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Abstract. We prove that a quasiconvex subgroup H of in¢nite index of a torsion free word
hyperbolic group can be embedded in a larger quasiconvex subgroup which is the free product
of H and an in¢nite cyclic group. Some properties of quasiconvex subgroups ofword hyperbolic
group are also discussed.
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1. Introduction

Word hyperbolic groups were introduced by M. Gromov as a geometric
generalization of certain properties of discrete groups of isometries of hyperbolic
spaces Hn. Finite groups, ¢nitely generated free groups, classical small cancellation
groups and groups acting discretely and cocompactly on hyperbolic spaces are basic
examples of word hyperbolic groups. Any word hyperbolic group is ¢nitely pre-
sented. Finite extensions and free products of ¢nitely many word hyperbolic groups
are also word hyperbolic. A large number of results on word hyperbolic groups
as well as conjectures and research problems are contained in the original article [9].

In this paper, we study properties of quasiconvex subgroups of word hyperbolic
groups (see the next section for the de¢nition). Our main result in fact gives a method
for constructing quasiconvex subgroups of word hyperbolic groups.

THEOREM 1. Let G be a non-elementary torsion-free word hyperbolic group and H
be a quasiconvex subgroup of G of in¢nite index. Then there exists a non-trivial
element g 2 G such that the subgroup sgphH; gi generated by H and g is the free prod-
uct H � hgi and is quasiconvex in G.

The statement of the theorem was formulated by M. Gromov in [9] 5.3.C, with a
very general sketch of a proof. We follow in part Gromov's approach.
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There are two parts in our proof of Theorem 1: ¢rst we ¢nd an element g 2 G such
that the subgroup sgphH; gi is a free product and then we prove that this subgroup is
quasiconvex in G. For the ¢rst part, we choose a double coset HxH whose shortest
representative x is suf¢ciently long, as a word in the generators of G. This is possible
as we prove that the number of double cosets of a word hyperbolic groupGmodulo a
quasiconvex subgroup H of in¢nite index is also in¢nite (Proposition 1). For g, we
take xM for M large enough.

The fact that, for the chosen g, the subgroup sgphH; gi is quasiconvex is not trivial
even if we know that it decomposes into the free product H � hgi of a quasiconvex
subgroup H and a cyclic subgroup hgi and any cyclic subgroup of a word hyperbolic
group is quasiconvex. In general, a subgroup of a word hyperbolic group, which is a
free product of two quasiconvex, even cyclic, subgroups need not be quasiconvex.
For example, let G � ha; t j atÿ1ata2tÿ2aÿ1t2 � 1i and let M be the so-called
Moldavansky subgroup, that is, M � sgpha; tÿ1at; tÿ2at2i. It is known [10] that G
is a torsion-free non-elementary word hyperbolic group and M is a non-quasiconvex
free subgroup of rank 2.

Note that, under the assumptions of Theorem 1, we can construct an in¢nite
sequence H � F0 < F1 < � � � < Fk < � � � of subgroups of G starting with H where
Fi is the free product of H and a free group of rank i. To do this, we only need
to notice that the subgroup H � hgi in Theorem 1 will have in¢nite index in G if
we replace g by any proper power of it. In particular, takingH � 1;we get an ascend-
ing sequence of quasiconvex free subgroups of G of ascending rank. As an immediate
consequence of Theorem 1, we also get that, for given G and H, there are in¢nitely
many elements g satisfying the conclusion of the theorem.

Theorem 1 is proved in Sections 1^4. In Section 5, we give a short proof of the
result due to I. Kapovich and H. Short that an in¢nite quasiconvex subgroup of
a word hyperbolic group has a ¢nite index in its commensurator. We give also some
corollaries to this result.

2. Preliminary Information

2.1. HYPERBOLIC SPACES AND GROUPS

Let X be a metric space. The Gromov inner product of points x and y of X with
respect to a point z 2 X is de¢ned to be

�x; y�z � 1
2 �jxÿ zj � jyÿ zj ÿ jyÿ xj�;

where jxÿ yj denotes the distance between x and y.
By a geodesic segment between points x; y 2 X , we mean an isometry (and also its

image) �0; jxÿ yj� ! X such that 0 7!x and jxÿ yj 7! y. We use the notation �x; y�
for some ¢xed geodesic segment between x and y.

A metric space is called geodesic if any two of its points can be joined by a geodesic
segment. For nX 2, by a geodesic n-gon �x1; . . . ; xn� in a geodesic metric space we
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mean a sequence of geodesic segments �x1; x2�; . . . ; �xn; x1� which we call the sides of
�x1; . . . ; xn�.

A map f de¢ned on a metric space is called E-thin if f �x� � f �y� implies jxÿ yjW E
for all x and y.

Let D � �x1; x2; x3� be a geodesic triangle in a geodesic metric space, and let T be a
metric tree with three extremal vertices y1, y2 and y3 so that jyi ÿ yjj � jxi ÿ xjj, see
Figure 1. It is easy to see that the length of the edge ei � �y0; yi� is equal to
�xj; xk�xi , where fi; j; kg � f1; 2; 3g. The triangle D is called E-thin if the map
fD : D! T which sends xi to yi and which is an isometry on the sides of D, is
an E-thin map.

