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Abstract. Interpolation inequalities for Cm functions allow to bound deriva-

tives of intermediate order 0 < j < m by bounds for the derivatives of order 0
and m. We review various interpolation inequalities for Lp-norms (1 ≤ p ≤ ∞)

in arbitrary finite dimensions. They allow us to study ultradifferentiable reg-

ularity by lacunary estimates in a comprehensive way, striving for minimal
assumptions on the weights.

1. Introduction

Ultradifferentiable classes are classes of C∞ functions defined by prescribed
growth behavior of the infinite sequence of derivatives. The most classical among
them are the Denjoy–Carleman classes, where the growth of the derivatives is dom-
inated by a weight sequence M = (Mj)j≥0. The Gevrey classes (in particular,
the real analytic class), which play an important role in the theory of differential
equations, are special cases thereof.

In applications, sometimes the question arises whether the ultradifferentiable
regularity can be concluded if only lacunary information on the growth of the
derivatives is available. For instance, Bolley, Camus, and Métivier [2] studied
the analyticity of analytic vectors and Liess [17] partially extended their work to
Denjoy–Carleman classes. Knowing suitable bounds for the sequence (P jf)j≥0,
where P is an elliptic linear partial differential operator, one would like to conclude
similar bounds for all derivatives f . In [20], this approach was applied to isotropic
functions and used to prove Chevalley-type results.

The basic problem is the following. Suppose that we know that a smooth function
satisfies certain ultradifferentiable bounds for the derivatives of order kj , where (kj)
is a strictly increasing sequence of integers, can we deduce that its derivatives of all
orders satisfy the ultradifferentiable bounds? An affirmative answer clearly depends
on conditions for the base sequence (kj), the weight M = (Mj), and on suitable
interpolation inequalities.

In the recent paper [1], Albano and Mughetti, motivated by L2 methods for
proving local regularity of solutions for (degenerate) elliptic equations (cf. [3, 4,
5]), gave sufficient conditions for Denjoy–Carleman classes of Roumieu type on a
compact interval of R, based on the Cartan–Gorny inequality (cf. Proposition 2.6).
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The base sequence (kj) is required to be such that kj+1/kj is bounded. For the
weight sequence, the authors assume a rather strong condition (which we recall
and discuss in Remark 6.4). In fact, we prove a version under a weaker and more
natural condition in Theorem 6.1 (see also Theorem 4.1), namely, boundedness

of mkj+1
/mkj

, where mj := M
1/j
j . Note that Liess showed (in [17]) that, under

certain assumptions on M , boundedness of mkj+1/mkj is also a necessary condition
for the interpolation problem (see Remark 4.4). We discuss at the end of Section 6
necessity of the conditions and how the different conditions are related.

The main purpose of this paper is to treat the interpolation problem in a broad
and comprehensive way, striving for minimal assumptions on the weights. To this
end, we review various interpolation inequalities for Lp-norms, where 1 ≤ p ≤ ∞,
and work in arbitrary (finite) dimensions. Note that the growth of the involved
constants is crucial in the ultradifferentiable setting. We consider ultradifferentiable
classes of local and global type and allow very general weight systems (so that also
Braun–Meise–Taylor classes are covered). All the ingredients seem to be well-
known, even though somewhat scattered in the literature, but we think a unified
treatment can be useful.

Let us outline the structure of the paper. In Section 2, we recall several inter-
polation inequalities with short proofs for the convenience of the reader. Building
on these inequalities, we obtain three technical propositions in Section 3 on which
most of the subsequent ultradifferentiable regularity results by lacunary estimates
are based. In Section 4, we present these results for a broad variety of Denjoy–
Carleman classes (defined in terms of a single weight sequence) and, in Section 5,
we extend them to more general ultradifferentiable classes (defined by families of
weight sequences) including the Braun–Meise–Taylor classes. In the last Section 6,
we compare our results with the approach of Albano and Mughetti [1] and discuss
optimality of the conditions imposed on the base sequence (kj) and on the weights.
In Section A, we generalize to general weight systems a construction of [1] which
shows that, in general, boundedness of kj+1/kj cannot be omitted.

2. Interpolation inequalities

2.1. The global setting. The Landau–Kolmogorov inequality states that a Cm

function f : R → R with finite ∥f∥L∞(R) and ∥f (m)∥L∞(R) satisfies

∥f (j)∥L∞(R) ≤ Km,j ∥f∥1−j/m
L∞(R) ∥f

(m)∥j/mL∞(R), j = 1, . . . ,m− 1.

Due to Kolmogorov [12], the optimal constants Km,j are given by

Km,j =
km−j

k
1−j/m
m

,

where kr := 4
π

∑∞
i=0[

(−1)i

2i+1 ]
r+1 are the Favard constants. Note that 1 ≤ kr ≤ 2 so

that Km,j ≤ 2. By a simple functional-analytic argument, Certain and Kurtz [8]
inferred that, if (E, ∥ ·∥) is a real Banach space and A is the generator of a strongly
continuous group of isometries, then

∥Ajx∥ ≤ Km,j ∥x∥1−j/m∥Amx∥j/m, j = 1, . . . ,m− 1,

for x in the domain of Am. In particular (see also [16, Section 4.4]), we have the
following lemma.
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Lemma 2.1. Let 1 ≤ p ≤ ∞ and m ∈ N≥2. Let f : Rn → R be a Cm function.
Then, for all v ∈ Sn−1,

∥djvf∥Lp(Rn) ≤ 2 ∥f∥1−j/m
Lp(Rn)∥d

m
v f∥j/mLp(Rn), j = 1, . . . ,m− 1,

if the right-hand side is finite, where djvf(x) := ∂j
t f(x+ tv)|t=0.

Proof. We may assume v = (1, 0, . . . , 0) by choosing a suitable orthonormal system
of coordinates. Let us first consider p = ∞. We have

sup
x∈Rn

|∂j
1f(x)| ≤ sup

xi∈R
2≤i≤n

[
2
(
sup
x1∈R

|f(x)|
)1−j/m(

sup
x1∈R

|∂m
1 f(x)|

)j/m]

≤ 2
(

sup
x∈Rn

|f(x)|
)1−j/m(

sup
x∈Rn

|∂m
1 f(x)|

)j/m

.

For p < ∞, we apply the above remarks to A = ∂1 and E = Lp(Rn). It generates
the group of translations T (s)f(x1, . . . , xn) = f(x1+s, x2, . . . , xn) which is strongly
continuous, by the dominated convergence theorem. □

Remark 2.2. For p = 2, the factor 2 can be omitted as follows from an application
of the Fourier transform:∫

|ξj1f̂(ξ)|2 dξ =

∫
(|ξ1|m|f̂(ξ)|)

2j
m |f̂(ξ)|2(1−

j
m ) dξ ≤ ∥ξm1 f̂(ξ)∥2j/mL2(Rn)∥f̂(ξ)∥

2(1−j/m)
L2(Rn) ,

by Hölder’s inequality.

2.2. The local setting. The next two lemmas follow from an easy adaptation of
the proof of [2, Lemmas 2.3-2.5]. We sketch the argument for the convenience of
the reader.

