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Abstract. We show that non-elementary word hyperbolic groups are growth
tight. This means that, given such a group G and a finite set A of its
generators, for any infinite normal subgroup N of G, the exponential
growth rate of G/N with respect to the natural image of A is strictly less
than the exponential growth rate of G with respect to A.

1. Introduction

Let G be a finitely generated group and A a finite set of generators for G.
By |x| we denote the geodesic length of an element x ∈ G in the generators
A, i.e. the length of a shortest word in the alphabet A±1 representing x.
Let B(n) denote the ball {g ∈ G | |g| ≤ n} of radius n in G.

The exponential growth rate of the pair (G,A) is the limit

λ(G,A) = lim
n→∞

n
√

#B(n)

where #X denotes the number of elements of a finite set X . The existence
of the limit follows from the submultiplicativity property of the function
#B(n): #B(m+n) ≤ #B(n)#B(m) for any n,m ≥ 0, see for example
[8, VI.C]. The uniform exponential growth rate λ(G) of G is the infinum
infA λ(G,A) over all finite generating sets A of G.

We say that a pair (G,A) is growth tight if λ(G,A) > λ(G/N,A) for all
infinite normal subgroups N of G, with A denoting the canonical image of
A inG/N . (This is a modification of the definition in [5].) Observe that, for
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a torsion-free group G, “infinite” means “any nontrivial” in this definition
and it coincides then with one given in [5]. On the other hand, if N is finite
it is not hard to see that we always have λ(G,A) = λ(G/N,A).

It is known that for a free group Fk of rank k ≥ 2 and for a free basis
Xk of Fk, the pair (Fk, Xk) is growth tight. The direct product Fk × Fk

generated by X = (Xk × {1}) ∪ ({1} ×Xk) is an example of a pair which
is not growth tight [5].

For results and applications related to the exponential growth rate and the
growth tightness property, see [5,8,9]. We mention here that the exponential
growth rate of the pair (G,A) and its logarithm, sometimes called the entropy
of the pair (G,A), give rise to bounds of the growth of the volume of balls in
a Riemannian manifold M with fundamental group G as well as to bounds
of the topological entropy of the geodesic flow on M , see [6, Sect. 5.B].

Recall that a group G is called Hopfian if every epimorphism G → G
is an isomorphism, i.e. there is no a proper quotient G/N of G isomorphic
to G. As an immediate consequence of the above definitions we have the
following

Observation. Let G be a finitely generated group. If there exists a finite
generating set A of G such that λ(G,A) = λ(G) and if (G,A) is growth
tight, thenG/N cannot be isomorphic to G for any infinite normal subgroup
N of G.

In this paper, we restrict our attention to the class of word hyperbolic
groups G in the sense of M.Gromov [7]. Note that any word hyperbolic
group is finitely generated and even finitely presented [7, 2.1A, 2.2A],
[4, Proposition 4.17]. It is known also that there are only finitely many
conjugacy classes of finite subgroups in a word hyperbolic group G, see for
example [2, Ch.III.Γ , Theorem 3.2]. This implies in particular that G/N
is not isomorphic to G for any nontrivial finite normal subgroup N of G.
Indeed, if such an isomorphism φ : G → G/N would exist then we could
define an infinite strictly increasing sequence Ni (i ≥ 0) of finite subgroups
of G by N0 = N and Ni+1 = ψ−1φ(Ni) where ψ : G → G/N is the
canonical epimorphism.

Thus, the observation provides a possible way to prove the Hopf property
for word hyperbolic groups. Note that torsion-free word hyperbolic groups
are already known to be Hopfian [10]. For word hyperbolic groups with
torsion, the question whether or not they are Hopfian is still open.

Our main result concerns the second condition in the observation above
and gives an affirmative answer to the question about growth tightness of
word hyperbolic groups, posed by R. Grigorchuk and P. de la Harpe [5].
Recall that a word hyperbolic group is called elementary if it is either finite
or a finite extension of the infinite cyclic group.
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Theorem 1. LetG be a non-elementary word hyperbolic group and A any
finite set of generators for G. Then, for any infinite normal subgroup N of
G,

λ(G,A) > λ(G/N,A),

where A is the canonical image of A in G/N .

To prove the theorem we first observe that the growth tightness of G is
related to the growth tightness of certain languages overA±1 and we obtain
a stronger result (Theorem 2 below) which implies Theorem 1.