A geodesic metric space X is called d-hyperbolic, for dX 0, if any geodesic
triangle in X is d-thin. The following lemma in fact gives several equivalent
de¢nitions of a hyperbolic space but we formulate and use the equivalence only
in one direction.

LEMMA 1 ([9, 6.3.B], [6, 2.21]). Let X be a d-hyperbolic metric space. Then the
following assertions are true:

(H1) �x; y�w X minf�x; z�w; �z; y�wg ÿ 2d for any x; y; z;w 2 X ;
(H2) jxÿ yj � jzÿ wjW maxfjxÿ zj � jyÿ wj; jxÿ wj � jyÿ zjg � 4d for any

x; y; z;w 2 X ;
(H3) any side of a geodesic triangle in X belongs to the d-neighbourhood of the union of

the other two sides.

Let G be a group with a ¢xed set A of generators. The Cayley graph C�G� of G is a
directed graph whose set of vertices is G and whose set of edges is G� �A [ Aÿ1�. An
edge �g; a� starts at the vertex g and ends at the vertex ga. We consider an edge �g; a�
of C�G� as labelled by the letter a. The label j�r� of a path r � e1e2 . . . en in C�G� is
the word j�e1�j�e2� . . .j�en� where j�ei� is the label of the edge ei. We regard
j�r� as an element of G. We endow C�G� with a metric by assigning to each edge
the metric of the unit segment �0; 1� and then de¢ning the distance jxÿ yj to be

Figure 1.
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the length of a shortest path between x and y. Thus, C�G� becomes a geodesic metric
space. Notice that the metric is invariant under the natural left action of G.

For any g 2 G, we de¢ne the length jgj of g as the length of a shortest word in
A [Aÿ1 representing g. It is clear that jgj � jrj where r is any geodesic path in
C�G� with j�r� � g.

Let G be a ¢nitely generated group. It is called d-hyperbolic with respect to a ¢nite
generating setA if the Cayley graph of Gwith respect toA is a d-hyperbolic space. A
group G is called word hyperbolic if it is d-hyperbolic for some dX 0 and A. It turns
out that the word hyperbolicity of a group is independent of the ¢nite generating
set chosen [9, 2.3.E].

Below we shall use properties of a d-hyperbolic space given in Lemma1, for the
Cayley graph C�G� of a given d-hyperbolic group G. We refer to them as to
(H1)^(H3).

A word hyperbolic group is called elementary if it has a cyclic subgroup of ¢nite
index. So it is ¢nite or virtually in¢nite cyclic.

LEMMA 2 ([9, 8.5.M], [6, p. 156]). Let G be a non-elementary torsion-free word
hyperbolic group. Then the centralizer CG�g� of any element g 2 G is a cyclic sub-
group.

LEMMA 3 ([15, Lemma 12]). If agkaÿ1 � gl in a torsion-free word hyperbolic group
then k � l or g � 1.

2.2. QUASIGEODESICS

Let r be a path in a geodesic metric space X . We assume r has the natural
parametrization by arc length. Let l > 0 and cX 0. The path r is called
�l; c�-quasigeodesic if jr�s� ÿ r�t�jX ljsÿ tj ÿ c for any points r�s� and r�t� on r.

LEMMA 4 ([9, 7.2.A], [6, p. 87]). For any l > 0 and c; dX 0, there exists a number
R � R�d; l; c� such that any �l; c�-quasigeodesic path r in a d-hyperbolic space
and any geodesic path t with the same endpoints as r are in the R-neighbourhood
of each other.

It is known that paths labelled by elements of in¢nite order of a hyperbolic group
are quasigeodesic. More precisely, we have

LEMMA 5 ([9], [16, Lemma 1.11]). For any word W representing an element of
in¢nite order in a hyperbolic group G, there exist constants l > 0 and cX 0 such that
any path with the label Wm in the Cayley graph of G is �l; c�-quasigeodesic for
any integer m.
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A word W is called cyclically minimal in the group G if it is a shortest represen-
tative of its conjugacy class in G. For cyclically minimal words in torsion-free
groups, the statement of the previous lemma can be strengthened in the following
way by choosing l and c independent on W .

LEMMA 6 ([15, Lemma 27]). For any torsion-free hyperbolic group G, there are
constants l > 0 and cX 0 such that for any cyclically minimal word W in G and
any m 2 Z, any path with the label Wm in the Cayley graph of G is
�l; c�-quasigeodesic.

LEMMA 7 ([15, Lemma 21]). Let cX 7d and c1 > 12�c� d�, and suppose that a
geodesic n-gon �x1; . . . ; xn� in a d-hyperbolic metric space satis¢es the conditions
jxiÿ1 ÿ xij > c1 for i � 2; . . . ; n and �xiÿ2; xi�xiÿ1 < c for i � 3; . . . ; n. Then the
polygonal line r � �x1; x2� [ �x2; x3� [ . . . [ �xnÿ1; xn� is contained in the
2c-neighbourhood of the side �xn; x1�, and the side �xn; x1� is contained in the
7d-neighbourhood of r.

2.3. QUASICONVEX SUBSETS AND SUBGROUPS

A subset Y of a geodesic metric space X is called quasiconvex (or K-quasiconvex) if
any geodesic path in X with endpoints in Y lies in the K-neighbourhood of Y
for someKX 0. It is clear that any ¢nite, bounded or cobounded subset of a geodesic
metric space is quasiconvex. Lemma 4 implies in particular that any quasigeodesic
path in a hyperbolic space is quasiconvex.

