

journal of **Algebra**

Journal of Algebra 315 (2007) 165-177

www.elsevier.com/locate/jalgebra

The SQ-universality and residual properties of relatively hyperbolic groups ☆

G. Arzhantseva a, A. Minasyan a,*, D. Osin b

^a Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case postale 64, 1211 Genève 4, Switzerland ^b NAC 8133, Department of Mathematics, The City College of the City University of New York, Convent Ave. at 138th Street, New York, NY 10031, USA

> Received 14 March 2006 Available online 23 May 2007 Communicated by Efim Zelmanov

Abstract

In this paper we study residual properties of relatively hyperbolic groups. In particular, we show that if a group G is non-elementary and hyperbolic relative to a collection of proper subgroups, then G is SQ-universal.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Relatively hyperbolic groups; SQ-universality

1. Introduction

The notion of a group hyperbolic relative to a collection of subgroups was originally suggested by Gromov [9] and since then it has been elaborated from different points of view [3,5,6,20]. The class of relatively hyperbolic groups includes many examples. For instance, if M is a complete finite-volume manifold of pinched negative sectional curvature, then $\pi_1(M)$ is hyperbolic with respect to the cusp subgroups [3,6]. More generally, if G acts isometrically and properly discontinuously on a proper hyperbolic metric space X so that the induced action of G

[★] The work of the first two authors was supported by the Swiss National Science Foundation Grant # PP002-68627. The work of the third author has been supported by the Russian Foundation for Basic Research Grant # 03-01-06555.

Corresponding author.

E-mail addresses: goulnara.arjantseva@math.unige.ch (G. Arzhantseva), aminasyan@gmail.com (A. Minasyan), denis.osin@gmail.com (D. Osin).

on ∂X is geometrically finite, then G is hyperbolic relative to the collection of maximal parabolic subgroups [3]. Groups acting on CAT(0) spaces with isolated flats are hyperbolic relative to the collection of flat stabilizers [13]. Algebraic examples of relatively hyperbolic groups include free products and their small cancellation quotients [20], fully residually free groups (or Sela's limit groups) [4], and, more generally, groups acting freely on \mathbb{R}^n -trees [10].

The main goal of this paper is to study residual properties of relatively hyperbolic groups. Recall that a group G is called SQ-universal if every countable group can be embedded into a quotient of G [24]. It is straightforward to see that any SQ-universal group contains an infinitely generated free subgroup. Furthermore, since the set of all finitely generated groups is uncountable and every single quotient of G contains (at most) countably many finitely generated subgroups, every SQ-universal group has uncountably many non-isomorphic quotients. Thus the property of being SQ-universal may, in a very rough sense, be considered as an indication of "largeness" of a group.

The first non-trivial example of an SQ-universal group was provided by Higman, Neumann and Neumann [11], who proved that the free group of rank 2 is SQ-universal. Presently many other classes of groups are known to be SQ-universal: various HNN-extensions and amalgamated products [7,14,23], groups of deficiency 2 [2], most C(3) & T(6)-groups [12], etc. The SQ-universality of non-elementary hyperbolic groups was proved by Olshanskii in [18]. On the other hand, for relatively hyperbolic groups, there are some partial results. Namely, in [8] Fine proved the SQ-universality of certain Kleinian groups. The case of fundamental groups of hyperbolic 3-manifolds was studied by Ratcliffe in [22].

In this paper we prove the SQ-universality of relatively hyperbolic groups in the most general settings. Let a group G be hyperbolic relative to a collection of subgroups $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$ (called *peripheral subgroups*). We say that G is *properly hyperbolic relative to* $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$ (or G is a *PRH group* for brevity), if $H_{\lambda} \neq G$ for all ${\lambda} \in \Lambda$. Recall that a group is *elementary*, if it contains a cyclic subgroup of finite index. We observe that every non-elementary PRH group has a unique maximal finite normal subgroup denoted by $E_G(G)$ (see Lemmas 4.3 and 3.3 below).

Theorem 1.1. Suppose that a group G is non-elementary and properly relatively hyperbolic with respect to a collection of subgroups $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$. Then for each finitely generated group R, there exists a quotient group Q of G and an embedding $R\hookrightarrow Q$ such that:

- (1) Q is properly relatively hyperbolic with respect to the collection $\{\psi(H_{\lambda})\}_{{\lambda}\in\Lambda}\cup\{R\}$ where $\psi:G\to Q$ denotes the natural epimorphism;
- (2) For each $\lambda \in \Lambda$, we have $H_{\lambda} \cap \ker(\psi) = H_{\lambda} \cap E_G(G)$, that is, $\psi(H_{\lambda})$ is naturally isomorphic to $H_{\lambda}/(H_{\lambda} \cap E_G(G))$.

In general, we cannot require the epimorphism ψ to be injective on every H_{λ} . Indeed, it is easy to show that a finite normal subgroup of a relatively hyperbolic group must be contained in each infinite peripheral subgroup (see Lemma 4.4). Thus the image of $E_G(G)$ in Q will have to be inside R whenever R is infinite. If, in addition, the group R is torsion-free, the latter inclusion implies $E_G(G) \leq \ker(\psi)$. This would be the case if one took $G = F_2 \times \mathbb{Z}/(2\mathbb{Z})$ and $R = \mathbb{Z}$, where F_2 denotes the free group of rank 2 and G is properly hyperbolic relative to its subgroup $\mathbb{Z}/(2\mathbb{Z}) = E_G(G)$.

Since any countable group is embeddable into a finitely generated group, we obtain the following.

Corollary 1.2. Any non-elementary PRH group is SQ-universal.

Let us mention a particular case of Corollary 1.2. In [7] the authors asked whether every finitely generated group with infinite number of ends is SQ-universal. The celebrated Stallings theorem [25] states that a finitely generated group has infinite number of ends if and only if it splits as a non-trivial HNN-extension or amalgamated product over a finite subgroup. The case of amalgamated products was considered by Lossov who provided the positive answer in [14]. Corollary 1.2 allows us to answer the question in the general case. Indeed, every group with infinite number of ends is non-elementary and properly relatively hyperbolic, since the action of such a group on the corresponding Bass–Serre tree satisfies Bowditch's definition of relative hyperbolicity [3].

Corollary 1.3. A finitely generated group with infinite number of ends is SQ-universal.

