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Abstract

In this paper we study residual properties of relatively hyperbolic groups. In particular, we show that if
a group G is non-elementary and hyperbolic relative to a collection of proper subgroups, then G is SQ-
universal.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of a group hyperbolic relative to a collection of subgroups was originally sug-
gested by Gromov [9] and since then it has been elaborated from different points of view [3,5,
6,20]. The class of relatively hyperbolic groups includes many examples. For instance, if M is
a complete finite-volume manifold of pinched negative sectional curvature, then π1(M) is hy-
perbolic with respect to the cusp subgroups [3,6]. More generally, if G acts isometrically and
properly discontinuously on a proper hyperbolic metric space X so that the induced action of G
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on ∂X is geometrically finite, then G is hyperbolic relative to the collection of maximal parabolic
subgroups [3]. Groups acting on CAT(0) spaces with isolated flats are hyperbolic relative to the
collection of flat stabilizers [13]. Algebraic examples of relatively hyperbolic groups include free
products and their small cancellation quotients [20], fully residually free groups (or Sela’s limit
groups) [4], and, more generally, groups acting freely on Rn-trees [10].

The main goal of this paper is to study residual properties of relatively hyperbolic groups.
Recall that a group G is called SQ-universal if every countable group can be embedded into a
quotient of G [24]. It is straightforward to see that any SQ-universal group contains an infinitely
generated free subgroup. Furthermore, since the set of all finitely generated groups is uncountable
and every single quotient of G contains (at most) countably many finitely generated subgroups,
every SQ-universal group has uncountably many non-isomorphic quotients. Thus the property of
being SQ-universal may, in a very rough sense, be considered as an indication of “largeness” of
a group.

The first non-trivial example of an SQ-universal group was provided by Higman, Neumann
and Neumann [11], who proved that the free group of rank 2 is SQ-universal. Presently many
other classes of groups are known to be SQ-universal: various HNN-extensions and amalga-
mated products [7,14,23], groups of deficiency 2 [2], most C(3)&T (6)-groups [12], etc. The
SQ-universality of non-elementary hyperbolic groups was proved by Olshanskii in [18]. On the
other hand, for relatively hyperbolic groups, there are some partial results. Namely, in [8] Fine
proved the SQ-universality of certain Kleinian groups. The case of fundamental groups of hyper-
bolic 3-manifolds was studied by Ratcliffe in [22].

In this paper we prove the SQ-universality of relatively hyperbolic groups in the most general
settings. Let a group G be hyperbolic relative to a collection of subgroups {Hλ}λ∈Λ (called
peripheral subgroups). We say that G is properly hyperbolic relative to {Hλ}λ∈Λ (or G is a
PRH group for brevity), if Hλ �= G for all λ ∈ Λ. Recall that a group is elementary, if it contains
a cyclic subgroup of finite index. We observe that every non-elementary PRH group has a unique
maximal finite normal subgroup denoted by EG(G) (see Lemmas 4.3 and 3.3 below).

Theorem 1.1. Suppose that a group G is non-elementary and properly relatively hyperbolic with
respect to a collection of subgroups {Hλ}λ∈Λ. Then for each finitely generated group R, there
exists a quotient group Q of G and an embedding R ↪→ Q such that:

(1) Q is properly relatively hyperbolic with respect to the collection {ψ(Hλ)}λ∈Λ ∪ {R} where
ψ :G → Q denotes the natural epimorphism;

(2) For each λ ∈ Λ, we have Hλ ∩ker(ψ) = Hλ ∩EG(G), that is, ψ(Hλ) is naturally isomorphic
to Hλ/(Hλ ∩ EG(G)).

In general, we cannot require the epimorphism ψ to be injective on every Hλ. Indeed, it is
easy to show that a finite normal subgroup of a relatively hyperbolic group must be contained in
each infinite peripheral subgroup (see Lemma 4.4). Thus the image of EG(G) in Q will have to
be inside R whenever R is infinite. If, in addition, the group R is torsion-free, the latter inclusion
implies EG(G) � ker(ψ). This would be the case if one took G = F2 × Z/(2Z) and R = Z,
where F2 denotes the free group of rank 2 and G is properly hyperbolic relative to its subgroup
Z/(2Z) = EG(G).

Since any countable group is embeddable into a finitely generated group, we obtain the fol-
lowing.
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Corollary 1.2. Any non-elementary PRH group is SQ-universal.

Let us mention a particular case of Corollary 1.2. In [7] the authors asked whether every
finitely generated group with infinite number of ends is SQ-universal. The celebrated Stallings
theorem [25] states that a finitely generated group has infinite number of ends if and only if it
splits as a non-trivial HNN-extension or amalgamated product over a finite subgroup. The case
of amalgamated products was considered by Lossov who provided the positive answer in [14].
Corollary 1.2 allows us to answer the question in the general case. Indeed, every group with
infinite number of ends is non-elementary and properly relatively hyperbolic, since the action
of such a group on the corresponding Bass–Serre tree satisfies Bowditch’s definition of relative
hyperbolicity [3].

Corollary 1.3. A finitely generated group with infinite number of ends is SQ-universal.

The methods used in the proof of Theorem 1.1 can also be applied to obtain other results:

Theorem 1.4. Any two finitely generated non-elementary PRH groups G1,G2 have a common
non-elementary PRH quotient Q. Moreover, Q can be obtained from the free product G1 ∗ G2
by adding finitely many relations.