Lemma 2.3. There is a constant C > 0 such that the following holds. Let 1 ≤ p ≤
∞, a > 0, m ∈ N, 0 ≤ j ≤ m, and f ∈ Cm([−2a, 2a]). Then

aj

j!
∥f (j)∥Lp([−a,a]) ≤ Cm

(am
m!

∥f (m)∥Lp([−2a,2a]) + ∥f∥Lp([−2a,2a])

)
.

Proof. By rescaling, it suffices to assume a = 1. Fixm. Let φ be a C∞ function with
support in (−2, 2) that equals 1 near [−1, 1] and satisfies ∥φ(k)∥L∞(R) ≤ (C0m)k

for 0 ≤ k ≤ m for a universal constant C0 (cf. [11, Theorem 1.3.5]). By Taylor’s
theorem, for t ∈ [−2, 2] and 0 ≤ j ≤ m− 1,

(φf)(j)(t) =

∫ t

−2

(t− s)m−j−1

(m− j − 1)!
(φf)(m)(s) ds =

m∑
i=0

(
m

i

)
Ai(t),

where

Ai(t) :=
1

(m− j − 1)!

∫ t

−2

(t− s)m−j−1φ(m−i)(s)f (i)(s) ds.

For i = m, we have

|Am(t)| ≤ 1

(m− j − 1)!

∫ 2

−2

|t− s|m−j−1|φ(s)f (m)(s)| ds,

and thus, by Young’s inequality,

∥Am∥Lp([−1,1]) ≤ ∥Am∥Lp([−2,2])
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≤ 1

(m− j − 1)!
∥1[−2,2]t

m−j−1∥L1(R)∥φf (m)∥Lp(R)

≤ 2m−j+1

(m− j)!
∥f (m)∥Lp([−2,2]).

For 0 ≤ i ≤ m− 1 and t ∈ [−1, 1], integration by parts gives

Ai(t) =
(−1)i

(m− j − 1)!

∫ −1

−2

∂i
s[(t− s)m−j−1φ(m−i)(s)]f(s) ds

=

k∑
ℓ=0

(
i

ℓ

)
(−1)i+ℓ

(m− j − 1− ℓ)!

∫ −1

−2

(t− s)m−j−1−ℓφ(m−ℓ)(s)f(s) ds,

where k := min{i,m− j − 1}. Using Young’s inequality as before, we get

∥Ai∥Lp([−1,1]) ≤
k∑

ℓ=0

(
i

ℓ

)
2m−j−ℓ+1

(m− j − ℓ)!
(C0m)m−ℓ∥f∥Lp([−2,2]).

Consequently,

m−1∑
i=0

(
m

i

)
∥Ai∥Lp([−1,1]) ≤

m−1∑
i=0

k∑
ℓ=0

(
m

i

)(
i

ℓ

)
2m−j−ℓ+1

(m− j − ℓ)!
(C0m)m−ℓ∥f∥Lp([−2,2])

and the lemma follows if we prove that

m−1∑
i=0

k∑
ℓ=0

(
m

i

)(
i

ℓ

)
2m−j−ℓ+1

(m− j − ℓ)!
(C0m)m−ℓ ≤ Cmj!

for a universal constant C. The left-hand side equals

m−j−1∑
ℓ=0

m−1∑
i=ℓ

(m− ℓ)!

(m− i)!(i− ℓ)!

m!

ℓ!(m− ℓ)!

2m−j−ℓ+1

(m− j − ℓ)!
(C0m)m−ℓ

which is bounded by

m−j−1∑
ℓ=0

2m−ℓ2m
2m−j−ℓ+1

(m− j − ℓ)!
Cm−ℓ

0 em
m!

ℓ!

≤ em22m2j+1Cj
0 j!

m−j∑
ℓ=0

(m− j)!

ℓ!(m− j − ℓ)!
(22C0)

m−j−ℓ

which is of the required form. □

Lemma 2.4. There exist constants C0, C > 0, depending only on the dimension
n, such that the following holds. Let 1 ≤ p ≤ ∞. Let U, V be bounded open subsets
of Rn such that U ⊆ V . Let f ∈ Cm(V ). For all 0 < a ≤ C0 dist(U, ∂V ), all
0 ≤ j ≤ m, and all v ∈ Sn−1,

aj

j!
∥djvf∥Lp(U) ≤ Cm

(am
m!

∥dmv f∥Lp(V ) + ∥f∥Lp(V )

)
.

Proof. We may assume that v = (1, 0, . . . , 0). Let us first show the assertion for
U = (−a, a)n and V = (−2a, 2a)n. For x′ := (x2, . . . , xn) ∈ (−a, a)n−1, Lemma 2.3
gives

aj

j!
∥∂j

1f(·, x′)∥Lp((−a,a)) ≤ Cm
(am
m!

∥∂m
1 f(·, x′)∥Lp((−2a,2a)) + ∥f(·, x′)∥Lp((−2a,2a))

)
.
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For p = ∞, the statement follows, by taking the supremum over all x′ ∈ (−a, a)n−1.
For p < ∞, take the p-th power and integrate over x′ ∈ (−a, a)n−1.

In general, there is a constant C0 > 0 depending only on n such that, if a ≤
C0 dist(U, ∂V ), then U can be covered by a family Q of cubes Q = x + [−a, a]n

such that 2Q = x+ [−2a, 2a]n ⊆ V and such that any two cubes in Q have disjoint
interior. Then, for each Q ∈ Q,

aj

j!
∥∂j

1f∥Lp(Q) ≤ Cm
(am
m!

∥∂m
1 f∥Lp(2Q) + ∥f∥Lp(2Q)

)
.

For p = ∞, take the maximum over all Q ∈ Q, for p < ∞, take the p-th power and
the sum over all Q ∈ Q. □

Now we combine Lemma 2.4 with Lemma 2.1 (following [17, p. 193]).

Corollary 2.5. Let 1 ≤ p ≤ ∞. Let U, V be bounded open subsets of Rn such that
U ⊆ V . Let f ∈ C∞(V ). Then, for each integer m ≥ 2, j = 1, . . . ,m − 1, and all
v ∈ Sn−1,

∥djvf∥Lp(U) ≤ Cm∥f∥1−j/m
Lp(V )

(
∥dmv f∥j/mLp(V ) +mj∥f∥j/mLp(V )

)
,

where C > 0 is a constant depending only on U , V , and n.

Proof. Let W be the open δ-neighborhood of U , where δ := 1
2 dist(U, ∂V ). Let φ be

a C∞ function with support in W that equals 1 near U and satisfies ∥∂αφ∥L∞(Rn) ≤
C

|α|+1
0 m|α| for |α| ≤ m, where C0 only depends on U , V , and n (cf. [11, Theorem

1.4.2]). Then φf has a C∞ extension by zero outside W to all of Rn which we also
denote by φf . By Lemma 2.1,

∥djvf∥Lp(U) ≤ ∥djv(φf)∥Lp(Rn) ≤ 2 ∥(φf)∥1−j/m
Lp(W )∥d

m
v (φf)∥j/mLp(W )

and, by Lemma 2.4 with a = C1δ, where C1 = C1(n),

∥dmv (φf)∥Lp(W ) ≤
m∑
i=0

(
m

i

)
∥dm−i

v φ∥L∞(Rn)∥divf∥Lp(W )

≤
m∑
i=0

(
m

i

)
C0(C0m)m−iCm i!

