). A graph T is planar if and only if it contains
no subgraph homeomorphic with K5 or K3 3.

Remark 1. In fact they prove that the extension of Kuratowski’s theorem is equiva-
lent to the following: If every finite subgraph of a countable infinite graph is planar,
then the whole graph is planar.

We use the term ”graph” for the abstract mathematical object or for a geometric
realization of this object in R3. It is also interesting to consider embeddings of
graphs in surfaces of positive genus [18, 12]. The minimum genus among all surfaces
in which a graph can be realized in the above-mentioned way is called the genus of
the graph.

2.2. Cayley graphs. Let G = (X | R) be a finitely presented group, that is with
a finite set of generators X and a finite set of defining relations R. We assume
that o #¢ 1 for every @ € X. Given such a group presentation, there is associated
the Cayley graph. This is a graph C(G, X') whose set of vertices is ¢ and the set
of edges is {{g1,92} | 91,92 € G and 3Is € X such that g» = g15}. With that
definition, there exists two edges between g; and g¢» if the generator z is of order
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2 or if  and 2! are both contained in X. However we can glue these two edges
together and this process does not change the planarity. We denote the Cayley
graph by C'(G) whenever there is no ambiguity for the generating set.

Any non-directed edge ¢ = {g1,92} can be viewed as two directed ones, one
et = (g1,92) and the other e~ = (g2,91). There exists a labelling function ¢ on
the set of directed edges onto X*! defined by ¢(et) = s for s such that g, =
g15, and p(e”) = s7'. The label ¢(p) of a path p = ejes...e, in C(G) is the
word ¢(e1)p(ez) ... o(en) where (e;) is the label of the edge e; according to the
orientation. We regard ¢(p) as an element of G. It is clear that an element g equal
to 1in G if and only if any path labelled by ¢ is closed in C'(G).

We endow C(G) with a metric by assigning to each edge the metric of the unit
segment [0, 1] and defining the distance |# — y| to be the length of a shortest path
between z and y. Thus C(G) becomes a geodesic metric space, that is, any two
points can be connected by a geodesic.

Obviously, a Cayley graph is regular and connected. The converse is not true,
for example the Petersen graph is not a Cayley graph, see [8, exercise IV.11, p.82].
It is clear that the Cayley graph depends on the choice of the group generating set.
In particular, the planarity of the Cayley graph does depend on such a choice (as
shown in the introduction).

A group G is said to be planar if there exists a generating set X such that the
Cayley graph of G with respect to X is planar in sense II of Definition 1.

2.3. Small cancellation groups. Given a finite presentation G = (X |R), let R*
denote the set containing all cyclic permutations of words r; € R and their inverses.
Recall that a piece is a nontrivial word u in the alphabet X*' such that there are
two different defining relations r1, ry € R* such that ri = uv; and ry = uws.

A group presentation satisfies the C'(\)-condition with A > 0 (so-called metric
small cancellation condition) if for each piece u occurring in the relator r, |u| < Alr|.

FEzrample. The surface group of genus ¢ > 1 has a presentation
Sg={ar,...,ag, by, ... bylatbiay "'b7" . agbgar byt = 1)

The set R* contains 4¢ elements. A maximal piece consists of a single letter. So
this presentation satisfies the condition Cl(@%l)'

The following lemma is due to Greendlinger [11, Th. V.4.4].

Lemma 1. Let a finite presentation G = (X |R) satisfy the C'(X)-condition with
A< %. Suppose that w is a reduced word in the alphabet X*' representing the
wdentity in G. Then w contains a subword v that is also a subword of a cyclic shift

of some r € R* and salisfies |v| > (1 — 3X)|r|.

In fact, group presentations satisfying the C’())-condition for A > 0 are very
frequent.

Lemma 2 ([1, 2]). Let R = {r1,...,r,} be an n-tuple of cyclically reduced words in
the alphabet X' of length |r;| < t. Then the share of all n-tuples {r1,... r,} such
that R* = R*(r1,...,r,) does not satisfy the small cancellation condition C'(})
with A > 0 decreases exponentially as t — .

For more details and information about small cancellation groups we refer to [11].
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3. PrRoor oF THEOREM 1

Let w be a reduced word in the alphabet X, = {xfl, ..., 21 that is, it does
not contain zz~! with z € X,,, as a subword. Recall that N = N(m,n,t) is the
number of all n-tuples {ri,...,r,} of cyclically reduced words in the alphabet X,,
of length |r;| < t. We denote by Ny, = Ny (m,n,t) the number of all n-tuples
{r1,...,rn} such that a cyclic shift of some r; or of its inverse ri_l contalns w as a
subword.

The following lemmais a technical tool in our proof of Theorem 1. It is intuitively
clear.

Lemma 3. For any m,n > 0 and any reduced word w in X,

lim Ny /N = 1.

t—o00

Moreover, there is a real number ¢ > 0 depending on m, n and the length |w| of w
such that 1 — Ny, /N < exp(—ct) for allt > 0.