If we regard a subgroup of a group as a set of vertices in the Cayley graph of the
group, we get a de¢nition of quasiconvex subgroup. It is obvious that ¢nite subgroups
and subgroups of ¢nite index are quasiconvex. In a ¢nitely generated group, any
quasiconvex subgroup is ¢nitely generated and the intersection of any two
quasiconvex subgroups is quasiconvex [18]. It follows from Lemma 5 that any cyclic
subgroup of a word hyperbolic group is quasiconvex. This is true also for virtually
cyclic subgroups [4, Pr.1.4, Ch.10]. A quasiconvex subgroup of a word hyperbolic
group is word hyperbolic [4, Pr.4.2, Ch.10]. But this is not true in general for a ¢nitely
generated subgroup of a word hyperbolic group (see [17], [1] and [3]).

Below we shall need the following lemma.

LEMMA 8 ([7, Lemma 1.2]). Let H be a K-quasiconvex subgroup of a d-hyperbolic
group G. If a shortest representative of the double coset HgH has length greater than
2K � 2d, then the intersection H \ gÿ1Hg consists of elements shorter than
2K � 8d� 2 and, hence, is ¢nite.

3. Double Cosets of Quasiconvex Subgroups

The aim of this section is to prove the following proposition.
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PROPOSITION 1. Let G be a word hyperbolic group and H a quasiconvex subgroup
of G of in¢nite index. Then the number of double cosets of G modulo H is in¢nite.

As the following examples show, the statement is not true if the group is not
hyperbolic or the subgroup is not quasiconvex.

EXAMPLE 1 ([2, Ch.IV, } 2; n� 2.3]). Let G � GL�n;Q� and letH be the subgroup of
G of all upper triangle matrices. ThenH is of in¢nite index but the number of double
cosets of G modulo H is ¢nite.

The following example is due to P. de la Harpe.

EXAMPLE 2. Let G � ha; bj b2 � 1i � Z �Z2. This group is hyperbolic since it is a
free product of two hyperbolic groups. We de¢ne an action of G on the disjoint union
Zq f1g as follows: a�n� � n� 1 for all n 2 Z, a�1� � 1 and b�0� � 1, b�1� � 0,
and b�n� � n for all n 2 Z n f0g. Let H be the stabilizer of f1g. As the action is
transitive, H is of in¢nite index in G. However, the number of double cosets of
G modulo H is ¢nite. Namely, G � H qHbH. The subgroup H is not quasiconvex
because it is not ¢nitely generated.

The proof of the proposition relies on the following lemmas.

LEMMA 9. Let G be a word hyperbolic group. Let H be a K-quasiconvex set in G,
stable with respect to the inversion, and x be a shortest element of the set Hx. Then
for every h 2 H we have �x; h�e WK � d.

Proof. Let h 2 H. Let a and b be geodesic paths in C�G� starting at e and ending at
x and h, respectively. We take points p on a and q on bwith jpÿ ej � jqÿ ej � �x; h�e.
By d-hyperbolicity of G, jpÿ qjW d. By K-quasiconvexity of H, there is g 2 H such
that jqÿ gjWK . Then

jgÿ1xj � jxÿ gjW jxÿ pj � jpÿ qj � jqÿ gjW jxj ÿ �x; h�e � d� K :

Since x is a shortest representative of Hx, we have jgÿ1xjX jxj which implies
�x; h�e WK � d. &

LEMMA 10. For any integer mX 1 and numbers d;K;CX 0, there exists
A � A�m; d;K;C�X 0 with the following property.

Let G be a d-hyperbolic group with a generating set containing at most m elements
and H a K-quasiconvex subgroup of G. Let g1; . . . ; gn; s be elements of G such that

(i) cosets Hgi and Hgj are di¡erent for i 6� j;
(ii) gn is a shortest representative of Hgn;
(iii) jgijW jgnj for 1W i < n;
(iv) for i 6� n, all the products gigÿ1n belong to the same double coset HsH with jsjWC.
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Then nWA � A�m; d;K;C�.
Proof. Let d � maxf3K � 8d� 1;Cg. For each i < n, we choose a factorization

gigÿ1n � hisiki where hi; ki 2 H and jsijW d, with the minimal possible jhij � jkij. This
can be done due to (iv).

LetA � A�m; d;K;C� be greater than the number of elements ofG of length less or
equal to 2d � 3K � 4d. We prove that jkijW d � 3K � 4d for all i < n. This will
suf¢ce for proving the lemma. Indeed, this implies jsikijW 2d � 3K � 4d. By the
choice of A, if n > A then for some pair of indices 1W i < j < n, the elements
siki and sjkj coincide. But then we get gigÿ1n � hisiki, gjgÿ1n � hjsiki and, hence,
Hgi � Hgj contradicting (i).

Assume the converse, i.e. jkij > d � 3K � 4d for some i < n. Without loss of
generality, we suppose i � 1. Let a be a geodesic path in C�G� labelled with g1 which
begins at gÿ11 and ends at e (e denotes the trivial element of G), and leto be a geodesic
path in C�G� labelled with gn which begins at gÿ1n and ends at e. By a we denote the
path inverse to a. Let Z; s and k be geodesic paths in C�G� labelled with h1; s1
and k1, respectively, such that Zskoa is a closed path starting and ending at
gÿ11 , see Figure 2.