(C1δ)i

( (C1δ)
m

m!
∥dmv f∥Lp(V ) + ∥f∥Lp(V )

)
≤

m∑
i=0

(
m

i

)
C0(eC0Cmax{C1δ, 1})m

(C0C1δ)i
(
∥dmv f∥Lp(V ) +m! ∥f∥Lp(V )

)
≤ Cm

2

(
∥dmv f∥Lp(V ) +mm∥f∥Lp(V )

)
.

This implies the assertion. □

2.3. The Cartan–Gorny inequality. The following result is due to Gorny [10]
and independently to Cartan [7].

Proposition 2.6. Let I ⊆ R be a compact interval and f ∈ Cm(I). Then, for
j = 1, . . . ,m− 1,

∥f (j)∥L∞(I) ≤ 4e2j
(m
j

)j

∥f∥1−j/m
L∞(I) max

{
∥f (m)∥L∞(I),

m!

|I|m
∥f∥L∞(I)

}j/m

.

The factor (mj )
j is bounded by em.
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3. Ultradifferentiable regularity by lacunary estimates

In this section, we prove three technical propositions on which most of the sub-
sequent results are based.

Let 0 =: k0 < k1 < k2 < · · · be a strictly increasing infinite sequence of positive
integers. A sequence (kj) with these properties is called a base sequence. If addi-
tionally kj+1/kj , for j ≥ 1, is bounded we say that (kj) is a special base sequence.

Proposition 3.1. Let (kj) be a base sequence. Let (mj) and (m′
j) be positive

increasing sequences of reals satisfying mj ≤ m′
j for all j. Assume that mkj+1/m

′
kj

is bounded. Let 1 ≤ p ≤ ∞ and f ∈ C∞(Rn).
If there are C, ρ > 0 such that

(1) max
|α|=kj

∥∂αf∥Lp(Rn) ≤ C(ρmkj
)kj , j ≥ 0,

then there exist C ′, ρ′ > 0 such that

(2) max
|α|=ℓ

∥∂αf∥Lp(Rn) ≤ C ′(ρ′m′
ℓ)

ℓ, ℓ ≥ 0.

We have ρ′ = O(ρ) as ρ → 0.

Proof. By (1), there are constants C1, ρ1 > 0 such that

(3) ∥dkj
v f∥Lp(Rn) ≤ C1(ρ1mkj

)kj , j ≥ 0, v ∈ Sn−1.

Let ℓ ≥ 0 and let j ≥ 0 be such that kj ≤ ℓ < kj+1. By Lemma 2.1 and the
assumptions on (kj), (mj), and (m′

j),

∥dℓvf∥Lp(Rn) ≤ 2 ∥dkj
v f∥

1−
ℓ−kj

kj+1−kj

Lp(Rn) ∥dkj+1
v f∥

ℓ−kj
kj+1−kj

Lp(Rn)(4)

≤ 2C1 (ρ1mkj
)
kj

(
1−

ℓ−kj
kj+1−kj

)
(ρ1mkj+1

)
kj+1

ℓ−kj
kj+1−kj

≤ 2C1 (ρ1m
′
kj
)
kj

(
1−

ℓ−kj
kj+1−kj

)
(C2ρ1m

′
kj
)
kj+1

ℓ−kj
kj+1−kj

≤ 2C1 (C2ρ1m
′
ℓ)

ℓ.

By polarization [13, Lemma 7.13], for |α| = ℓ and v1, . . . , vℓ the list of standard
unit vectors

e1, . . . , e1︸ ︷︷ ︸
α1

, e2, . . . , e2︸ ︷︷ ︸
α2

, . . . , en, . . . , en︸ ︷︷ ︸
αn

,

we have

∂αf =
1

ℓ!

1∑
ϵ1,...,ϵℓ=0

(−1)ℓ−
∑

ϵℓ
(∑

ϵi

)ℓ

dℓ∑ ϵivi/
∑

ϵi
f.(5)

Therefore,

∥∂αf∥Lp(Rn) ≤ 2C1(C2ρ1m
′
ℓ)

ℓ 1

ℓ!

ℓ∑
k=0

(
ℓ

k

)
kℓ ≤ 2C1(2eC2ρ1m

′
ℓ)

ℓ.

Thus (2) is proved. □

Proposition 3.2. Let (kj) be a special base sequence. Let (mj) and (m′
j) be positive

increasing sequences of reals satisfying mj ≤ m′
j for all j and such that j/mj is
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bounded. Assume that mkj+1
/m′

kj
is bounded. Let 1 ≤ p ≤ ∞. Let U, V be bounded

open subsets of Rn such that U ⊆ V . Let f ∈ C∞(V ).
If there are C, ρ > 0 such that

(6) max
|α|=kj

∥∂αf∥Lp(V ) ≤ C(ρmkj
)kj , j ≥ 0,

then there exist C ′, ρ′ > 0 such that

(7) max
|α|=ℓ

∥∂αf∥Lp(U) ≤ C ′(ρ′m′
ℓ)

ℓ, ℓ ≥ 0.

Under the additional assumption that j/mj → 0, we have that ρ′ = O(ρ) as ρ → 0.

Proof. By (6), there are constants C1, ρ1 > 0 such that

∥dkj
v f∥Lp(V ) ≤ C1(ρ1mkj

)kj , j ≥ 0, v ∈ Sn−1.

Let ℓ ≥ 0 and let j ≥ 0 be such that kj ≤ ℓ < kj+1. By Corollary 2.5 and the
assumptions on (kj), (mj), and (m′

j),

∥dℓvf∥Lp(U)

≤ Ckj+1−kj

(
∥dkj

v f∥
1−

ℓ−kj
kj+1−kj

Lp(V ) ∥dkj+1
v f∥

ℓ−kj
kj+1−kj

Lp(V ) + (kj+1 − kj)
ℓ−kj∥dkj

v f∥Lp(V )

)
≤ C1C

kj

2

(
(ρ1mkj

)
kj

(
1−

ℓ−kj
kj+1−kj

)
(ρ1mkj+1

)
kj+1

ℓ−kj
kj+1−kj + (C3kj)

ℓ−kj (ρ1mkj
)kj

)
≤ C1C

kj

2

(
(ρ1m

′
kj
)
kj

(
1−

ℓ−kj
kj+1−kj

)
(C4ρ1m

′
kj
)
kj+1

ℓ−kj
kj+1−kj + (C5m

′
kj
)ℓ−kj (ρ1m

′
kj
)kj

)
≤ C1C

kj

2

(
(C4ρ1m

′
kj
)ℓ + ((C5 + ρ1)m

′
kj
)ℓ
)

≤ C1(C6m
′
ℓ)

ℓ.