The methods used in the proof of Theorem 1.1 can also be applied to obtain other results:

Theorem 1.4. Any two finitely generated non-elementary PRH groups G_1 , G_2 have a common non-elementary PRH quotient Q. Moreover, Q can be obtained from the free product $G_1 * G_2$ by adding finitely many relations.

In [17] Olshanskii proved that any non-elementary hyperbolic group has a non-trivial finitely presented quotient without proper subgroups of finite index. This result was used by Lubotzky and Bass [1] to construct representation rigid linear groups of non-arithmetic type thus solving in negative the Platonov Conjecture. Theorem 1.4 yields a generalization of Olshanskii's result.

Definition 1.5. Given a class of groups \mathcal{G} , we say that a group R is *residually incompatible with* \mathcal{G} if for any group $A \in \mathcal{G}$, any homomorphism $R \to A$ has a trivial image.

If G and R are finitely presented groups, G is properly relatively hyperbolic, and R is residually incompatible with a class of groups G, we can apply Theorem 1.4 to $G_1 = G$ and $G_2 = R * R$. Obviously, the obtained common quotient of G_1 and G_2 is finitely presented and residually incompatible with G.

Corollary 1.6. Let \mathcal{G} be a class of groups. Suppose that there exists a finitely presented group R that is residually incompatible with \mathcal{G} . Then every finitely presented non-elementary PRH group has a non-trivial finitely presented quotient group that is residually incompatible with \mathcal{G} .

Recall that there are finitely presented groups having no non-trivial recursively presented quotients with decidable word problem [15]. Applying the previous corollary to the class \mathcal{G} of all recursively presented groups with decidable word problem, we obtain the following result.

Corollary 1.7. Every non-elementary finitely presented PRH group has an infinite finitely presented quotient group Q such that the word problem is undecidable in each non-trivial quotient of Q.

In particular, Q has no proper subgroups of finite index. The reader can easily check that Corollary 1.6 can also be applied to the classes of all torsion (torsion-free, Noetherian, Artinian, amenable, etc.) groups.

2. Relatively hyperbolic groups

We recall the definition of relatively hyperbolic groups suggested in [20] (for equivalent definitions in the case of finitely generated groups see [3,5,6]). Let G be a group, $\{H_{\lambda}\}_{\lambda \in \Lambda}$ a fixed collection of subgroups of G (called *peripheral subgroups*), X a subset of G. We say that X is a *relative generating set of* G with respect to $\{H_{\lambda}\}_{{\lambda} \in \Lambda}$ if G is generated by X together with the union of all H_{λ} (for convenience, we always assume that $X = X^{-1}$). In this situation the group G can be considered as a quotient of the free product

$$F = \left(\underset{\lambda \in \Lambda}{*} H_{\lambda} \right) * F(X), \tag{1}$$

where F(X) is the free group with the basis X. Suppose that \mathcal{R} is a subset of F such that the kernel of the natural epimorphism $F \to G$ is a normal closure of \mathcal{R} in the group F, then we say that G has *relative presentation*

$$\langle X, \{H_{\lambda}\}_{{\lambda}\in\Lambda} \mid R=1, R\in\mathcal{R} \rangle.$$
 (2)

If sets X and \mathcal{R} are finite, the presentation (2) is said to be *relatively finite*.

Definition 2.1. We set

$$\mathcal{H} = \bigsqcup_{\lambda \in \Lambda} (H_{\lambda} \setminus \{1\}). \tag{3}$$

A group G is relatively hyperbolic with respect to a collection of subgroups $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$, if G admits a relatively finite presentation (2) with respect to $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$ satisfying a linear relative isoperimetric inequality. That is, there exists C>0 satisfying the following condition. For every word w in the alphabet $X\cup\mathcal{H}$ representing the identity in the group G, there exists an expression

$$w =_F \prod_{i=1}^k f_i^{-1} R_i^{\pm 1} f_i \tag{4}$$

with the equality in the group F, where $R_i \in \mathcal{R}$, $f_i \in F$, for i = 1, ..., k, and $k \le C ||w||$, where ||w|| is the length of the word w. This definition is independent of the choice of the (finite) generating set X and the (finite) set \mathcal{R} in (2).

For a combinatorial path p in the Cayley graph $\Gamma(G, X \cup \mathcal{H})$ of G with respect to $X \cup \mathcal{H}$, $p_-, p_+, l(p)$, and $\mathbf{Lab}(p)$ will denote the initial point, the ending point, the length (that is, the number of edges) and the label of p respectively. Further, if Ω is a subset of G and $g \in \langle \Omega \rangle \leqslant G$, then $|g|_{\Omega}$ will be used to denote the length of a shortest word in $\Omega^{\pm 1}$ representing g.

Let us recall some terminology introduced in [20]. Suppose q is a path in $\Gamma(G, X \cup \mathcal{H})$.

Definition 2.2. A subpath p of q is called an H_{λ} -component for some $\lambda \in \Lambda$ (or simply a *component*) of q, if the label of p is a word in the alphabet $H_{\lambda} \setminus \{1\}$ and p is not contained in a bigger subpath of q with this property.

Two components p_1 , p_2 of a path q in $\Gamma(G, X \cup \mathcal{H})$ are called *connected* if they are H_{λ} -components for the same $\lambda \in \Lambda$ and there exists a path c in $\Gamma(G, X \cup \mathcal{H})$ connecting a vertex of p_1 to a vertex of p_2 such that $\mathbf{Lab}(c)$ entirely consists of letters from H_{λ} . In algebraic terms this means that all vertices of p_1 and p_2 belong to the same coset gH_{λ} for a certain $g \in G$. We can always assume c to have length at most 1, as every non-trivial element of H_{λ} is included in the set of generators. An H_{λ} -component p of a path q is called *isolated* if no distinct H_{λ} -component of p is connected to p. A path p is said to be *without backtracking* if all its components are isolated.

The next lemma is a simplification of Lemma 2.27 from [20].