In [17] Olshanskii proved that any non-elementary hyperbolic group has a non-trivial finitely
presented quotient without proper subgroups of finite index. This result was used by Lubotzky
and Bass [1] to construct representation rigid linear groups of non-arithmetic type thus solving
in negative the Platonov Conjecture. Theorem 1.4 yields a generalization of Olshanskii’s result.

Definition 1.5. Given a class of groups G, we say that a group R is residually incompatible with
G if for any group A ∈ G, any homomorphism R → A has a trivial image.

If G and R are finitely presented groups, G is properly relatively hyperbolic, and R is residu-
ally incompatible with a class of groups G, we can apply Theorem 1.4 to G1 = G and G2 = R∗R.
Obviously, the obtained common quotient of G1 and G2 is finitely presented and residually in-
compatible with G.

Corollary 1.6. Let G be a class of groups. Suppose that there exists a finitely presented group R

that is residually incompatible with G. Then every finitely presented non-elementary PRH group
has a non-trivial finitely presented quotient group that is residually incompatible with G.

Recall that there are finitely presented groups having no non-trivial recursively presented
quotients with decidable word problem [15]. Applying the previous corollary to the class G of
all recursively presented groups with decidable word problem, we obtain the following result.

Corollary 1.7. Every non-elementary finitely presented PRH group has an infinite finitely pre-
sented quotient group Q such that the word problem is undecidable in each non-trivial quotient
of Q.

In particular, Q has no proper subgroups of finite index. The reader can easily check that
Corollary 1.6 can also be applied to the classes of all torsion (torsion-free, Noetherian, Artinian,
amenable, etc.) groups.
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2. Relatively hyperbolic groups

We recall the definition of relatively hyperbolic groups suggested in [20] (for equivalent def-
initions in the case of finitely generated groups see [3,5,6]). Let G be a group, {Hλ}λ∈Λ a fixed
collection of subgroups of G (called peripheral subgroups), X a subset of G. We say that X is
a relative generating set of G with respect to {Hλ}λ∈Λ if G is generated by X together with the
union of all Hλ (for convenience, we always assume that X = X−1). In this situation the group
G can be considered as a quotient of the free product

F =
( ∗

λ∈Λ

Hλ

)
∗ F(X), (1)

where F(X) is the free group with the basis X. Suppose that R is a subset of F such that the
kernel of the natural epimorphism F → G is a normal closure of R in the group F , then we say
that G has relative presentation

〈
X, {Hλ}λ∈Λ

∣∣ R = 1, R ∈R
〉
. (2)

If sets X and R are finite, the presentation (2) is said to be relatively finite.

Definition 2.1. We set

H =
⊔
λ∈Λ

(
Hλ \ {1}). (3)

A group G is relatively hyperbolic with respect to a collection of subgroups {Hλ}λ∈Λ, if G

admits a relatively finite presentation (2) with respect to {Hλ}λ∈Λ satisfying a linear relative
isoperimetric inequality. That is, there exists C > 0 satisfying the following condition. For every
word w in the alphabet X∪H representing the identity in the group G, there exists an expression

w =F

k∏
i=1

f −1
i R±1

i fi (4)

with the equality in the group F , where Ri ∈ R, fi ∈ F , for i = 1, . . . , k, and k � C‖w‖, where
‖w‖ is the length of the word w. This definition is independent of the choice of the (finite)
generating set X and the (finite) set R in (2).

For a combinatorial path p in the Cayley graph Γ (G,X ∪ H) of G with respect to X ∪ H,
p−, p+, l(p), and Lab(p) will denote the initial point, the ending point, the length (that is, the
number of edges) and the label of p respectively. Further, if Ω is a subset of G and g ∈ 〈Ω〉 � G,
then |g|Ω will be used to denote the length of a shortest word in Ω±1 representing g.

Let us recall some terminology introduced in [20]. Suppose q is a path in Γ (G,X ∪H).

Definition 2.2. A subpath p of q is called an Hλ-component for some λ ∈ Λ (or simply a com-
ponent) of q , if the label of p is a word in the alphabet Hλ \ {1} and p is not contained in a bigger
subpath of q with this property.
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Two components p1,p2 of a path q in Γ (G,X ∪ H) are called connected if they are Hλ-
components for the same λ ∈ Λ and there exists a path c in Γ (G,X ∪H) connecting a vertex of
p1 to a vertex of p2 such that Lab(c) entirely consists of letters from Hλ. In algebraic terms this
means that all vertices of p1 and p2 belong to the same coset gHλ for a certain g ∈ G. We can
always assume c to have length at most 1, as every non-trivial element of Hλ is included in the set
of generators. An Hλ-component p of a path q is called isolated if no distinct Hλ-component
of q is connected to p. A path q is said to be without backtracking if all its components are
isolated.

The next lemma is a simplification of Lemma 2.27 from [20].

Lemma 2.3. Suppose that a group G is hyperbolic relative to a collection of subgroups {Hλ}λ∈Λ.
Then there exists a finite subset Ω ⊆ G and a constant K � 0 such that the following condition
holds. Let q be a cycle in Γ (G,X ∪ H), p1, . . . , pk a set of isolated Hλ-components of q for
some λ ∈ Λ, g1, . . . , gk elements of G represented by labels Lab(p1), . . . ,Lab(pk) respectively.
Then g1, . . . , gk belong to the subgroup 〈Ω〉 � G and the word lengths of gi ’s with respect to Ω

satisfy the inequality

k∑
i=1

|gi |Ω � Kl(q).