If we assume that j/mj → 0 (actually kj/mkj → 0 is enough), then for each
τ > 0 there is jτ such that kj/mkj

≤ τ for all j ≥ jτ . Thus C5 = C3ρ1 provided
that j ≥ jρ1

and so

∥dℓvf∥Lp(U) ≤ C1(C7ρ1m
′
ℓ)

ℓ, ℓ ≥ kjρ1 .

For ℓ < kjρ1 ,

∥dℓvf∥Lp(U) ≤ C1(C6m
′
ℓ)

ℓ ≤ C1 max{ρ−ℓ
1 : ℓ < kjρ1 } · (C6ρ1m

′
ℓ)

ℓ.

Since ρ1 = O(ρ), we get

∥dℓvf∥Lp(U) ≤ C ′(ρ′m′
ℓ)

ℓ, ℓ ≥ 0,

where ρ′ = O(ρ) and C ′ = C ′(ρ′).
To end the proof, it suffices to apply ∥ · ∥Lp(U) to (5) and use the estimate for

∥dℓvf∥Lp(U). □

Remark 3.3. The requirement k0 = 0 for the base sequence is important in Propo-
sition 3.1. Without this assumption there is no reason why a function satisfying
(1) should also fulfill (2) for ℓ = 0. In the local setting of Proposition 3.2, the as-
sumption k0 = 0 can be made without loss of generality, by adjusting the constant
C.

Note that, in the proof of Proposition 3.2, the assumption that kj+1/kj is
bounded is necessary to estimate the factor Ckj+1−kj . For the term (kj+1−kj)

ℓ−kj

it is enough to use that j/mj and mkj+1
/m′

kj
are bounded.
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Proposition 3.4. Let (kj) be a base sequence. Let (mj) and (m′
j) be positive

increasing sequences of reals satisfying mj ≤ m′
j for all j. Assume that mkj+1/m

′
kj

is bounded. Let f ∈ C∞(Rn).
If there are C, σ > 0 such that

max
|α|=kj

∥xαf∥L∞(Rn) ≤ C(σmkj
)kj , j ≥ 0,(8)

then there exist C ′, σ′ > 0 such that

max
|α|=ℓ

∥xαf∥L∞(Rn) ≤ C ′(σ′m′
ℓ)

ℓ, ℓ ≥ 0.(9)

We have σ′ = O(σ).

Proof. Recall that

|x| ≤ n1/2−1/p
( n∑

i=1

|xi|p
)1/p

if p ≥ 2.

So, if |α| = k ≥ 2, then

|xα| ≤ |x|k ≤ n(k−2)/2
n∑

i=1

|xi|k ≤ n(k−2)/2
∑
|α|=k

|xα| ≤ n(3k−2)/2 max
|α|=k

|xα|.

If |α| = 1, then

|xα| ≤ |x| ≤
n∑

i=1

|xi| ≤ nmax
|α|=1

|xα|.

The assumption (8) gives

|x|kj |f(x)| ≤ C(n3/2σmkj
)kj , j ≥ 0, x ∈ Rn.

Then, for kj ≤ ℓ < kj+1,

|x|ℓ|f(x)| = (|x|kj |f(x)|)1−
ℓ−kj

kj+1−kj (|x|kj+1 |f(x)|)
ℓ−kj

kj+1−kj .

So (8) implies (9), by a computation analogous to (4). □

4. Denjoy–Carleman classes

Let M = (Mk)k≥0 be a positive sequence of real numbers. We say that M is a
weight sequence if M0 = 1 ≤ M1 ≤ µ2 ≤ µ3 ≤ · · · , where µk := Mk/Mk−1. Then

also the sequence mk := M
1/k
k is increasing.

Let U be an open subset of Rn and 1 ≤ p ≤ ∞. The Lp-based local Denjoy–

Carleman class of Roumieu type on U is the set E{M}
Lp (U) of all f ∈ C∞(U) such

that for all open relatively compact subsets Ω ⋐ U there exist constants C, ρ > 0
such that

(10) max
|α|=k

∥∂αf∥Lp(Ω) ≤ C(ρmk)
k, k ∈ N.

Analogously, the Lp-based local Denjoy–Carleman class of Beurling type is the set

E(M)
Lp (U) of all f ∈ C∞(U) that satisfy (10) for all Ω and all ρ with C = C(Ω, ρ).

We use the placeholder [·] for either the Roumieu case {·} or the Beurling case (·).
Replacing (10) with various global requirements we obtain natural global Denjoy–

Carleman classes,

B{M}
Lp (Rn) := {f ∈ C∞(Rn) : ∃C, ρ > 0 ∀α : ∥∂αf∥Lp(Rn) ≤ C(ρm|α|)

|α|},
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B(M)
Lp (Rn) := {f ∈ C∞(Rn) : ∀ρ > 0 ∃C > 0 ∀α : ∥∂αf∥Lp(Rn) ≤ C(ρm|α|)

|α|},

Gelfand–Shilov classes S{M}(Rn) (resp. S(M)(Rn)) consisting of all f ∈ C∞(Rn)
such that there exist ρ, σ > 0 such that (resp. for all ρ, σ > 0)

sup
α,β∈Nn

sup
x∈Rn

|xα∂βf(x)|
(ρm|α|)|α|(σm|β|)|β|

< ∞,

and the classes D[M ](Rn) := B[M ]
L∞ (Rn)∩C∞

c (Rn) of all B[M ]
L∞ -functions with compact

support. (Cleary, D[M ](Rn) is nontrivial only in the non-quasianalytic setting.)
Note that various aspects of these global classes have recently been studied in [14,
15, 19]. We have continuous (with respect to the natural locally convex topologies)
inclusions

D{M}(Rn) // S{M}(Rn) // B{M}
Lp (Rn) // E{M}

Lp (Rn)

D(M)(Rn) //

OO

S(M)(Rn) //

OO

B(M)
Lp (Rn)

OO

// E(M)
Lp (Rn)

OO

and, for 1 ≤ p ≤ q ≤ ∞,

(11) B[M ]
Lp (Rn) // B[M ]

Lq (Rn) E [M ]
Lp (U) E [M ]

Lq (U),

provided that M is derivation closed, i.e.,

(12) sup
k≥0

(Mk+1

Mk

)1/(k+1)

< ∞.

This follows from the Sobolev inequality, since the latter condition guarantees sta-
bility under taking derivatives. For the local classes, we have equality if (12) holds,
because ∥ · ∥Lp(Ω) ≤ |Ω|1/p−1/q∥ · ∥Lq(Ω).

If (kj) is a base sequence, we consider the sets E [M ]
Lp,(kj)

(U), B[M ]
Lp,(kj)

(Rn),

D[M ]
(kj)

(Rn) of C∞ functions that satisfy the defining estimates for multiindices α

with |α| = kj .

Theorem 4.1. Let 1 ≤ p ≤ ∞. Let (kj) be a base sequence and M = (Mj) a
weight sequence such that mkj+1

/mkj
is bounded. We have:

(a) B[M ]
Lp,(kj)

(Rn) = B[M ]
Lp (Rn).

(b) D[M ]
(kj)

(Rn) = D[M ](Rn).