Lemma 2.3. Suppose that a group G is hyperbolic relative to a collection of subgroups $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$. Then there exists a finite subset $\Omega\subseteq G$ and a constant $K\geqslant 0$ such that the following condition holds. Let q be a cycle in $\Gamma(G,X\cup\mathcal{H}),\ p_1,\ldots,p_k$ a set of isolated H_{λ} -components of q for some $\lambda\in\Lambda,\ g_1,\ldots,g_k$ elements of G represented by labels $\mathbf{Lab}(p_1),\ldots,\mathbf{Lab}(p_k)$ respectively. Then g_1,\ldots,g_k belong to the subgroup $\langle\Omega\rangle\leqslant G$ and the word lengths of g_i 's with respect to Ω satisfy the inequality

$$\sum_{i=1}^{k} |g_i|_{\Omega} \leqslant Kl(q).$$

3. Suitable subgroups of relatively hyperbolic groups

Throughout this section let G be a group which is properly hyperbolic relative to a collection of subgroups $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$, X a finite relative generating set of G, and $\Gamma(G,X\cup\mathcal{H})$ the Cayley graph of G with respect to the generating set $X\cup\mathcal{H}$, where \mathcal{H} is given by (3). Recall that an element $g\in G$ is called *hyperbolic* if it is not conjugate to an element of some H_{λ} , $\lambda\in\Lambda$. The following description of elementary subgroups of G was obtained in [19].

Lemma 3.1. Let g be a hyperbolic element of infinite order of G. Then the following conditions hold.

(1) The element g is contained in a unique maximal elementary subgroup $E_G(g)$ of G, where

$$E_G(g) = \left\{ f \in G: \ f^{-1}g^n f = g^{\pm n} \text{ for some } n \in \mathbb{N} \right\}. \tag{5}$$

(2) The group G is hyperbolic relative to the collection $\{H_{\lambda}\}_{{\lambda}\in\Lambda}\cup\{E_G(g)\}$.

Given a subgroup $S \leq G$, we denote by S^0 the set of all hyperbolic elements of S of infinite order. Recall that two elements $f, g \in G^0$ are said to be *commensurable* (in G) if f^k is conjugated to g^l in G for some non-zero integers k and l.

Definition 3.2. A subgroup $S \le G$ is called *suitable*, if there exist at least two non-commensurable elements $f_1, f_2 \in S^0$, such that $E_G(f_1) \cap E_G(f_2) = \{1\}$.

If $S^0 \neq \emptyset$, we define

$$E_G(S) = \bigcap_{g \in S^0} E_G(g).$$

Lemma 3.3. If $S \leq G$ is a non-elementary subgroup and $S^0 \neq \emptyset$, then $E_G(S)$ is the maximal finite subgroup of G normalized by S.

Proof. Indeed, if a finite subgroup $M \leq G$ is normalized by S, then $|S:C_S(M)| < \infty$ where $C_S(M) = \{g \in S: g^{-1}xg = x, \forall x \in M\}$. Formula (5) implies that $M \leq E_G(g)$ for every $g \in S^0$, hence $M \leq E_G(S)$.

On the other hand, if S is non-elementary and $S^0 \neq \emptyset$, there exist $h \in S^0$ and $a \in S^0 \setminus E_G(h)$. Then $a^{-1}ha \in S^0$ and the intersection $E_G(a^{-1}ha) \cap E_G(h)$ is finite. Indeed if $E_G(a^{-1}ha) \cap E_G(h)$ were infinite, we would have $(a^{-1}ha)^n = h^k$ for some $n, k \in \mathbb{Z} \setminus \{0\}$, which would contradict to $a \notin E_G(h)$. Hence $E_G(S) \leqslant E_G(a^{-1}ha) \cap E_G(h)$ is finite. Obviously, $E_G(S)$ is normalized by S in G. \square

The main result of this section is the following

Proposition 3.4. Suppose that a group G is hyperbolic relative to a collection $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$ and S is a subgroup of G. Then the following conditions are equivalent.

- (1) S is suitable;
- (2) $S^0 \neq \emptyset$ and $E_G(S) = \{1\}.$

Our proof of Proposition 3.4 will make use of several auxiliary statements below.

Lemma 3.5. (See Lemma 4.4, [19].) For any $\lambda \in \Lambda$ and any element $a \in G \setminus H_{\lambda}$, there exists a finite subset $\mathcal{F}_{\lambda} = \mathcal{F}_{\lambda}(a) \subseteq H_{\lambda}$ such that if $h \in H_{\lambda} \setminus \mathcal{F}_{\lambda}$, then ah is a hyperbolic element of infinite order.

It can be seen from Lemma 3.1 that every hyperbolic element $g \in G$ of infinite order is contained inside the elementary subgroup

$$E_G^+(g) = \{ f \in G \colon f^{-1}g^n f = g^n \text{ for some } n \in \mathbb{N} \} \leqslant E_G(g),$$

and $|E_G(g): E_G^+(g)| \leq 2$.

Lemma 3.6. Suppose $g_1, g_2 \in G^0$ are non-commensurable and $A = \langle g_1, g_2 \rangle \leqslant G$. Then there exists an element $h \in A^0$ such that:

- (1) h is not commensurable with g_1 and g_2 ;
- (2) $E_G(h) = E_G^+(h) \le \langle h, E_G(g_1) \cap E_G(g_2) \rangle$. If, in addition, $E_G(g_j) = E_G^+(g_j)$, j = 1, 2, then $E_G(h) = E_G^+(h) = \langle h \rangle \times (E_G(g_1) \cap E_G(g_2))$.

Proof. By Lemma 3.1, G is hyperbolic relative to the collection of peripheral subgroups $\mathfrak{C}_1 = \{H_{\lambda}\}_{{\lambda} \in \Lambda} \cup \{E_G(g_1)\} \cup \{E_G(g_2)\}$. The center $Z(E_G^+(g_j))$ has finite index in $E_G^+(g_j)$, hence (possibly, after replacing g_j with a power of itself) we can assume that $g_j \in Z(E_G^+(g_j)), j = 1, 2$. Using Lemma 3.5 we can find an integer $n_1 \in \mathbb{N}$ such that the element $g_3 = g_2 g_1^{n_1} \in A$ is hyperbolic relatively to \mathfrak{C}_1 and has infinite order. Applying Lemma 3.1 again, we achieve hyperbolicity of G relative to $\mathfrak{C}_2 = \mathfrak{C}_1 \cup \{E_G(g_3)\}$. Set $\mathcal{H}' = \bigsqcup_{H \in \mathfrak{C}_2} (H \setminus \{1\})$.