We fix an arbitrary linear ordering on the alphabet A±1. A word w in
the alphabet A±1 is called geodesic if w has the minimal possible length
among all the words representing the same element of G. If w is geodesic
and is minimal in the induced lexical ordering, among all geodesic words
representing the same element of G, it is called shortlex geodesic. By L we
denote the set of all shortlex geodesic words in A±1. Clearly, every element
x ∈ G has a unique representative in L which we denote x. It is obvious
also that any subword of a shortlex geodesic word is itself shortlex geodesic.

Definition 1. Let C > 0. We say that two elements x, y ∈ G are C-close
if there are u, v ∈ G such that x = uyv and |u|, |v| ≤ C. We say that x
C-contains y if x has a subword representing an element which is C-close
to y. For a given w ∈ G, we denote

Zw,C = {x ∈ G | x C-contains w}.

We define the exponential growth rate of the set G \ Zw,C by

(1) λw,C = lim sup
n→∞

n

√
#(B(n) \ Zw,C)

Theorem 2. Let G be a non-elementary word hyperbolic group and A a
finite set of generators for G. Let λ = λ(G,A) be the exponential growth
rate of G with respect to A. Then there is a number C = C(G,A) such
that λw,C < λ for any w ∈ G.

Note that Theorem 2 is of somewhat technical nature because the defini-
tion of λw,C uses the language of shortlex geodesic words in G. But it easily
implies a stronger result which does not make use of any specific language.
To formulate this result, we use, in an informal sense, “the strongest” form
of the relation “x C-contains y” which leads to the “smallest possible” ap-
propriate set Zw,C and, consequently, to the “largest possible” appropriate
parameter λw,C .
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We say that x strongly C-contains y if any geodesic word representing
x contains a subword which is C-close to y. Let

Zw,C = {x ∈ G | x strongly C-contains w}
and let λw,C be the exponential growth rate of the set G \ Zw,C , defined as
in (1).

Theorem 3. Let G be a non-elementary word hyperbolic group and A a
finite set of generators for G. Let λ = λ(G,A) be the exponential growth
rate of G with respect to A. Then there is a number C = C(G,A) such
that λw,C < λ for any w ∈ G.

Acknowledgments. This work has been done during the second author’s
visit to the University of Geneva in May 2001. He thanks P. de la Harpe for
hospitality. We thank also the referee for useful comments.

2. Preliminaries

2.1. Languages

Let L be a language over a finite alphabet X , i.e. L is any set of words in
the alphabet X . We denote

BL(n) = {x ∈ L | |x| ≤ n}, λL = lim sup
n→∞

n
√

#BL(n)

and, for any word w ∈ L, we define

Lw = {x ∈ L | x contains w as a subword}.
We say that L is growth tight if λL\Lw

< λL for any w ∈ L.
Now let G be a finitely generated group, A a finite set of its generators,

and L a language of shortlex geodesic words in the alphabet A±1. Assume
that L is growth tight. It is then easy to see that the pair (G,A) is growth tight.
Indeed, letN be a nontrivial normal subgroup of G. Choosing a wordw ∈ L
representing a nontrivial element of N we see that LG/N ⊆ L \ Lw where
LG/N is the language of shortlex geodesic words in G/N . This obviously
implies

λ(G/N,A) = λLG/N
≤ λL\Lw

< λL = λ(G,A).

(Here A, as above, denotes the canonical image of A in G/N .)
Thus to prove growth tightness of G it suffices to prove growth tightness

of the language L. This approach works well for example for proving growth
tightness of finitely generated free groups. But in general, we observe that
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growth tightness of L implies thatλ(G/N,A) < λ(G,A) for any nontrivial
normal subgroup N of G; and as we have mentioned above, for finite N
we have the equality. This means in particular that the language L is not
growth tight if G has a nontrivial finite normal subgroup.

We use a slight modification of this approach for word hyperbolic groups.
Namely, for C > 0 we define

Lw,C = {x ∈ L | x has a subword representing an element of G

which is C-close to w}.
We say that L is growth quasitight if there exists C = C(G,A) > 0 such
that for any w ∈ L we have λL > λL\Lw,C

.
Now observe that growth quasitightness of L implies growth tightness

of G. Let N be an infinite normal subgroup of G. We take a word w ∈ L
representing an element of N and of length greater than 4C. Suppose that
a word x ∈ L has a subword y representing an element which is C-close
to w, that is, y = uwv in G for some u, v with |u|, |v| ≤ C. We have
|y| ≥ |w|−|u|−|v| > 2C. This implies that x is not geodesic inG/N as its
subword y is equal inG/N to a shorter word uv. Hence LG/N ⊆ L\Lw,C

and again we have λ(G/N,A) = λLG/N
≤ λL\Lw,C

< λL = λ(G,A).
As a consequence, we obtain that Theorem 2 implies Theorem 1.