Sketch of proof. Let w be a fixed word of length s. We will prove that the number
of words of length ¢ which does not. contain w*! is exponentially small compare to
the number of words of length ¢ as ¢ tends to infinity. In particular this allows us
to extend this result to n-tuples of cyclically reduced words of length .

Let = in X, be the first generator appearing in the writting of w and let y be
an other generating element distinct from z and z~*.

Let r be much longer than w and denote by ¢ its length. We divide r into
t/(s+ 1) blocks of lenght s + 1. For each of these blocks (except the first one), we
have (2m — 1)**! choices (as we have to avoid the inverse of the last letter of the
preceeding block). As zw and yw do not have the same first letter, at least one of
the two words zw and yw belongs to these choices. If w is excluded, the number of
choices drops to (2m — 1)*+! — 1 for each block of length s+ 1. Thus the number
of choices is less than

(2m)5+1((2m _ 1)s+1 _ 1)(t/(s+1))—1‘

The first term (2m)**! is there for the choice of the first block. This number of
choices is exponentially small compare to (2m — 1) when ¢ tends to infinity. |

Lemma 4. Let a finite presentation G = (X |R) satisfy the C'(A\)-condition with
A < 5. Then the intersection of two cycles in the Cayley graph of G 1s either empty
or connected whenever labels of cycles are some words vy, and r;, from R*.

Proof of Lemma 4. Given two cycles in the Cayley graph of G satisfying the hy-
pothesis above, assume that they have a non empty intersection. By contradiction,
suppose that there are two connected components of this intersection. We denote
labels of these paths by u and w, see Figure 3. Note that they can be empty words
if the intersection is reduced to disjoint union of vertices. Then a cyclic shift of
7, is of the form (r] )ur! w. We claim that either ] or r/ is of length less than
(1=2A)|r;,|. Indeed, suppose by contradiction that |r] [, |} | > (1—=2A)[r;,|. Then,
0 < lu|l+ |w| = |ri | = |ri,| = ] < (1 =2(1 = 2X))|ri,|, hence A > 1/4. This con-
1.1

tradicts A < 1/6. Similarly, a cyclic shift of 7;, is of the form r] u™'r}
i, or ril is of length less than (1 — 2X)[r;,]|.

22

L w and either
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FIGURE 3

!

Z 1t

Among the four closed paths labelled by rf u(rf )~!, 7} r r

i1 0o io' 41
(7 ) tu='r}; let us take one whose label contains two “short” subwords of riill
and ril (by short, we mean “of length less than (1 — 2A)|r;,| and (1 — 2X)|r, |
respectively”).

Without loss of generality we assume that this path is labelled by rglu(r§2)_1.
Thus, r} u(r} )~' =1in G with |7} | < (1 —2X)|r;,| and [r} | < (1 —2X)|ri,].

By the assumption and the Greendlinger lemma for C’(A)-groups with A <
see Lemma 1, the word r} u(rj,)~"! contains a subword v that is also a subword
a cyclic shift of some r£! € R and satisfies |v] > (1 — 3\)|rg| with X < i

Let us show that k # iy,¢3. By contradiction, suppose that k& = 4;. (The case
k =iy is similar.) Hence, (1 — 3X)|r;, | < |v] < |rf |+ [u] < (1= 2X)|ri, [+ Alrg, |
The second inequality holds as u is chosen to be maximal as connected component.
This contradiction shows that k # ;. The case k = i is similar. Thus from now
on k # il,iQ.

Suppose that v is a subword of r{ ,i.e. the face with the label 7y is in the position
a, Figure 3. Then, v is a piece and by the C’(\)-condition, |v| < Amin{|r;, |, |rk|}
contradicting [v] > (1 — 3A)|ri| as A < 1. So, v is not a subword of /. The same
argument shows that v is not a subword of r;,.

Another case is v = vjv2 with v; and vy are subwords of 7} u and (7";2)_1 Te-
spectively (vs can be the empty word), position v, Figure 3. As above, v; is a piece
and hence |v;| < Amin{|ry, |, |rk|}, { = 1,2. So, |v| < 2A|rg| contradicting again
[v] > (1= 3A)|re| as A < 4.

The remaining case is v = v1vsvs, where v1,vs, and wvs are subwords of rglu,
(7“;2)_1, and rj respectively. Since they are pieces, |v| < Afry|, I = 1,2,3. This

contradicts again |v] > (1 — 3A)|rg]. O

w, T w,

1
67
of

Proof of Theorem 1. Let G = (@1,..., 2y | R), where R = {ry,...,7,} is an n-
tuple of cyclically reduced words in the alphabet X, of length |r;| <. We have to
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prove that generically the Cayley graph contains a subgraph which is a subdivision
of a complete graph Ko, 41 on 2m+1 vertices. Let B(e, 1) the closed ball of radius 1
centered at the identity vertex e in the Cayley graph of GG. It contains exactly 2m—+1
vertices, because, as the relations are generically long, it is a tree (see Figure 4 in
case m = 2). We take these 2m + 1 vertices as candidates for the vertices of the
complete graph Ky, 1 that we are looking for. The identity element e is already
joined to all others. It remains to show that two arbitrary vertices on the sphere
of radius 1 centered at e are joined by a path that is outside of the ball and that
all these paths are disjoined except maybe at their endpoints. The elements of the

