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1. Introduction

Word hyperbolic groups were introduced by M. Gromov as a geometric
generalization of certain properties of discrete groups of isometries of hyperbolic
spaces H". Finite groups, finitely generated free groups, classical small cancellation
groups and groups acting discretely and cocompactly on hyperbolic spaces are basic
examples of word hyperbolic groups. Any word hyperbolic group is finitely pre-
sented. Finite extensions and free products of finitely many word hyperbolic groups
are also word hyperbolic. A large number of results on word hyperbolic groups
as well as conjectures and research problems are contained in the original article [9].

In this paper, we study properties of quasiconvex subgroups of word hyperbolic
groups (see the next section for the definition). Our main result in fact gives a method
for constructing quasiconvex subgroups of word hyperbolic groups.

THEOREM 1. Let G be a non-elementary torsion-free word hyperbolic group and H
be a quasiconvex subgroup of G of infinite index. Then there exists a non-trivial
element g € G such that the subgroup sgp(H, g) generated by H and g is the free prod-
uct H x (g) and is quasiconvex in G.

The statement of the theorem was formulated by M. Gromov in [9] 5.3.C, with a
very general sketch of a proof. We follow in part Gromov’s approach.

*Work supported in part by the Swiss National Science Foundation.
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There are two parts in our proof of Theorem 1: first we find an element g € G such
that the subgroup sgp(H, g) is a free product and then we prove that this subgroup is
quasiconvex in G. For the first part, we choose a double coset HxH whose shortest
representative x is sufficiently long, as a word in the generators of G. This is possible
as we prove that the number of double cosets of a word hyperbolic group G modulo a
quasiconvex subgroup H of infinite index is also infinite (Proposition 1). For g, we
take x™ for M large enough.

The fact that, for the chosen g, the subgroup sgp(H, g) is quasiconvex is not trivial
even if we know that it decomposes into the free product H x (g) of a quasiconvex
subgroup H and a cyclic subgroup (g) and any cyclic subgroup of a word hyperbolic
group is quasiconvex. In general, a subgroup of a word hyperbolic group, which is a
free product of two quasiconvex, even cyclic, subgroups need not be quasiconvex.
For example, let G = (a,t|at  'ata®t™a"'> =1) and let M be the so-called
Moldavansky subgroup, that is, M = sgp(a, t"'at, t"2at*). It is known [10] that G
is a torsion-free non-elementary word hyperbolic group and M is a non-quasiconvex
free subgroup of rank 2.

Note that, under the assumptions of Theorem 1, we can construct an infinite
sequence H = Fy < F| < --- < Fy < --- of subgroups of G starting with H where
F; is the free product of H and a free group of rank i. To do this, we only need
to notice that the subgroup H x (g) in Theorem 1 will have infinite index in G if
we replace g by any proper power of it. In particular, taking H = 1, we get an ascend-
ing sequence of quasiconvex free subgroups of G of ascending rank. As an immediate
consequence of Theorem 1, we also get that, for given G and H, there are infinitely
many elements g satisfying the conclusion of the theorem.

Theorem 1 is proved in Sections 1-4. In Section 5, we give a short proof of the
result due to I. Kapovich and H. Short that an infinite quasiconvex subgroup of
a word hyperbolic group has a finite index in its commensurator. We give also some
corollaries to this result.

2. Preliminary Information
2.1. HYPERBOLIC SPACES AND GROUPS

Let X be a metric space. The Gromov inner product of points x and y of X with
respect to a point z € X is defined to be

(x,y).=3(x=zl+y—zl =y — x|,

where |x — y| denotes the distance between x and y.

By a geodesic segment between points x, y € X, we mean an isometry (and also its
image) [0, |[x — y|] — X such that Oi—x and |x — y| — y. We use the notation [x, y]
for some fixed geodesic segment between x and y.

A metric space is called geodesic if any two of its points can be joined by a geodesic
segment. For n > 2, by a geodesic n-gon [x, ..., x,] in a geodesic metric space we
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mean a sequence of geodesic segments [x1, x2], . .., [X,, x1] which we call the sides of
[xl, .. .,Xn].

A map f defined on a metric space is called e-thin if f(x) = f(y) implies |x — y| < ¢
for all x and y.

Let A = [x1, X2, x3] be a geodesic triangle in a geodesic metric space, and let 7 be a
metric tree with three extremal vertices yy, y» and y; so that |y, — y;| = |x; — xj|, see
Figure 1. It is easy to see that the length of the edge e; = [yo, y:] is equal to
(xj, Xk)y;» where {i,j, k} ={1,2,3}. The triangle A is called e¢-thin if the map
fa: A — T which sends x; to y; and which is an isometry on the sides of A, is
an e-thin map.