2.2. Auxiliary results on word hyperbolic groups

We fix a group G and a finite set A of generators for G for the rest of the
paper. All words are assumed to be in the alphabet A±1. We shall make no
essential distinction between words and elements of G. If w is a word then
the notation w ≡ xy means that w can be decomposed, as a word, into a
product of two words which represent elements x, y ∈ G.

There are known several properties of a group G which are equivalent
to its word hyperbolicity. For practical purposes, one of the most useful is
the property of geodesic triangles in the Cayley graph of G being δ-thin,
see [7, 6.3], [4, Proposition 2.21]. In the combinatorial language, it can be
formulated as follows. Recall that the Gromov inner product of two elements
x, y ∈ G with respect to the identity element of G is defined to be

(x|y) =
1
2
(|x| + |y| − |x−1y|).

Then G is word hyperbolic if and only if there is a number δ ≥ 0 such that
the following is true:

(H1) for any two geodesic words u and v, if u ≡ u1u2, v ≡ v1v2 and
|u1| = |v1| ≤ (u|v) then |u−1

1 v1| ≤ δ.
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From now on, we assume G to be word hyperbolic and fix a number
δ ≥ 0 such that (H1) holds.

As a consequence of (H1), we have another property of G which is in
fact original Gromov’s definition, see [7, 6.3B], [4, 2.21]:

(H2) (x|y) ≥ min{(x|z), (y|z)} − 2δ for any x, y, z ∈ G.

Lemma 1. For any x, y, z ∈ G the following assertions hold.

(a) If (x−1|y) ≤ r, (y−1|z) ≤ t and |y| > r + t + 2δ then ((xy)−1|z) ≤
t+ 2δ and (x−1|yz) ≤ r + 2δ. We have also

|xyz| ≥ |x| + |y| + |z| − 2(r + t+ 2δ).

(b) If x is a shortest representative in its conjugacy class and |x| ≥ 2δ+ 2
then (x−1|x) < δ + 1.

Proof. (a): Let (x−1|y) ≤ r, (y−1|z) ≤ t and |y| > r + t+ 2δ. We have

(y−1|(xy)−1) =
1
2
(|y| + |xy| − |x|) = |y| − (x−1|y) > t+ 2δ.

Assuming ((xy)−1|z) > t + 2δ, by (H2) we get (y−1|z) > t contrary
to the hypothesis. Hence ((xy)−1|z) ≤ t + 2δ. Similarly, observing that
(y|yz) = |y| − (y−1|z) > r + 2δ from (x−1|y) ≤ r we deduce by (H2)
that (x−1|yz) ≤ r + 2δ.

Now using ((xy)−1|z) ≤ t+ 2δ and (x−1|y) ≤ r, we obtain

|xyz| ≥ |xy| + |z| − 2(t+ 2δ) ≥ |x| + |y| + |z| − 2(r + t+ 2δ).

(b): Let x be a shortest representative in its conjugacy class and |x| ≥
2δ+2. Assume that (x−1|x) ≥ δ+1. Let x̃ be a geodesic word representing
x and let x̃ ≡ x1x2x3 where |x1| = |x3| = δ + 1. By (H1), |x3x1| ≤ δ.
Then |x3xx

−1
3 | = |x3x1x2| ≤ |x2| + δ < |x| contrary to the choice of x.

�	
Definition 2 (a refinement of Definition 1). Let x, y ∈ G and 0 ≤ t1 ≤
t2 ≤ |x|. We say that x (r, t1, t2)-contains y if x ≡ x′zx′′ where z is r-close
to y and |x′| ≥ t1 and |x′z| ≤ t2. (This is equivalent to the condition that if
we divide x into segments x ≡ x1wx2 with |x1| = t1, |x1w| = t2 then w
r-contains y.)

Lemma 2.