Let $\Omega \subset G$ be the finite subset and K > 0 the constant chosen according to Lemma 2.3 (where G is considered to be relatively hyperbolic with respect to \mathfrak{C}_2). Using Lemma 3.5 two more times, we can find numbers $m_1, m_2, m_3 \in \mathbb{N}$ such that

$$g_i^{m_i} \notin \{ y \in \langle \Omega \rangle : |y|_{\Omega} \le 21K \}, \quad i = 1, 2, 3, \tag{6}$$

and $h=g_1^{m_1}g_3^{m_3}g_2^{m_2}\in A$ is a hyperbolic element (with respect to \mathfrak{C}_2) and has infinite order. Indeed, first we choose m_1 to satisfy (6). By Lemma 3.5, there is m_3 satisfying (6), so that $g_1^{m_1}g_3^{m_3}\in A^0$. Similarly m_2 can be chosen sufficiently large to satisfy (6) and $g_1^{m_1}g_3^{m_3}g_2^{m_2}\in A^0$. In particular, h will be non-commensurable with g_j , j=1,2 (otherwise, there would exist $f\in G$ and $h\in \mathbb{N}$ such that $f^{-1}h^nf\in E(g_j)$, implying $h\in fE(g_j)f^{-1}$ by Lemma 3.1 and contradicting the hyperbolicity of h).

Consider a path q labeled by the word $(g_1^{m_1}g_3^{m_3}g_2^{m_2})^l$ in $\Gamma(G,X\cup\mathcal{H}')$ for some $l\in\mathbb{Z}\setminus\{0\}$, where each $g_i^{m_i}$ is treated as a single letter from \mathcal{H}' . After replacing q with q^{-1} , if necessary, we assume that $l\in\mathbb{N}$. Let p_1,\ldots,p_{3l} be all components of q; by the construction of q, we have $l(p_j)=1$ for each j. Suppose not all of these components are isolated. Then one can find indices $1\leqslant s< t\leqslant 3l$ and $i\in\{1,2,3\}$ such that p_s and p_t are $E_G(g_i)$ -components of q, $(p_t)_-$ and $(p_s)_+$ are connected by a path r with $\mathbf{Lab}(r)\in E_G(g_i)$, $l(r)\leqslant 1$, and (t-s) is minimal with this property. To simplify the notation, assume that i=1 (the other two cases are similar). Then $p_{s+1},p_{s+4},\ldots,p_{t-2}$ are isolated $E_G(g_3)$ -components of the cycle $p_{s+1}p_{s+2}\ldots p_{t-1}r$, and there are exactly $(t-s)/3\geqslant 1$ of them. Applying Lemma 2.3, we obtain $g_3^{m_3}\leqslant \langle\Omega\rangle$ and

$$\frac{t-s}{3} \left| g_3^{m_3} \right|_{\Omega} \leqslant K(t-s).$$

Hence $|g_3^{m_3}|_{\Omega} \leq 3K$, contradicting (6). Therefore two distinct components of q cannot be connected with each other; that is, the path q is without backtracking.

To finish the proof of Lemma 3.6 we need an auxiliary statement below. Denote by \mathcal{W} the set of all subwords of words $(g_1^{m_1}g_3^{m_3}g_2^{m_2})^l, l \in \mathbb{Z}$ (where $g_i^{\pm m_i}$ is treated as a single letter from \mathcal{H}'). Consider an arbitrary cycle o = rqr'q' in $\Gamma(G, X \cup \mathcal{H}')$, where $\mathbf{Lab}(q), \mathbf{Lab}(q') \in \mathcal{W}$; and set $C = \max\{l(r), l(r')\}$. Let p be a component of q (or q'). We will say that p is regular if it is not an isolated component of o. As o and o are without backtracking, this means that o is either connected to some component of o (respectively o), or to a component of o, or o'.

Lemma 3.7. *In the above notations*

- (a) if $C \le 1$ then every component of q or q' is regular;
- (b) if $C \ge 2$ then each of q and q' can have at most 15C components which are not regular.

Proof. Assume the contrary to (a). Then one can choose a cycle o = rqr'q' with $l(r), l(r') \le 1$, having at least one $E(g_i)$ -isolated component on q or q' for some $i \in \{1, 2, 3\}$, and such that l(q) + l(q') is minimal. Clearly the latter condition implies that each component of q or q' is an isolated component of q. Therefore q and q' together contain q distinct q

of o where $k \geqslant 1$ and $k \geqslant \lfloor l(q)/3 \rfloor + \lfloor l(q')/3 \rfloor$. Applying Lemma 2.3 we obtain $g_i^{m_i} \in \langle \Omega \rangle$ and $k \mid g_i^{m_i} \mid_{\Omega} \leqslant K(l(q) + l(q') + 2)$, therefore $\mid g_i^{m_i} \mid_{\Omega} \leqslant 11K$, contradicting the choice of m_i in (6).

Let us prove (b). Suppose that $C \ge 2$ and q contains more than 15C isolated components of o. We consider two cases:

Case 1. No component of q is connected to a component of q'. Then a component of q or q' can be regular only if it is connected to a component of r or r'. Since q and q' are without backtracking, two distinct components of q or q' cannot be connected to the same component of r (or r'). Hence q and q' together can contain at most 2C regular components. Thus there is an index $i \in \{1, 2, 3\}$ such that the cycle o has k isolated $E(g_i)$ -components, where $k \ge \lfloor l(q)/3 \rfloor + \lfloor l(q')/3 \rfloor - 2C \ge \lfloor 5C \rfloor - 2C > 2C > 3$. By Lemma 2.3, $g_i^{m_i} \in \langle \Omega \rangle$ and $k | g_i^{m_i} |_{\Omega} \le K(l(q) + l(q') + 2C)$, hence

$$\left|g_i^{m_i}\right|_{\Omega} \leqslant K \frac{3(\lfloor l(q)/3 \rfloor + 1) + 3(\lfloor l(q')/3 \rfloor + 1) + 2C}{\lfloor l(q)/3 \rfloor + \lfloor l(q')/3 \rfloor - 2C} \leqslant K\left(3 + \frac{6 + 8C}{2C}\right) \leqslant 9K,$$

contradicting the choice of m_i in (6).

Case 2. The path q has at least one component which is connected to a component of q'. Let $p_1, \ldots, p_{l(q)}$ denote the sequence of all components of q. By part (a), if p_s and p_t , $1 \le s \le t \le l(q)$, are connected to components of q', then for any j, $s \le j \le t$, p_j is regular. We can take s (respectively t) to be minimal (respectively maximal) possible. Consequently $p_1, \ldots, p_{s-1}, p_{t+1}, \ldots, p_{l(q)}$ will contain the set of all isolated components of o that belong to q.