First we prove that

�gÿ1n kÿ11 ; e�gÿ1n
� 1

2 �jgnj � jk1j ÿ jgÿ1n kÿ11 j�WK � d: �1�

Indeed, �gÿ1n kÿ11 ; e�gÿ1n
� �gn; kÿ11 �e. So, (1) follows from the previous lemma and the

fact that gn is a shortest representative of Hgn.
Now let x be a geodesic path in C�G� joining e and gÿ1n kÿ11 . By (1) and

d-hyperbolicity of G, for some point t on x we have jgÿ1n ÿ tjWK � 2d. Using

Figure 2.
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(1) again and the assumption we see that

�gÿ1n kÿ11 ; g
ÿ1
1 h1�e

X jgÿ1n kÿ11 j ÿ js1jX jgnj � jk1j ÿ 2�K � d� ÿ d > jgÿ1n j � K � 2d:

Hence, by d-hyperbolicity, for some point t0 lying on a geodesic path joining e and
gÿ11 h1, we have jtÿ t0jW d. Using d-hyperbolicity of G once more, we ¢nd a point
t00 on aZ with jt0 ÿ t00jW d. Thus we get jgÿ1n ÿ t00jWK � 4d. If t00 lies on a then using
(iii) we obtain

jt00 ÿ gÿ11 j � jg1j ÿ jt00 ÿ ejW jgnj ÿ �jgnj ÿ K ÿ 4d� � K � 4d:

Taking gÿ11 instead of t00 in this case, we may assume that t00 always lies on Z and
jgÿ1n ÿ t00jW 2K � 8d. By K-quasiconvexity of H, there is g 2 gÿ11 H such that
jt00 ÿ gjWK and, hence, jgÿ1n ÿ gjW 3K � 8d. Then g1gÿ1n may be represented as
h0s0 where h0 � g1g 2 H, s0 � gÿ1gÿ1n and js0j � jgÿ1n ÿ gj < d. But since
jh0j � jgÿ11 ÿ gjW jh1j � K < jh1j � jk1j we get a contradiction with the choice of
h1, s1 and k1. This ¢nishes the proof. &

Proof of Proposition 1. Let G be a d-hyperbolic group and H a K-quasiconvex
subgroup of G of in¢nite index. Assume that the number of double cosets of G
moduloH is ¢nite, say N. Then the length of a shortest representative of any double
coset is bounded by a number C. Take any n > AN � 1 with A � A�G; d;K;C� from
the previous lemma. Since H is of in¢nite index, there exist n elements g1; . . . ; gn 2 G
satisfying conditions (i)^(iii) of Lemma10. Then by the choice of n, there exists a
double coset HsH containing at least A� 1 elements of the form gigÿ1n for i < n.
But this contradicts Lemma 10. &

4. Proof of Theorem 1

DEFINITION 1. We call a word of the form uÿ1wu (formally, the pair of words u
and w) a reduced transform if the following conditions are satis¢ed:

(i) Among all words uÿ1wu representing the same element of G, w has the minimal
possible length.

(ii) For a ¢xed length of w, among all words uÿ1wu representing the same element of
G, u has the minimal possible length.

The following lemma is also of independent interest.

LEMMA 11. For any mX 1 and dX 0 there is a number L � L�m; d� > 0 with the
following property.

Let G be a d-hyperbolic group with a generating set containing at most m elements.
Then for any reduced transform uÿ1wu, any path in C�G� labelled with uÿ1wku,
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k 2 Z, and any geodesic path with the same endpoints lie in the L-neighbourhood of
each other.

Proof. By Lemmas 6 and 4, there is a number T > 0 such that for any cyclically
minimal word w, any path in C�G� labelled with wk and any geodesic path with
the same endpoints lie in the T -neighbourhood of each other.

Let Zky be a path in C�G� labelled with uÿ1wku where the labels of Z, k and y are
uÿ1, wk and u, respectively. Let a be a geodesic path with the same endpoints as
of Zky. Using d-hyperbolicity of G we see that a lies in the �T � 2d�-neighbourhood
of Zky. We shall now prove that Zky lies in the L-neighbourhood of a for some
L > 0 independent on the number k and the reduced transform uÿ1wu. Without loss
of generality we assume that Zky starts at the vertex e. Then k starts at uÿ1 and
y starts at uÿ1wk and ends at uÿ1wku.

Denote T1 � T � d� 1. First we prove that

�e; uÿ1wk�uÿ1 WT1: �2�

Assume that (2) does not hold. Let b be a geodesic path with the same endpoints as of
k. Choose points p and p0 on Z and b respectively, with jpÿ uÿ1j � jp0 ÿ uÿ1j � T1. By
the assumption and d-hyperbolicity of G, jpÿ p0jW d. There is a point q on k with
jqÿ p0jWT . We may assume that q is a vertex of C�G�. We have

jqÿ ejW jqÿ p0j � jpÿ p0j � jpÿ ejWT � d� juj ÿ T1 < juj:

This means that juÿ1vj < juj for some initial segment v of the word wk. But then

uÿ1wu � �vÿ1u�ÿ1 � vÿ1wv � vÿ1u
where vÿ1umay be represented by a word shorter than u and vÿ1wv is equal to a cyclic
shift of w. This contradicts condition (ii) of De¢nition 1, thus ¢nishing the proof of
(2).