(a) If x is r-close to y and y is t-close to z then x is (r + t)-close to z.
(b) Let |x−1y| ≤ r and x̃, ỹ be geodesic words representing x and y,

respectively. If x̃ ≡ x1x2 then ỹ ≡ y1y2 for some y1, y2 where |x−1
1 y1| ≤

r + δ and x2 is (r + δ)-close to y2.
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(c) Letxandy be r-close and let x̃and ỹ be any geodesic words representing
xand y, respectively. Then the following assertions are true. If x̃ ≡ x1x2
then ỹ ≡ y1y2 for some y1 and y2 where xi is (r + 2δ)-close to yi

(i = 1, 2). Any subword of x̃ is (r + 2δ)-close to some subword of ỹ
and, in particular, is (r + 2δ)-contained in y.

(d) If (x−1|y) ≤ r then both x and y are (r + δ + 1)-contained in xy.
Moreover, ifw is a geodesic word representing xy thenw ≡ x1y1 where
|x−1x1| ≤ r + δ + 1 and |yy−1

1 | ≤ r + δ + 1.
(e) Ifx is (r, t1, t2)-contained in y, t′1 ≤ t′2 ≤ |y| and |ti−t′i| ≤ s (i = 1, 2)

then x is (r + s, t′1, t′2)-contained in y.
(f) If x is (r, t1, t2)-contained in y, and y is s-close to z then x is (r+ s+

2δ, t′1, t′2)-contained in z for some t′1, t′2 with |ti − t′i| ≤ 2s + 2δ. In
particular, by (e), if t2 ≤ |z| then x is (r + 3s + 4δ, t1, t2)-contained
in z.

Proof. Assertion (a) easily follows from Definition 1.
(b): Let x̃ ≡ x1x2 and ỹ ≡ y1y2. Notice that x2 = x−1

1 y1 ·y2 ·(x−1y)−1.
Hence if |x−1

1 y1| ≤ r+ δ then by Definition 1, x2 and y2 are (r+ δ)-close.
So it suffices to find a factorization ỹ ≡ y1y2 with |x−1

1 y1| ≤ r + δ.
If |x1| ≤ (x|y) then by (H1), for ỹ ≡ y1y2 with |y1| = |x1| we have

|x−1
1 y1| ≤ δ. Let |x1| > (x|y). Since (x|y) + (x−1|x−1y) = |x| we have

|x2| < (x−1|x−1y). Let w be a geodesic word representing x−1y and
let w ≡ w1w2 where |w1| = |x2|. Then by (H1), |x2w1| ≤ δ and hence
|x−1

1 y| = |x2x
−1y| ≤ |x2w1| + |w2| ≤ δ + r. In this case, we can take

y1 = y and y2 = 1.
(c): Let x = uyv where |u|, |v| ≤ r. Denoting z = xv−1 we have

|x−1z| = |v| ≤ r and |zy−1| = |u| ≤ r.
We prove the first assertion. Let x̃ ≡ x1x2. Using the arguments from the

proof of (b) we find z1 and z2 such that z̃ ≡ z1z2 and either |x−1
1 z1| ≤ δ

or z1 = z and |x−1
1 z1| ≤ r + δ. If z1 = z then x1 = uy(x−1

1 z1)−1 and we
can take y1 = y. Otherwise, the application of (b) with x := z−1, y := y−1

gives a factorization ỹ ≡ y1y2 with |z2y−1
2 | ≤ r + δ. Then x1 = uy1w

where

w=y−1
1 u−1x1=y−1

1 u−1z ·z−1 ·x1=y2 ·z−1
2 z−1

1 ·x1=(z2y−1
2 )−1(x−1

1 z1)−1

and hence |w| ≤ r + 2δ.
To prove the second assertion, we observe that the factorization ỹ ≡ y1y2

given in the proof of (b), and hence in the previous argument, is monotone
with respect to the factorization x̃ ≡ x1x2; i.e., if x̃ ≡ x′

1x
′
2 and |x′

1| ≥
|x1| then, for the corresponding y′

1, we have |y′
1| ≥ |y1|. This and the

previous argument imply that if x̃ ≡ x1x2x3 then there are y1, y2, y3 such
that ỹ ≡ y1y2y3 and x1 = uy1w, x1x2 = uy1y2w

′ for some w,w′ with
|w|, |w′| ≤ r+ 2δ. But then x2 = w−1y2w

′ thus finishing the proof of (c).
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(d): If |u−1v| ≤ t or |uv−1| ≤ t then, obviously, u is t-close to v. So
the first assertion follows from the second.