A geodesic metric space X is called d-hyperbolic, for 6 = 0, if any geodesic
triangle in X is o-thin. The following lemma in fact gives several equivalent
definitions of a hyperbolic space but we formulate and use the equivalence only
in one direction.

LEMMA 1 ([9, 6.3.B], [6, 2.21]). Let X be a o-hyperbolic metric space. Then the
following assertions are true:

(Hl) (x,y),, = min{(x, 2),,, (z, »),,} — 20 for any x,y,z,w € X;

(H2) Ix—yl+lz—w < max{lx—z|+|y—wl |[x—wl+|y—z]} +40 for any
X, y,z,we X;

(H3) anyside of a geodesic triangle in X belongs to the §-neighbourhood of the union of
the other two sides.

Let G be a group with a fixed set .A of generators. The Cayley graph C(G) of Gis a
directed graph whose set of vertices is G and whose set of edges is G x (AU A™"). An
edge (g, a) starts at the vertex g and ends at the vertex ga. We consider an edge (g, @)
of C(G) as labelled by the letter a. The label ¢(p) of a path p = eje;...¢, in C(G) is
the word ¢(ey)p(er). .. p(e,) where ¢(e;) is the label of the edge e¢;. We regard
¢(p) as an element of G. We endow C(G) with a metric by assigning to each edge
the metric of the unit segment [0, 1] and then defining the distance |x — y| to be
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the length of a shortest path between x and y. Thus, C(G) becomes a geodesic metric
space. Notice that the metric is invariant under the natural left action of G.

For any g € G, we define the length |g| of g as the length of a shortest word in
AU A" representing g. It is clear that |g| = |p| where p is any geodesic path in
C(G) with ¢(p) =g.

Let G be a finitely generated group. It is called §-hyperbolic with respect to a finite
generating set A if the Cayley graph of G with respect to A is a d-hyperbolic space. A
group G is called word hyperbolic if it is 5-hyperbolic for some § > 0 and A. It turns
out that the word hyperbolicity of a group is independent of the finite generating
set chosen [9, 2.3.E].

Below we shall use properties of a d-hyperbolic space given in Lemmal, for the
Cayley graph C(G) of a given d-hyperbolic group G. We refer to them as to
(H1)—(H3).

A word hyperbolic group is called elementary if it has a cyclic subgroup of finite
index. So it is finite or virtually infinite cyclic.

LEMMA 2 ([9, 8.5.M], [6, p. 156]). Let G be a non-elementary torsion-free word
hyperbolic group. Then the centralizer Cg(g) of any element g € G is a cyclic sub-

group.

LEMMA 3 ([15, Lemma 12]). Ifag’a™' = g’ in a torsion-free word hyperbolic group
thenk=1or g=1.

2.2. QUASIGEODESICS

Let p be a path in a geodesic metric space X. We assume p has the natural
parametrization by arc length. Let A >0 and ¢>0. The path p is called
(4, o)-quasigeodesic if |p(s) — p(?)| = Als — t| — ¢ for any points p(s) and p(¢) on p.

LEMMA 4 ([9, 7.2.A], [6, p. 87]). For any 2 > 0and c,d = 0, there exists a number
R = R(J, 2, ¢) such that any (4, c¢)-quasigeodesic path p in a 6-hyperbolic space
and any geodesic path t with the same endpoints as p are in the R-neighbourhood
of each other.

It is known that paths labelled by elements of infinite order of a hyperbolic group
are quasigeodesic. More precisely, we have

LEMMA 5 ([9], [16, Lemma 1.11]). For any word W representing an element of
infinite order in a hyperbolic group G, there exist constants /. > 0 and ¢ = 0 such that
any path with the label W™ in the Cayley graph of G is (A, c)-quasigeodesic for
any integer m.
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A word W is called cyclically minimal in the group G if it is a shortest represen-
tative of its conjugacy class in G. For cyclically minimal words in torsion-free
groups, the statement of the previous lemma can be strengthened in the following
way by choosing 4 and ¢ independent on W.

LEMMA 6 ([15, Lemma 27]). For any torsion-free hyperbolic group G, there are
constants A > 0 and ¢ = 0 such that for any cyclically minimal word W in G and
any me€ 7, any path with the label W™ in the Cayley graph of G is
(4, o)-quasigeodesic.

LEMMA 7 ([15, Lemma 21]). Let ¢ = 76 and ¢; > 12(c + 0), and suppose that a
geodesic n-gon [xi,...,x,] in a o-hyperbolic metric space satisfies the conditions
|xXic1 —xil > ¢1 for i=2,...,n and (xi-2,X;),_, <c for i=3,...,n. Then the
polygonal line p =[xy, x]U[x2,x3]U...U[x,_1,x,] is contained in the
2c-neighbourhood of the side [x,, x|, and the side [x,,x1] is contained in the
76-neighbourhood of p.