3. Suitable subgroups of relatively hyperbolic groups

Throughout this section let G be a group which is properly hyperbolic relative to a collection
of subgroups {Hλ}λ∈Λ, X a finite relative generating set of G, and Γ (G,X ∪ H) the Cayley
graph of G with respect to the generating set X ∪ H, where H is given by (3). Recall that an
element g ∈ G is called hyperbolic if it is not conjugate to an element of some Hλ, λ ∈ Λ. The
following description of elementary subgroups of G was obtained in [19].

Lemma 3.1. Let g be a hyperbolic element of infinite order of G. Then the following conditions
hold.

(1) The element g is contained in a unique maximal elementary subgroup EG(g) of G, where

EG(g) = {
f ∈ G: f −1gnf = g±n for some n ∈ N

}
. (5)

(2) The group G is hyperbolic relative to the collection {Hλ}λ∈Λ ∪ {EG(g)}.

Given a subgroup S � G, we denote by S0 the set of all hyperbolic elements of S of infinite
order. Recall that two elements f,g ∈ G0 are said to be commensurable (in G) if f k is conjugated
to gl in G for some non-zero integers k and l.

Definition 3.2. A subgroup S � G is called suitable, if there exist at least two non-commensura-
ble elements f1, f2 ∈ S0, such that EG(f1) ∩ EG(f2) = {1}.
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If S0 �= ∅, we define

EG(S) =
⋂
g∈S0

EG(g).

Lemma 3.3. If S � G is a non-elementary subgroup and S0 �= ∅, then EG(S) is the maximal
finite subgroup of G normalized by S.

Proof. Indeed, if a finite subgroup M � G is normalized by S, then |S : CS(M)| < ∞ where
CS(M) = {g ∈ S: g−1xg = x, ∀x ∈ M}. Formula (5) implies that M � EG(g) for every g ∈ S0,
hence M � EG(S).

On the other hand, if S is non-elementary and S0 �= ∅, there exist h ∈ S0 and a ∈ S0 \ EG(h).
Then a−1ha ∈ S0 and the intersection EG(a−1ha) ∩ EG(h) is finite. Indeed if EG(a−1ha) ∩
EG(h) were infinite, we would have (a−1ha)n = hk for some n, k ∈ Z \ {0}, which would
contradict to a /∈ EG(h). Hence EG(S) � EG(a−1ha) ∩ EG(h) is finite. Obviously, EG(S) is
normalized by S in G. �

The main result of this section is the following

Proposition 3.4. Suppose that a group G is hyperbolic relative to a collection {Hλ}λ∈Λ and S is
a subgroup of G. Then the following conditions are equivalent.

(1) S is suitable;
(2) S0 �= ∅ and EG(S) = {1}.

Our proof of Proposition 3.4 will make use of several auxiliary statements below.

Lemma 3.5. (See Lemma 4.4, [19].) For any λ ∈ Λ and any element a ∈ G \ Hλ, there exists
a finite subset Fλ = Fλ(a) ⊆ Hλ such that if h ∈ Hλ \ Fλ, then ah is a hyperbolic element of
infinite order.

It can be seen from Lemma 3.1 that every hyperbolic element g ∈ G of infinite order is con-
tained inside the elementary subgroup

E+
G(g) = {

f ∈ G: f −1gnf = gn for some n ∈ N
}

� EG(g),

and |EG(g) : E+
G(g)| � 2.

Lemma 3.6. Suppose g1, g2 ∈ G0 are non-commensurable and A = 〈g1, g2〉 � G. Then there
exists an element h ∈ A0 such that:

(1) h is not commensurable with g1 and g2;
(2) EG(h) = E+

G(h) � 〈h,EG(g1) ∩ EG(g2)〉. If, in addition, EG(gj ) = E+
G(gj ), j = 1,2, then

EG(h) = E+
G(h) = 〈h〉 × (EG(g1) ∩ EG(g2)).

Proof. By Lemma 3.1, G is hyperbolic relative to the collection of peripheral subgroups
C1 = {Hλ}λ∈Λ ∪{EG(g1)}∪ {EG(g2)}. The center Z(E+(gj )) has finite index in E+(gj ), hence
G G
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(possibly, after replacing gj with a power of itself) we can assume that gj ∈ Z(E+
G(gj )), j = 1,2.

Using Lemma 3.5 we can find an integer n1 ∈ N such that the element g3 = g2g
n1
1 ∈ A is hyper-

bolic relatively to C1 and has infinite order. Applying Lemma 3.1 again, we achieve hyperbolicity
of G relative to C2 = C1 ∪ {EG(g3)}. Set H′ = ⊔

H∈C2
(H \ {1}).

Let Ω ⊂ G be the finite subset and K > 0 the constant chosen according to Lemma 2.3 (where
G is considered to be relatively hyperbolic with respect to C2). Using Lemma 3.5 two more times,
we can find numbers m1,m2,m3 ∈ N such that

g
mi

i /∈ {
y ∈ 〈Ω〉: |y|Ω � 21K

}
, i = 1,2,3, (6)

and h = g
m1
1 g

m3
3 g

m2
2 ∈ A is a hyperbolic element (with respect to C2) and has infinite order.