Suppose that (x−1|y) ≤ r and w is a geodesic representative for xy.
We choose a geodesic representative x̃ for x and let w ≡ x1y1, x̃ ≡ x2x3
where (x|w) − 1 < |x1| = |x2| ≤ (x|w). By (H1), |x−1

2 x1| ≤ δ. Since
(x|w) + (x−1|y) = |x| we have |x3| < (x−1|y) + 1 and hence

|x−1x1| = |x−1
3 · x−1

2 x1| < r + δ + 1.

It remains to notice that yy−1
1 = x−1x1.

(e): easily follows from Definition 2.
(f): Let x be (r, t1, t2)-contained in y, and y be s-close to z. By Defi-

nition 2, y ≡ y1x1y2 where x1 is r-close to x, |y1| ≥ t1 and |y1x1| ≤ t2.
Let y = uzv where |u|, |v| ≤ s. The proof of (c) shows that z may be
decomposed as z ≡ z1x2z2 where y1 = uz1w, y1x1 = uz1x2w

′ and
x1 = w−1x2w

′ for some w and w′ with |w|, |w′| ≤ s + 2δ. By (a),
x2 is (r + s + 2δ)-close to x. We have ||y1| − |z1|| ≤ 2s + 2δ and
||y1x1| − |z1x2|| ≤ 2s + 2δ. Hence x is (r + s + 2δ, t′1, t′2)-contained
in z where t′1 = max{0, t1 − 2s− 2δ} and t′2 = min{|z|, t2 + 2s+ 2δ}.

�	
Lemma 3. There is a number D = D(G,A) with the following property.
Given any u,w ∈ G there exists a word z ∈ L such that z ≡ z1z2 for some
z1, z2 with |u−1z1| ≤ D and |wz−1

2 | ≤ D.

Proof. By [7, 5.1B], there are infinitely many conjugacy classes of elements
in a non-elementary word hyperbolic group. We choose any v0 ∈ G such
that |v0| ≥ 14δ+2 and v0 is a shortest representative in its conjugacy class.
Let H = 〈v0〉. Observe that H has infinite index in G since G is non-
elementary. Then there are infinitely many double cosets HxH in G, as
H is a quasiconvex subgroup of infinite index in a word hyperbolic group,
see for example [1, 2.3 and Proposition 1]. We choose x ∈ G such that
|x| ≥ |v0| + 2δ + 1 and x is a shortest representative in the double coset
HxH .

By the choice of x, we have |v±1
0 x±1| ≥ |x|. This implies that (v±1

0 |x±1)
≤ 1

2 |v0|. Since |x| > |v0| + 2δ, by Lemma 1(a) we get (v±1
0 |x±1v±1

0 ) ≤
1
2 |v0| + 2δ and

|v±1
0 xv±1

0 | ≥ |x| − 4δ ≥ 12δ + 2.
Hence for ε = ±1 we obtain

(vε
0|vε

0x
±1v±1

0 ) = |v0| − (v−ε
0 |x±1v±1

0 ) ≥ 1
2
|v0| − 2δ.

Now by Lemma 1(b) and (H2), we have either (u−1|v0) < 3δ + 1 or
(u−1|v−1

0 ) < 3δ + 1 and either (w|v0) < 3δ + 1 or (w|v−1
0 ) < 3δ + 1. Let

(u−1|vε
0) < 3δ + 1 and (w|vν

0 ) < 3δ + 1.
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If (u−1|vε
0xv

ν
0 ) ≥ 5δ + 1, by (H2) with x := vε

0, y := u−1 and z :=
vε
0xv

ν
0 we would have

(u−1|vε
0) ≥ min

{
1
2
|v0| − 2δ, 5δ + 1

}
− 2δ ≥ 3δ + 1,

obtaining a contradiction. Hence

(u−1|vε
0xv

ν
0 ) < 5δ + 1.

Similarly, we see that ((vε
0xv

ν
0 )−1|w) < 5δ + 1. Since |vε

0xv
ν
0 | ≥ 12δ + 2,

by Lemma 1(a),
((uvε

0xv
ν
0 )−1|w) < 7δ + 1.

By Lemma 2(d),uvε
0xv

ν
0 ≡ u1ywhere |u−1u1| ≤ 6δ+2 and |vε

0xv
ν
0y

−1|
≤ 6δ + 2. The last inequality implies

|y| ≤ |vε
0xv

ν
0 | + 6δ + 2 ≤ |x| + 2|v0| + 6δ + 2.