2.3. QUASICONVEX SUBSETS AND SUBGROUPS

A subset Y of a geodesic metric space X is called quasiconvex (or K-quasiconvex) if
any geodesic path in X with endpoints in Y lies in the K-neighbourhood of Y
for some K > 0. Itis clear that any finite, bounded or cobounded subset of a geodesic
metric space is quasiconvex. Lemma 4 implies in particular that any quasigeodesic
path in a hyperbolic space is quasiconvex.

If we regard a subgroup of a group as a set of vertices in the Cayley graph of the
group, we get a definition of quasiconvex subgroup. It is obvious that finite subgroups
and subgroups of finite index are quasiconvex. In a finitely generated group, any
quasiconvex subgroup is finitely generated and the intersection of any two
quasiconvex subgroups is quasiconvex [18]. It follows from Lemma 5 that any cyclic
subgroup of a word hyperbolic group is quasiconvex. This is true also for virtually
cyclic subgroups [4, Pr.1.4, Ch.10]. A quasiconvex subgroup of a word hyperbolic
group is word hyperbolic [4, Pr.4.2, Ch.10]. But this is not true in general for a finitely
generated subgroup of a word hyperbolic group (see [17], [1] and [3]).

Below we shall need the following lemma.

LEMMA 8 ([7, Lemma 1.2]). Let H be a K-quasiconvex subgroup of a 6-hyperbolic
group G. If a shortest representative of the double coset HgH has length greater than
2K + 26, then the intersection HN g 'Hg consists of elements shorter than
2K + 86 + 2 and, hence, is finite.

3. Double Cosets of Quasiconvex Subgroups

The aim of this section is to prove the following proposition.
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PROPOSITION 1. Let G be a word hyperbolic group and H a quasiconvex subgroup
of G of infinite index. Then the number of double cosets of G modulo H is infinite.

As the following examples show, the statement is not true if the group is not
hyperbolic or the subgroup is not quasiconvex.

EXAMPLE 1 (2, Ch.IV,§2,r° 2.3]). Let G = GL(n, Q) and let H be the subgroup of
G of all upper triangle matrices. Then A is of infinite index but the number of double
cosets of G modulo H is finite.

The following example is due to P. de la Harpe.

EXAMPLE 2. Let G = (a, b| b*> = 1) =2 7 % Z». This group is hyperbolic since it is a
free product of two hyperbolic groups. We define an action of G on the disjoint union
7 1 {oo} as follows: a(n) = n+ 1 for all n € Z, a(co) = oo and b(0) = oo, b(co0) = 0,
and b(n) =n for all n € Z \ {0}. Let H be the stabilizer of {co}. As the action is
transitive, H is of infinite index in G. However, the number of double cosets of
G modulo H is finite. Namely, G = H LI HbH. The subgroup H is not quasiconvex
because it is not finitely generated.

The proof of the proposition relies on the following lemmas.

LEMMA 9. Let G be a word hyperbolic group. Let H be a K-quasiconvex set in G,
stable with respect to the inversion, and x be a shortest element of the set Hx. Then
for every h € H we have (x,h), < K + 0.

Proof. Let h € H. Let o and f be geodesic paths in C(G) starting at e and ending at
x and &, respectively. We take points p on o and g on f with [p — e| = |g — e| = (x, h),.
By oé-hyperbolicity of G, |p — ¢g| < 6. By K-quasiconvexity of H, there is g € H such
that |¢ — g| < K. Then

lg7'x| =Ix—gl <Ix—pl+Ip—ql+1g—gl <Ix| —(x,h), ++K.

Since x is a shortest representative of Hx, we have |g7'x| > |x| which implies
(x,h), <K+0. O

LEMMA 10. For any integer m =1 and numbers 6,K,C =0, there exists
A= A(m,d, K, C) = 0 with the following property.

Let G be a d-hyperbolic group with a generating set containing at most m elements
and H a K-quasiconvex subgroup of G. Let g1, ..., gn, s be elements of G such that

(i) cosets Hg; and Hg; are different for i # j;

(1) g, is a shortest representative of Hgy;

(i) |gil < Igul for 1 <i<n;

(iv) for i+ n all the products g;g,"' belong to the same double coset HsH with |s| < C.
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Thenn< A= A(m, o, K, C).

Proof. Let d = max{3K 4+ 8+ 1, C}. For each i < n, we choose a factorization
gig " = hisik; where h;, k; € H and |s;| < d, with the minimal possible |/;| + |k;|. This
can be done due to (iv).