Similarly to (2), with Z replaced by y we obtain

�e;wku�wk WT1: �3�

Now we show that

�e; uÿ1wku�uÿ1w k WL1; �4�

where L1 � �2m�4T1�6d � 3T1 � 3d and m is the number of generators of G. We con-
sider two cases.

Case 1. jwkj > 2T1 � 2d. By (H1),

�uÿ1; uÿ1wku�uÿ1wk X minf�e; uÿ1�uÿ1wk ; �e; uÿ1wku�uÿ1wkg ÿ 2d: �5�

By (3),

�uÿ1; uÿ1wku�uÿ1wk � �e;wku�wk WT1
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and by (2),

�e; uÿ1�uÿ1wk � jwkj ÿ �e; uÿ1wk�uÿ1 > T1 � 2d:

Since

�uÿ1; uÿ1wku�uÿ1wk < �e; uÿ1�uÿ1wk ÿ 2d;

we get from (5)

�e; uÿ1wku�uÿ1wk W �uÿ1; uÿ1wku�uÿ1wk � 2dWT1 � 2d:

Case 2. jwkjW 2T1 � 2d. Assume that (4) is false. Let g be a geodesic path joining e
and uÿ1wk. Let p be any vertex of C�G� lying on Z. By (2) and d-hyperbolicity of G,
there is a point p0 on gwith jp0 ÿ pjWT1 � d. By the assumption and d-hyperbolicity,
if jp0 ÿ uÿ1wkjWL1, then there is a point p00 on y with jp0 ÿ p00jW d. We have

jp0 ÿ uÿ1wkjW jp0 ÿ pj � jpÿ uÿ1j � juÿ1 ÿ uÿ1wkjW jpÿ uÿ1j � 3T1 � 3d:

Hence, we have proved that if jpÿ uÿ1jWL1 ÿ 3T1 ÿ 3d then there is a point p00 on y
such that jpÿ p00jWT1 � 2d.

The vertex p divides Z into two paths labelled with uÿ12 and uÿ11 where u � u1u2. Let
q be a vertex that divides y into paths labelled with u1 and u2. From
jpÿ p00jWT1 � 2d, jpÿ uÿ1j � jqÿ uÿ1wkj and juÿ1 ÿ uÿ1wkjW 2T1 � 2d it easily
follows that jpÿ qjW 4T1 � 6d. Thus, we have proved that for any initial segment
u1 of the word u with ju1jWL1 ÿ 3T1 ÿ 3d, we have

juÿ11 wku1jW 4T1 � 6d:

Since L1 ÿ 3T1 ÿ 3d is greater than the number of elements of G of length at most
4T1 � 6d, there are two different initial segments x and xy of the word u such that

xÿ1wkx � yÿ1xÿ1wkxy:

By Lemma 2, y and xÿ1wx lie in a cyclic subgroup of G and hence commute. Then
uÿ1wu � �xz�ÿ1wxz where u � xyz. But jxzj < juj contrary to condition (ii) of De¢-
nition 1. This ¢nishes the proof of (4).

Now by d-hyperbolicity and (2), the path Zk lies in the �T � T1 � d�-neighbour-
hood of g, and by d-hyperbolicity and (4), gy lies in the �L1 � d�-neighbourhood
of a. Hence, Zky lies in the L-neighbourhood ofa where L � T � T1 � L1 � 2d. &

LEMMA 12. For any mX 1 and dX 0 there are constants E � E�m; d�;
D � D�m; d� > 0 with the following property. Let G be a d-hyperbolic group with
a generating set containing at most m elements. Then for any x; y 2 G, if
�x; y�e W 1

2 jxj ÿ E then for any k > 0, �xk; y�e W �x; y�e �D.
Proof. We take E � 2L� d� 1 and D � E � L where L is given in Lemma 11. Let

uÿ1wu be a reduced transform representing x. Let m and r be the geodesic paths in
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C�G� starting at e and ending at x and at xk, respectively. Let t be the path starting at
e and labelled with uÿ1wu. We take a point p on t with ` � jeÿ pj � �x; y�e � E. We
have juÿ1wjX juj, for otherwise uÿ1wu � �wÿ1u�ÿ1w�wÿ1u� contrary to condition(ii)
of De¢nition 1. This implies jxjW juÿ1wj � jujW 2juÿ1wj and, since `W 1

2 jxj, we
may assume that p lies on the initial segment of t labelled with uÿ1w. By Lemma
11, there are points p0 on m and p00 on r such that jpÿ p0jWL and jpÿ p00jWL.
In particular,

jeÿ p00jW `� L and jeÿ p0j; jeÿ p00jX `ÿ L:

Assume that �xk; y�e > �x; y�e �D. Then jeÿ p00j < �xk; y�e and by d-hyperbolicity
of G, there is a point q on a geodesic path with the endpoints e and y, such that
jeÿ qj � jeÿ p00j and jp00 ÿ qjW d. Since

jxÿ p0j � jxj ÿ jeÿ p0jW jxj ÿ `� L

and

jqÿ yj � jyj ÿ jeÿ qjW jyj ÿ `� L;

we have

jxÿ yjW jxÿ p0j � jp0 ÿ p00j � jp00 ÿ qj � jqÿ yj
W jxj ÿ `� L� 2L� d� jyj ÿ `� L

� jxÿ yj ÿ dÿ 2

obtaining a contradiction. &
Now we prove a statement which will allow us to obtain that hH; gi � H � hgi and
hH; gi is quasiconvex in Theorem 1, under certain conditions on products of g and
elements of H. The idea of this is given in Lemma 7. But we need a slightly more
elaborate statement because the segments in Lemma 7 are required to be suf¢ciently
long while an element of H may have a small length.