Without loss of generality we may assume that $s-1\geqslant 15C/2$. Since p_s is connected to some component p' of q', there exists a path v in $\Gamma(G,X\cup\mathcal{H}')$ satisfying $v_-=(p_s)_-, v_+=p'_+,$ Lab $(v)\in\mathcal{H}', l(v)=1$. Let \bar{q} (respectively \bar{q}') denote the subpath of q (respectively q') from q_- to $(p_s)_-$ (respectively from p'_+ to q'_+). Consider a new cycle $\bar{o}=r\bar{q}v\bar{q}'$. Reasoning as before, we can find $i\in\{1,2,3\}$ such that \bar{o} has k isolated $E(g_i)$ -components, where $k\geqslant\lfloor l(\bar{q})/3\rfloor+\lfloor l(\bar{q}')/3\rfloor-C-1\geqslant\lfloor 15C/6\rfloor-C-1>C-1\geqslant 1$. Using Lemma 2.3, we get $g_i^{m_i}\in\langle\Omega\rangle$ and $k|g_i^{m_i}|_{\Omega}\leqslant K(l(\bar{q})+l(\bar{q}')+C+1)$. The latter inequality implies $|g_i^{m_i}|_{\Omega}\leqslant 21K$, yielding a contradiction in the usual way and proving (b) for q. By symmetry this property holds for q' as well. \square

Continuing the proof of Lemma 3.6, consider an element $x \in E_G(h)$. According to Lemma 3.1, there exists $l \in \mathbb{N}$ such that

$$xh^l x^{-1} = h^{\epsilon l},\tag{7}$$

where $\epsilon = \pm 1$. Set $C = |x|_{X \cup \mathcal{H}'}$. After raising both sides of (7) in an integer power, we can assume that l is sufficiently large to satisfy l > 32C + 3.

Consider a cycle o = rqr'q' in $\Gamma(G, X \cup \mathcal{H}')$ satisfying $r_- = q'_+ = 1$, $r_+ = q_- = x$, $q_+ = r'_- = xh^l$, $r'_+ = q'_- = xh^lx^{-1}$, $\mathbf{Lab}(q) \equiv (g_1^{m_1}g_3^{m_3}g_2^{m_2})^l$, $\mathbf{Lab}(q') \equiv (g_1^{m_1}g_3^{m_3}g_2^{m_2})^{-\epsilon l}$, l(q) = l(q') = 3l, l(r) = l(r') = C.

Let p_1, p_2, \ldots, p_{3l} and $p'_1, p'_2, \ldots, p'_{3l}$ be all components of q and q' respectively. Thus, $p_3, p_6, p_9, \ldots, p_{3l}$ are all $E_G(g_2)$ -components of q. Since l > 17C and q is without backtracking, by Lemma 3.7, there exist indices $1 \le s, s' \le 3l$ such that the $E_G(g_2)$ -component p_s of q is connected to the $E_G(g_2)$ -component $p'_{s'}$ of q'. Without loss of generality, assume that $s \le 3l/2$

(the other situation is symmetric). There is a path u in $\Gamma(G, X \cup \mathcal{H}')$ with $u_- = (p'_{s'})_-$, $u_+ = (p_s)_+$, $\mathbf{Lab}(u) \in E_G(g_2)$ and $l(u) \leq 1$. We obtain a new cycle $o' = up_{s+1} \dots p_{3l}r'p'_1 \dots p'_{s'-1}$ in the Cayley graph $\Gamma(G, X \cup \mathcal{H}')$. Due to the choice of s and l, the same argument as before will demonstrate that there are $E_G(g_2)$ -components $p_{\bar{s}}$, $p'_{\bar{s}'}$ of q, q' respectively, which are connected and $s < \bar{s} \leq 3l$, $1 \leq \bar{s}' < s'$ (in the case when s > 3l/2, the same inequalities can be achieved by simply renaming the indices correspondingly).

It is now clear that there exist $i \in \{1, 2, 3\}$ and connected $E_G(g_i)$ -components p_t , $p'_{t'}$ of q, q' ($s < t \le 3l$, $1 \le t' < s'$) such that t > s is minimal. Let v denote a path in $\Gamma(G, X \cup \mathcal{H}')$ with $v_- = (p_t)_-$, $v_+ = (p_{t'})_+$, $\mathbf{Lab}(v) \in E_G(g_i)$ and $l(v) \le 1$. Consider a cycle o'' in $\Gamma(G, X \cup \mathcal{H}')$ defined by $o'' = up_{s+1} \dots p_{t-1} vp'_{t'+1} \dots p'_{s'-1}$. By part (a) of Lemma 3.7, p_{s+1} is a regular component of the path $p_{s+1} \dots p_{t-1}$ in o'' (provided that $t-1 \ge s+1$). Note that p_{s+1} cannot be connected to u or v because q is without backtracking, hence it must be connected to a component of the path $p'_{t'+1} \dots p'_{s'-1}$. By the choice of t, we have t = s+1 and t = 1. Similarly t' = s' - 1. Thus $p_{s+1} = p_t$ and $p'_{s'-1} = p'_{t'}$ are connected $E_G(g_1)$ -components of q and q'.

In particular, we have $\epsilon = 1$. Indeed, otherwise we would have $\mathbf{Lab}(p_{s'-1}) \equiv g_3^{m_3}$ but $g_3^{m_3} \notin E_G(g_1)$. Therefore $x \in E_G^+(h)$ for any $x \in E_G(h)$, consequently $E_G(h) = E_G^+(h)$.

Observe that $u_- = v_+$ and $u_+ = v_-$, hence $\mathbf{Lab}(u)$ and $\mathbf{Lab}(v)^{-1}$ represent the same element $z \in E_G(g_2) \cap E_G(g_1)$. By construction, $x = h^{\alpha} z h^{\beta}$ where $\alpha = (3l - s')/3 \in \mathbb{Z}$, and $\beta = -s/3 \in \mathbb{Z}$. Thus $x \in \langle h, E_G(g_1) \cap E_G(g_2) \rangle$ and the first part of the claim (2) is proved.

Assume now that $E_G(g_j) = E_G^+(g_j)$ for j = 1, 2. Then $h = g_1^{m_1} (g_2 g_1^{n_1})^{m_3} g_2^{m_2}$ belongs to the centralizer of the finite subgroup $E_G(g_1) \cap E_G(g_2)$ (because of the choice of g_1, g_2 above). Consequently $E_G(h) = \langle h \rangle \times (E_G(g_1) \cap E_G(g_2))$. \square

Lemma 3.8. Let S be a non-elementary subgroup of G with $S^0 \neq \emptyset$. Then

- (i) there exist non-commensurable elements $h_1, h'_1 \in S^0$ with $E_G(h_1) \cap E_G(h'_1) = E_G(S)$;
- (ii) S^0 contains an element h such that $E_G(h) = \langle h \rangle \times E_G(S)$.