Let 4 = A(m, o0, K, C) be greater than the number of elements of G of length less or
equal to 2d 4+ 3K + 4. We prove that |k;| < d + 3K + 46 for all i < n. This will
suffice for proving the lemma. Indeed, this implies |s;k;| < 2d 4+ 3K + 46. By the
choice of A4, if n > A4 then for some pair of indices 1 <i <j < n, the elements
sik; and s;k; coincide. But then we get gig;, U= hisik;, 8ig, I— h;sik; and, hence,
Hg; = Hg; contradicting (i).

Assume the converse, i.e. |k;j| > d + 3K + 46 for some i < n. Without loss of
generality, we suppose i = 1. Let o be a geodesic path in C(G) labelled with g; which
begins at g7! and ends at e (e denotes the trivial element of G), and let » be a geodesic
path in C(G) labelled with g, which begins at g,! and ends at e. By & we denote the
path inverse to o. Let ,0 and k be geodesic paths in C(G) labelled with Ay, s
and ki, respectively, such that noxwa is a closed path starting and ending at
27!, see Figure 2.

First we prove that

(€, k" @) =31l + kil — 1, k') < K 46 (1)

Indeed, (g, k7", €)y1 = (gu, k"), So, (1) follows from the previous lemma and the
fact that g, is a shortest representative of Hg,.

Now let ¢ be a geodesic path in C(G) joining e and g, 'k;!. By (1) and
d-hyperbolicity of G, for some point 7 on ¢ we have |g,! — 7| < K+ 25. Using

€gr'H

g k!

Figure 2.
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(1) again and the assumption we see that

(g, k" g ),
> g e = Is1] = Mgl + 1kl —2(K +0) —d > |g, | + K +20.

Hence, by d-hyperbolicity, for some point ¢ lying on a geodesic path joining e and
g7 'hi, we have |t — | < J. Using d-hyperbolicity of G once more, we find a point
" on oy with |¢ — ¢"| < 6. Thus we get |g,;1 —1"| < K+ 46. If ¢’ lies on & then using
(iii) we obtain

1" =g = lg1l = |1 — el < |gal = (Iga] — K — 40) = K + 40.

Taking g;! instead of ¢’ in this case, we may assume that ¢’ always lies on 5 and
lg;! — 1" < 2K +85. By K-quasiconvexity of H, there is g€ g;'H such that
|t” —g| < K and, hence, |g;! —g| < 3K + 8. Then g,g,! may be represented as
Ws' where W=ggeH, s=g'g ! and |s|=|g,' —g| <d. But since
IW|=lg7! — gl < ||+ K < |h| + |ki| we get a contradiction with the choice of
hy, s and ky. This finishes the proof. O

Proof of Proposition 1. Let G be a d-hyperbolic group and H a K-quasiconvex
subgroup of G of infinite index. Assume that the number of double cosets of G
modulo H is finite, say N. Then the length of a shortest representative of any double
coset is bounded by a number C. Take any n > AN + 1 with 4 = A(G, o, K, C) from
the previous lemma. Since H is of infinite index, there exist n elements g1, ..., 2, € G
satisfying conditions (i)—(iii) of Lemmal0. Then by the choice of n, there exists a
double coset HsH containing at least 4 + 1 elements of the form g;g, ! for i < n.
But this contradicts Lemma 10. O

4. Proof of Theorem 1

DEFINITION 1. We call a word of the form »~'wu (formally, the pair of words u
and w) a reduced transform if the following conditions are satisfied:

(i) Among all words u~'wu representing the same element of G, w has the minimal
possible length.

(i) For a fixed length of w, among all words u~'wu representing the same element of
G, u has the minimal possible length.

The following lemma is also of independent interest.

LEMMA 11. For any m = 1 and 6 = 0 there is a number L = L(m, §) > 0 with the
following property.

Let G be a d-hyperbolic group with a generating set containing at most m elements.
Then for any reduced transform u='wu, any path in C(G) labelled with u='wru,
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k € 7, and any geodesic path with the same endpoints lie in the L-neighbourhood of
each other.

Proof. By Lemmas 6 and 4, there is a number 7 > 0 such that for any cyclically
minimal word w, any path in C(G) labelled with w* and any geodesic path with
the same endpoints lie in the 7-neighbourhood of each other.

Let nx0 be a path in C(G) labelled with »~'w*u where the labels of #, x and 0 are
u~', w* and u, respectively. Let o be a geodesic path with the same endpoints as
of 6. Using d-hyperbolicity of G we see that o lies in the (7" + 2J)-neighbourhood
of nx0O. We shall now prove that 5«0 lies in the L-neighbourhood of « for some
L > 0 independent on the number k and the reduced transform u~'wu. Without loss
of generality we assume that nx0 starts at the vertex e. Then « starts at «~! and
0 starts at u~'w* and ends at u~'wku.