Indeed, first we choose m1 to satisfy (6). By Lemma 3.5, there is m3 satisfying (6), so that
g

m1
1 g

m3
3 ∈ A0. Similarly m2 can be chosen sufficiently large to satisfy (6) and g

m1
1 g

m3
3 g

m2
2 ∈ A0.

In particular, h will be non-commensurable with gj , j = 1,2 (otherwise, there would exist f ∈ G

and n ∈ N such that f −1hnf ∈ E(gj ), implying h ∈ f E(gj )f
−1 by Lemma 3.1 and contradict-

ing the hyperbolicity of h).
Consider a path q labeled by the word (g

m1
1 g

m3
3 g

m2
2 )l in Γ (G,X ∪ H′) for some l ∈ Z \ {0},

where each g
mi

i is treated as a single letter from H′. After replacing q with q−1, if necessary,
we assume that l ∈ N. Let p1, . . . , p3l be all components of q; by the construction of q , we
have l(pj ) = 1 for each j . Suppose not all of these components are isolated. Then one can find
indices 1 � s < t � 3l and i ∈ {1,2,3} such that ps and pt are EG(gi)-components of q , (pt )−
and (ps)+ are connected by a path r with Lab(r) ∈ EG(gi), l(r) � 1, and (t − s) is minimal
with this property. To simplify the notation, assume that i = 1 (the other two cases are similar).
Then ps+1,ps+4, . . . , pt−2 are isolated EG(g3)-components of the cycle ps+1ps+2 . . . pt−1r ,
and there are exactly (t − s)/3 � 1 of them. Applying Lemma 2.3, we obtain g

m3
3 ∈ 〈Ω〉 and

t − s

3

∣∣gm3
3

∣∣
Ω

� K(t − s).

Hence |gm3
3 |Ω � 3K, contradicting (6). Therefore two distinct components of q cannot be con-

nected with each other; that is, the path q is without backtracking.
To finish the proof of Lemma 3.6 we need an auxiliary statement below. Denote by W the set

of all subwords of words (g
m1
1 g

m3
3 g

m2
2 )l , l ∈ Z (where g

±mi

i is treated as a single letter from H′).
Consider an arbitrary cycle o = rqr ′q ′ in Γ (G,X ∪ H′), where Lab(q),Lab(q ′) ∈ W ; and set
C = max{l(r), l(r ′)}. Let p be a component of q (or q ′). We will say that p is regular if it is not
an isolated component of o. As q and q ′ are without backtracking, this means that p is either
connected to some component of q ′ (respectively q), or to a component of r , or r ′.

Lemma 3.7. In the above notations

(a) if C � 1 then every component of q or q ′ is regular;
(b) if C � 2 then each of q and q ′ can have at most 15C components which are not regular.

Proof. Assume the contrary to (a). Then one can choose a cycle o = rqr ′q ′ with l(r), l(r ′) � 1,
having at least one E(gi)-isolated component on q or q ′ for some i ∈ {1,2,3}, and such that
l(q) + l(q ′) is minimal. Clearly the latter condition implies that each component of q or q ′ is
an isolated component of o. Therefore q and q ′ together contain k distinct E(gi)-components
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of o where k � 1 and k � �l(q)/3� + �l(q ′)/3�. Applying Lemma 2.3 we obtain g
mi

i ∈ 〈Ω〉 and
k|gmi

i |Ω � K(l(q) + l(q ′) + 2), therefore |gmi

i |Ω � 11K , contradicting the choice of mi in (6).
Let us prove (b). Suppose that C � 2 and q contains more than 15C isolated components of o.

We consider two cases:

Case 1. No component of q is connected to a component of q ′. Then a component of q or q ′
can be regular only if it is connected to a component of r or r ′. Since q and q ′ are without
backtracking, two distinct components of q or q ′ cannot be connected to the same component
of r (or r ′). Hence q and q ′ together can contain at most 2C regular components. Thus there is an
index i ∈ {1,2,3} such that the cycle o has k isolated E(gi)-components, where k � �l(q)/3� +
�l(q ′)/3� − 2C � �5C� − 2C > 2C > 3. By Lemma 2.3, g

mi

i ∈ 〈Ω〉 and k|gmi

i |Ω � K(l(q) +
l(q ′) + 2C), hence

∣∣gmi

i

∣∣
Ω

� K
3(�l(q)/3� + 1) + 3(�l(q ′)/3� + 1) + 2C

�l(q)/3� + �l(q ′)/3� − 2C
� K

(
3 + 6 + 8C

2C

)
� 9K,

contradicting the choice of mi in (6).

Case 2. The path q has at least one component which is connected to a component of q ′.
Let p1, . . . , pl(q) denote the sequence of all components of q . By part (a), if ps and pt ,
1 � s � t � l(q), are connected to components of q ′, then for any j , s � j � t , pj is regu-
lar. We can take s (respectively t) to be minimal (respectively maximal) possible. Consequently
p1, . . . , ps−1,pt+1, . . . , pl(q) will contain the set of all isolated components of o that belong to q .