Proof. Choose an element $g_1 \in S^0$. By Lemma 3.1, G is hyperbolic relative to the collection $\mathfrak{C} = \{H_{\lambda}\}_{{\lambda} \in \Lambda} \cup \{E_G(g_1)\}$. Since the subgroup S is non-elementary, there is $a \in S \setminus E_G(g_1)$, and Lemma 3.5 provides us with an integer $n \in \mathbb{N}$ such that $g_2 = ag_1^n \in S$ is a hyperbolic element of infinite order (now, with respect to the family of peripheral subgroups \mathfrak{C}). In particular, g_1 and g_2 are non-commensurable and hyperbolic relative to $\{H_{\lambda}\}_{{\lambda} \in \Lambda}$.

Applying Lemma 3.6, we find $h_1 \in S^0$ (with respect to the collection of peripheral subgroups $\{H_{\lambda}\}_{{\lambda}\in{\Lambda}}$) with $E_G(h_1)=E_G^+(h_1)$ such that h_1 is not commensurable with g_j , j=1,2. Hence, g_1 and g_2 stay hyperbolic after including $E_G(h_1)$ into the family of peripheral subgroups (see Lemma 3.1). This allows to construct (in the same manner) one more element $h_2 \in \langle g_1, g_2 \rangle \leqslant S$ which is hyperbolic relative to $(\{H_{\lambda}\}_{{\lambda}\in{\Lambda}} \cup E_G(h_1))$ and satisfies $E_G(h_2)=E_G^+(h_2)$. In particular, h_2 is not commensurable with h_1 .

We claim now that there exists $x \in S$ such that $E_G(x^{-1}h_2x) \cap E_G(h_1) = E_G(S)$. By definition, $E_G(S) \subseteq E_G(x^{-1}h_2x) \cap E_G(h_1)$. To obtain the inverse inclusion, arguing by the contrary, suppose that for each $x \in S$ we have

$$\left(E_G(x^{-1}h_2x)\cap E_G(h_1)\right)\setminus E_G(S)\neq\emptyset. \tag{8}$$

Note that if $g \in S^0$ with $E_G(g) = E_G^+(g)$, then the set of all elements of finite order in $E_G(g)$ form a finite subgroup $T(g) \leq E_G(g)$ (this is a well-known property of groups, all of whose conjugacy classes are finite). The elements h_1 and h_2 are not commensurable, therefore

$$E_G(x^{-1}h_2x) \cap E_G(h_1) = T(x^{-1}h_2x) \cap T(h_1) = x^{-1}T(h_2)x \cap T(h_1).$$

For each pair of elements $(b, a) \in D = T(h_2) \times (T(h_1) \setminus E_G(S))$ choose $x = x(b, a) \in S$ so that $x^{-1}bx = a$ if such x exists; otherwise set x(b, a) = 1.

The assumption (8) clearly implies that $S = \bigcup_{(b,a) \in D} x(b,a) C_S(a)$, where $C_S(a)$ denotes the centralizer of a in S. Since the set D is finite, a well-know theorem of B. Neumann [16] implies that there exists $a \in T(h_1) \setminus E_G(S)$ such that $|S: C_S(a)| < \infty$. Consequently, $a \in E_G(g)$ for every $g \in S^0$, that is, $a \in E_G(S)$, a contradiction.

Thus, $E_G(xh_2x^{-1}) \cap E_G(h_1) = E_G(S)$ for some $x \in S$. After setting $h'_1 = x^{-1}h_2x \in S^0$, we see that elements h_1 and h'_1 satisfy the claim (i). Since $E_G(h'_1) = x^{-1}E_G(h_2)x$, we have $E_G(h'_1) = E_G^+(h'_1)$. To demonstrate (ii), it remains to apply Lemma 3.6 and obtain an element $h \in \langle h_1, h_1' \rangle \leqslant S$ which has the desired properties.

Proof of Proposition 3.4. The implication $(1) \Rightarrow (2)$ is an immediate consequence of the definition. The inverse implication follows directly from the first claim of Lemma 3.8 (S is nonelementary as $S^0 \neq \emptyset$ and $E_G(S) = \{1\}$). \square

4. Proofs of the main results

The following simplification of Theorem 2.4 from [21] is the key ingredient of the proofs in the rest of the paper.

Theorem 4.1. Let U be a group hyperbolic relative to a collection of subgroups $\{V_{\lambda}\}_{{\lambda} \in \Lambda}$, S a suitable subgroup of U, and T a finite subset of U. Then there exists an epimorphism $\eta: U \to W$ such that:

- (1) The restriction of η to $\bigcup_{\lambda \in \Lambda} V_{\lambda}$ is injective, and the group W is properly relatively hyper*bolic with respect to the collection* $\{\eta(V_{\lambda})\}_{{\lambda}\in\Lambda}$.
- (2) For every $t \in T$, we have $\eta(t) \in \eta(S)$.

Let us also mention two known results we will use. The first lemma is a particular case of Theorem 1.4 from [20] (if $g \in G$ and $H \leq G$, H^g denotes the conjugate $g^{-1}Hg \leq G$).

Lemma 4.2. Suppose that a group G is hyperbolic relative to a collection of subgroups $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$. Then

- (a) For any $g \in G$ and any $\lambda, \mu \in \Lambda$, $\lambda \neq \mu$, the intersection $H_{\lambda}^g \cap H_{\mu}$ is finite. (b) For any $\lambda \in \Lambda$ and any $g \notin H_{\lambda}$, the intersection $H_{\lambda}^g \cap H_{\lambda}$ is finite.

The second result can easily be derived from Lemma 3.5.

Lemma 4.3. (See Corollary 4.5, [19].) Let G be an infinite properly relatively hyperbolic group. Then G contains a hyperbolic element of infinite order.

Lemma 4.4. Let the group G be hyperbolic with respect to the collection of peripheral subgroups $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$ and let $N \lhd G$ be a finite normal subgroup. Then

- (1) If H_{λ} is infinite for some $\lambda \in \Lambda$, then $N \leq H_{\lambda}$;
- (2) The quotient $\bar{G} = G/N$ is hyperbolic relative to the natural image of the collection $\{H_{\lambda}\}_{{\lambda} \in \Lambda}$.