M)

T2 = T21X92

FIGURE 4

sphere of radius 1 centered at e are indexed by X,,, and for every pair of two distinct
points x; and z; on this sphere with z;,x; € X,, there exists a geodesic path of
length 2 in the ball joining x; to x;. The labelling of this path is a:i_l x; (once we
have chosen one directed path joining z; to z;, we don’t take another joining z;
to a;). For such a pair {#;, #;} and the choosen path xi_lmj, let define the word
! By Lemma 3, we can assume that all the w; ; are subwords
of cyclic shifts of defining relations r; ; € R* (which are not necessarily distinct).
Each of these r; ; defines a cycle in the Cayley graph containing the vertices x;,
e and z;. All these cycles have the vertex e in common. The intersection of any
two of these cycles is contained in the ball of radius 1, by definition of the w; ;’s
and Lemma 4. Then the different cycles defined by r; ; and r; ; are disjoint outside
of the ball of radius 1. Thus the subgraph consisting of the union of all r; ;’s is a
subdivision of Kyp41 (see Figure 4 in case mn = 2 and Kj). a

— ol
Wiy = LjlL;  TjL;

Remark 2. In Theorem 1 it seems possible to drop the assumption on the number
of vertices of the finite graph and replace it only by one on the maximal valency of
the vertices.

4. TWO CONSTRUCTIONS PRESERVING PLANARITY.

In this section we prove our third theorem. First we need the following result.

Lemma 5. IfI'y and I's are two finite planar graphs, then for every v in I'y and
w in Ty, the gluing (T1,v) * (T2, w) of Ty and Ty along v and w is planar.
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Proof. A geometric realization in R? of I'; gives a cellular decomposition of R? and
v is in the border of a cell, by an homeomorphism ¢ of the sphere sending a point
of that cell at infinity, we obtain a geometric realization in R? of T'y where ¢(v) is
in the border of the unbounded cell. This can be done by an homeomorphism v for
I's and w too. Then it is clear that the gluing of these two geometric realizations
of T'y and T’y along ¢(v) and ¢ (w) is planar. O

Remark 3. The proof of the preceding lemma can be extended to the gluing along
two edges e; € E(['y) and e € E(I's). The proof is exactly the same because it
is possible to choose the homeomorphisms ¢ and ¢ in such a way that ¢(e1) and
¥(eq) are in the border of the unbounded cell.

Proposition 1. Let Gy and G2 be two planar groups, then the free product G x G
18 also planar.

Proof. As the G; is planar, ¢ = 1,2, there exists some generating set X; such that
the Cayley graph of (G; with respect to X; is planar for ¢ = 1,2. We denote by X
the generating set of (1 % G2 given by X; U X,. We are going to prove that the
Cayley graph I' of Gy * G2 with respect to X is planar.

First we prove that the ball of radius n centered at the origin in I' is planar for
every n > 0. We denote by B(G;,n) the ball of radius n in G; centered at the
origin of ;.

Any word of length at most n in Gy * (G5 has a normal form a1 81as3s - - - g Ok
where the «; are non trivial elements of (G; except maybe o1 and the §; are non
trivial elements of G5 except maybe §;. This writing is not necessarily unique
because the writing of the a; (respectively (;) is not necessarily unique in G
(respectively ('2), but the k is. So the ball of radius n in the Cayley graph I' of
(i1 ¥ G4 can be described inductively by the following process.

First we construct the gluing of the graphs (B(G1,n),e1) % (B(Ga,n),ez) and
denote by e the vertex on which the gluing is done. Then on every vertex at distance
0 < j < n of e labelled by a word in Gy, we glue (B(T'3,n — j),e2) and on vertices
labelled in G'5 at distance 0 < j < n, we glue (B(I'1,n — j), e1). The labelling of a
minimal path from e to any vertex gives a word in Gy * G5 of the form a1 31 or fra;.
On every vertex w at distance j of e which is not yet of degree | X1| 4 |X2|, we glue
aball (B(G1,n—j),e1) if w = a1/ and we glue a ball (B(G2,n—j), e2) otherwise.
We continue this gluing process until every vertex at distance less than n is of degree
| X1] + | X2|. This process is finite because the gluing of a ball (B(G;,n — j),¢€) to
a vertex at distance j of e only add vertices at distance strictly bigger than j of e.
The resulting graph is exactly the ball of radius n in T'.

By Lemma 5, this gluing process preserves planarity. Hence by Theorem 5 (in
[3], p.347) this ensures that the whole graph is planar. d

Remark 4. This proof can be extended to amalgamated products Gy %4 G2 with
cyclic group A = (z) of order 2. Let Gy and G5 two planar groups and X5 (respec-
tively X5) be a generating set of G (respectively G5) such that C'(G;, X;) is planar
and X; contains the generator z of A for ¢ = 1,2, by using the extension of Lemma
5 given in the Remark 3, we prove that the Cayley graph associated to Xy U X is
planar.

Putting together Lemma 5, Proposition 1 and Remarks 3 and 4 gives a proof of
Theorem 3.
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