Let (kj) be a special base sequence and U ⊆ Rn open. Then:

(c) E{M}
Lp,(kj)

(U) = E{M}
Lp (U) provided that j/mj is bounded.

(d) E(M)
Lp,(kj)

(U) = E(M)
Lp (U) provided that j/mj → 0.

Proof. (a) follows from Proposition 3.1 and (b) is a consequence of (a) by intersect-
ing with C∞

c (Rn). (c) and (d) follow from Proposition 3.2. □

In (c) and (d), the assumption that the base sequence (kj) is special cannot be
omitted; this follows from Remark 6.5 below.

That j/mj is bounded (resp. tends to zero) is equivalent to the fact that E{M}
L∞ (U)

(resp. E(M)
L∞ (U)) contains Cω(U). Note that E [M ]

Lp (U) ⊆ E [M ]
Lq (U) if 1 ≤ q ≤ p ≤ ∞.



10 A. RAINER AND G. SCHINDL

Before we come to a similar result in the Gelfand–Shilov case, let us recall a result
due to [9]. (In that paper only the Roumieu case is treated, but the Beurling case
can be proved analogously, see [20, Lemma 4].) To this end we need some further
conditions on the weight sequence. We say that a weight sequence M = (Mj) has
moderate growth if

(13) sup
j,k≥1

( Mj+k

MjMk

)1/(j+k)

< ∞.

Note that (13) implies (12).

Proposition 4.2 ([9]). Let M = (Mj) be a weight sequence with moderate growth.
Assume that j/mj is bounded in the Roumieu case and tends to zero in the Beurling
case. Then the following are equivalent:

(a) f ∈ S [M ](Rn).
(b) There are constants C, ρ, σ > 0 (resp. for all ρ, σ > 0 there is C > 0) such

that

sup
x

|xαf(x)| ≤ C(ρm|α|)
|α| and sup

x
|∂βf(x)| ≤ C(σm|β|)

|β|

for all α, β ∈ Nn.
(c) There are constants C, ρ, σ > 0 (resp. for all ρ, σ > 0 there is C > 0) such

that

sup
x

|xαf(x)| ≤ C(ρm|α|)
|α| and sup

x
|xβ f̂(x)| ≤ C(σm|β|)

|β|

for all α, β ∈ Nn.

In view of this proposition, we allow a second base sequence (ℓj) and define

S [M ]
(kj),(ℓj)

(Rn) to be the set of f ∈ C∞(Rn) such that there exist C, ρ, σ > 0 (resp.

for all ρ, σ > 0 there is C > 0) such that

max
|α|=kj

sup
x

|xαf(x)| ≤ C(ρm|α|)
|α| and max

|β|=ℓj
sup
x

|∂βf(x)| ≤ C(σmℓj )
ℓj

for all j ≥ 0.

Theorem 4.3. Let (kj) and (ℓj) be base sequences. Let M = (Mj) be a weight se-
quence with moderate growth. Assume that mkj+1

/mkj
and mℓj+1

/mℓj are bounded.
Then:

(a) S{M}
(kj),(ℓj)

(Rn) = S{M}(Rn) provided that j/mj is bounded.

(b) S(M)
(kj),(ℓj)

(Rn) = S(M)(Rn) provided that j/mj → 0.

Proof. This follows from Proposition 3.1, Proposition 3.4, and Proposition 4.2. □

Remark 4.4. Liess [17] (extending an argument of [2]) proved that, under a num-

ber of assumptions on the sequence M = (Mj), the equality E{M}
L2,(kj)

(U) = E{M}
L2 (U)

implies that mkj+1/mkj is bounded. His assumptions are the following:

(a) mj ≤ mj+1 for all j and j/mj is bounded.
(b) mj+1/mj is bounded.
(c) There exists g : N → (0,∞) such that mkj ≤ g(k)mj for all k and j.
(d) For every c > 0 there is c′ > 0 such that mj ≤ cmk implies j ≤ c′k.
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Let us assume that M is a weight sequence of moderate growth such that j/mj is
bounded. Then it is easily seen that the conditions (a)–(c) are satisfied. On the
other hand, for a weight sequence, (c) is equivalent to (13) (take k = 2 and use [18,
Theorem 1]).

Observe that, assuming mj ≤ mj+1, (d) is equivalent to the existence of an
integer n ≥ 2 such that lim infk→∞ mnk/mk =: a > 1. Indeed, for all ℓ ≥ 1 and
large k, we have aℓmk ≤ mnℓk. If a > 1 and mj ≤ cmk, then c/a−ℓ < 1, provided
that ℓ is large enough, and thus mj < mnℓk. As mj is increasing, we conclude that
j ≤ nℓk. It is clear that a = 1 violates (d).

5. Other ultradifferentiable classes

Classically, besides Denjoy–Carleman classes a lot of attention was devoted to
ultradifferentiable classes, sometimes called Braun–Meise–Taylor classes due to the
foundational article [6], defined in terms of a weight function; they have their origin
in work of Beurling.

A weight function is a continuous increasing function ω : [0,∞) → [0,∞) satisfy-
ing ω(0) = 0, ω(2t) = O(ω(t)), log t = o(ω(t)) as t → ∞ and such that φ(t) := ω(et)
is convex. It is no restriction to assume ω(t) = 0 for 0 ≤ t ≤ 1 (cf. [21, Section
11.1]).

The local classes E{ω}
Lp (U) and E(ω)

Lp (U) are defined in analogy to Denjoy–
Carleman classes, where now

(14) max
|α|=k

∥∂αf∥Lp(Ω) ≤ C exp
(
1
ρφ

∗(ρk)
)
, k ≥ 0,

with φ∗(s) := supt≥0(st− φ(t)), plays the role of (10). More precisely, we have

E{ω}
Lp (U) :=

⋂
Ω⋐U

⋃
ρ>0

⋃
C>0

{f ∈ C∞(U) : f satisfies (14)},

E(ω)
Lp (U) :=

⋂
Ω⋐U

⋂
ρ>0

⋃
C>0

{f ∈ C∞(U) : f satisfies (14)}.

The global classes B[ω]
Lp (Rn), S [ω](Rn), and D[ω](Rn) are defined in a straightfor-

ward way. Furthermore, we consider E [ω]
Lp,(kj)

(U), B[ω]
Lp,(kj)

(Rn), S [ω]
(kj),(ℓj)

(Rn), and

D[ω]
(kj)

(Rn), all of them defined in the obvious manner. (Note that D[ω](Rn) is non-

trivial if and only if
∫∞
1

t−2ω(t) dt < ∞; cf. [6].)
There is an overarching framework for ultradifferentiable classes introduced in

[22] which goes beyond Denjoy–Carleman and Braun–Meise–Taylor classes and, on
a technical level, reduces the proofs to handling certain families of weight sequences.
See [21] for a comprehensive survey of the theory.

From now on, let M be a totally ordered family of weight sequences, i.e., if
M,M ′ ∈ M, then either Mj ≤ M ′

j or M ′
j ≤ Mj for all j.