Denote Ty = T + 0 + 1. First we prove that

(e, u*lwk)ufl < T1. (2)

Assume that (2) does not hold. Let f§ be a geodesic path with the same endpoints as of
x. Choose points p and p’ on n and f respectively, with [p —u~!| = |p’ —u~!| = T}. By
the assumption and d-hyperbolicity of G, |p — p’| < d. There is a point ¢ on x with
lg —p'|l < T. We may assume that ¢ is a vertex of C(G). We have

lg—el <lg—=pl+p—pI+Ip—el <T+0o+ul—Ti < |ul.

This means that |u~'v| < |u| for some initial segment v of the word wX. But then

1 1 1

uwu=0"wy T v e vl

where v~'u may be represented by a word shorter than u and v='wv is equal to a cyclic
shift of w. This contradicts condition (ii) of Definition 1, thus finishing the proof of
).

Similarly to (2), with 5 replaced by 6 we obtain

(e, wru), o < T. 3)

Now we show that
< Ly, “4)

(e, u™"Wru), 1 i

where L, = 2m)*"! +69 4 37} + 36 and m is the number of generators of G. We con-
sider two cases.
Case 1. |wr| > 2Ty +25. By (H1),

b u W), = min{(e, w ), (0w Wou), 10 — 20. (5)
By (3),

™" u W) = (e, Wru) o < T
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and by (2),

(e,u ™) = W — (e, u™'Wh), o0 > Ty +26.

Since

™' u W), < (e, u™h) o — 20,

we get from (5)

(e, u " Wruy o < (7t um Wru o + 20 < Ty 426

Case 2. |wF| < 2Ty 4 26. Assume that (4) is false. Let y be a geodesic path joining e
and u~'wk. Let p be any vertex of C(G) lying on 5. By (2) and §-hyperbolicity of G,
there is a point p’ on y with |p’ — p| < T + . By the assumption and -hyperbolicity,
if |p’ —u~'w¥| < L;, then there is a point p” on 0 with |p' — p”| < 5. We have

P —u "W <P —pl+ip—u |+ —u W < |p—u |+ 3T +36.

Hence, we have proved that if [p — u~'| < L; — 3T, — 36 then there is a point p” on 0
such that |p — p"| < T + 26.

The vertex p divides 5 into two paths labelled with u; ! and uy! where u = uju,. Let
g be a vertex that divides 0 into paths labelled with u; and wu,. From
p—p' | <T1+25, lp—u'|=|g—u'W| and |[u=! —u'wk| < 2T, 420 it easily
follows that |p — ¢| < 4T + 6. Thus, we have proved that for any initial segment
uy of the word u with |uy| < Ly — 3T — 39, we have

luy "Wy | < 4Ty + 66.

Since L) — 377 — 34 is greater than the number of elements of G of length at most
4T + 66, there are two different initial segments x and xy of the word u such that

1,k

X w !

X = y_lx_ wkxy.

By Lemma 2, y and x~'wx lie in a cyclic subgroup of G and hence commute. Then
w'wu = (xz)"'wxz where u = xyz. But |xz| < |u| contrary to condition (ii) of Defi-
nition 1. This finishes the proof of (4).

Now by J-hyperbolicity and (2), the path 5k lies in the (T + T + J)-neighbour-
hood of 7, and by o-hyperbolicity and (4), y0 lies in the (L + J)-neighbourhood
of o. Hence, nk0 lies in the L-neighbourhood ofa where L =T + T + L} 4+ 26. [

LEMMA 12. For any m=>=1 and 6 =0 there are constants E = E(m, ),
D = D(m, d) > 0 with the following property. Let G be a o-hyperbolic group with
a generating set containing at most m elements. Then for any x,y € G, if
(X, ), < 3Ix| = E then for any k > 0, (x*, ), < (x,»), + D.

Proof.-Wetake E=2L+ 0+ 1and D = E + L where Lis givenin Lemma 11. Let
u~'wu be a reduced transform representing x. Let u and p be the geodesic paths in
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C(G) starting at e and ending at x and at x¥, respectively. Let 7 be the path starting at
e and labelled with u~'wu. We take a point p on t with £ = |e — p| = (x, ), + E. We
have |u~'w| > |ul, for otherwise u~'wu = (w~'u)"'w(w~'u) contrary to condition(ii)
of Definition 1. This implies |x| < [u~'w| + |u| < 2Ju~"'w| and, since € < }|x|, we
may assume that p lies on the initial segment of 7 labelled with #~'w. By Lemma
11, there are points p’ on u and p” on p such that |p —p'| < L and |p —p"| < L.
In particular,

le—p"|<€+L and |e—p| le—p"|>L—L.
Assume that (x*, y), > (x, ), + D. Then |e — p"| < (x*, y), and by é-hyperbolicity

of G, there is a point ¢ on a geodesic path with the endpoints e and y, such that
le —q| = |le —p”| and |p” — ¢q| < §. Since