Proof. Let K_{λ} , $\lambda \in \Lambda$, be the kernel of the action of H_{λ} on N by conjugation. Since N is finite, K_{λ} has finite index in H_{λ} . On the other hand, $K_{\lambda} \leq H_{\lambda} \cap H_{\lambda}^{g}$ for every $g \in N$. If H_{λ} is infinite this implies $N \leq H_{\lambda}$ by Lemma 4.2.

To prove the second assertion, suppose that G has a relatively finite presentation (2) with respect to the free product F defined in (1). Denote by \bar{X} and \bar{H}_{λ} the natural images of X and H_{λ} in \bar{G} . In order to show that \bar{G} is relatively hyperbolic, one has to consider it as a quotient of the free product $\bar{F} = (*_{\lambda \in \Lambda} \bar{H}_{\lambda}) * F(\bar{X})$. As G is a quotient of F, we can choose some finite preimage $M \subset F$ of N. For each element $f \in M$, fix a word in $X \cup \mathcal{H}$ which represents it in F and denote by S the (finite) set of all such words. By the universality of free products, there is a natural epimorphism $\varphi : F \to \bar{F}$ mapping X onto \bar{X} and each H_{λ} onto \bar{H}_{λ} . Define the subsets $\bar{\mathcal{R}}$ and \bar{S} of words in $\bar{X} \cup \bar{\mathcal{H}}$ (where $\bar{\mathcal{H}} = \bigsqcup_{\lambda \in \Lambda} (\bar{H}_{\lambda} \setminus \{1\})$) by $\bar{\mathcal{R}} = \varphi(\mathcal{R})$ and $\bar{S} = \varphi(S)$. Then the group \bar{G} possesses the relatively finite presentation

$$\langle \bar{X}, \{\bar{H}_{\lambda}\}_{\lambda \in \Lambda} \mid \bar{R} = 1, \ \bar{R} \in \bar{\mathcal{R}}; \ \bar{S} = 1, \ \bar{S} \in \bar{\mathcal{S}} \rangle.$$
 (9)

Let $\psi: F \to G$ denote the natural epimorphism and $D = \max\{\|s\|: s \in \mathcal{S}\}$. Consider any nonempty word \bar{w} in the alphabet $\bar{X} \cup \bar{\mathcal{H}}$ representing the identity in \bar{G} . Evidently we can choose a word w in $X \cup \mathcal{H}$ such that $\bar{w} =_{\bar{F}} \varphi(w)$ and $\|w\| = \|\bar{w}\|$. Since $\ker(\psi) \cdot M$ is the kernel of the induced homomorphism from F to \bar{G} , we have $w =_F vu$ where $u \in \mathcal{S}$ and v is a word in $X \cup \mathcal{H}$ satisfying $v =_G 1$ and $\|v\| \leqslant \|w\| + D$. Since G is relatively hyperbolic there is a constant $C \geqslant 0$ (independent of v) such that

$$v =_F \prod_{i=1}^k f_i^{-1} R_i^{\pm 1} f_i,$$

where $R_i \in \mathcal{R}$, $f_i \in F$, and $k \leqslant C||v||$. Set $\bar{R}_i = \varphi(R) \in \bar{\mathcal{R}}$, $\bar{f}_i = \varphi(f_i) \in \bar{F}$, i = 1, 2, ..., k, and $\bar{R}_{k+1} = \varphi(u) \in \bar{\mathcal{S}}$, $\bar{f}_{k+1} = 1$. Then

$$\bar{w} =_{\bar{F}} \prod_{i=1}^{k+1} \bar{f}_i^{-1} \bar{R}_i^{\pm 1} \bar{f}_i,$$

where

$$k+1 \le C||v||+1 \le C(||w||+D)+1 \le C||\bar{w}||+CD+1 \le (C+CD+1)||\bar{w}||.$$

Thus, the relative presentation (9) satisfies a linear isoperimetric inequality with the constant (C+CD+1). \Box

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Observe that the quotient of G by the finite normal subgroup $N = E_G(G)$ is obviously non-elementary. Hence the image of any finite H_{λ} is a proper subgroup of G/N. On the other hand, if H_{λ} is infinite, then $N \leq H_{\lambda} \leq G$ by Lemma 4.4, hence its image is also proper in G/N. Therefore G/N is properly relatively hyperbolic with respect to the collection of images of H_{λ} , $\lambda \in \Lambda$ (see Lemma 4.4). Lemma 3.3 implies $E_{G/N}(G/N) = \{1\}$. Thus, without loss of generality, we may assume that $E_G(G) = 1$.

It is straightforward to see that the free product U = G * R is hyperbolic relative to the collection $\{H_{\lambda}\}_{{\lambda}\in \Lambda} \cup \{R\}$ and $E_{G*R}(G) = E_G(G) = 1$. Note that G^0 is non-empty by Lemma 4.3. Hence G is a suitable subgroup of G*R by Proposition 3.4. Let Y be a finite generating set of R. It remains to apply Theorem 4.1 to U = G*R, the obvious collection of peripheral subgroups, and the finite set Y. \square

To prove Theorem 1.4 we need one more auxiliary result which was proved in the full generality in [20] (see also [6]):

Lemma 4.5. (See Theorem 2.40, [20].) Suppose that a group G is hyperbolic relative to a collection of subgroups $\{H_{\lambda}\}_{{\lambda}\in\Lambda}\cup\{S_1,\ldots,S_m\}$, where S_1,\ldots,S_m are hyperbolic in the ordinary (non-relative) sense. Then G is hyperbolic relative to $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$.

Proof of Theorem 1.4. Let G_1 , G_2 be finitely generated groups which are properly relatively hyperbolic with respect to collections of subgroups $\{H_{1\lambda}\}_{\lambda\in\Lambda}$ and $\{H_{2\mu}\}_{\mu\in M}$ respectively. Denote by X_i a finite generating set of the group G_i , i=1,2. As above we may assume that $E_{G_1}(G_1)=E_{G_2}(G_2)=\{1\}$. We set $G=G_1*G_2$. Observe that $E_G(G_i)=E_{G_i}(G_i)=\{1\}$ and hence G_i is suitable in G for i=1,2 (by Lemma 4.3 and Proposition 3.4).