We define

E{M}
Lp (U) :=

⋂
Ω⋐U

⋃
M∈M

⋃
ρ>0

⋃
C>0

{f ∈ C∞(U) : f satisfies (10)},

E(M)
Lp (U) :=

⋂
Ω⋐U

⋂
M∈M

⋂
ρ>0

⋃
C>0

{f ∈ C∞(U) : f satisfies (10)},
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and in the evident analogous way also the global classes B[M]
Lp (Rn), S [M](Rn), and

D[M](Rn) as well as E [M]
Lp,(kj)

(U), B[M]
Lp,(kj)

(Rn), S [M]
(kj),(ℓj)

(Rn), and D[M]
(kj)

(Rn).

Theorem 5.1. Let 1 ≤ p ≤ ∞. Let ω be a weight function. For M := {M (ρ)}ρ>0,

where M
(ρ)
k := exp( 1ρφ

∗(ρk)), we have the identities:

E [ω]
Lp (U) = E [M]

Lp (U), E [ω]
Lp,(kj)

(U) = E [M]
Lp,(kj)

(U),

B[ω]
Lp (Rn) = B[M]

Lp (Rn), B[ω]
Lp,(kj)

(Rn) = B[M]
Lp,(kj)

(Rn),

S [ω](Rn) = S [M](Rn), S [ω]
(kj),(ℓj)

(Rn) = S [M]
(kj),(ℓj)

(Rn),

D[ω](Rn) = D[M](Rn), D[ω]
(kj)

(Rn) = D[M]
(kj)

(Rn),

where (kj) and (ℓj) are base sequences.

Proof. This is shown by the proof of [22, Lemma 5.14] which is based on the fol-
lowing property of M, see [22, (5.10)],

(15) ∀σ > 0 ∃H ≥ 1 ∀ρ > 0 ∃C ≥ 1 ∀k ∈ N : σkM
(ρ)
k ≤ CM

(Hρ)
k .

In fact, for given ρ, σ > 0 there exist C,H ≥ 1 such that

sup
j≥0

max|α|=kj
∥∂αf∥Lp(Ω)

M
(Hρ)
kj

≤ C sup
j≥0

max|α|=kj
∥∂αf∥Lp(Ω)

σkjM
(ρ)
kj

and M
(Hρ)
kj

= exp( 1
Hρφ

∗(Hρkj)). In the Gelfand–Shilov case, we observe that

additionally

sup
j≥0

max|α|=ℓj supx |xαf(x)|
M

(Hρ)
ℓj

≤ C sup
j≥0

max|α|=ℓj supx |xαf(x)|
σℓjM

(ρ)
ℓj

.

The case S [ω](Rn) = S [M](Rn) follows from

sup
α, β

supx |xα∂βf(x)|
M

(Hρ)
|α| M

(Hρ)
|β|

≤ C sup
α, β

supx |xα∂βf(x)|
τ |α|σ|β|M

(ρ)
|α|M

(ρ)
|β|

.

taking constants C,H which work for both σ and τ . □

The family M from Theorem 5.1 has an inherent moderate growth property (see
[22, (5.6)]):

(16) M
(ρ)
j+k ≤ M

(2ρ)
j M

(2ρ)
k , j, k ≥ 0.

In general, we say that M has [moderate growth] if, in the Roumieu case (i.e.,
[·] = {·}),

∀M ∈ M ∃M ′ ∈ M ∃C > 0 ∀j, k ≥ 0 : Mj+k ≤ Cj+kM ′
jM

′
k,

and, in the Beurling case (i.e., [·] = (·)),

∀M ∈ M ∃M ′ ∈ M ∃C > 0 ∀j, k ≥ 0 : M ′
j+k ≤ Cj+kMjMk.

Lemma 5.2. If (kj) is a special base sequence and M has [moderate growth], then,
in the Roumieu case (i.e., [·] = {·}),

(17) ∀M ∈ M ∃M ′ ∈ M : mkj+1
/m′

kj
is bounded,
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and, in the Beurling case (i.e., [·] = (·)),
(18) ∀M ∈ M ∃M ′ ∈ M : m′

kj+1
/mkj

is bounded.

Proof. By assumption, there exists a positive integer a such that kj+1 ≤ akj for all
j ≥ 1. Moderate growth in the Roumieu case guarantees that, for given M ∈ M
there exist C > 0 and M ′ ∈ M (depending on a) such that

Makj ≤ Cakj (M ′
kj
)a.

This implies mkj+1 ≤ makj ≤ Cm′
kj
. The Beurling case is similar. □

Theorem 5.3. Let 1 ≤ p ≤ ∞. Let (kj), (ℓj) be base sequences. Let M satisfy
(17) in the Roumieu case and (18) in the Beurling case. We have:

(a) B[M]
Lp,(kj)

(Rn) = B[M]
Lp (Rn).

(b) D[M]
(kj)

(Rn) = D[M](Rn).

Assume additionally that, for all M ∈ M, j/mj is bounded, in the Roumieu case,
and tends to zero, in the Beurling case. Then:

(c) E [M]
Lp,(kj)

(U) = E [M]
Lp (U) for all open U ⊆ Rn, provided that (kj) is a special

base sequence.

(d) S [M]
(kj),(ℓj)

(Rn) = S [M](Rn), provided that M has [moderate growth].

Proof. Since the sequences in M are totally ordered, we may assume that the se-
quences provided by (17) and (18) also satisfymj ≤ m′

j orm
′
j ≤ mj for all j, respec-

tively. Then (a), (b), and (c) follow easily from Proposition 3.1 and Proposition 3.2.
Finally, (d) follows from Proposition 3.1, Proposition 3.4, and the generalization
[20, Lemma 4] of Proposition 4.2. □

To deduce a version for Braun–Meise–Taylor classes, it suffices to note that for
a weight function ω and M = {M (ρ)}ρ>0 the associated family from Theorem 5.1,

• ω(t) = O(t) as t → ∞ if and only if j/m
(ρ)
j is bounded for some ρ > 0,

• ω(t) = o(t) as t → ∞ if and only if j/m
(ρ)
j → 0 for all ρ > 0;

cf. [22, Lemma 5.7 and Corollary 5.15].

Theorem 5.4. Let 1 ≤ p ≤ ∞. Let (kj), (ℓj) be special base sequences. Let ω be
a weight function. We have:

(a) B[ω]
Lp,(kj)

(Rn) = B[ω]
Lp (Rn).

(b) D[ω]
(kj)

(Rn) = D[ω](Rn).

Assume additionally that ω(t) = O(t) as t → ∞, in the Roumieu case, and ω(t) =
o(t), in the Beurling case. Then:

(c) E [ω]
Lp,(kj)

(U) = E [ω]
Lp (U) for all open U ⊆ Rn.

(d) S [ω]
(kj),(ℓj)

(Rn) = S [ω](Rn).

Proof. This is a corollary of Theorem 5.1, Lemma 5.2, and Theorem 5.3. □

Remark 5.5. The family M = {M (ρ)}ρ>0 associated with a weight function in
Theorem 5.1 has the following property:

(a) Let 0 < σ ≤ ρ. If there is C1 > 0 such that m
(σ)
j ≤ C1 m

(ρ)
k , then there is

C2 = C2(σ, ρ, C1) > 0 such that j ≤ C2 k.
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So, in this case, validity of (17) or (18) entails that (kj) is a special base sequence;
the converse holds by (16) and Lemma 5.2.