Ix=pl=Ixl—le=p|<IxI—€+L

and
lg =yl =Wl —le—ql < |yl —€+ L,
we have
x =y <Ix=pI+1p =p"| +1p" —ql +1q -l
<=+ L+2L+5+ |y —¢+L
=[x—yl—0-2
obtaining a contradiction. OJ

Now we prove a statement which will allow us to obtain that (H, g) = H = (g) and
(H, g) is quasiconvex in Theorem 1, under certain conditions on products of g and
elements of H. The idea of this is given in Lemma 7. But we need a slightly more
elaborate statement because the segments in Lemma 7 are required to be sufficiently
long while an element of H may have a small length.

LEMMA 13. Letn>=1, r = 0 and elements y;, z; € G (1 <i < n) satisfy

lzil > 3r+56 (1 <i<n), (6)
yizil = Iy1l + |z1] = 2r, lzicwyizil = |zict| + il + zil = 2r (I <i<n).
(7

Then the following assertions are true:
(1) One has

V1213222 . Yuznl Z V1210222 - Yuc1Zn=1] + [Yul + |20 — 4r — 40.

In particular, if |z;| > 4r 4+ 40 for all i then by induction, y1z1y223 ... Vnzn 7 L.
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(1) Let p be a path in C(G) labelled with y1z1y2z5 . . . yuz, and t a geodesic path with
the same endpoints as p. If r = 40 and |z;| > 14r 4+ 480 for all i then p is contained
in the (3r + 7d)-neighbourhood of t, and t is contained in the 85-neighbourhood of p.

Proof. (i) We use induction on n. If n =1, the statement follows from the
hypothesis. Let n > 1. Denote

a = Y1zZ1)222 - - - YnZn,
b=y1z13222. .. Yn-1Zn-1,
C=V1Z1)222 - - - Yn-2Zn-2Vn-1,
d= Zn—1YnZn,

f = VYnZn.

By the inductive assumption,

6] = [yiz1y222 - Yn—2Znal + Y1l + |zpo1| — 4r — 46 =

= el + 1zp-1] — 4r — 46 ®
By (7).
d| = |zn—1] + [yul + 120l = 21 = |z | + || = 2.
Summing this with (8) and using (6), we get
bl +1d| = | + lel 4 2|zp—1] — 6r — 40 > [f] + || + 60. )

By (H2),
b +1d| < max{|al + |zy—1l, lc| + [f]} + 40.

If [al + 1z5-1] < Iel + |f], then
bl + |d| < le| + |f| +40 < |b| + |d| — 66 + 49,

obtaining a contradiction. Hence, |a| + |z,—1| > |c| + |f]|. Then
bl +d| < lal + |zp—1] + 40.

Using (7) we get

la| = |b] + |d| — |zu—1] — 40
= |b| + |zp—1] + [yul + |24l = 2F — |21 | — 40
= |b| + [yul + 24| — 4r — 40
as desired.

(i) By (7),

lzictl + yizil 2 |ziciyizil 2 |zicl + il + 1zil = 2r = |zio | + |yizil = 2r.
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Hence, (yizi, z;7}). < r and
yizil = il +lzil = 2r (1 <i<n). (10)
Using this with (6), we get
|zil + izil = il = 2zi| = 2r > 2(r + 29),
ie.
(@i712i71)7172:1)e > r+ 20.
By (H1),

r= iz 2o = min{(vizi, Gic12ie1) Des (Gic1zie) ™ 27, — 20
and, hence,
izis (yiflzifl)_l)e <r+20. (11)

Let x; be the initial point of the subpath of p labelled with y;. Obviously, we have
|x; — xiv1] = |yizil. By (10) and the condition on |z,

[x; — xip1]| > 14r + 486 — 2r = 12(r 4 49).
By (11),

(Xi—2, Xi)y, , <r+36 for i=3,....n

So we can apply Lemma 7 to a geodesic n-gon [xy, . . ., x,] with [x,, x;] = 7. Thus, the
polygonal line

n =[x, x2]U [x2, x3] U ... U[x,_1, X]

is contained in the 2(r 4 30)-neighbourhood of 7, and 7 is contained in the
76-neighbourhood of 7.

It follows from (10) and é-hyperbolicity that for any i the subpath p, of p labelled
with y;z; lies in the (r 4+ d)-neighbourhood of [x;, x;+1] and [x;, x;41] lies in the
o-neighbourhood of p,. Hence, p is contained in the (3r + 76)-neighbourhood of
7, and 7 is contained in the 8J-neighbourhood of p.