Again by Lemma 2(d), uvε
0xv

ν
0w ≡ u2w1 where |(uvε

0xv
ν
0 )−1u2| ≤ 8δ+ 2

and |ww−1
1 | ≤ 8δ+2. By Lemma 2(b), u2 ≡ u3y1 where |u−1

1 u3| ≤ 9δ+2
and y1 is (9δ + 2)-close to y. We have uvε

0xv
ν
0w ≡ u3y1w1 where

|u−1u3| ≤ |u−1u1| + |u−1
1 u3| ≤ 15δ + 4

and

|w(y1w1)−1|≤|ww−1
1 |+|y1|≤8δ+2+|y|+2(9δ+2) ≤ |x|+2|v0|+32δ+8.

Therefore, we can take z = uvε
0xv

ν
0w, z1 = u3, z2 = y1w1 and D =

|x| + 2|v0| + 32δ + 8. �	
Lemma 4. There are numbers E = E(G,A) and κ = κ(G,A) > 0 with
the following property. Let w ∈ G be any element. Let

Xw = {x ∈ G | |w−1x1| ≤ E for some initial segment x1 of x}.
Then, for any n ≥ |w|,

#(Xw ∩B(n)) ≥ κ#B(n− |w|).
Proof. We take E = D and κ = 1

(#B(2D))2 where D is as in Lemma 3. If

|w| ≤ n < |w| + 2D then κ#B(n− |w|) < 1 and #(Xw ∩B(n)) ≥ 1 as
w ∈ Xw; so the required inequality holds. Let n ≥ |w| + 2D. For a given
w and any u ∈ B(n − |w| − 2D) we take zu ≡ z1z2 ∈ L by Lemma 3
where |w−1z1| ≤ D and |uz−1

2 | ≤ D. Clearly we have zu = wyuu for
some yu ∈ G with |yu| ≤ 2D. In particular, zu ∈ Xw ∩B(n).
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By the pigeon hole principle, for some subset U ⊆ B(n − |w| − 2D)
with #U ≥ 1

#{yu}#B(n−|w|−2D) we have yu1 = yu2 for allu1, u2 ∈ U .
It follows that zu1 = zu2 for u1, u2 ∈ U , u1 = u2. Hence

#(Xw∩B(n))≥ 1
#{yu}#B(n−|w|−2D)≥ 1

#B(2D)
#B(n−|w|−2D).

By submultiplicativity of #B(n),

#B(n− |w| − 2D) ≥ 1
#B(2D)

#B(n− |w|)

and we finally have

#(Xw ∩B(n)) ≥ 1
(#B(2D))2

#B(n− |w|). �	
Lemma 5. Let r ≥ 0. There exists a number F = F (G,A, r) > 0 such
that for any finite set X of elements of G there is a subset U ⊆ X such
that #U ≥ 1

F #X and |x−1y| > r for any distinct x, y ∈ U .

Proof. We take F = #B(r). Denote Bx(r) = {y ∈ G| |x−1y| ≤ r}.
Clearly, #Bx(r) = #B(r) for any x ∈ G. We choose subsequently arbi-
trary elements x1, x2, · · · ∈ G such that

x1 ∈ X0 = X,

x2 ∈ X1 = X \Bx1(r),
. . .

xk+1 ∈ Xk = X \ ∪k
i=1Bxi(r),

. . .

We have #Xk ≥ #X − kF , so there are at least 1
F #X such xi’s. We set

U = {x1, x2, . . . }. �	

3. Proof of Theorems 2 and 3

By Lemma 2(a), (c), for any x, y ∈ G, if x is C-contained in y then x is
strongly (C+2δ)-contained in y. As an immediate consequence, we obtain
that Theorem 2 implies Theorem 3. The rest of the section is devoted to
proving Theorem 2.

By a result of Coornaert [3], there exists α = α(G,A) such that
#B(n) ≤ αλn for all n. We introduce the following constants where
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D and E are as in Lemmas 3 and 4, respectively:

N0 = logλ 2α+ 2D + E,

C1 = N0 + 2D + 3E + 4δ,
C = C1 + 9D + 5E + 8δ,
R = N0 + 4D + 4E + 4δ.

We fix an arbitrary w ∈ G and assume that λw,C = λ. Our aim is to
deduce a contradiction from this assumption.