To see (a), note first that for any positive integer N we have

m
(Nρ)
k = exp( 1

Nρkφ
∗(Nρk)) = m

(ρ)
Nk.

By (15), there exist C = C(ρ) ≥ 1 and an integer H ≥ 2 such that

4m
(ρ)
k ≤ C1/km

(Hρ)
k = C1/km

(ρ)
Hk, k ≥ 0.

For k ≥ k0, we have C1/k < 2 and hence 2m
(ρ)
k < m

(ρ)
Hk and, by iteration,

2ℓm
(ρ)
k < m

(ρ)

Hℓk
.

If m
(σ)
j ≤ C1 m

(ρ)
k , then, choosing ℓ such that C12

−ℓ < 1, we find

m
(σ)
j < m

(ρ)

Hℓk
.

Then the assumption j ≥ ⌈ ρ
σ ⌉H

ℓk leads to

m
(ρ)

Hℓk
≤ m

(⌈ ρ
σ ⌉σ)

Hℓk
= m

(σ)

⌈ ρ
σ ⌉Hℓk

< m
(ρ)

Hℓk
,

a contradiction. Thus j < C2 k, where C2 := ⌈ ρ
σ ⌉H

ℓ. For k < k0, there are only

finitely many j satisfying m
(σ)
j ≤ C1 m

(ρ)
k0

(since limj→∞ m
(σ)
j = ∞; see [6, Remark

1.3]). So adding this bound to C2 gives the assertion for all k.

Remark 5.6. Under the [moderate growth] assumption, we have, for 1 ≤ p ≤ q ≤
∞, the continuous inclusions B[M]

Lp (Rn) ⊆ B[M]
Lq (Rn) and E [M]

Lp (U) = E [M]
Lq (U), in

particular, B[ω]
Lp (Rn) ⊆ B[ω]

Lq (Rn) and E [ω]
Lp (U) = E [ω]

Lq (U).

6. Comparison with some recent results

In this section, we compare our result with the ones obtained by Albano and
Mughetti [1] and we discuss optimality of the conditions imposed on the base se-
quence (kj) and on the weights.

Let M = (Mj) be a weight sequence. Let I ⊆ R be a compact interval. We
define

B{M}
L∞ (I) := {f ∈ C∞(I) : ∃C, ρ > 0 ∀j ≥ 0 : ∥f (j)∥L∞(I) ≤ C(ρmj)

j},

B(M)
L∞ (I) := {f ∈ C∞(I) : ∀ρ > 0 ∃C > 0 ∀j ≥ 0 : ∥f (j)∥L∞(I) ≤ C(ρmj)

j},

as well as B[M ]
L∞,(kj)

(I) in the obvious way.

Theorem 6.1. Let (kj) be a special base sequence. Let M = (Mj) be a weight
sequence such that mkj+1

/mkj
is bounded. Then:

(a) B{M}
L∞,(kj)

(I) = B{M}
L∞ (I) provided that j/mj is bounded.

(b) B(M)
L∞,(kj)

(I) = B(M)
L∞ (I) provided that j/mj → 0.

Proof. Assume that f ∈ B{M}
L∞,(kj)

(I). Let ℓ ≥ 0 and let j ≥ 0 be such that

kj ≤ ℓ < kj+1. By Proposition 2.6 and the properties of (kj) and (mj),

∥f (ℓ)∥L∞(I) ≤ 4e2(ℓ−kj)ekj+1−kj ∥f (kj)∥
1−

ℓ−kj
kj+1−kj

L∞(I)
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·max
{
∥f (kj+1)∥

ℓ−kj
kj+1−kj

L∞(I) ,
(kj+1 − kj

|I|

)ℓ−kj

∥f (kj)∥
ℓ−kj

kj+1−kj

L∞(I)

}

≤ 4C Cℓ
1 (ρmkj

)
kj

(
1−

ℓ−kj
kj+1−kj

)(
(ρmkj+1

)
kj+1(ℓ−kj)

kj+1−kj +
(C2kj

|I|

)ℓ−kj

(ρmkj
)

kj(ℓ−kj)

kj+1−kj

)
≤ 4C Cℓ

1

(
(C3ρmkj

)ℓ +
(C4mkj

|I|

)ℓ−kj

(ρmkj
)kj

)
≤ 8C (C5 max{ρ, C4|I|−1})ℓ mℓ

ℓ.

Hence f ∈ B{M}
L∞ (I).

Assume that f ∈ B(M)
L∞,(kj)

(I). Let σ > 0 be given. If we assume that j/mj → 0,

then we may proceed as in the proof of Proposition 3.2 to see that choosing ρ > 0
sufficiently small we may find

∥f (ℓ)∥L∞(I) ≤ D(σmℓ)
ℓ, ℓ ≥ 0,

where D = D(σ). □

It is now an easy exercise to deduce the following extensions.

Theorem 6.2. Let (kj) be a special base sequence. Let M have [moderate growth]
and assume that, for all M ∈ M, j/mj is bounded, in the Roumieu case, and tends

to zero, in the Beurling case. Then B[M]
L∞,(kj)

(I) = B[M]
L∞ (I).

Theorem 6.3. Let (kj) be a special base sequence. Let ω be a weight function such
that ω(t) = O(t) as t → ∞, in the Roumieu case, and ω(t) = o(t), in the Beurling

case. Then B[ω]
L∞,(kj)

(I) = B[ω]
L∞(I).

Remark 6.4. In [1], instead of assuming mkj+1/mkj bounded, the authors require
that

(19) ∃i0 ≥ 0 ∀i, j > i0 and i < j < ik : mj ≤ mimk.

If there is ϵ > 0 such that mj > ϵ for all j, then it is not hard to check that (19)
implies

(20) ∃C ≥ 1 ∀i, j ≥ 1 and i < j < ik : mj ≤ Cmimk.

But (20) (for k = 3 and j = 2i) implies that M has moderate growth (cf. [18,
Theorem 1]). And, if (kj) is a special base sequence, then Lemma 5.2 implies that
mkj+1

/mkj
is bounded.

Remark 6.5. In Theorem 6.1, the assumption that (kj) is a special base se-
quence cannot be omitted. In fact, by [1, Theorem 1.6], for each positive se-
quence M = (Mj) such that lim supj→∞ mj = ∞ there is a base sequence (kj) and

f ∈ B{M}
L∞,(kj)

(I) but f ̸∈ B{M}
L∞ (I). More precisely, a weight sequence N = (Nj)

and sequences of positive integers (kj) and (ℓj) with the following properties are
constructed:

• · · · < ℓj < kj < ℓj+1 < kj+1 < · · · ,
• Nkj = Mkj , and

• Nℓj = 22
ℓj
Mℓj .
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It is well-known that for each weight sequence N there exists f ∈ B{N}
L∞ (R) with

|f (j)(0)| ≥ Nj for all j ≥ 0 (cf. [23, Theorem 1] or [21, Lemma 2.4]) from which the
assertion follows easily.