Without loss of generality we may assume that s − 1 � 15C/2. Since ps is connected to some
component p′ of q ′, there exists a path v in Γ (G,X ∪ H′) satisfying v− = (ps)−, v+ = p′+,
Lab(v) ∈ H′, l(v) = 1. Let q̄ (respectively q̄ ′) denote the subpath of q (respectively q ′) from q−
to (ps)− (respectively from p′+ to q ′+). Consider a new cycle ō = rq̄vq̄ ′. Reasoning as before,
we can find i ∈ {1,2,3} such that ō has k isolated E(gi)-components, where k � �l(q̄)/3� +
�l(q̄ ′)/3� − C − 1 � �15C/6� − C − 1 > C − 1 � 1. Using Lemma 2.3, we get g

mi

i ∈ 〈Ω〉 and
k|gmi

i |Ω � K(l(q̄) + l(q̄ ′) + C + 1). The latter inequality implies |gmi

i |Ω � 21K , yielding a
contradiction in the usual way and proving (b) for q . By symmetry this property holds for q ′ as
well. �

Continuing the proof of Lemma 3.6, consider an element x ∈ EG(h). According to
Lemma 3.1, there exists l ∈ N such that

xhlx−1 = hεl, (7)

where ε = ±1. Set C = |x|X∪H′ . After raising both sides of (7) in an integer power, we can
assume that l is sufficiently large to satisfy l > 32C + 3.

Consider a cycle o = rqr ′q ′ in Γ (G,X ∪ H′) satisfying r− = q ′+ = 1, r+ = q− = x, q+ =
r ′− = xhl , r ′+ = q ′− = xhlx−1, Lab(q) ≡ (g

m1
1 g

m3
3 g

m2
2 )l , Lab(q ′) ≡ (g

m1
1 g

m3
3 g

m2
2 )−εl , l(q) =

l(q ′) = 3l, l(r) = l(r ′) = C.
Let p1,p2, . . . , p3l and p′

1,p
′
2, . . . , p

′
3l be all components of q and q ′ respectively. Thus,

p3,p6,p9, . . . , p3l are all EG(g2)-components of q . Since l > 17C and q is without backtrack-
ing, by Lemma 3.7, there exist indices 1 � s, s′ � 3l such that the EG(g2)-component ps of q is
connected to the EG(g2)-component p′ ′ of q ′. Without loss of generality, assume that s � 3l/2
s
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(the other situation is symmetric). There is a path u in Γ (G,X ∪ H′) with u− = (p′
s′)−, u+ =

(ps)+, Lab(u) ∈ EG(g2) and l(u) � 1. We obtain a new cycle o′ = ups+1 . . . p3lr
′p′

1 . . . p′
s′−1 in

the Cayley graph Γ (G,X ∪H′). Due to the choice of s and l, the same argument as before will
demonstrate that there are EG(g2)-components ps̄ , p′

s̄′ of q , q ′ respectively, which are connected
and s < s̄ � 3l, 1 � s̄′ < s′ (in the case when s > 3l/2, the same inequalities can be achieved by
simply renaming the indices correspondingly).

It is now clear that there exist i ∈ {1,2,3} and connected EG(gi)-components pt , p′
t ′ of q ,

q ′ (s < t � 3l, 1 � t ′ < s′) such that t > s is minimal. Let v denote a path in Γ (G,X ∪ H′)
with v− = (pt )−, v+ = (pt ′)+, Lab(v) ∈ EG(gi) and l(v) � 1. Consider a cycle o′′ in Γ (G,

X ∪ H′) defined by o′′ = ups+1 . . . pt−1vp
′
t ′+1 . . . p′

s′−1. By part (a) of Lemma 3.7, ps+1 is a
regular component of the path ps+1 . . . pt−1 in o′′ (provided that t − 1 � s + 1). Note that ps+1

cannot be connected to u or v because q is without backtracking, hence it must be connected to a
component of the path p′

t ′+1 . . . p′
s′−1. By the choice of t , we have t = s + 1 and i = 1. Similarly

t ′ = s′ − 1. Thus ps+1 = pt and p′
s′−1 = p′

t ′ are connected EG(g1)-components of q and q ′.
In particular, we have ε = 1. Indeed, otherwise we would have Lab(ps′−1) ≡ g

m3
3 but g

m3
3 /∈

EG(g1). Therefore x ∈ E+
G(h) for any x ∈ EG(h), consequently EG(h) = E+

G(h).
Observe that u− = v+ and u+ = v−, hence Lab(u) and Lab(v)−1 represent the same el-

ement z ∈ EG(g2) ∩ EG(g1). By construction, x = hαzhβ where α = (3l − s′)/3 ∈ Z, and
β = −s/3 ∈ Z. Thus x ∈ 〈h,EG(g1) ∩ EG(g2)〉 and the first part of the claim (2) is proved.

Assume now that EG(gj ) = E+
G(gj ) for j = 1,2. Then h = g

m1
1 (g2g

n1
1 )m3g

m2
2 belongs to

the centralizer of the finite subgroup EG(g1) ∩ EG(g2) (because of the choice of g1, g2 above).
Consequently EG(h) = 〈h〉 × (EG(g1) ∩ EG(g2)). �
Lemma 3.8. Let S be a non-elementary subgroup of G with S0 �= ∅. Then

(i) there exist non-commensurable elements h1, h
′
1 ∈ S0 with EG(h1) ∩ EG(h′

1) = EG(S);
(ii) S0 contains an element h such that EG(h) = 〈h〉 × EG(S).

Proof. Choose an element g1 ∈ S0. By Lemma 3.1, G is hyperbolic relative to the collection
C = {Hλ}λ∈Λ ∪ {EG(g1)}. Since the subgroup S is non-elementary, there is a ∈ S \ EG(g1), and
Lemma 3.5 provides us with an integer n ∈ N such that g2 = agn

1 ∈ S is a hyperbolic element of
infinite order (now, with respect to the family of peripheral subgroups C). In particular, g1 and
g2 are non-commensurable and hyperbolic relative to {Hλ}λ∈Λ.