LEMMA 13. Let nX 1, rX 0 and elements yi; zi 2 G �1W iW n� satisfy
jzij > 3r� 5d �1W iW n�; �6�

jy1z1jX jy1j � jz1j ÿ 2r; jziÿ1yizijX jziÿ1j � jyij � jzij ÿ 2r �1 < iW n�:
�7�

Then the following assertions are true:
(i) One has

jy1z1y2z2 . . . ynznjX jy1z1y2z2 . . . ynÿ1znÿ1j � jynj � jznj ÿ 4rÿ 4d:

In particular, if jzij > 4r� 4d for all i then by induction, y1z1y2z2 . . . ynzn 6� 1.
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(ii) Let r be a path in C�G� labelled with y1z1y2z2 . . . ynzn and t a geodesic path with
the same endpoints as r. If rX 4d and jzij > 14r� 48d for all i then r is contained
in the �3r� 7d�-neighbourhood of t, and t is contained in the 8d-neighbourhood of r.

Proof. (i) We use induction on n. If n � 1, the statement follows from the
hypothesis. Let n > 1. Denote

a � y1z1y2z2 . . . ynzn;
b � y1z1y2z2 . . . ynÿ1znÿ1;
c � y1z1y2z2 . . . ynÿ2znÿ2ynÿ1;
d � znÿ1ynzn;
f � ynzn:

By the inductive assumption,

jbjX jy1z1y2z2 . . . ynÿ2znÿ2j � jynÿ1j � jznÿ1j ÿ 4rÿ 4dX

X jcj � jznÿ1j ÿ 4rÿ 4d
�8�

By (7),

jdjX jznÿ1j � jynj � jznj ÿ 2rX jznÿ1j � jf j ÿ 2r:

Summing this with (8) and using (6), we get

jbj � jdjX jf j � jcj � 2jznÿ1j ÿ 6rÿ 4d > jf j � jcj � 6d: �9�

By (H2),

jbj � jdjW maxfjaj � jznÿ1j; jcj � jf jg � 4d:

If jaj � jznÿ1jW jcj � jf j, then
jbj � jdjW jcj � jf j � 4d < jbj � jdj ÿ 6d� 4d;

obtaining a contradiction. Hence, jaj � jznÿ1j > jcj � jf j: Then
bj � jdjW jaj � jznÿ1j � 4d:

Using (7) we get

jajX jbj � jdj ÿ jznÿ1j ÿ 4d

X jbj � jznÿ1j � jynj � jznj ÿ 2rÿ jznÿ1j ÿ 4d

X jbj � jynj � jznj ÿ 4rÿ 4d

as desired.
(ii) By (7),

jziÿ1j � jyizijX jziÿ1yizijX jziÿ1j � jyij � jzij ÿ 2rX jziÿ1j � jyizij ÿ 2r:
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Hence, �yizi; zÿ1iÿ1�e W r and

jyizijX jyij � jzij ÿ 2r �1W iW n�: �10�

Using this with (6), we get

jzij � jyizij ÿ jyijX 2jzij ÿ 2r > 2�r� 2d�;

i.e.

��yiÿ1ziÿ1�ÿ1; zÿ1iÿ1�e > r� 2d:

By (H1),

rX �yizi; zÿ1iÿ1�e X minf�yizi; �yiÿ1ziÿ1�ÿ1�e; ��yiÿ1ziÿ1�ÿ1; zÿ1iÿ1�eg ÿ 2d

and, hence,

�yizi; �yiÿ1ziÿ1�ÿ1�e W r� 2d: �11�
Let xi be the initial point of the subpath of r labelled with yi. Obviously, we have
jxi ÿ xi�1j � jyizij. By (10) and the condition on jzij,

jxi ÿ xi�1j > 14r� 48dÿ 2r � 12�r� 4d�:
By (11),

�xiÿ2; xi�xiÿ1 < r� 3d for i � 3; . . . ; n:

So we can apply Lemma 7 to a geodesic n-gon �x1; . . . ; xn� with �xn; x1� � t. Thus, the
polygonal line

Z � �x1; x2� [ �x2; x3� [ . . . [ �xnÿ1; xn�
is contained in the 2�r� 3d�-neighbourhood of t, and t is contained in the
7d-neighbourhood of Z.

It follows from (10) and d-hyperbolicity that for any i the subpath ri of r labelled
with yizi lies in the �r� d�-neighbourhood of �xi; xi�1� and �xi; xi�1� lies in the
d-neighbourhood of ri. Hence, r is contained in the �3r� 7d�-neighbourhood of
t, and t is contained in the 8d-neighbourhood of r.