Proof of Theorem 1. Let G be a non-elementary torsion-free d-hyperbolic group
and H a K-quasiconvex subgroup of G of infinite index. We want to find a non-trivial
element g € G such that sgp(H, g) = H x (g) and sgp(H, g) is quasiconvex in G.

Take N = 2K + 2E + 26 where E is as in Lemma 12. By Propositionl, we find
x € G such that |x| > N and x is a shortest representative in its double coset
HxH. Tt follows from Lemma 9 applied to Hx and Hx~!, that (x*',h), < K +6
for all h e H.

For the required g, we take x for a sufficiently large M. By Lemma 13, to prove
that sgp(H, g) = H * (g) and sgp(H, g) is quasiconvex it suffices to verify the con-
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ditions of Lemma 13 for some r, where y;’s are any elements of H and z;’s are of the

form g’, t # 0. So we have to show that, for some r,

IxM!| > 14r 4 485, for any 7 # 0,
\hxM!| = |h| + |x™!| —2r, forany t #0 and /€ H,

IXMS MY > |xM) 4 |h) 4 |xM'| — 2r, for any s,t# 0 and h € H.

By Lemma 12, for any h € H,
(x',h), <K+ D+39.

In particular, this implies (13) for any r > K+ D + 6 and M.
The rest of the proof is divided into a number of steps.

CLAIM 1. For any he H, if |h| > 2K + 2D + 49 then
|x*hx'| = |x*| + |h| + |x'| —4K — 4D — 85, for any s,t#0.
By (HI1),
(x*, X’hx") o, = min{(e, X°),, (€, X’hx")y} — 20.
By (15),
¢, X*hx") o, = (', x"), <K+ D+6.
Using |h| = 2K + 2D + 46 and (15), again we get
(e, x")y = |hl = (x~*, h), > K+ D+ 36.
Since (x*, x*hx") ., < (e, X*) s, — 20, we obtain from (16) that
K+ D+6>= X Xhx") ., = (e, Xhx") ), — 20,

which implies

IR = 1Ch] + X' — 2K — 2D — 65 = |x*| + |h| + |x'| — 4K — 4D — 85

as required.

CLAIM 2. For any h € H, {(x)N{h) = 1.

(12)
(13)
(14)

(15)

(16)

Indeed, if x = 4* for some ¢, s # 0, then (X', &'"), = |x"'| for any r # 0 which con-

tradicts to (15) and Lemma 5.
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CLAIM 3. There is a number B > 0 depending on x such that for every h € H with
|h| < 2K 42D + 40,

|x*hx'| = |xX*| + |h| + |x'| — 2B, for any s, t # 0.

Let B > 0 be any number. Assume that |x*hx!| < |x°| + |A| + |x'| — 2B for some s
and ¢. Without loss of generality, we assume s > 0.
By (15), |hx'| = |h| + |x'| — 2(K + D + 6). Hence

Ix*| + |hx"| — |X*hx'| > 2B — 2(K + D + 9). (17

Let i be the path in C(G) starting at e and labelled with x°. Let p be the path in
C(G) starting at x*/ and labelled with x’. Let ¢’ and p’ be the corresponding geodesic
paths. By Lemmas 4 and 5, there is number F > 0 depending only on G and x such
that u and ' are in the F-neighbourhood of each other, and the same is true
for p and p’. In particular, for every point p on u there is a point p’ on y’ such that
lp—p'| <F. By d-hyperbolicity of G, for any point p’ on y with
|p — x°| < (e, x’hx"),. there is a point p” on a geodesic path 7 joining x* and
X*hx', with |p’ — p”| < 4. Since |x* — x*h| = |h|, again by J-hyperbolicity, for any
p’ lying on 7 there is a point ¢ on p’ with |p” —¢'| <|h|+J. Since
(e, x’hx")s > B— K —D —06 by (17), it follows that for any point p on p with
p—x|<B—K—-D—F—¢ there is a point ¢ on p with |p—¢g| < Q where
Q = |h| + 2F + 26. By eventually adding |x| to Q we may assume that ¢ divides
p into two paths labelled with ¥/ and x*~/. We take p dividing u into two paths labelled
with x*~ and x. Then, by what we have proved, for any i between 0 and s with
ilx] < B— K — D — F — 9, there exists j such that

Ix'h x/| < || + |x| + 2F + 25 < |x| + 2K + 2D + 2F + 66. (18)

Now we take B such that the number of all 7 satisfying i|lx] < B—K—-D—F —9is
greater than the number of all elements of G of length at most
|x| +2K 42D + 2F 4+ 60. Then by (18), for some iy, i, j1 and j, with ij # i, we
get Xx"hx' = x"hx?. Denoting k=i —i, and using Lemma3 we obtain
h~'xKh = x*. Then x* belongs to the centralizer Cg(h) of h in G. By Lemma 2,
(x) N (h) # 1. But this contradicts to Claim 2. This finishes the proof of Claim 3.