By the definition of suitable subgroups, there are two non-commensurable elements $g_1, g_2 \in G_2^0$ such that $E_G(g_1) \cap E_G(g_2) = \{1\}$. Further, by Lemma 3.1, the group G is hyperbolic relative to the collection $\mathfrak{P} = \{H_{1\lambda}\}_{\lambda \in \Lambda} \cup \{H_{2\mu}\}_{\mu \in M} \cup \{E_G(g_1), E_G(g_2)\}$. We now apply Theorem 4.1 to the group G with the collection of peripheral subgroups \mathfrak{P} , the suitable subgroup $G_1 \leq G$, and the subset $T = X_2$. The resulting group G is obviously a quotient of G_1 .

Observe that W is hyperbolic relative to (the image of) the collection $\{H_{1\lambda}\}_{\lambda\in\Lambda}\cup\{H_{2\mu}\}_{\mu\in M}$ by Lemma 4.5. We would like to show that G_2 is a suitable subgroup of W with respect to this collection. To this end we note that $\eta(g_1)$ and $\eta(g_2)$ are elements of infinite order as η is injective on $E_G(g_1)$ and $E_G(g_2)$. Moreover, $\eta(g_1)$ and $\eta(g_2)$ are not commensurable in W. Indeed, otherwise, the intersection $(\eta(E_G(g_1)))^g\cap\eta(E_G(g_2))$ is infinite for some $g\in G$ that contradicts the first assertion of Lemma 4.2. Assume now that $g\in E_W(\eta(g_i))$ for some $i\in\{1,2\}$. By the first assertion of Lemma 3.1, $(\eta(g_i^m))^g=\eta(g_i^{\pm m})$ for some $m\neq 0$. Therefore, $(\eta(E_G(g_i)))^g\cap\eta(E_G(g_i))$ contains $\eta(g_i^m)$ and, in particular, this intersection is infinite. By the second assertion of Lemma 4.2, this means that $g\in\eta(E_G(g_i))$. Thus, $E_W(\eta(g_i))=\eta(E_G(g_i))$. Finally, using injectivity of η on $E_G(g_1)\cup E_G(g_2)$, we obtain

$$E_W(\eta(g_1)) \cap E_W(\eta(g_2)) = \eta(E_G(g_1)) \cap \eta(E_G(g_2)) = \eta(E_G(g_1)) \cap E_G(g_2) = \{1\}.$$

This means that the image of G_2 is a suitable subgroup of W.

Thus we may apply Theorem 4.1 again to the group W, the subgroup G_2 and the finite subset X_1 . The resulting group Q is the desired common quotient of G_1 and G_2 . The last property, which claims that Q can be obtained from $G_1 * G_2$ by adding only finitely many relations,

follows because $G_1 * G_2$ and G are hyperbolic with respect to the same family of peripheral subgroups and any relatively hyperbolic group is relatively finitely presented. \Box

References

- H. Bass, A. Lubotzky, Nonarithmetic superrigid groups: Counterexamples to Platonov's conjecture, Ann. of Math. 151 (3) (2000) 1151–1173.
- [2] B. Baumslag, S.J. Pride, Groups with two more generators than relators, J. London Math. Soc. (2) 17 (3) (1978) 425–426.
- [3] B.H. Bowditch, Relatively hyperbolic groups, preprint, Southampton, 1998.
- [4] F. Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933–963.
- [5] C. Drutu, M. Sapir, Tree graded spaces and asymptotic cones, with appendix by D. Osin and M. Sapir, Topology 44 (5) (2005) 959–1058.
- [6] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (5) (1998) 810–840.
- [7] B. Fine, M. Tretkoff, On the SQ-universality of HNN groups, Proc. Amer. Math. Soc. 73 (3) (1979) 283–290.
- [8] B. Fine, On power conjugacy and SQ-universality for Fuchsian and Kleinian groups, in: Modular Functions in Analysis and Number Theory, in: Lecture Notes Math. Statist., vol. 5, Univ. Pittsburgh, PA, 1983, pp. 41– 54.
- [9] M. Gromov, Hyperbolic groups, in: S.M. Gersten (Ed.), Essays in Group Theory, in: Math. Sci. Res. Inst. Publ., vol. 8, Springer-Verlag, 1987, pp. 75–263.
- [10] V. Guirardel, Limit groups and groups acting freely on \mathbb{R}^n -trees, Geom. Topol. 8 (2004) 1427–1470.
- [11] G. Higman, B.H. Neumann, H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949) 247– 254.
- [12] J. Howie, On the SQ-universality of T(6)-groups, Forum Math. 1 (3) (1989) 251–272.
- [13] G.C. Hruska, B. Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005) 1501-1538.
- [14] K.I. Lossov, SQ-universality of free products with amalgamated finite subgroups, Sibirsk. Mat. Zh. 27 (6) (1986) 128–139, 225 (in Russian).
- [15] Ch.F. Miller III, Decision problems for groups—Survey and reflections, in: Algorithms and Classification in Combinatorial Group Theory, Berkeley, CA, 1989, in: Math. Sci. Res. Inst. Publ., vol. 23, Springer-Verlag, New York, 1992, pp. 1–59.
- [16] B.H. Neumann, Groups covered by permutable subsets, J. London Math. Soc. 29 (1954) 236–248.
- [17] A.Yu. Olshanskii, On the Bass–Lubotzky question about quotients of hyperbolic groups, J. Algebra 226 (2) (2000) 807–817.
- [18] A.Yu. Olshanskii, SQ-universality of hyperbolic groups, Mat. Sb. 186 (8) (1995) 119–132 (in Russian); Sb. Math. 186 (8) (1995) 1199–1211.
- [19] D.V. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput. 16 (1) (2006) 99–118.
- [20] D.V. Osin, Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (843) (2006), vi+100 pp.
- [21] D.V. Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Ann. of Math., in press.
- [22] J. Ratcliffe, Euler characteristics of 3-manifold groups and discrete subgroups of SL(2, C), in: Proceedings of the Northwestern Conference on Cohomology of Groups, Evanston, IL, 1985, J. Pure Appl. Algebra 44 (1–3) (1987) 303–314.
- [23] G.S. Sacerdote, P.E. Schupp, SQ-universality in HNN groups and one relator groups, J. London Math. Soc. (2) 7 (1974) 733–740.
- [24] P.E. Schupp, A survey of SQ-universality, in: Conference on Group Theory, Univ. Wisconsin-Parkside, Kenosha, WI, 1972, in: Lecture Notes in Math., vol. 319, Springer-Verlag, Berlin, 1973, pp. 183–188.
- [25] J. Stallings, Group Theory and Three-Dimensional Manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, CT, 1971.