Proof of Theorem 1. Let G be a non-elementary torsion-free d-hyperbolic group
andH aK-quasiconvex subgroup ofG of in¢nite index. We want to ¢nd a non-trivial
element g 2 G such that sgphH; gi � H � hgi and sgphH; gi is quasiconvex in G.

Take N � 2K � 2E � 2d where E is as in Lemma 12. By Proposition1, we ¢nd
x 2 G such that jxj > N and x is a shortest representative in its double coset
HxH. It follows from Lemma 9 applied to Hx and Hxÿ1, that �x�1; h�e WK � d
for all h 2 H.

For the required g, we take xM for a suf¢ciently large M. By Lemma 13, to prove
that sgphH; gi � H � hgi and sgphH; gi is quasiconvex it suf¢ces to verify the con-
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ditions of Lemma 13 for some r, where yi's are any elements of H and zi's are of the
form gt; t 6� 0. So we have to show that, for some r,

jxMtj > 14r� 48d; for any t 6� 0; �12�
jhxMtjX jhj � jxMtj ÿ 2r; for any t 6� 0 and h 2 H; �13�
jxMshxMtjX jxMsj � jhj � jxMtj ÿ 2r; for any s; t 6� 0 and h 2 H: �14�

By Lemma 12, for any h 2 H,

�xt; h�eWK �D� d: �15�

In particular, this implies (13) for any rXK �D� d and M.
The rest of the proof is divided into a number of steps.

CLAIM 1. For any h 2 H, if jhj > 2K � 2D� 4d then

jxshxtjX jxsj � jhj � jxtj ÿ 4K ÿ 4Dÿ 8d; for any s; t 6� 0:

By (H1),

�xs; xshxt�xsh X minf�e; xs�xsh; �e; xshxt�xshg ÿ 2d: �16�

By (15),

�xs; xshxt�xsh � �hÿ1; xt�e WK �D� d:

Using jhjX 2K � 2D� 4d and (15), again we get

�e; xs�xsh � jhj ÿ �xÿs; h�e > K �D� 3d:

Since �xs; xshxt�xsh < �e; xs�xsh ÿ 2d, we obtain from (16) that

K �D� dX �xs; xshxt�xsh X �e; xshxt�xsh ÿ 2d;

which implies

jxshxtjX jxshj � jxtj ÿ 2K ÿ 2Dÿ 6dX jxsj � jhj � jxtj ÿ 4K ÿ 4Dÿ 8d

as required.

CLAIM 2. For any h 2 H, hxi \ hhi � 1.

Indeed, if xt � hs for some t; s 6� 0, then �xrt; hrt�e � jxrtj for any r 6� 0 which con-
tradicts to (15) and Lemma 5.
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CLAIM 3. There is a number B > 0 depending on x such that for every h 2 H with
jhjW 2K � 2D� 4d,

jxshxtjX jxsj � jhj � jxtj ÿ 2B; for any s; t 6� 0:

Let B > 0 be any number. Assume that jxshxtj < jxsj � jhj � jxtj ÿ 2B for some s
and t. Without loss of generality, we assume s > 0.

By (15), jhxtjX jhj � jxtj ÿ 2�K �D� d�. Hence

jxsj � jhxtj ÿ jxshxtj > 2B ÿ 2�K �D� d�: �17�
Let m be the path in C�G� starting at e and labelled with xs. Let r be the path in

C�G� starting at xsh and labelled with xt. Let m0 and r0 be the corresponding geodesic
paths. By Lemmas 4 and 5, there is number F > 0 depending only on G and x such
that m and m0 are in the F -neighbourhood of each other, and the same is true
for r and r0. In particular, for every point p on m there is a point p0 on m0 such that
jpÿ p0jWF . By d-hyperbolicity of G, for any point p0 on m0 with
jp0 ÿ xsjW �e; xshxt�xs there is a point p00 on a geodesic path t joining xs and
xshxt, with jp0 ÿ p00jW d. Since jxs ÿ xshj � jhj, again by d-hyperbolicity, for any
p00 lying on t there is a point q0 on r0 with jp00 ÿ q0jW jhj � d. Since
�e; xshxt�xs > B ÿ K ÿDÿ d by (17), it follows that for any point p on m with
jpÿ xsjWB ÿ K ÿDÿ F ÿ d there is a point q on r with jpÿ qjWQ where
Q � jhj � 2F � 2d. By eventually adding jxj to Q we may assume that q divides
r into two paths labelled with xj and xtÿj . We take p dividing m into two paths labelled
with xsÿi and xi. Then, by what we have proved, for any i between 0 and s with
ijxjWB ÿ K ÿDÿ F ÿ d, there exists j such that

jxih x jjW jhj � jxj � 2F � 2dW jxj � 2K � 2D� 2F � 6d: �18�
Now we take B such that the number of all i satisfying ijxjWB ÿ K ÿDÿ F ÿ d is
greater than the number of all elements of G of length at most
jxj � 2K � 2D� 2F � 6d. Then by (18), for some i1, i2, j1 and j2 with i1 6� i2 we
get xi1hxj1 � xi2hxj2 . Denoting k � i1 ÿ i2 and using Lemma3 we obtain
hÿ1xkh � xk. Then xk belongs to the centralizer CG�h� of h in G. By Lemma 2,
hxi \ hhi 6� 1. But this contradicts to Claim 2. This ¢nishes the proof of Claim 3.