Applying Lemma 3.6, we find h1 ∈ S0 (with respect to the collection of peripheral subgroups
{Hλ}λ∈Λ) with EG(h1) = E+

G(h1) such that h1 is not commensurable with gj , j = 1,2. Hence,
g1 and g2 stay hyperbolic after including EG(h1) into the family of peripheral subgroups (see
Lemma 3.1). This allows to construct (in the same manner) one more element h2 ∈ 〈g1, g2〉 � S

which is hyperbolic relative to ({Hλ}λ∈Λ ∪ EG(h1)) and satisfies EG(h2) = E+
G(h2). In particu-

lar, h2 is not commensurable with h1.
We claim now that there exists x ∈ S such that EG(x−1h2x) ∩ EG(h1) = EG(S). By defini-

tion, EG(S) ⊆ EG(x−1h2x) ∩ EG(h1). To obtain the inverse inclusion, arguing by the contrary,
suppose that for each x ∈ S we have

(
EG

(
x−1h2x

) ∩ EG(h1)
) \ EG(S) �= ∅. (8)
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Note that if g ∈ S0 with EG(g) = E+
G(g), then the set of all elements of finite order in EG(g)

form a finite subgroup T (g) � EG(g) (this is a well-known property of groups, all of whose
conjugacy classes are finite). The elements h1 and h2 are not commensurable, therefore

EG

(
x−1h2x

) ∩ EG(h1) = T
(
x−1h2x

) ∩ T (h1) = x−1T (h2)x ∩ T (h1).

For each pair of elements (b, a) ∈ D = T (h2)× (T (h1) \EG(S)) choose x = x(b, a) ∈ S so that
x−1bx = a if such x exists; otherwise set x(b, a) = 1.

The assumption (8) clearly implies that S = ⋃
(b,a)∈D x(b, a)CS(a), where CS(a) denotes the

centralizer of a in S. Since the set D is finite, a well-know theorem of B. Neumann [16] implies
that there exists a ∈ T (h1) \ EG(S) such that |S : CS(a)| < ∞. Consequently, a ∈ EG(g) for
every g ∈ S0, that is, a ∈ EG(S), a contradiction.

Thus, EG(xh2x
−1) ∩ EG(h1) = EG(S) for some x ∈ S. After setting h′

1 = x−1h2x ∈ S0,
we see that elements h1 and h′

1 satisfy the claim (i). Since EG(h′
1) = x−1EG(h2)x, we have

EG(h′
1) = E+

G(h′
1). To demonstrate (ii), it remains to apply Lemma 3.6 and obtain an element

h ∈ 〈h1, h
′
1〉 � S which has the desired properties. �

Proof of Proposition 3.4. The implication (1) ⇒ (2) is an immediate consequence of the de-
finition. The inverse implication follows directly from the first claim of Lemma 3.8 (S is non-
elementary as S0 �= ∅ and EG(S) = {1}). �
4. Proofs of the main results

The following simplification of Theorem 2.4 from [21] is the key ingredient of the proofs in
the rest of the paper.

Theorem 4.1. Let U be a group hyperbolic relative to a collection of subgroups {Vλ}λ∈Λ, S a
suitable subgroup of U , and T a finite subset of U . Then there exists an epimorphism η :U → W

such that:

(1) The restriction of η to
⋃

λ∈Λ Vλ is injective, and the group W is properly relatively hyper-
bolic with respect to the collection {η(Vλ)}λ∈Λ.

(2) For every t ∈ T , we have η(t) ∈ η(S).

Let us also mention two known results we will use. The first lemma is a particular case of
Theorem 1.4 from [20] (if g ∈ G and H � G, Hg denotes the conjugate g−1Hg � G).

Lemma 4.2. Suppose that a group G is hyperbolic relative to a collection of subgroups {Hλ}λ∈Λ.
Then

(a) For any g ∈ G and any λ,μ ∈ Λ, λ �= μ, the intersection H
g
λ ∩ Hμ is finite.

(b) For any λ ∈ Λ and any g /∈ Hλ, the intersection H
g
λ ∩ Hλ is finite.

The second result can easily be derived from Lemma 3.5.

Lemma 4.3. (See Corollary 4.5, [19].) Let G be an infinite properly relatively hyperbolic group.
Then G contains a hyperbolic element of infinite order.
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Lemma 4.4. Let the group G be hyperbolic with respect to the collection of peripheral subgroups
{Hλ}λ∈Λ and let N � G be a finite normal subgroup. Then

(1) If Hλ is infinite for some λ ∈ Λ, then N � Hλ;
(2) The quotient Ḡ = G/N is hyperbolic relative to the natural image of the collection {Hλ}λ∈Λ.