Now using Claim 3 and Claim1, we see that there exists r > 0 such that (14) holds
for all M. To finish the proof of the theorem, it remains to choose M satisfying (12).
Such an M exists since x is of infinite order. O

5. Commensurators of Quasiconvex Subgroups

Recall that two subgroups H, and H, of a group G are commensurable if their
intersection H; N H, is of finite index both in H; and in H,. The set

Commg(H) ={ge G| H and gHg ' are commensurable}
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is called the commensurator of a subgroup H in a group G. Obviously, Commg(H) is
a group and Commg(H) D Ng(H), where Ng(H) is the normalizer of H in G. We are
going to prove

THEOREM 2 (see also [11]). Let G be a word hyperbolic group and H an infinite
quasiconvex subgroup of G. Then [Commg(H) : H] < oo.
To prove the theorem, we will use the following simple observation.

LEMMA 14. Let H be a subgroup of a group G. Then the number of left cosets of G
modulo H contained in a double coset HgH is equal to the index [H : H N gHg™'].

Proof. Denote K = HNgHg™'. To any left coset hgH < HgH, h € H, there cor-
responds a left coset 1K C H. For any h, i/ € H, the equality hgH = W'gH is equiv-
alent to s = Hhghig~" for some h; € H which holds if and only if ZK = I'K.
Hence the correspondence is one-to-one. O

Proof of Theorem 2. If [G: H] < oo the statement is obvious. Suppose that
[G: H] = o0.

Let g € Commg(H). Since H is infinite by the hypothesis of the theorem and
[H: HNgHg 'l < oo, the intersection HNg 'Hg=g '(HNgHg g is also
infinite. Then by Lemma 8§, the length of a shortest representative of the double
coset HgH is at most 2K + 26 where K is the constant of quasiconvexity of H. Thus
there are only finitely many double cosets HgH with g € Commg(H). By Lemma
14, any such coset HgH contains only finitely many left cosets of G modulo H. Hence
the number of left cosets gH € Commg(H) is finite. O

As an immediate consequence of Theorem 2 and the inclusion
Commg(H) D Ng(H) we get the following two corollaries.

COROLLARY 1 (see also [14]). Let G be a word hyperbolic group and H an infinite
quasiconvex subgroup of G. Then [Ng(H) : H] < oo.

COROLLARY 2 (see also [14]). Any infinite quasiconvex normal subgroup of a word
hyperbolic group is of finite index.

COROLLARY 3. Let G be a word hyperbolic group and H an infinite quasiconvex
subgroup of G. Then the subgroup Commg(H) is quasiconvex.

Proof. It is known [4, Pr.1.4, Ch. 10] that if 4 and B are subgroups of a word
hyperbolic group G, A4 is quasiconvex, A C Band [B : A] < oo then B is quasiconvex
as well. The statement follows now from Theorem 2. [

Corollary 3 implies in particular that under its assumptions, Commg(H) is a word
hyperbolic group, since any quasiconvex subgroup of a word hyperbolic group is
itself word hyperbolic [4, Pr.4.2, Ch. 10].
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The following result follows almost immediately from Theorem 2. A similar state-
ment is true for irreducible lattices in semisimple Lie groups and for quasiconvex
subgroups in geometrically finite groups (see for example [13] and [8]).

COROLLARY 4. Let G be a word hyperbolic group, and let H, and H, be
quasiconvex infinite subgroups of G. If Commg(H;) = Commg(H,) then Hy and
H, are commensurable.

Proof. By Theorem 2, both H; and H, are of finite index in their common
comensurator C = Commg(H|) = Commg(H,). Then [C: H; N H] < oo which
implies [H : H} N Hy] < oo and [H; : H| N H;] < oc. O

Recall that if G is a discrete group and H is a subgroup of G then the action of G on
a Hilbert space ¢>(G/H) given by the left translation is called the quasi-regular rep-
resentation of G in ¢2(G/H). It follows from work of Mackey [12] (see also [5]) that
if H is of finite index in its commensurator Commg(H) then the quasi-regular rep-
resentation of G in £>(G/H) is a finite direct sum of irreducible representations. Thus,
from Theorem 2 we immediately get the following corollary:

COROLLARY 5. Let G be a word hyperbolic group and H an infinite quasiconvex
subgroup of G. Then the quasi-regular representation of G in £*(G/H) is a finite direct
sum of irreducible representations.
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