Observe that any subword of a word in L\Lw,C lies in L\Lw,C as well.
Since L\Lw,C forms a set of unique representatives for the elements inG\
Zw,C , this easily implies that #(B(n)\Zw,C) is a submultiplicative function
on n. Then by [8, VI.C, Proposition 56],λw,C = infn≥1 #(B(n)\Zw,C)1/n

and we consequently have #(B(n) \Zw,C) ≥ λn for all n. Thus, with the
assumption above, we have lower and upper bounds for #(B(n) \ Zw,C)
and #B(n):

(2) λn ≤ #(B(n) \ Zw,C) ≤ #B(n) ≤ αλn.

Let N be any number such that

N ≥ |w| + 2N0 + 3D + 4E + 4δ.

We reach a contradiction with (2) by proving that

(3) lim
k→∞

#(B(kN) \ Zw,C)
#B(kN)

= 0.

To do this, we introduce two series Yk and Y ∗
k (k ≥ 1) of subsets of G:

Yk = {x ∈ G | x does not (C, (i− 1)N, iN)-contain w for 1≤i≤k − 1,

x (C, (k − 1)N, t)-contains w for some t ≤ kN},
Y ∗

k = {x ∈ G|x does not (C1, (i− 1)N, iN)-contain w for 1≤i≤k − 1,

x (C1, (k − 1)N, t)-contains w for some t ≤ kN}.
It immediately follows from the definition that Yi are pairwise disjoint and
so are Y ∗

i . We set

Zk =
k⋃

i=1

Yi.

Clearly, Zk ⊆ Zw,C for any k.

Lemma 6 (main lemma). There is a number β > 0 such that for any k ≥ 1
and 0 ≤ i ≤ k − 1,

(4) #(Y ∗
i+1 ∩B(kN)) ≥ β #(B(iN) \ Zi) #B((k − i)N).
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Before proving the lemma, we show how it implies (3) and hence proves
Theorem 2. Since Y ∗

i are pairwise disjoint we have

k−1∑

i=0

#(Y ∗
i+1 ∩B(kN)) ≤ #B(kN).

With the inequality in Lemma 6 this gives

β

k−1∑

i=0

#(B(iN) \ Zi) #B((k − i)N) ≤ #B(kN).

By submultiplicativity of #B(n),

#B(kN)
#B(iN)

≤ #B((k − i)N)

and hence, after dividing by #B(kN) we obtain

β

k−1∑

i=0

#(B(iN) \ Zi)
#B(iN)

≤ 1.

But since this holds for any k and Zi ⊆ Zw,C , it follows that the series
∑∞

i=1
#(B(iN)\Zw,C)

#B(iN) converges thus implying (3) as required.

Proof of Lemma 6. Let k ≥ 1 and 0 ≤ i ≤ k − 1. For m < n we denote

S(m,n) = B(n) \B(m).

By the definition of N0, the inclusion Zi ⊆ Zw,C and (2),

#(S(iN + 2D + E, iN +N0) \ Zi)
= #(B(iN +N0) \ Zi) − #(B(iN + 2D + E) \ Zi)

≥ λiN+N0 − αλiN+2D+E ≥ αλiN+2D+E ≥ #(B(iN) \ Zi).

By Lemma 5, there is a number F = F (G,A,R) > 0 and a subset
U ⊆ S(iN + 2D + E, iN + N0) \ Zi such that |x−1y| > R for any
distinct x, y ∈ U and

(5) #U ≥ 1
F

#(B(iN) \ Zi).

For any x ∈ U we define a set Vx ⊂ G. By Lemma 3, there is a word
x̂ ∈ L such that

(6) x̂ ≡ x1x2 where |x−1x1| ≤ D, |wx−1
2 | ≤ D.
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We define, as in Lemma 4,

Vx = {y ∈ G | |x̂−1y1| ≤ E for some initial segment y1 of y}.
We have iN + 2D + E ≤ |x| ≤ iN + N0, |w| + |x| − 2D ≤ |x̂| ≤

|w| + |x| + 2D and hence

(7) iN + |w| + E ≤ |x̂| ≤ iN + |w| +N0 + 2D.

Since kN ≥ iN +N ≥ iN + |w| +N0 + 2D, by Lemma 4

#(Vx ∩B(kN)) ≥ κ#(B(kN − |x̂|)).
Using the upper bound for |x̂| and submultiplicativity of #B(n) we get

#(B(kN − |x̂|)) ≥ #(B((k − i)N − |w| −N0 − 2D))

≥ #(B((k − i)N))
#(B(|w| +N0 + 2D))

.

This gives a lower bound for #(Vx ∩B(kN)):

#(Vx ∩B(kN)) ≥ κ

#(B(|w| +N0 + 2D))
#(B((k − i)N)).