Proof. Let Kλ, λ ∈ Λ, be the kernel of the action of Hλ on N by conjugation. Since N is finite,
Kλ has finite index in Hλ. On the other hand, Kλ � Hλ ∩ H

g
λ for every g ∈ N . If Hλ is infinite

this implies N � Hλ by Lemma 4.2.
To prove the second assertion, suppose that G has a relatively finite presentation (2) with

respect to the free product F defined in (1). Denote by X̄ and H̄λ the natural images of X and
Hλ in Ḡ. In order to show that Ḡ is relatively hyperbolic, one has to consider it as a quotient of
the free product F̄ = (∗λ∈Λ H̄λ) ∗ F(X̄). As G is a quotient of F , we can choose some finite
preimage M ⊂ F of N . For each element f ∈ M , fix a word in X ∪H which represents it in F

and denote by S the (finite) set of all such words. By the universality of free products, there is a
natural epimorphism ϕ :F → F̄ mapping X onto X̄ and each Hλ onto H̄λ. Define the subsets R̄
and S̄ of words in X̄ ∪ H̄ (where H̄ = ⊔

λ∈Λ(H̄λ \ {1})) by R̄ = ϕ(R) and S̄ = ϕ(S). Then the
group Ḡ possesses the relatively finite presentation

〈
X̄, {H̄λ}λ∈Λ

∣∣ R̄ = 1, R̄ ∈ R̄; S̄ = 1, S̄ ∈ S̄
〉
. (9)

Let ψ :F → G denote the natural epimorphism and D = max{‖s‖: s ∈ S}. Consider any non-
empty word w̄ in the alphabet X̄ ∪ H̄ representing the identity in Ḡ. Evidently we can choose a
word w in X ∪ H such that w̄ =F̄ ϕ(w) and ‖w‖ = ‖w̄‖. Since ker(ψ) · M is the kernel of the
induced homomorphism from F to Ḡ, we have w =F vu where u ∈ S and v is a word in X ∪H
satisfying v =G 1 and ‖v‖ � ‖w‖+D. Since G is relatively hyperbolic there is a constant C � 0
(independent of v) such that

v =F

k∏
i=1

f −1
i R±1

i fi,

where Ri ∈ R, fi ∈ F , and k � C‖v‖. Set R̄i = ϕ(R) ∈ R̄, f̄i = ϕ(fi) ∈ F̄ , i = 1,2, . . . , k, and
R̄k+1 = ϕ(u) ∈ S̄ , f̄k+1 = 1. Then

w̄ =F̄

k+1∏
i=1

f̄ −1
i R̄±1

i f̄i ,

where

k + 1 � C‖v‖ + 1 � C
(‖w‖ + D

) + 1 � C‖w̄‖ + CD + 1 � (C + CD + 1)‖w̄‖.

Thus, the relative presentation (9) satisfies a linear isoperimetric inequality with the constant
(C + CD + 1). �

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Observe that the quotient of G by the finite normal subgroup N =
EG(G) is obviously non-elementary. Hence the image of any finite Hλ is a proper subgroup
of G/N . On the other hand, if Hλ is infinite, then N � Hλ � G by Lemma 4.4, hence its image
is also proper in G/N . Therefore G/N is properly relatively hyperbolic with respect to the
collection of images of Hλ, λ ∈ Λ (see Lemma 4.4). Lemma 3.3 implies EG/N(G/N) = {1}.
Thus, without loss of generality, we may assume that EG(G) = 1.

It is straightforward to see that the free product U = G ∗ R is hyperbolic relative to the col-
lection {Hλ}λ∈Λ ∪ {R} and EG∗R(G) = EG(G) = 1. Note that G0 is non-empty by Lemma 4.3.
Hence G is a suitable subgroup of G∗R by Proposition 3.4. Let Y be a finite generating set of R.
It remains to apply Theorem 4.1 to U = G ∗ R, the obvious collection of peripheral subgroups,
and the finite set Y . �

To prove Theorem 1.4 we need one more auxiliary result which was proved in the full gener-
ality in [20] (see also [6]):

Lemma 4.5. (See Theorem 2.40, [20].) Suppose that a group G is hyperbolic relative to a col-
lection of subgroups {Hλ}λ∈Λ ∪ {S1, . . . , Sm}, where S1, . . . , Sm are hyperbolic in the ordinary
(non-relative) sense. Then G is hyperbolic relative to {Hλ}λ∈Λ.

Proof of Theorem 1.4. Let G1, G2 be finitely generated groups which are properly relatively
hyperbolic with respect to collections of subgroups {H1λ}λ∈Λ and {H2μ}μ∈M respectively. De-
note by Xi a finite generating set of the group Gi , i = 1,2. As above we may assume that
EG1(G1) = EG2(G2) = {1}. We set G = G1 ∗ G2. Observe that EG(Gi) = EGi

(Gi) = {1} and
hence Gi is suitable in G for i = 1,2 (by Lemma 4.3 and Proposition 3.4).

By the definition of suitable subgroups, there are two non-commensurable elements g1, g2 ∈
G0

2 such that EG(g1)∩EG(g2) = {1}. Further, by Lemma 3.1, the group G is hyperbolic relative
to the collection P = {H1λ}λ∈Λ ∪ {H2μ}μ∈M ∪ {EG(g1),EG(g2)}. We now apply Theorem 4.1
to the group G with the collection of peripheral subgroups P, the suitable subgroup G1 � G,
and the subset T = X2. The resulting group W is obviously a quotient of G1.