Now using Claim 3 and Claim1, we see that there exists r > 0 such that (14) holds
for all M. To ¢nish the proof of the theorem, it remains to chooseM satisfying (12).
Such an M exists since x is of in¢nite order. &

5. Commensurators of Quasiconvex Subgroups

Recall that two subgroups H1 and H2 of a group G are commensurable if their
intersection H1 \H2 is of ¢nite index both in H1 and in H2. The set

CommG�H� � fg 2 G j H and gHgÿ1 are commensurableg

ON QUASICONVEX SUBGROUPS OF WORD HYPERBOLIC GROUPS 205



is called the commensurator of a subgroupH in a group G. Obviously, CommG�H� is
a group and CommG�H� � NG�H�, where NG�H� is the normalizer ofH in G. We are
going to prove

THEOREM 2 (see also [11]). Let G be a word hyperbolic group and H an in¢nite
quasiconvex subgroup of G. Then �CommG�H� : H� <1.

To prove the theorem, we will use the following simple observation.

LEMMA 14. Let H be a subgroup of a group G. Then the number of left cosets of G
modulo H contained in a double coset HgH is equal to the index �H : H \ gHgÿ1�.

Proof. Denote K � H \ gHgÿ1. To any left coset hgH � HgH, h 2 H, there cor-
responds a left coset hK � H. For any h; h0 2 H, the equality hgH � h0gH is equiv-
alent to h � h0gh1gÿ1 for some h1 2 H which holds if and only if hK � h0K.
Hence the correspondence is one-to-one. &

Proof of Theorem 2. If �G : H� <1 the statement is obvious. Suppose that
�G : H� � 1.

Let g 2 CommG�H�. Since H is in¢nite by the hypothesis of the theorem and
�H : H \ gHgÿ1� <1, the intersection H \ gÿ1Hg � gÿ1�H \ gHgÿ1�g is also
in¢nite. Then by Lemma 8, the length of a shortest representative of the double
coset HgH is at most 2K � 2d where K is the constant of quasiconvexity ofH. Thus
there are only ¢nitely many double cosets HgH with g 2 CommG�H�. By Lemma
14, any such cosetHgH contains only ¢nitely many left cosets of GmoduloH. Hence
the number of left cosets gH � CommG�H� is ¢nite. &

As an immediate consequence of Theorem 2 and the inclusion
CommG�H� � NG�H� we get the following two corollaries.

COROLLARY 1 (see also [14]). Let G be a word hyperbolic group and H an in¢nite
quasiconvex subgroup of G. Then �NG�H� : H� <1.

COROLLARY 2 (see also [14]). Any in¢nite quasiconvex normal subgroup of a word
hyperbolic group is of ¢nite index.

COROLLARY 3. Let G be a word hyperbolic group and H an in¢nite quasiconvex
subgroup of G. Then the subgroup CommG�H� is quasiconvex.

Proof. It is known [4, Pr.1.4, Ch. 10] that if A and B are subgroups of a word
hyperbolic group G, A is quasiconvex, A � B and �B : A� <1 then B is quasiconvex
as well. The statement follows now from Theorem 2. &

Corollary 3 implies in particular that under its assumptions, CommG�H� is a word
hyperbolic group, since any quasiconvex subgroup of a word hyperbolic group is
itself word hyperbolic [4, Pr.4.2, Ch. 10].
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The following result follows almost immediately from Theorem 2. A similar state-
ment is true for irreducible lattices in semisimple Lie groups and for quasiconvex
subgroups in geometrically ¢nite groups (see for example [13] and [8]).

COROLLARY 4. Let G be a word hyperbolic group, and let H1 and H2 be
quasiconvex in¢nite subgroups of G. If CommG�H1� � CommG�H2� then H1 and
H2 are commensurable.

Proof. By Theorem 2, both H1 and H2 are of ¢nite index in their common
comensurator C � CommG�H1� � CommG�H2�. Then �C : H1 \H2� <1 which
implies �H1 : H1 \H2� <1 and �H2 : H1 \H2� <1. &

Recall that if G is a discrete group andH is a subgroup ofG then the action ofG on
a Hilbert space `2�G=H� given by the left translation is called the quasi-regular rep-
resentation of G in `2�G=H�. It follows from work of Mackey [12] (see also [5]) that
if H is of ¢nite index in its commensurator CommG�H� then the quasi-regular rep-
resentation ofG in `2�G=H� is a ¢nite direct sum of irreducible representations. Thus,
from Theorem 2 we immediately get the following corollary:

COROLLARY 5. Let G be a word hyperbolic group and H an in¢nite quasiconvex
subgroup of G. Then the quasi-regular representation of G in `2�G=H� is a ¢nite direct
sum of irreducible representations.

Acknowledgements

I am grateful to my supervisor A. Yu. Ol'shanskii for suggesting the problem and for
helpful discussions. I also thank P. de la Harpe, I. G. Lysionok, and the referee for
useful comments.

References

1. Baumslag, G., Miller, C. F. III and Short, H.: Unsolvable problems about small cancel-
lation and word hyperbolic groups, Bull. London Math Soc. 26(1) (1994), 97^101.
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