We prove the following two assertions about the sets Vx:

(i) Vx ⊆ Y ∗
i+1 for any x ∈ U ;

(ii) Vx ∩ Vx′ = ∅ for x = x′.

Observe that (i), (ii) and the lower bounds for #(Vx ∩ B(kN)) and (5)
for #U imply the desired inequality (4) for β = κ

F #(B(|w|+N0+2D)) in an
obvious way. To prove the lemma, it remains to prove (i) and (ii).

Proof of (i). Let x ∈ U and y ∈ Vx. We check for y the conditions in the
definition of Y ∗

i+1. First we show that y (C1, iN, t)-contains w for some
t ≤ (i+1)N . Sincex2 in (6) isD-close tow, by Definition 2 x̂ (D, |x1|, |x̂|)-
contains w. Let y1 be the initial segment of y with |x̂−1y1| ≤ E. By
Lemma 2(f), w is (D+E + 2δ, t1, t2)-contained in y1, and therefore in y,
where |t1 − |x1|| ≤ 2E + 2δ and |t2 − |x̂|| ≤ 2E + 2δ. Now

|t1−iN |≤||x1|−iN |+2E+2δ≤||x|− iN |+D+2E+2δ≤N0+D+2E+2δ

and by the choice of N ,

(i+ 1)N − t2 ≥ (i+ 1)N − 2E − 2δ − |x̂|
≥ (i+ 1)N − 2E − 2δ − iN − |w| −N0 − 2D
≥ N0 +D + 2E + 2δ.
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Observing that |y| ≥ |x̂| − E ≥ iN by the definition of Vx and (7), we
conclude by Lemma 2(e) that w is (N0 + 2D + 3E + 4δ, iN, t)-contained
in y for some t ≤ (i+ 1)N as required.

Now we prove that y does not (C1, (j − 1)N, jN)-contain w for all
1 ≤ j ≤ i. Assume that y does (C1, (j − 1)N, jN)-contain w for some
1 ≤ j ≤ i. Since

jN − |y1| ≤ jN − |x̂| + E ≤ (j − i)N − |w| + 2D + E ≤ 2D + E,

by Lemma 2(e) w is (C1 + 2D+E, (j− 1)N, t)-contained in y1 for some
t with jN − 2D − E ≤ t ≤ jN . By Lemma 2(f), w is (C1 + 2D +
2E + 2δ, t1, t2)-contained in x̂ where |t1 − (j − 1)N | ≤ 2E + 2δ and
|t2 − t| ≤ 2E + 2δ. We have

|t2 − jN | ≤ |t2 − t| + 2D + E ≤ 2D + 3E + 2δ.

Now jN − |x1| ≤ jN − |x| + D ≤ D and using Lemma 2(e) again we
find that w is (C1 + 3D + 2E + 2δ, t1, t′2)-contained in x1 with |t′2 −
jN | ≤ 3D + 3E + 2δ. Another application of Lemma 2(f) gives that w
is (C1 + 4D + 2E + 4δ, t′1, t′′2)-contained in x where |t′1 − (j − 1)N | ≤
2D+2E+4δ and |t′′2 − jN | ≤ 5D+3E+4δ. Again by Lemma 2(e),w is
(C1 + 9D + 5E + 8δ, (j − 1)N, s)-contained in x for some s ≤ jN . Due
to the choice of C and the definition of Yk this means that x ∈ Yl for some
l ≤ j. But this is a contradiction with x ∈ Zi. This finishes the proof of (i).

Proof of (ii). Let y ∈ Vx. By Lemma 2(b), |x−1
1 y′| ≤ E+ δ for some initial

segment y′ of y and hence we have

|x−1y′| ≤ |x−1x1| + |x−1
1 y′| ≤ E +D + δ.

Assume that y ∈ Vx′ for some x′ = x. Then there is another initial segment
y′′ of y such that |(x′)−1y′′| ≤ E +D+ δ. Since x, x′ ∈ S(iN, iN +N0)
we have ||x|− |x′|| ≤ N0 and therefore ||y′|− |y′′|| ≤ N0 +2E+2D+2δ.
Since both y′ and y′′ are initial segments of y this implies |(y′)−1y′′| ≤
N0 + 2E+ 2D+ 2δ and finally we obtain |x−1x′| ≤ N0 + 4D+ 4E+ 4δ.
But this contradicts the choice of R and the definition of U . Lemma 6 is
proved. �	
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