Observe that W is hyperbolic relative to (the image of) the collection {H1λ}λ∈Λ ∪ {H2μ}μ∈M

by Lemma 4.5. We would like to show that G2 is a suitable subgroup of W with respect
to this collection. To this end we note that η(g1) and η(g2) are elements of infinite order
as η is injective on EG(g1) and EG(g2). Moreover, η(g1) and η(g2) are not commensurable
in W . Indeed, otherwise, the intersection (η(EG(g1)))

g ∩ η(EG(g2)) is infinite for some g ∈ G

that contradicts the first assertion of Lemma 4.2. Assume now that g ∈ EW(η(gi)) for some
i ∈ {1,2}. By the first assertion of Lemma 3.1, (η(gm

i ))g = η(g±m
i ) for some m �= 0. Therefore,

(η(EG(gi)))
g ∩ η(EG(gi)) contains η(gm

i ) and, in particular, this intersection is infinite. By the
second assertion of Lemma 4.2, this means that g ∈ η(EG(gi)). Thus, EW(η(gi)) = η(EG(gi)).
Finally, using injectivity of η on EG(g1) ∪ EG(g2), we obtain

EW

(
η(g1)

) ∩ EW

(
η(g2)

) = η
(
EG(g1)

) ∩ η
(
EG(g2)

) = η
(
EG(g1) ∩ EG(g2)

) = {1}.

This means that the image of G2 is a suitable subgroup of W .
Thus we may apply Theorem 4.1 again to the group W , the subgroup G2 and the finite sub-

set X1. The resulting group Q is the desired common quotient of G1 and G2. The last property,
which claims that Q can be obtained from G1 ∗ G2 by adding only finitely many relations,
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follows because G1 ∗ G2 and G are hyperbolic with respect to the same family of peripheral
subgroups and any relatively hyperbolic group is relatively finitely presented. �
References

[1] H. Bass, A. Lubotzky, Nonarithmetic superrigid groups: Counterexamples to Platonov’s conjecture, Ann. of
Math. 151 (3) (2000) 1151–1173.

[2] B. Baumslag, S.J. Pride, Groups with two more generators than relators, J. London Math. Soc. (2) 17 (3) (1978)
425–426.

[3] B.H. Bowditch, Relatively hyperbolic groups, preprint, Southampton, 1998.
[4] F. Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933–963.
[5] C. Drutu, M. Sapir, Tree graded spaces and asymptotic cones, with appendix by D. Osin and M. Sapir, Topol-

ogy 44 (5) (2005) 959–1058.
[6] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (5) (1998) 810–840.
[7] B. Fine, M. Tretkoff, On the SQ-universality of HNN groups, Proc. Amer. Math. Soc. 73 (3) (1979) 283–290.
[8] B. Fine, On power conjugacy and SQ-universality for Fuchsian and Kleinian groups, in: Modular Functions in

Analysis and Number Theory, in: Lecture Notes Math. Statist., vol. 5, Univ. Pittsburgh, Pittsburgh, PA, 1983, pp. 41–
54.

[9] M. Gromov, Hyperbolic groups, in: S.M. Gersten (Ed.), Essays in Group Theory, in: Math. Sci. Res. Inst. Publ.,
vol. 8, Springer-Verlag, 1987, pp. 75–263.

[10] V. Guirardel, Limit groups and groups acting freely on Rn-trees, Geom. Topol. 8 (2004) 1427–1470.
[11] G. Higman, B.H. Neumann, H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949) 247–

254.
[12] J. Howie, On the SQ-universality of T (6)-groups, Forum Math. 1 (3) (1989) 251–272.
[13] G.C. Hruska, B. Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005) 1501–1538.
[14] K.I. Lossov, SQ-universality of free products with amalgamated finite subgroups, Sibirsk. Mat. Zh. 27 (6) (1986)

128–139, 225 (in Russian).
[15] Ch.F. Miller III, Decision problems for groups—Survey and reflections, in: Algorithms and Classification in Com-

binatorial Group Theory, Berkeley, CA, 1989, in: Math. Sci. Res. Inst. Publ., vol. 23, Springer-Verlag, New York,
1992, pp. 1–59.

[16] B.H. Neumann, Groups covered by permutable subsets, J. London Math. Soc. 29 (1954) 236–248.
[17] A.Yu. Olshanskii, On the Bass–Lubotzky question about quotients of hyperbolic groups, J. Algebra 226 (2) (2000)

807–817.
[18] A.Yu. Olshanskii, SQ-universality of hyperbolic groups, Mat. Sb. 186 (8) (1995) 119–132 (in Russian); Sb.

Math. 186 (8) (1995) 1199–1211.
[19] D.V. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra

Comput. 16 (1) (2006) 99–118.
[20] D.V. Osin, Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Mem.

Amer. Math. Soc. 179 (843) (2006), vi+100 pp.
[21] D.V. Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Ann. of Math., in press.
[22] J. Ratcliffe, Euler characteristics of 3-manifold groups and discrete subgroups of SL(2,C), in: Proceedings of the

Northwestern Conference on Cohomology of Groups, Evanston, IL, 1985, J. Pure Appl. Algebra 44 (1–3) (1987)
303–314.

[23] G.S. Sacerdote, P.E. Schupp, SQ-universality in HNN groups and one relator groups, J. London Math. Soc. (2) 7
(1974) 733–740.

[24] P.E. Schupp, A survey of SQ-universality, in: Conference on Group Theory, Univ. Wisconsin-Parkside, Kenosha,
WI, 1972, in: Lecture Notes in Math., vol. 319, Springer-Verlag, Berlin, 1973, pp. 183–188.

[25] J. Stallings, Group Theory and Three-Dimensional Manifolds, Yale Mathematical Monographs, vol. 4, Yale Uni-
versity Press, New Haven, CT, 1971.