Note that this result does not contradict Theorem 4.1: if also M = (Mj) is a
weight sequence, then the above conditions imply

mkj+1 = nkj+1 ≥ nℓj+1 = 22
ℓj+1/ℓj+1mℓj+1 ≥ 22

ℓj+1/ℓj+1mkj

so that mkj+1
/mkj

is unbounded.
It is possible to adapt the proof of this result to the Beurling case as well as to

the general setting of a weight structure M; see Section A.

Optimality of the conditions. Let us summarize the situation in the case of
one weight sequence M = (Mj) satisfying that j/mj is bounded. Let I ⊆ R be a
compact interval. By Theorem 6.1,

(21) B{M}
L∞,(kj)

(I) = B{M}
L∞ (I)

provided that kj+1/kj and mkj+1/mkj are bounded.
As seen in Remark 4.4 and Lemma 5.2, the dependencies can be summarized by

the following diagram:

kj+1

kj
bounded

M has moderate growth

))
mkj+1

mkj

bounded

∃n∈N≥2: lim infj→∞
mnj
mj

>1

ii

For instance, for all Gevrey sequencesM = (ksk)k, where s ≥ 1, kj+1/kj is bounded
if and only if mkj+1

/mkj
= (kj+1/kj)

s is bounded.
Theorem 1.4 in [1] states that (21) holds if kj+1/kj is bounded and M satisfies

(19). In view of Remark 6.4, (19) entails moderate growth so that the conditions
of [1, Theorem 1.4] imply those of Theorem 6.1.

Regarding Remark 6.5, one may ask if (ℓj) and (Nj) with analogous properties
can be found for each given sequence (kj) such that kj+1/kj is unbounded. That
would imply that boundedness of kj+1/kj is necessary for the validity of (21). The
construction in [1] alluded to in Remark 6.5 and generalized in Section A does not
provide this. On the other hand, in the situation of Remark 4.4, in particular, in

the Gevrey case, the validity of E{M}
L2,(kj)

(U) = E{M}
L2 (U) implies that mkj+1

/mkj
and

kj+1/kj are bounded.

Remark 6.6. Liess (see Remark 4.4) works with L2 based bounds of Roumieu type,
but his arguments apply to Lp based bounds for all 1 ≤ p ≤ ∞ of Roumieu and
Beurling type if the weight sequence M = (Mj) satisfies the properties listed in Re-

mark 4.4. (The inclusion E [M ]
Lp,(kj)

(U) ⊆ E [M ]
Lp (U) is continuous, by the closed graph

theorem, since convergence in the left-hand side entails pointwise convergence, by
the Sobolev inequality. In the Beurling case, the quantifiers for the constants in
Liess’s proof change but this does not affect the conclusion. The arguments also

work for global classes of type B[M ]
Lp (I), where I is a compact interval.)
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Appendix A.

Let M = {M (s) : s > 0} be a totally ordered family of weight sequences such

that limj→∞(M
(s)
j )1/j = ∞ for all s > 0. We claim that there exists a weight se-

quence N = (Nj) and sequences of positive integers (kj) and (ℓj) with the following
properties:

(1) · · · < ℓj < kj < ℓj+1 < kj+1 < · · · ,
(2) Nkj

= j−kjM
(1/j)
kj

for all j ≥ 1, and

(3) Nℓj = 22
ℓj
M

(j)
ℓj

for all j ≥ 1.

There exists f ∈ B{N}
L∞ (R) with |f (j)(0)| ≥ Nj for all j ≥ 0 (cf. [23, Theorem 1] or

[21, Lemma 2.4]). Then (2) guarantees that f ∈ B(M)
L∞,(kj)

(R). On the other hand,

f ̸∈ B{M}
L∞ (R), by (3). This shows that

(22) B(M)
L∞,(kj)

(R) ̸= B(M)
L∞ (R) and B{M}

L∞,(kj)
(R) ̸= B{M}

L∞ (R).

It is easy to adjust the arguments so that they give (22) for R replaced with any
interval I ⊆ R.

Let us construct N = (Nj), (kj), and (ℓj) with the desired properties. Let
N0 := 1. We will define Nj in terms of νj := Nj/Nj−1 for j ≥ 1. For simplicity of

notation, we put Aj := 22
j

.
Let us first assume that (kj) and (ℓj) are arbitrary positive sequences of integers

satisfying (1). We will define νj such that (2) and (3) hold. In the end, we discuss
how (kj) and (ℓj) must be chosen such that (νj) is increasing, i.e., N = (Nj) is a
weight sequence.

For j ≥ 1, set

νkj
:=

( M
(1/j)
kj

jkjAℓjM
(j)
ℓj

)1/(kj−ℓj)

,

νℓj+1
:=

(jkjAℓj+1
M

(j+1)
ℓj+1

M
(1/j)
kj

)1/(ℓj+1−kj)

,

νk := νkj
, for ℓj + 1 ≤ k ≤ kj ,

νk := νℓj+1
, for kj + 1 ≤ k ≤ ℓj+1.

Additionally,

ν1 = · · · = νℓ1 := (Aℓ1M
(1)
ℓ1

)1/ℓ1 .

By construction, (2) and (3) are satisfied. Taking ℓ1 large enough we have ν1 ≥ 1

(since (M
(1)
j )1/j → ∞). Next let us check that we may choose k1 < ℓ2 < k3 < · · ·

in such a way that (νj) is increasing. More precisely, we have to make sure that

νℓj ≤ νkj
≤ νℓj+1

for all j ≥ 1.

It is easy to see that taking k1 > ℓ1 sufficiently large gives νℓ1 ≤ νk1 (since

(M
(1)
j )1/j → ∞). Next νkj

≤ νℓj+1
for j ≥ 1 amounts to( M

(1/j)
kj

jkjAℓjM
(j)
ℓj

)1/(kj−ℓj)

≤
(jkjAℓj+1

M
(j+1)
ℓj+1

M
(1/j)
kj

)1/(ℓj+1−kj)

.(23)
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If ℓj < kj are already chosen, then this can be achieved by taking ℓj+1 > kj

sufficiently large since (M
(j+1)
k )1/k → ∞ as k → ∞: if the left-hand side L of (23)

satisfies L ≤ 1, then it is clear; otherwise Lℓj+1−kj ≤ Lℓj+1 and

L ≤
(jkjAℓj+1

M
(j+1)
ℓj+1

M
(1/j)
kj

)1/ℓj+1

visibly can be achieved. Finally, νℓj ≤ νkj
for j ≥ 2 means( (j − 1)kj−1AℓjM

(j)
ℓj

M
(1/(j−1))
kj−1

)1/(ℓj−kj−1)

≤
( M

(1/j)
kj

jkjAℓjM
(j)
ℓj

)1/(kj−ℓj)

.(24)

Here we assume that kj−1 < ℓj are already chosen and we choose kj > ℓj sufficiently
large such that (24) holds. Similarly as for (23), we see that this is possible because

(M
(1/j)
k )1/k → ∞ as k → ∞. This ends the construction of N = (Nj), (kj), and

(ℓj).
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